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ASYMPTOTIC DISSIPATIVE WAVES IN JEFFREY MEDIA
FROM THE POINT OF VIEW OF DOUBLE-SCALE METHOD
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Abstract. This article studies previous results on nonlinear dissipative waves

in Jeffrey media (viscoanelastic media without memory of order one) done by
the first author, from the point of view of double scale method. For these media

the equations of motion include second order derivative terms multiplied by a
very small parameter. The physical meaning of a new (fast) variable, related

to the surfaces across which the solutions or/and some of their derivatives vary

steeply, is explained. The three-dimensional case is considered, that contains
as a particular case an one-dimensional application worked out in a previous

paper. Some known results are revised, other ones are derived and original.

The thermodynamic models for Jeffrey media have applications in rheology
and in other technological fields of applied sciences.

1. Introduction

The theoretical interest in nonlinear waves was manifest as early as the years ’50
and ’60 of the last century and a lot of applications to various branches of physics
were worked out [2, 3, 4, 10, 12, 18, 19, 20, 21, 29, 30]. In the context of rheological
media studies on non-linear waves were carried out in [6, 7, 8].

In previous papers [16, 33] we sketched out the general use of the double-scale
method to nonlinear hyperbolic partial differential equations (PDEs) to study the
asymptotic waves and as an application the model governing the motion of in-
elastic media without shape and bulk memory (Maxwell media) was studied. The
mathematical aspects involved in the study of asymptotic waves belong to singular
perturbation theory, namely the double-scale method [1, 9, 11, 13, 22, 27, 28, 31,
32, 35, 37, 38].

The multiple-scale method, and, in particular, the double-scale approach, is
appropriate to phenomena which possess qualitatively distinct aspects at vari-
ous scales. For instance, at some well-determined times or space coordinates, the
characteristics of the motion vary steeply, while at larger scale the characteristics
are slow and describe another type of motion. In addition, the scales are defined
by some small parameters. In [14, 15] applications of the double scale method were
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given in the one-dimensional case to study of non-linear asymptotic waves in visco-
anelastic media with memory and in Jeffrey media, respectively. In this article the
three-dimensional case is considered and the double scale method [13] is applied to
investigate non-linear dissipative waves in isotropic viscoanelastic media without
memory of order one in which a viscous flow phenomenon occurs (Jeffreys media),
that were studied in [7] by the first author (L. R.) in more classical way, following
the methodologies developed in [3] and generalized in [12]. Only shear phenom-
ena are taken into consideration and the hydrostatic pressure is assumed constant
and uniform. For these media the equations of motion include second order de-
rivative terms, multiplied by a very small parameter, that play a very important
role because they usually have a balancing effect on the non-linear steepening of
waves. In Section 2 the application of double-scale method to non-linear PDES
is treated, the various steps in applying this method are introduced and the as-
ymptotic approximations of first and second order are derived. In Section 3 the
equations governing the motion of Jeffreys media are introduced and the mechani-
cal relaxation equation for these media is described in the framework of classical
irreversible thermodynamics (TIP) with internal variables [5, 23, 24, 25, 26]. Fur-
thermore, a matrix formulation of these equations is given. In Sections 4 and 5 the
propagation into an uniform unperturbed state and the derivation of the asymp-
totic approximation of first order of the wave front and of the solution are worked
out. Some known results are revised, other ones are derived and completely new.

2. Application of double-scale method to nonlinear PDEs

In [7] it was shown that the motion of viscoanelastic media without memory,
in the case where only shear phenomena are taken into consideration and the hy-
drostatic pressure is constant and uniform, is described by a system of nonlinear
partial differential equations (PDEs) having the matrix form

Aα(U)Uα + ω−1
[
Hk ∂2U

∂t∂xk
+ Hik ∂2U

∂xi∂xk

]
= B(U),

α = 0, 1, 2, 3; i, k = 1, 2, 3,
(2.1)

where x0 = t (time), x1, x2, x3 are the space coordinates, U is the vector of the
unknown functions (which depend on xα), Uα = ∂U

∂xα , Aα, Hk, Hik are appropriate
matrices 9× 9, and

Aα(U)Uα = B(U) (2.2)
is the associated system of nonlinear hyperbolic PDEs. The system of PDEs
(2.1) includes terms containing second order derivatives multiplied by a very small
parameter. These terms play a very important role because they usually have a
balancing effect on the non-linear steepening of waves. In [36], using (2.1), the pro-
pagation of linear acoustic waves was considered and the velocity and attenuation
of the waves were investigated.

In [7] the non-linear dissipative waves were worked out (see [2, 3, 4, 10, 12,
18, 19, 20, 21, 29, 30]) and, in particular, a method developed by Boillat [3] and
generalized by Fusco [12] was applied to construct asymptotic approximations of
order 1 of solutions of the system of equations (2.1).

2.1. Asymptotic waves from the point of view of double scale-method.
The smooth solutions of systems of type (2.1) (or type (2.2)) that present a steep
variation in the normal direction to the associated wavefront are called asymptotic
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waves. Then, there exists a family of hypersurfaces S (defined by the equation
ϕ(xα) = 0) moving in the Euclidean space E3+1 (consisting of points of coordinates
xα, α = 0, 1, 2, 3, or, equivalently of the time t = x0 and the space coordinates xi,
i = 1, 2, 3) having equation

ϕ(t, xi) = ξ̄ = const., (2.3)

such that the solutions U or/and some of their derivatives vary steeply across S
while along S their variation is slow [16]. From the double scale method point
of view this means that around S there exist asymptotic internal layers (see [13])
such that the order of magnitude (i.e. the scale) of the solutions or/and of some
of their derivatives inside these layers and far away from them differs very much.
In systems of equations of type (2.1) the coefficient ω−1 is the small parameter,
that is associated with the order of magnitude of the interior layer. Therefore, it is
natural to introduce a new independent variable ξ, related to the hypersurfaces S,

ξ = ωξ̄ = ωϕ(t, xi), (2.4)

where ξ = ϕ(t,xi)
ω−1 is asymptotically fixed, i.e. ξ = Ord(1) as ω−1 → 0, and ω � 1 is

a very large parameter, to assume that the solution depends on the old as well as
the new variable, i.e. U = U(xα, ξ), and to consider that xα and ξ are independent.
Taking into account that U is sufficiently smooth, hence it has sufficiently many
bounded derivatives, it follows that, except for the terms containing ω, all other
terms are asymptotically fixed and the computation can proceed formally. In this
way, if xα = xα(s) are the parametric equations of a curve C in E3+1, we have

dU
ds

= ω
∂U
∂ξ

∂ϕ

∂s
+
∂U
∂xα

dxα

ds

(where the dummy index convention is understood). This relation shows that,
indeed, along C, U does not vary too much if C belongs to the hypersurface S (in
this case dϕ

ds = 0) but has a large variation if C is not situated on S. For these
reasons ξ is referred to as the fast variable.

Recall that the wavefront ϕ is still an unknown function. To determine it, we
recall its equation is ϕ(t, x1, x2, x3) = 0. This implies that along the wavefront we

have dϕ
dt = 0, implying ∂ϕ

∂t +v ·gradϕ = 0, or equivalently,
∂ϕ
∂t

| gradϕ| +v · gradϕ
| gradϕ| = 0.

Obviously,
gradϕ
| gradϕ|

= n, (2.5)

such that the previous equality reads
∂ϕ
∂t

| gradϕ|
+ v · n = 0. (2.6)

We introduce the notation

λ = −
∂ϕ
∂t

| gradϕ|
, (2.7)

so that
λ(U,n) = v · n, (2.8)

where λ is called the velocity normal to the progressive wave, being n the unit vector
normal to the wave front.
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Following the general theory [3] we introduce the quantity

Ψ(U,Φα) = ϕt + | gradϕ|λ(U,n). (2.9)

The characteristic equations for (2.9) are
dxα

dσ
=

∂Ψ
∂Φα

,
dΦα
dσ

= − ∂Ψ
∂xα

(α = 0, 1, 2, 3), (2.10)

where σ is the time along the rays. The i-th component of the radial velocity Λ is
defined by

Λi(U,n) ≡ dxi

dσ
=
∂Ψ
∂φi

= λni +
∂λ

∂ni
−
(
n · ∂λ

∂n

)
ni = λni + vi − (nkvk)ni, (2.11)

for i = 1, 2, 3. Hence,
Λ(U,n) = v − (vn − λ)n. (2.12)

The theory in [3] enables us to deduce the equation for ϕ by using (2.6).

2.2. Outline of the various steps in applying the double-scale method.
The first step of the double-scale method consists in expressing the derivatives
with respect to xα, ∂

∂xα , in terms of the derivatives with respect to xα and ξ, i.e.

∂

∂xα
=

∂

∂xα
+

∂

∂ξ

∂ξ

∂xα
=

∂

∂xα
+ ω

∂

∂ξ

∂ϕ

∂xα
,

so that the derivative Uα = ∂U
∂xα has the form

∂U
∂xα

∼ ω−1
(∂U1

∂xα
+ω

∂U1

∂ξ

∂ϕ

∂xα

)
+ω−1 ∂U2

∂ξ

∂ϕ

∂xα
+O(ω−2), as ω−1 → 0. (2.13)

In the second step, we look for the solution of the equations as an asymptotic
series of powers of the small parameter, say ε, namely with respect to the asymp-
totic sequence {1, εa+1, εa+2, . . . , } or {1, ε

1
p , ε

2
p , . . . , }, as ε → 0. In [6, 7, 8] it is

considered p = 1, and ε = ω−1, such that U(xα, ξ) is written as an asymptotic
power series of the small parameter ω−1, i.e. with respect to the asymptotic se-
quence 1, ω−1, ω−2, . . . . Since ω−1 → 0, and the Ui (i = 1, 2, . . . ) are functions of
xα and ξ, it follows that

U(xα, ξ) ∼ U0(xα, ξ) + ω−1U1(xα, ξ) +O(ω−2), as ω−1 → 0, (2.14)

where we have assumed that the first approximation U0 is constant. In (2.14)
U0(xα, ξ) is a known solution [12] of

Aα(U0)Uα(U0) = B(U0), (2.15)

where U0 is taken as the initial unperturbed state (see (2.2)).
Then, taking into account the form of Aα, Hk, Hik and B, the following asymp-

totic expansions are deduced:

Aα(U) ∼ Aα(U0) +
1
ω
∇Aα(U0)U1 +O

( 1
ω2

)
, as ω−1 → 0, (2.16)

Hk(U) ∼ Hk(U0) +
1
ω
∇Hk(U0)U1 +O

( 1
ω2

)
, as ω−1 → 0 (k = 1, 2, 3), (2.17)

Hik(U) ∼ Hik(U0) +
1
ω
∇Hik(U0)U1 +O

( 1
ω2

)
, as ω−1 → 0 (i, k = 1, 2, 3),

(2.18)

B(U) ∼ B(U0) +
1
ω
∇B(U0)U1 +O

( 1
ω2

)
, as ω−1 → 0, (2.19)
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where ∇ = ∂
∂U .

The last point of the method consists in introducing the asymptotic expansions
(2.13)–(2.19) in (2.1) and matching the obtained series. It follows that

(Aα)0Φα
∂U1

∂ξ
= 0 (α = 0, 1, 2, 3), (2.20)

(Aα)0
(

Φα
∂U2

∂ξ

)
= −

[
(Aα)0

∂U1

∂xα
+ (∇Aα)0U1

(
Φα

∂U1

∂ξ

)
+ (Hk)0Φ0Φk

∂2U1

∂ξ2

+ (Hik)0ΦiΦk
∂2U1

∂ξ2
− (∇B)0U1

]
,

(2.21)

where Φα = ∂ϕ
∂xα (Φk = ∂ϕ

∂xk
, k = 1, 2, 3) and the symbol (. . . )0 indicates that the

quantities are calculated in U0. Equation (2.20) is linear in U1, while (2.21) is
affine in U2.

Of course, equations of asymptotic approximations of higher order can be written
and they are affine, but their solutions are very difficult. Just to solve the linear
equation (2.20), in [7] the methods developed in [3, 12] were applied obtaining many
results that we present in Sections 4, 5.

3. Equations governing the motion of Jeffreys media

In [23], in the framework of the classical irreversible thermodynamics with inter-
nal variables, Kluitenberg developed a theory for mechanical relaxation phenomena
in rheological media, assuming that, when several microscopic phenomena give rise
to inelastic deformation, the tensor of the total strain εαβ can be split in two parts:
εαβ = εelαβ + εinαβ , where the tensors εelαβ and εinαβ describe the elastic and inelastic
strains, respectively. It is supposed that the inelastic deformation εinαβ is due to
the defects of the lattice (slip, dislocations,. . . ) and to the influence of microscopic
stress fields, surrounding imperfections in the medium, and that it can be split in n
contributions ε(k)αβ (k = 1, 2, . . . , n): εinαβ =

∑n
k=1 ε

(k)
αβ (being n arbitrary), that are

introduced as internal variables in the thermodynamical state vector. Furthermore,
in the theory it is assumed that the gradient of the displacement field is small and
this implies that the deformations and the rotations are small. In this case the
strain tensor εik is defined by εik = 1

2

(
∂ui
∂xk

+ ∂uk
∂xi

)
(i, k = 1, 2, . . . , n), where ui is

the i-th component of the displacement field U and xi is the i-th component of the
position vector x in Eulerian coordinates in a Cartesian reference frame.

In [23] for shear phenomena in isotropic viscoanelastic media without memo-
ry, where the hydrostatic pressure is assumed constant and uniform, the following
mechanical relaxation equation between the deviators τ̃ik of the mechanical stress
tensor and ε̃ik of the strain tensor was given by

R
(τ)
(d)0τ̃ik +

n−1∑
m=1

R
(τ)
(d)m

dm

dtm
τ̃ik +

dn

dtn
τ̃ik = R

(ε)
(d)0ε̃ik +

n+1∑
m=1

R
(ε)
(d)m

dm

dtm
ε̃ik (3.1)

for i, k = 1, 2, 3, being the quantities R(τ)
(d)m (m = 0, 1, . . . , n − 1), R(ε)

(d)m (m =
0, 1, . . . , n+ 1), algebraic functions of the coefficients occurring in the phenomeno-
logical equations and in the equations of state. Mechanical relaxation equations
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were derived from this more general mentioned above relation for Maxwell, Jef-
freys, Burgers media and other special rheological materials (see [5, 23, 24, 25, 26]).
Assuming that only one microscopic phenomenon gives rise to inelastic strain, in the
isotropic case and for shear phenomena, when the hydrostatic pressure is assumed
constant and uniform, the relaxation equation describing the mechanical behaviour
of viscoanelastic media without memory (Jeffreys media) of order one (n = 1) (i.e.
when only one internal variable of mechanical origin is taken into consideration),
can be written in the following form

R
(τ)
(d)0P̃ik +

d

dt
P̃ik +R

(ε)
(d)1

d

dt
ε̃ik +R

(ε)
(d)2

d2

dt2
ε̃ik = 0, (3.2)

where P̃ik and ε̃ik are the deviators of the mechanical pressure tensor Pik and of
the strain tensor εik, respectively. We define Pik in terms of the symmetric Cauchy
stress tensor Pik = −τik (i, k = 1, 2, 3) and the following quantities

P̃ik = Pik −
1
3
Pssδik, P =

1
3
Pss, Pss = trP,

Pik = P̃ik + Pδik, P̃ss = 0,

where the hydrostatic pressure P is the scalar part of the tensor Pik. In (3.2) the
coefficients satisfy the relations

R
(τ)
(d)0 = a(0,0)η(1,1)

s ≥ 0, (3.3)

R
(ε)
(d)1 = a(0,0)

[ (
1 + η(0,1)

s

)2

+ η(0,0)
s η(1,1)

s

]
≥ 0, (3.4)

R
(ε)
(d)2 = η(0,0)

s ≥ 0, (3.5)

where a(0,0) is a scalar constant which occurs in the equations of state, while the
coefficients η(0,0)

s , η(0,1)
s and η(1,1)

s are called phenomenological coefficients and rep-
resent fluidities.

The balance equations for the mass density and momentum in the case of Jeffreys
media read [7]

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0 (i = 1, 2, 3), (3.6)

ρ
( ∂
∂t
vi + vk

∂

∂xk
vi
)

+
∂

∂xk
P̃ik = 0, (3.7)

where vi = dui/dt is the i-th component of the velocity field and the force per unit
mass is neglected. Thus, (3.2) becomes

R
(τ)
(d)0P̃ik +

∂

∂t
P̃ik + vp

∂

∂xp
P̃ik

+R
(ε)
(d)1

[1
2

( ∂

∂xk
vi +

∂

∂xi
vk

)
− 1

3
∂

∂xp
vpδik

]
+R

(ε)
(d)2

[1
2

( ∂2

∂t∂xk
vi + vp

∂2

∂xp∂xk
vi +

∂2

∂t∂xi
vk + vp

∂2

∂xp∂xi
vk

)]
−R(ε)

(d)2

[1
3

( ∂2

∂t∂xp
vp + vq

∂2

∂xq∂xp
vp

)
δik

]
= 0 (p, q = 1, 2, 3),

(3.8)

where the relations dεik
dt = 1

2

(
∂vi
∂xk

+ ∂vk
∂xi

)
and d

dt = ∂
∂t + vp

∂
∂xp are used.
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3.1. Matrix form of equation system governing the motion of Jeffreys
media. It is easy to see that the system of equations (3.6)–(3.8), together with
(3.3)–(3.5), takes the matrix form (2.1), where A0(U) = I is the identity matrix,
R

(ε)
(d)2 = ω−1R

′(ε)
(d)2, the matrices Ai, Hi and Hik (i, k = 1, 2, 3) are appropriate 9×9

matrices, given in the Appendix, and

U = (ρ, v1, v2, v3, P̃11, P̃12, P̃13, P̃22, P̃23)T , (3.9)

B = (0, 0, 0, 0, P̃ ∗11, P̃
∗
12, P̃

∗
13, P̃

∗
22, P̃

∗
23)T , (3.10)

P̃ ∗ik = −R(τ)
(d)0P̃ik = −a(0,0)η(1,1)

s P̃ik (i, k = 1, 2, 3). (3.11)

The symbol (. . . )T means that U and B are column vectors of 9 components.

4. Propagation into a uniform unperturbed state

Let us consider an uniform unperturbed state in which U0, solution of (2.15), is

U0 = (ρ0, 0, 0, 0, 0, 0, 0, 0, 0) (ρ0 = const.). (4.1)

If the quantities (2.5) and (2.7) are introduced in the expression (2.20) we obtain

(A0n − λI)
∂U1

∂ξ
= 0, (4.2)

where (An)0 = A0n and An(U) = Aini is an appropriate 9 × 9 matrix. Using
expressions (6.1)–(6.3) in equation (4.2), An(U) assumes the form

An(U) = Aini

=



vn ρn1 ρn2 ρn3 0 0 0 0 0
0 vn 0 0 n1

ρ
n2
ρ

n3
ρ 0 0

0 0 vn 0 0 n1
ρ 0 n2

ρ
n3
ρ

0 0 0 vn −n3
ρ 0 n1

ρ −n3
ρ

n2
ρ

0 2
3R

(ε)
(d)1n1 − 1

3R
(ε)
(d)1n2 − 1

3R
(ε)
(d)1n3 vn 0 0 0 0

0 1
2R

(ε)
(d)1n2

1
2R

(ε)
(d)1n1 0 0 vn 0 0 0

0 1
2R

(ε)
(d)1n3 0 1

2R
(ε)
(d)1n1 0 0 vn 0 0

0 − 1
3R

(ε)
(d)1n1

2
3R

(ε)
(d)1n2 − 1

3R
(ε)
(d)1n3 0 0 0 vn 0

0 0 1
2R

(ε)
(d)1n3

1
2R

(ε)
(d)1n2 0 0 0 0 vn


(4.3)

In [7] it was found that the eigenvalues are real and the eigenvectors of the matrix
An are linearly independent, so that the system of PDEs (2.2) is hyperbolic (see
[16] for the definition of hyperbolicity). The eigenvalues of An(U) are

λ1 = v · n = vn, λ
(±)
2 = vn ±

(R(ε)
(d)1

2ρ

)1/2

, λ
(±)
3 = vn ±

(2R(ε)
(d)1

3ρ

)1/2

, (4.4)

where λ1 has multiplicity 3, both λ
(+)
2 and λ

(−)
2 have multiplicity 2 and λ

(±)
3 are

simple. Furthermore, by using (4.2), (4.4) and (4.3), the eigenvectors r1, r(±)
2 r(±)

3
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corresponding to λ1, λ(±)
2 λ

(±)
3 are

r1 =
(

1, 0, 0, 0,
−(n2 + n3)

n1
, 1, 1,

n2
1(n3 − n2) + n2

3(n2 + n3)
n1(n2

2 + n2
3)

,

−(n2 + n3)(n2
1 + n2n3)

n1(n2
2 + n2

3)

)
,

(4.5)

r(±)
2 =

(
0, 1,

n2
2 − 1
n1n2

,
n3

n1
,±
√

2ρR(ε)
(d)1n1,±

√
2ρR(ε)

(d)1

2n2
2 − 1
2n2

,

±
√

2ρR(ε)
(d)1n3,±

√
2ρR(ε)

(d)1

n2
2 − 1
n1

,±
√

2ρR(ε)
(d)1

n3(2n2
2 − 1)

2n1n2

)
,

(4.6)

r(±)
3 =

(3ρR(ε)
(d)1

2

)1/2(
± 1

R
(ε)
(d)1

ρ,±
( 2

3ρR(ε)
(d)1

)1/2

n,

± 3n2
1 − 1
3

,±n1n2,±n1n3,±
3n2

2 − 1
3

,±n2n3

)
.

(4.7)

In [7] it was seen that the discontinuity waves which are propagating with the
velocities given by λ1 and λ

(±)
2 satisfy the Lax-Boillat exceptionality condition [2]

because ∇λ1 · r1 = 0 and ∇λ(±)
2 · r(±)

2 = 0 (with ∇ = ∂
∂U ), while the discontinuity

waves whose velocities of propagation are λ(±)
3 do not possess this property being

∇λ(+)
3 · r(+)

3 = 1
2 . Thus, only for λ(±)

3 our results are valid. Then, we fix our
attention on λ = λ

(+)
3 which corresponds to a progressive fast longitudinal wave

traveling to the right. The left eigenvector l(+)
3 corresponding to λ(+)

3 is

l(+)
3 =

( 3ρ

2R(ε)
(d)1

)1/2[
0,
(R(ε)

(d)1

3ρ

)1/2 n
n3
,
n2

1 − n2
3

ρn3
,

2n1n2

ρn3
,

2n1

ρ
,
n2

2 − n2
3

ρn3
,

2n2

ρ

]
. (4.8)

Furthermore, the left eigenvector l(+)
3 and the right eigenvector r(+)

3 satisfy the
relation

l(+)
3 · r(+)

3 =
2
n3
. (4.9)

From (4.2) we have

U1(xα, ξ) = u(xα, ξ)r(+)
3 (U0,n) + v1(xα), (4.10)

where u is a scalar function to be determined and v1 is an arbitrary function of
integration which can be taken as zero, without loss of generality (see [3]). It
may be observed that in (4.10) u gives rise to the phenomenon of the distortion of
the signals and this term governs the first-order perturbation obeying a non-linear
partial differential equation (see Section 4). We conclude this section by showing
how the wave front ϕ(t, x1, x2, x3) = 0 can be determined (see [7]). From equation
(2.12), for λ = λ

(+)
3 we obtain

Λ(U,n) = v +
(2R(ε)

(d)1

3ρ

)1/2

n. (4.11)

Since we are considering the propagation into a uniform unperturbed state it is
known [3] that the wave front ϕ satisfies the partial differential equation

Ψ(U0,Φα) = ϕt + | gradϕ|λ(+)
3 (U0,n) = Ψ0 = 0, (4.12)
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and so

Λi(U0,n) =
∂Ψ0

∂Φi
(i = 1, 2, 3). (4.13)

The characteristic equations for (4.12) are

dxα

dσ
=
∂Ψ0

∂Φα
,

dΦα
dσ

= −∂Ψ0

∂xα
(α = 0, 1, 2, 3), (4.14)

where σ is the time along the rays. From (4.11) and (4.13) the expression of the
radial velocity along the rays is

Λ0
i (U

0,n0) =
(2R(ε)

(d)1

3ρ0

)1/2

n0
i , (4.15)

where n0 is a constant value of n. By integration of (2.10) one obtains

x0 = t = σ, xi = (xi)0 + Λ0
i (U

0,n0)t, (4.16)

with (xi)0 = (xi)t=0 (i = 1, 2, 3).
If we denote by ϕ0 the given initial surface, we have

(ϕ)t=0 = ϕ0
[
(xi)0

]
and n0 represents the normal vector at the point (xi)0 defined by

n0 =
( gradϕ
| gradϕ|

)
t=0

=
grad0ϕ0

|grad0ϕ0|
, where (grad0)i ≡

∂

∂(xi)0
(i = 1, 2, 3).

Then, x = x|t=0 + Λ0t and since the Jacobian J of the transformation x → x|t=0

is nonvanishing, i.e.

J = det |δik +
∂Λ0

k

∂(xi)0
t| 6= 0 (i, k = 1, 2, 3),

(xi)0 can be deduced from equations (4.16)2 and ϕ in the first approximation takes
the following form

ϕ(t, xi) = ϕ0(xi − Λ0
i t) = ϕ0

(
xi −

(2R(ε)
(d)1

3ρ0

)1/2

n0
i t
)
. (4.17)

5. First approximation of wavefront and of U

Using (2.21) and (4.10) (see [3] and [7]), the following equation for u(xα, ξ) can
be obtained:

∂u

∂σ
+
(
∇Ψ · r(+)

3

)
0
u
∂u

∂ξ
+

1√
J

∂
√
J

∂σ
u+ µ0 ∂

2u

∂ξ2
= ν0u, (5.1)

where

(∇Ψ · r(+)
3 )0 = (| gradϕ|)0

(
∇λ(+)

3 · r(+)
3

)
0
, (5.2)

µ0 =

[
l(+)
3 ·

(
Hk ∂ϕ

∂t
∂ϕ
∂xk

+ Hik ∂ϕ
∂xi

∂ϕ
∂xk

)(
r(+)
3

)]
0(

l(+)
3 · r(+)

3

)
0

, (5.3)

ν0 =

(
l(+)
3 · ∇Br(+)

3

)
0(

l(+)
3 · r(+)

3

)
0

. (5.4)
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Straightforward computations give(
∇Ψ · r(+)

3

)
0

=
1
2

(| gradϕ|)0, (5.5)

where

∇λ(+)
3 =

∂λ
(+)
3

∂U
≡
[
− 1

2ρ

(2R(ε)
(d)1

3ρ

)1/2

, n1, n2, n3, 0, 0, 0, 0, 0, 0
]

and

∇λ(+)
3 · r(+)

3 =
1
2
, (5.6)

(
l(+)
3 · ∇B r(+)

3

)
0

= −
R

(τ)
(d)0

n3
, ν0 = −

R
(τ)
(d)0

2
, µ0 =

(
∂ϕ
∂t | gradϕ|

)
0
R
′(ε)
(d)2√

6ρ0R
(ε)
(d)1

, (5.7)

where we used equations (4.9) and (6.4)–(6.15). By using the transformation of
variables (see [12])

u =
v√
J
ew, κ =

∫ σ

0

ew√
J

(
∇Ψ · r(+)

3

)
0
dσ, with w =

∫ σ

0

ν0dσ, (5.8)

equation (5.1) can be reduced to an equation of the type

∂v

∂κ
+ v

∂v

∂ξ
+ µ̂0 ∂

2v

∂ξ2
= 0, with µ̂0 =

µ0
√
Je−w(

∇Ψ · r(+)
3

)
0

, (5.9)

which is similar to Burger’s equation and is valid along the characteristic rays.
Using the obtained results (5.5)–(5.7), κ, w and µ̂0 are given by

κ =
∫ σ

0

1
2

(| gradϕ|)0
ew√
J
dσ, w = ν0σ and µ̂0 =

2µ0
√
Je−ν

0σ

(| gradϕ|)0
.

Equation (5.9)1 can be reduced to the semilinear heat equation [17]

∂h

∂κ
= µ̂0 ∂

2h

∂ξ2
− h log

h

µ̂0

dµ̂0

dκ
, (5.10)

for which the solution is known, using the following Hopf transformation [17]

v(ξ, κ) = µ̂0
∂

∂ξ
log h(ξ, κ). (5.11)

Conclusions. In this article we presented a system of non-linear hyperbolic PDEs
describing isotropic visco-inelastic media without memory of order one (Jeffrey me-
dia). Because a theory has an added value if we test it from the mathematical
point of view, we manage to find possible solutions of the obtained thermodynamic
model. But since the achievement of a closed-form solution of nonlinear PDEs is
rare we look for the solution in the form of an asymptotic sequence of powers of
some small parameter, which is related to the thickness of internal layers, across
which the solutions or/and some of their derivatives varies steeply. We describe the
various steps in applying the double scale method and we study the propagation of
a particular solution into a uniform unperturbed state, obtaining the first approx-
imation equation of the wave front of the solution. The three-dimensional case is
treated. The thermodynamic models for Jeffrey media may have relevance in many
fundamental technological sectors and in particular in rheology. The asymptotic
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waves for the media under consideration were studied by the first author (L. R.) in
a more classical way in previous paper.

6. Appendix

The system of equations (3.6)–(3.8) takes the matrix form (2.1), where the ma-
trices Ai (i = 1, 2, 3) have the form

A1 =



v1 ρ 0 0 0 0 0 0 0
0 v1 0 0 1

ρ 0 0 0 0
0 0 v1 0 0 1

ρ 0 0 0
0 0 0 v1 0 0 1

ρ 0 0

0 2
3R

(ε)
(d)1 0 0 v1 0 0 0 0

0 0 1
2R

(ε)
(d)1 0 0 v1 0 0 0

0 0 0 1
2R

(ε)
(d)1 0 0 v1 0 0

0 − 1
3R

(ε)
(d)1 0 0 0 0 0 v1 0

0 0 0 0 0 0 0 0 v1


, (6.1)

A2 =



v2 0 ρ 0 0 0 0 0 0
0 v2 0 0 0 1

ρ 0 0 0
0 0 v2 0 0 0 0 1

ρ 0
0 0 0 v2 0 0 0 0 1

ρ

0 0 − 1
3R

(ε)
(d)1 0 v2 0 0 0 0

0 1
2R

(ε)
(d)1 0 0 0 v2 0 0 0

0 0 0 0 0 0 v2 0 0
0 0 2

3R
(ε)
(d)1 0 0 0 0 v2 0

0 0 0 1
2R

(ε)
(d)1 0 0 0 0 v2


, (6.2)

A3 =



v3 0 0 ρ 0 0 0 0 0
0 v3 0 0 0 0 1

ρ 0 0
0 0 v3 0 0 0 0 0 1

ρ

0 0 0 v3 − 1
ρ 0 0 − 1

ρ 0

0 0 0 − 1
3R

(ε)
(d)1 v3 0 0 0 0

0 0 0 0 0 v3 0 0 0
0 1

2R
(ε)
(d)1 0 0 0 0 v3 0 0

0 0 0 − 1
3R

(ε)
(d)1 0 0 0 v3 0

0 0 1
2R

(ε)
(d)1 0 0 0 0 0 v3


. (6.3)
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Furthermore, in the system of equations (2.1), the matrices Hi and Hik (i, k =
1, 2, 3) have the following form (with R

(ε)
(d)2 = ω−1R

′(ε)
(d)2):

H1 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2

3R
′(ε)
(d)2 0 0 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2 0 0 0 0 0

0 − 1
3R
′(ε)
(d)2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (6.4)

H2 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 − 1

3R
′(ε)
(d)2 0 0 0 0 0 0

0 1
2R
′(ε)
(d)2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 2

3R
′(ε)
(d)2 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2 0 0 0 0 0


, (6.5)

H3 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 − 1

3R
′(ε)
(d)2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 1

2R
′(ε)
(d)2 0 0 0 0 0 0 0

0 0 0 − 1
3R
′(ε)
(d)2 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2 0 0 0 0 0 0


, (6.6)

H11 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2

3R
′(ε)
(d)2v1 0 0 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2v1 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2v1 0 0 0 0 0

0 − 1
3R
′(ε)
(d)2v1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (6.7)
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H12 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 − 1

3R
′(ε)
(d)2v1 0 0 0 0 0 0

0 1
2R
′(ε)
(d)2v1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 2

3R
′(ε)
(d)2v1 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2v1 0 0 0 0 0


, (6.8)

H13 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 − 1

3R
′(ε)
(d)2v1 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 1

2R
′(ε)
(d)2v1 0 0 0 0 0 0 0

0 0 0 − 1
3R
′(ε)
(d)2v1 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2v1 0 0 0 0 0 0


, (6.9)

H21 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2

3R
′(ε)
(d)2v2 0 0 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2v2 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2v2 0 0 0 0 0

0 − 1
3R
′(ε)
(d)2v2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (6.10)

H22 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 − 1

3R
′(ε)
(d)2v2 0 0 0 0 0 0

0 1
2R
′(ε)
(d)2v2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 2

3R
′(ε)
(d)2v2 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2v2 0 0 0 0 0


, (6.11)
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H23 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 − 1

3R
′(ε)
(d)2v2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 1

2R
′(ε)
(d)2v2 0 0 0 0 0 0 0

0 0 0 − 1
3R
′(ε)
(d)2v2 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2v2 0 0 0 0 0 0


, (6.12)

H31 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2

3R
′(ε)
(d)2v3 0 0 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2v3 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2v3 0 0 0 0 0

0 − 1
3R
′(ε)
(d)2v3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (6.13)

H32 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 − 1

3R
′(ε)
(d)2v3 0 0 0 0 0 0

0 1
2R
′(ε)
(d)2v3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 2

3R
′(ε)
(d)2v3 0 0 0 0 0 0

0 0 0 1
2R
′(ε)
(d)2v3 0 0 0 0 0


, (6.14)

H33 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 − 1

3R
′(ε)
(d)2v3 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 1

2R
′(ε)
(d)2v3 0 0 0 0 0 0 0

0 0 0 − 1
3R
′(ε)
(d)2v3 0 0 0 0 0

0 0 1
2R
′(ε)
(d)2v3 0 0 0 0 0 0


. (6.15)
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[22] J. Kevorkian; Méthodes des échelles multiple, Séminaire de l’École Nationale Supérieure de

Techniques Avancées, 1972.
[23] G. A. Kluitenberg; A thermodynamic derivation of the stress-strain relations for Burgers

media and related substancesm, Physica, 38 (1968), 513-548.

[24] G. A. Kluitenberg; On the thermodynamics of viscosity and plasticity, Physica, 29 (1963),
633-652.

[25] G. A. Kluitenberg; On heat dissipation due to irreversible mechanical phenomena in contin-

uous media, Physica, 35 (1967), 117-192.
[26] G. A. Kluitenberg, V. Ciancio; On linear dynamical equations of state for isotropic media -

I - General formalism, Physica, 93 A (1978), 273-286.

[27] N. M. Krylov, N. N. Bogoliubov, Introduction to nonlinear mechanics, Izd. AN USS, 1937
(Russian)



16 L. RESTUCCIA, A. GEORGESCU EJDE-2017/106

[28] P. A. Lagerstrom, R. G. Casten, Basic concepts underlying singular perturbation technique,

SIAM Rev., 14 (1) (1972), 63-120.

[29] P. D. Lax; Contributions to the theory of partial differential equations, Princeton University
Press, Princeton, 1954.

[30] P. D. Lax; Nonlinear hyperbolic equations, Comm. Pure Appl. Math., 6 (1983), 231-258.
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