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DETERMINISTIC HOMOGENIZATION OF PARABOLIC
MONOTONE OPERATORS WITH TIME DEPENDENT

COEFFICIENTS

GABRIEL NGUETSENG, JEAN LOUIS WOUKENG

Abstract. We study, beyond the classical periodic setting, the homogeniza-
tion of linear and nonlinear parabolic differential equations associated with
monotone operators. The usual periodicity hypothesis is here substituted by
an abstract deterministic assumption characterized by a great relaxation of
the time behaviour. Our main tool is the recent theory of homogenization
structures by the first author, and our homogenization approach falls under
the two-scale convergence method. Various concrete examples are worked out
with a view to pointing out the wide scope of our approach and bringing the
role of homogenization structures to light.

1. Introduction

Let 2 ≤ p < ∞. Let (y, τ, λ) → a(y, τ, λ) be a function from RN × R× RN to
RN (N ≥ 1) with the properties:

For each fixed λ ∈ RN , the function (y, τ) → a(y, τ, λ) (denoted
by a(·, ·, λ)) from RN × R to RN is measurable

(1.1)

a(y, τ, ω) = ω almost everywhere (a.e.) in (y, τ) ∈ RN ×R, where
ω denotes the origin in RN (1.2)

There are two constants α0, α1 > 0 such that, a.e. in (y, τ) ∈
RN × R:
(i) (a(y, τ, λ)− a(y, τ, µ)) · (λ− µ) ≥ α0 | λ− µ |p
(ii) |a(y, τ, λ)− a(y, τ, µ)| ≤ α1(|λ|+ |µ|)p−2|λ− µ| for all λ, µ ∈
RN , where the dot denotes the usual Euclidean inner product in
RN , and | · | the associated norm.

(1.3)

Let T be a positive real number, Ω a smooth bounded open set in RNx (the space
RN of variables x = (x1, . . . , xN )), and f ∈ Lp′(0, T ;W−1,p′(Ω; R)) with p′ = p

p−1 .
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For each given ε > 0, we consider the initial-boundary value problem

∂uε
∂t

− div a
(x
ε
,
t

ε
,Duε

)
= f in Q = Ω× (0, T )

uε = 0 on ∂Ω× (0, T )

uε(x, 0) = 0 in Ω

(1.4)

where D denotes the usual gradient, i.e., D = (Dxi
)1≤i≤N with Dxi

= ∂
∂xi

, and div
the divergence with respect to the variable x.

Provided the diffusion term of the differential operator in (1.4) is rigorously
defined (see [18, Subsection 4.1]) and further an existence and uniqueness result for
(1.4) is pointed out (all that will be accomplished in Section 2), our goal in this paper
is to investigate the limiting behaviour, as ε→ 0, of uε (the solution of (1.4)). In all
probability such an undertaking is hopeless without any further suitable assumption
termed a structure hypothesis [18, 20], which specifies the behaviour of the function
(y, τ) → a(y, τ, λ) (for fixed λ).

The common structure hypothesis is the so-called periodicity hypothesis. The
latter states that there exist two networks R ⊂ RNy and S ⊂ Rτ , e.g., R = ZN
and S = Z, such that for any given k ∈ R and l ∈ S, we have a(y + k, τ + l, λ) =
a(y, τ, λ) a.e. in (y, τ) ∈ RN×R, where λ is arbitrarily fixed. Under the periodicity
hypothesis, homogenization results for problem (1.4) are available; see, e.g., [17, 22,
24] (see also [25] for specific corrector results). It should be mentioned in passing
that the homogenization of linear parabolic operators in the periodic setting is now
a classical theory (see, e.g., [2, 3, 8, 12, 13] ) with, further, an extension to the
almost periodic setting (see [27]).

However, much yet remains to be done in this area. To a large extent, non-
stochastic homogenization theory seems to confine itself to the periodic setting, and
that in spite of the gap to be filled between periodic and stochastic homogenization
[23]. No doubt, to arrive −via homogenization− at a thorough understanding of
physical problems we need to be released from the classical periodicity hypothesis,
especially with regard to the behaviour in the time variable.

Specifically, we study here the homogenization of problem (1.4) in a very general
setting characterized by an abstract assumption on a(y, τ, λ) (for fixed λ) covering
a wide range of behaviours, especially with respect to the time variable τ = t

ε .
Broadly speaking, this abstract assumption is proper [21] with respect to the space
variable y = x

ε and hence covers a great variety of concrete behaviours in y (see
[21, Section 5]) whereas, surprisingly enough, with respect to τ = t

ε it sets no
further significant restriction on a(y, τ, λ) (fixed λ), which we express by referring
to the quasi-properness introduced in Definition 3.1. This is a true advance in the
homogenization of parabolic partial differential equations, and a great step towards
a better understanding of evolution phenomena.

Our main tool is the recent theory of homogenization structures earlier developed
in [18, 21] and our homogenization approach falls under the two-scale convergence
method. For an obvious reason (see the diffusion term of the differential operator
in (1.4)) the present study greatly leans on the elliptic case [21] of which it is a
natural continuation.

The rest of the paper is organized as follows. In Section 2 we rigorously define the
diffusion term of the differential operator in (1.4) and we point out those of its basic
properties that ensure an existence and uniqueness result for the initial-boundary
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value problem under consideration. The homogenization of problem (1.4) proper
begins with Section 3. Under an abstract deterministic hypothesis on a(·, ·, λ) (for
fixed λ) we achieve fundamental homogenization results that prove quite similar to
those obtained in the periodic setting. Finally, to illustrate the preceding abstract
setting and point out its wide scope, we consider in Section 4 a few concrete homog-
enization problems for (1.4). In particular it is shown how such concrete problems
reduce in a natural way to the abstract setting of Section 3.

In order that we may make use of basic tools provided by the classical Banach al-
gebras theory, the vector spaces throughout are generally considered over C and the
scalar functions are assumed to take complex values. If X and F denote a locally
compact space and a Banach space, respectively, then we write C(X;F ),B(X;F )
and K(X;F ) for continuous mappings of X into F , bounded continuous mappings
of X into F , and those mappings in C(X;F ) having compact supports, respec-
tively. We shall always assume that B(X;F ) is equipped with the supremum norm
‖u‖∞ = supx∈X ‖u(x)‖ (‖·‖ denotes the norm in F ). For shortness we will write
C(X) = C(X; C), B(X) = B(X; C) and K(X) = K(X; C). Likewise the usual
spaces Lp(X;F ) and Lploc(X;F ) (X provided with a positive Radon measure) will
be denoted by Lp(X) and Lploc(X), respectively, in the case when F = C. We
refer to [6, 7, 9] for integration theory. On the other hand, for convenience we will
most of the time put CR(X) = C(X; R), BR(X) = B(X; R), KR(X) = K(X; R) and
LpR(X) = Lp(X; R). Finally, the numerical space Rd (d ≥ 1) and its open sets are
each provided with Lebesgue measure denoted by dx = dx1 . . . dxd.

2. Preliminaries

Let 1 < p <∞. Let G be a function from RN ×R× RN to R with the following
properties:

For each λ ∈ RN , the function (y, τ) → G(y, τ, λ) from RN ×R to
R, denoted by G(·, ·, λ), is measurable (2.1)

G(y, τ, ω) = 0 a.e. in (y, τ) ∈ RN × R (2.2)

There exists a positive constant α1 such that |G(y, τ, λ) −
G(y, τ, µ)| ≤ α1(|λ| + |µ|)p−2|λ − µ| for all λ, µ ∈ RN and for
almost all (y, τ) ∈ RN × R.

(2.3)

With a view to giving a meaning to the diffusion term in (1.4), we wish to define,
for each u in LpR(Q)N = LpR(Q) × · · · × LpR(Q) (N times), the function (x, t) →
G(xε ,

t
ε ,u(x, t)) from Q = Ω × (0, T ) to R, where ε > 0 is freely fixed. As was

pointed out in [18, Subsection 4.1], it is worth emphasizing that this is a delicate
matter because the set Qε = {(x, t, y, τ) : y = x

ε and τ = t
ε for (x, t) ∈ Q} is

negligible in RN × R× RN × R.
For u ∈ L1

loc(Q× RNy × Rτ ), we set

uε(x, t) = u
(
x, t,

x

ε
,
t

ε

)
(x ∈ Ω, 0 < t < T ) (2.4)

whenever the right-hand side has meaning (see [18]). We will need the following
two basic lemmas. For the proofs we refer to [21, Lemmas 2.1 and 2.2].
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Lemma 2.1. The transformation u → uε (uε given by (2.4)) considered as a
mapping of C(Q)⊗ L∞(RN+1) into L∞(Q) extends by continuity to a linear map-
ping, still denoted by u → uε, of C(Q;L∞(RN+1)) into L∞(Q) with ‖uε‖L∞(Q) ≤
sup(x,t)∈Q ‖u(x, t)‖L∞(RN+1) for u in C(Q;L∞(RN+1)).

Lemma 2.2. Let u ∈ C(Q;L∞(RN+1)). Suppose for each (x, t) ∈ Q we have
u(x, t, y, τ) ≥ 0 a.e. in (y, τ) ∈ RN × R. Then uε(x, t) ≥ 0 a.e. in Q, where uε is
considered in the meaning of Lemma 2.1.

Now, given Φ ∈ CR(Q)N = CR(Q) × · · · × CR(Q) (N times), it is immediate by
(2.1)-(2.3) that the function (x, t, y, τ) → u(x, t, y, τ) = G(y, τ,Φ(x, t)) ofQ×RN×R
into R lies in C(Q;L∞(RN+1)). Hence, the real function (x, t) → G(xε ,

t
ε ,Φ(x, t)) on

Q, denoted below by Gε(·, ·,Φ), is defined in the sense of Lemma 2.1 as a function
in L∞R (Q).

Proposition 2.1. The transformation Φ → Gε(·, ·,Φ) of CR(Q)N into L∞(Q)
extends by continuity to a mapping, still denoted by Φ → Gε(·, ·,Φ), of LpR(Q)N

into Lp
′
(Q) (p′ = p

p−1 ) with the property

‖Gε(·, ·,Φ)−Gε(·, ·,Ψ)‖Lp′ (Q) ≤ α1 ‖|Φ|+ |Ψ|‖p−2
Lp(Q) ‖Φ−Ψ‖Lp(Q)N (2.5)

for Φ,Ψ ∈ LpR(Q)N .

Proof. Let Φ,Ψ ∈ CR(Q)N . Thanks to ( 2.3), we may apply Lemma 2.2 with

u(x, t, y, τ) = α1

(
|Φ(x, t)|+ |Ψ(x, t)|

)p−2|Φ(x, t)−Ψ(x, t)|
− |G(y, τ,Φ(x, t))−G(y, τ,Ψ(x, t))|.

This leads immediately to

|Gε(·, ·,Φ)−Gε(·, ·,Ψ)|p
′
≤ αp

′

1 (|Φ|+ |Ψ|)(p−2)p′ |Φ−Ψ|p
′
.

Considering the functions |Φ−Ψ|p
′

and (|Φ| + |Ψ|)(p−2)p′ as belonging to Lq(Q)
and Lq

′
(Q), respectively, where q = p

p′ and q′ = q
q−1 , and using Hölder’s inequality,

one easily arrives at (2.5) with CR(Q)N in place of LpR(Q)N . With this in mind,
let Br = {v ∈ LpR(Q)N : ‖v‖Lp

R(Q)N ≤ r
2} with r > 0. Let gr be the restriction

to Br ∩ CR(Q)N of the mapping v → Gε (·, ·,v) (where ε > 0 is fixed, of course).
Clearly

‖gr(Φ)− gr(Ψ)‖Lp′ (Q) ≤ α1r
p−2 ‖Φ−Ψ‖Lp(Q)N for all Φ,Ψ ∈ Br ∩ CR(Q)N .

(2.6)
Since Br ∩ CR(Q)N is dense in Br (the verification is an elementary exercise), it
follows that gr extends by continuity to a continuous mapping, still denoted by gr,
of Br into Lp

′
(Q) such that (2.6) holds with Br in place of Br∩CR(Q)N . Whence we

deduce a sequence (gn)n≥1 of mappings gn : Bn → Lp
′
(Q) with gn(Φ) = Gε(·, ·,Φ)

for Φ ∈ Bn ∩ CR(Q)N . Noticing that LpR(Q)N is the union of the balls Bn (n ≥ 1)
and, on the other hand, gn+1(Φ) = gn(Φ) for Φ ∈ Bn ,we are led to a uniquely
defined continuous mapping g : LpR(Q)N → Lp

′
(Q) such that g(Φ) = Gε (·, ·,Φ)

for any Φ ∈ CR(Q)N . Hence the proposition follows by the density of CR(Q)N in
LpR(Q)N . �
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Corollary 2.1. We have

aε(·, ·, ω) = ω a.e. in Q, (2.7)

‖aε(·, ·, Du)− aε(·, ·, Dv)‖Lp′ (Q)N ≤ α1 ‖|Du|+ |Dv|‖p−2
Lp(Q) ‖Du−Dv‖Lp(Q)N

(2.8)

and [
a
(x
ε
,
t

ε
,Du(x, t)

)
− a

(x
ε
,
t

ε
,Dv(x, t)

)]
· (Du(x, t)−Dv(x, t))

≥ α0 |Du(x, t)−Dv(x, t)|p a.e. in (x, t) ∈ Q
(2.9)

for all u, v ∈ Lp
(
0, T ;W 1,p (Ω; R)

)
, where aε(·, ·, Du) = {aεi (·, ·, Du)}1≤i≤N .

Due to (1.1)-(1.3) and Lemma 2.2, this corollary is a direct consequence of Propo-
sition 2.1 with G = ai (the ith component of the function (y, τ, λ) → a(y, τ, λ)).

Remark 2.1. Thanks to Proposition 2.1, the diffusion term in (1.4) can now be
rigorously defined. Specifically, let u ∈ Lp

(
0, T ;W 1,p (Ω; R)

)
. Then aε(·, ·, Du) ∈

Lp
′
(Q)N , as pointed out above. But we may as well view aε(·, ·, Du) as a function in

Lp
′
(0, T ;Lp

′
(Ω)N ). Consequently, div aε(·, ·, Du) turns out to precisely represent

the function t → div aε (·, t,Du(·, t)) of (0, T ) into W−1,p′ (Ω; R), which lies in
Lp

′
(0, T ;W−1,p′(Ω; R)) (this is straightforward).

Corollary 2.2. Let 2 ≤ p < ∞. For each given real ε > 0, there exists a unique
uε ∈ Lp(0, T ;W 1,p

0 (Ω; R)) satisfying (1.4).

The statement of this corollary is guaranteed by (2.7)-(2.9). For more details we
refer to, e.g., [1, 16, 26].

Remark 2.2. More precisely, uε lies in

V p =
{
v ∈ Lp(0, T ;W 1,p

0 (Ω; R)) : v′ =
∂v

∂t
∈ Lp

′
(0, T ;W−1,p′(Ω; R))

}
.

With the norm ‖v‖V p = ‖v‖Lp(0,T ;W 1,p
0 (Ω)) + ‖v′‖Lp′(0,T ;W−1,p′ (Ω)), V

p is a Banach

space. For further needs it is worth noting that, since p ≥ 2, the space W 1,p
0 (Ω; R)

is continuously and densely embedded in L2
R(Ω). Hence, identifying L2

R(Ω) with its
dual, it follows

W 1,p
0 (Ω; R) ⊂ L2

R(Ω) ⊂W−1,p′ (Ω; R)
with continuous embeddings. This has two important consequences:
1) We will use the same symbol, to denote both the inner product in L2

R(Ω) and
the duality between the spaces W−1,p′(Ω; R) and W 1,p

0 (Ω; R).
2) The space V p is continuously embedded in C([0, T ];L2

R(Ω)) (this is a classical
result). Thus, we may define v(t) for v ∈ V p and 0 ≤ t ≤ T , and further the
mapping v → v(t) sends continuously V p into L2

R(Ω). Hence, we may consider the
space V p0 = {v ∈ V p : v(0) = 0}, a Banach space with the V p-norm, which turns
out to contain the solution uε of (1.4).

3. The Abstract Homogenization problem

For any notation, notion and result concerning homogenization structures and
homogenization algebras we refer the reader to [18, 21]. The letter E throughout
will denote exclusively a family of positive real numbers admitting 0 as an accu-
mulation point. In the particular case where E = (εn)n≥0 with 0 < εn ≤ 1 and
εn → 0 as n→∞, we will refer to E as a fundamental sequence.
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3.1. Fundamentals of homogenization structures. To the benefit of the reader
we summarize below a few basic notions and results about the homogenization
structures. We refer to [18, 21] for further details.

We start with one underlying concept. We say that a set Γ ⊂ B(RNy ) is a
structural representation on RN if

(1) Γ is a group under multiplication in B(RNy )
(2) Γ is countable
(3) γ ∈ Γ implies γ ∈ Γ (γ the complex conjugate of γ)
(4) Γ ⊂ Π∞.
Here, Π∞ denotes the space of functions u ∈ B(RNy ) such that uε → M(u) in

L∞(RNx )-weak ∗ as ε→ 0 (ε > 0), where uε(x) = u
(
x
ε

)
(x ∈ RN ) and M(u) ∈ C.

We recall in passing that the complex mapping u → M(u) on Π∞ is a positive
continuous linear form with M(1) = 1 and M(τhu) = M(u) (for u ∈ Π∞ and
h ∈ RN ) where τhu(y) = u(y− h) (y ∈ RN ). Thus, M is a mean value (see [18, 19]
for further details).

Now, in the collection of all structural representations on RN we consider the
equivalence relation ∼ defined as: Γ ∼ Γ′ if and only if CLS(Γ) = CLS(Γ′),
where CLS(Γ) denotes the closed vector subspace of B(RNy ) spanned by Γ. By an
H-structure on RNy (H stands for homogenization) is understood any equivalence
class modulo ∼. An H-structure is fully determined by its image. Specifically,
let Σ be an H-structure on RN . Put A = CLS(Γ) where Γ is any equivalence
class representative of Σ (such a Γ is termed a representation of Σ). The space
A is a so-called H-algebra on RNy , that is, a closed subalgebra of B(RNy ) with the
properties:

(5) A with the supremum norm is separable
(6) A contains the constants
(7) If u ∈ A then u ∈ A
(8) A ⊂ Π∞.
Furthermore, A depends only on Σ and not on the chosen representation Γ of Σ.

Thus, we may set A = J (Σ) (the image of Σ). This yields a mapping Σ → J (Σ)
that carries the collection of all H-structures bijectively over the collection of all
H-algebras on RNy (see [18, Theorem 3.1]).

Let A be an H-algebra on RNy . Clearly A (with the supremum norm) is a com-
mutative C∗-algebra with identity (the involution is here the usual one of complex
conjugation). We denote by ∆(A) the spectrum of A and by G the Gelfand trans-
formation on A. We recall that ∆(A) is the set of all nonzero multiplicative linear
forms on A, and G is the mapping of A into C(∆(A)) such that G(u)(s) = 〈s, u〉
(s ∈ ∆(A)), where 〈, 〉 denotes the duality between A′ (the topological dual of A)
and A. The topology on ∆(A) is the relative weak ∗ topology on A′. So topol-
ogized, ∆(A) is a metrizable compact space, and the Gelfand transformation is
an isometric isomorphism of the C∗-algebra A onto the C∗-algebra C(∆(A)). For
further details concerning the Banach algebras theory we refer to [15]. The basic
measure on ∆(A) is the so-called M -measure for A, namely the positive Radon
measure β (of total mass 1) on ∆(A) such that M(u) =

∫
∆(A)

G(u)dβ for u ∈ A

(see [18, Proposition 2.1]).
The partial derivative of index i (1 ≤ i ≤ N) on ∆(A) is defined to be the

mapping ∂i = G ◦ Dyi
◦ G−1 (usual composition) of D1(∆(A)) = {ϕ ∈ C(∆(A)) :

G−1(ϕ) ∈ A1} into C(∆(A)), where A1 = {ψ ∈ C1(RN ) : ψ,Dyiψ ∈ A (1 ≤ i ≤ N)}.
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Higher order derivatives are defined analogously. At the present time, let A∞ be
the space of ψ ∈ C∞(RNy ) such that Dα

yψ = ∂|α|ψ

∂y
α1
1 ...∂y

αN
N

∈ A for every multi-index

α = (α1, . . . , αN ) ∈ NN , and let D(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A∞}.
Endowed with a suitable locally convex topology (see [18]), A∞ (resp. D(∆(A))) is
a Fréchet space and further, G viewed as defined on A∞ is a topological isomorphism
of A∞ onto D(∆(A)). Any continuous linear form on D(∆(A)) is referred to as
a distribution on ∆(A). The space of all distributions on ∆(A) is then the dual,
D′(∆(A)), of D(∆(A)). We endow D′(∆(A)) with the strong dual topology. If
we assume that A∞ is dense in A (this condition is always fulfilled in practice),
which amounts to assuming that D(∆(A)) is dense in C(∆(A)), then Lp(∆(A)) ⊂
D′(∆(A)) (1 ≤ p ≤ ∞) with continuous embedding (see [18] for more details).
Hence we may define

W 1,p(∆(A)) = {u ∈ Lp(∆(A)) : ∂iu ∈ Lp(∆(A)) (1 ≤ i ≤ N)}
where the derivative ∂iu is taken in the distribution sense on ∆(A) (exactly as the
Schwartz derivative is taken in the classical case). We equip W 1,p(∆(A)) with the
norm

‖u‖W 1,p(∆(A)) = ‖u‖Lp(∆(A)) +
N∑
i=1

‖∂iu‖Lp(∆(A))

(
u ∈W 1,p(∆(A))

)
,

which makes it a Banach space. However, we will be mostly concerned with the
space

W 1,p(∆(A))/C =
{
u ∈W 1,p(∆(A)) :

∫
∆(A)

u(s)dβ(s) = 0
}

provided with the seminorm

‖u‖W 1,p(∆(A))/C =
N∑
i=1

‖∂iu‖Lp(∆(A))

(
u ∈W 1,p(∆(A))/C

)
.

So topologized, W 1,p(∆(A))/C is in general nonseparated and noncomplete. We
denote by W 1,p

# (∆(A)) the separated completion of W 1,p(∆(A))/C and by J the
canonical mapping of W 1,p(∆(A))/C into its separated completion (see, e.g., chap-
ter II of [6] and page 29 of [9]). W 1,p

# (∆(A)) is a Banach space and W 1,2
# (∆(A)) is

a Hilbert space. Furthermore, as pointed out in [18], the distribution derivative ∂i
viewed as a mapping of W 1,p(∆(A))/C into Lp(∆(A)) extends to a unique contin-
uous linear mapping, still denoted by ∂i, of W 1,p

# (∆(A)) into Lp(∆(A)) such that
∂iJ(v) = ∂iv for v ∈W 1,p(∆(A))/C and

‖u‖W 1,p
# (∆(A)) =

N∑
i=1

‖∂iu‖Lp(∆(A)) for u ∈W 1,p
# (∆(A)).

To an H-structure Σ on RN there are attached the important concepts of weak and
strong Σ-convergence in Lp (1 ≤ p <∞) for which we refer to [18].

3.2. The abstract structure hypothesis. Let Σy and Στ be two H-structures of
class C∞ on RNy and Rτ , respectively, and let Σ = Σy ×Στ be their product, which
is an H-structure of class C∞ on RN×R. We introduce their respective images (i.e.,
the associated H-algebras) : Ay = J (Σy), Aτ = J (Στ ) and A = J (Σ). The same
letter, G, will denote the Gelfand transformation on Ay, Aτ , and A, as well. Points
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in 4(Ay) (resp. 4(Aτ )) are denoted by s (resp. s0). The compact space 4(Ay)
(resp. 4(Aτ )) is equipped with the M -measure, βy (resp. βτ ), for Ay (resp. Aτ ).
We have 4(A) = 4(Ay) ×4(Aτ ) (Cartesian product) and the M -measure for A,
with which 4(A) is equipped, is precisely the product β = βy ⊗ βτ .

Now, let 1 ≤ p <∞. Let Ξp denote the space of all u ∈ Lploc

(
RNy × Rτ

)
for which

the sequence (uε)0<ε≤1 [where uε(x, t) = u
(
x
ε ,

t
ε

) (
x ∈ RN , t ∈ R

)
] is bounded in

Lploc

(
RNx × Rt

)
. This is a Banach space with norm

‖u‖Ξp = sup
0<ε≤1

( ∫
BN+1

∣∣∣u(x
ε
,
t

ε

)∣∣∣pdx dt)1/p

where BN+1 is the open unit ball in RN+1. Next, we define XpΣ to be the closure
of A in Ξp. We equip XpΣ with the Ξp-norm, which makes it a Banach space. It
is worth recalling that the Gelfand transformation G : A → C (4(A)) extends by
continuity to a continuous linear mapping, still denoted by G, of XpΣ into Lp (4(A)).
This is referred to as the canonical mapping of XpΣ into Lp (4(A)). We are now in
a position to state the so-called abstract homogenization problem for (1.4). Let

AR = A ∩ CR
(
RN × R

)
.

The main purpose of the present section is to investigate the limiting behaviour,
as ε→ 0, of uε (the solution of (1.4)) under the abstract structure hypothesis

ai (·, ·,Ψ) ∈ Xp
′

Σ for all Ψ ∈ (AR)N (1 ≤ i ≤ N) (3.1)

with 2 ≤ p < ∞ and p′ = p
p−1 , where ai(·, ·,Ψ) denotes the function (y, τ) →

ai(y, τ,Ψ(y, τ)) from RN ×R to R, which belongs to L∞R
(
RN × R

)
(see point (4.1)

of [21]). The problem thus stated is precisely what is referred to as the abstract
homogenization problem for (1.4) in a deterministic setting.

However, as will be seen later, one further assumption on Σ, the quasi-properness
hypothesis, will be necessary to the resolution of the preceding abstract homoge-
nization problem. Meanwhile, let us prove a few basic results we will need. In
the sequel we assume that (3.1) holds. Thus, if Ψ ∈ (AR)N , then ai (·, ·,Ψ) lies in
Xp

′,∞
Σ = Xp

′

Σ∩ L∞R
(
RN × R

)
. Consequently, G (ai (·, ·,Ψ)) ∈ L∞ (4(A)) [18, corol-

lary 2.2]. With this in mind, let the index 1 ≤ i ≤ N be arbitrarily fixed. For
ϕ = (ϕj)1≤j≤N in CR (4(A))N , let

bi (ϕ) = G
(
ai

(
·, ·,G−1ϕ

))
where G−1ϕ =

(
G−1ϕj

)
1≤j≤N . This defines a transformation bi of CR (4(A))N into

L∞ (4(A)).

Proposition 3.1. Let 2 ≤ p < ∞. Suppose (3.1) holds. For Ψ = (ψj)1≤j≤N
in C(Q; (AR)N ), let bi(Ψ̂(x, t)) = G (ai (·, ·,Ψ(x, t))) for (x, t) ∈ Q, where Ψ̂ =
(ψ̂j)1≤j≤N with ψ̂j = G ◦ ψj. This defines a mapping (x, t) → bi(Ψ̂(x, t)), still
denoted by bi(Ψ̂), of Q into L∞(4(A)). The following assertions are true:

(i) We have bi(Ψ̂) ∈ C(Q;L∞(4(A))) and

aεi (·, ·,Ψε) → bi(Ψ̂) in Lp
′
(Q)-weak Σ as ε→ 0, (3.2)

where Ψε = (ψεj )1≤j≤N , ψεj defined as in (2.4).
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(ii) The mapping Φ → b(Φ) = (bi(Φ))1≤i≤N of C(Q; CR(4(A))N ) into Lp
′
(Q×

4(A))N extends by continuity to a mapping, still denoted by b, of the space
Lp(Q;LpR(4(A))N ) into Lp

′
(Q×4(A))N such that

‖b (u)− b (v)‖Lp′ (Q×4(A))N ≤ α1 ‖|u|+ |v|‖p−2
Lp(Q×4(A)) ‖u− v‖Lp(Q;Lp

R(4(A))N )

(3.3)
and

(b (u)− b (v)) · (u− v) ≥ α0 |u− v|p a.e. in Q×4(A) (3.4)

for all u,v ∈ Lp(Q;LpR(4(A))N ).

The proof of [21, Proposition 4.1] carries over mutatis mutandis to the present
setting.

Remark 3.1. We have in particular

(1) b(ω) = ω
(2) |b(λ)− b(µ)| ≤ α1(|λ|+ |µ|)p−2 |λ− µ| (λ, µ ∈ RN )
(3) (b(λ)− b(µ)) · (λ− µ) ≥ α0 |λ− µ|p (λ, µ ∈ RN ).

As a consequence of Proposition 3.1, there is the following important corollary.

Corollary 3.1. Let
Φε = ψ0 + εψε1, (3.5)

i.e., Φε(x, t) = ψ0(x, t)+εψ1(x, t, xε ,
t
ε ) for (x, t) ∈ Q, where ψ0 ∈ DR(Q) = KR(Q)∩

C∞(Q) and ψ1 ∈ DR(Q)⊗A∞R with A∞R = A∞ ∩AR. Then, as ε→ 0,

aεi (·, ·, DΦε) → bi(Dψ0 + ∂ψ̂1) in Lp
′
(Q)-weak Σ (1 ≤ i ≤ N)

where ∂ stands for the gradient operator on ∆(Ay) [specifically, we have here ∂ψ̂1 =
(∂jψ̂1)1≤j≤N with ∂jψ̂1 = ∂j ◦ψ̂1 viewed as a function of Q×∆(Aτ ) into D(∆(Ay)),
where ∂j is the partial derivative of index j on ∆(Ay)]. Furthermore, if (vε)ε∈E is
a sequence in Lp(Q) such that vε → v0 in Lp(Q)-weak Σ as E 3 ε → 0, then, as
E 3 ε→ 0,∫

Q

aεi (·, ·, DΦε) vεdxdt→
∫ ∫

Q×∆(A)

bi(Dψ0 + ∂ψ̂1)v0 dx dt dβ (1 ≤ i ≤ N) .

The proof of this corollary is a simple adaptation of the proof of [21, Corollary
4.1].

3.3. Quasi-proper H-structures. The basic notation and hypotheses are as in
the preceding subsection. Now, for 1 ≤ p <∞, we put

H = Lp(∆(Aτ );W
1,p
# (∆(Ay); R)),

a Banach space with an obvious norm. The canonical mapping of W 1,p(∆(Ay))/C
into its separated completion, W 1,p

# (∆(Ay)), will be denoted by Jy.

Definition 3.1. The H-structure Σ = Σy ×Στ is said to be quasi-proper for some
real p > 1 if the following two conditions are fulfilled:

(QP1) Σy is total for p, i.e., D(∆(Ay)) is dense in W 1,p(∆(Ay))
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(QP2) Given a bounded sequence (uε)ε∈E in V p (see Remark 2.2), where E is
a fundamental sequence, there exist a subsequence E′ from E and some
u = (u0, u1) ∈ V p × Lp(Q;H) such that, as E′ 3 ε→ 0,

uε → u0 in V p-weak (3.6)
∂uε
∂xj

→ ∂u0

∂xj
+ ∂ju1 in Lp(Q)-weak Σ (1 ≤ j ≤ N). (3.7)

Remark 3.2. The partial derivative ∂ju1 in (3.7) needs an explanation. First,
let us once for all keep in mind that for 1 ≤ j ≤ N , the symbol ∂j denotes the
partial derivative of index j on ∆(Ay) whereas ∂0 denotes the derivative on ∆(Aτ ).
Now, let 1 ≤ j ≤ N . It is to be noted that ∂j yields a transformation, still
denoted by ∂j , that maps continuously and linearly W 1,p

# (∆(Ay)) into Lp (∆(Ay))
and in particular W 1,p

# (∆(Ay); R) into LpR (∆(Ay)) (see [21]). With this in mind,
if Φ ∈ H, then ∂jΦ is understood as ∂j ◦ Φ (usual composition). We have ∂jΦ ∈
LpR (∆(A)), and the transformation Φ → ∂jΦ maps continuously and linearly H
into LpR (∆(A)). Accordingly if u1 ∈ Lp (Q;H), then ∂ju1 is naturally defined as
being the function (x, t) → ∂j (u1(x, t)) from Q to LpR (∆(A)). We have ∂ju1 ∈
LpR (Q×∆(A)), and the transformation u1 → ∂ju1 maps continuously and linearly
Lp (Q;H) into LpR (Q×∆(A)).

Remark 3.3. Let E 3 ε → 0. In order that (3.6) hold, it is necessary and
sufficient that we have uε → u0 in Lp(0, T ;W 1,p

0 (Ω))-weak and ∂uε

∂t → ∂u0
∂t in

Lp
′
(0, T ;W−1,p′(Ω))-weak.

3.4. Homogenization results. Throughout this subsection we assume that 2 ≤
p < ∞ and the H-structure Σ = Σy × Στ is quasi-proper for p. In the sequel,
the space H = Lp(0, T ;W 1,p

0 (Ω; R))×Lp(Q;H) is equipped with the norm ‖v‖H =
‖v0‖Lp(0,T ;W 1,p

0 (Ω;R))+‖v1‖Lp(Q;H), v =(v0, v1) ∈ H, which makes it a Banach space.
We will need the following lemma.

Lemma 3.1. F∞0 = DR(Q)× (DR(Q)⊗ [DR(∆(Aτ ))⊗Jy(DR(∆(Ay))/C)]) is dense
in Lp(0, T ;W 1,p

0 (Ω; R))× Lp(Q;H).

Proof. In view of (QP1) (Definition 3.1), the space DR(∆(Aτ ))⊗Jy(DR(∆(Ay))/C)
is dense in H (use [21, Remark 3.5] and the fact that Στ is of class C∞). We deduce
immediately that DR(Q)⊗ [DR(∆(Aτ ))⊗ Jy(DR(∆(Ay))/C)] is dense in Lp(Q;H).
Hence, the lemma follows by the density of DR(Q) in Lp(0, T ;W 1,p

0 (Ω; R)). �

Remark 3.4. We have

DR (∆(Aτ ))⊗ [DR (∆(Ay)) /C] = G
(

RA
∞
τ ⊗

[
RA

∞
y /C

])
where G is here the Gelfand transformation on A, and where RA

∞
τ = A∞τ ∩ CR(R)

and RA
∞
y /C =

{
ψ ∈ A∞y ∩ CR(RN ) : M(ψ) = 0

}
(M denotes the mean value on RN

in the sense of [18, Subsection 2.1]).
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Lemma 3.2. The variational problem

u = (u0, u1) ∈ F1,p
0 = V p0 × Lp(Q;H) :∫ T

0

(u′0(t), v0(t))dt+
∫ ∫

Q×∆(A)

b(Du0 + ∂u1) · (Dv0 + ∂v1) dx dt dβ

=
∫ T

0

(f(t), v0(t))dt,

(3.8)

for all v = (v0, v1) ∈ F1,p
0 , has at most one solution.

The proof of this lemma follows in a quite classical way (use in particular (3.4)
and b(ω) = ω). We are now in a position to state and prove the main result in the
present section.

Theorem 3.1. Let 2 ≤ p < ∞. Suppose (3.1) holds and Σ = Σy × Στ is quasi-
proper for p. For each fixed real number ε > 0, let uε be the solution of the initial-
boundary value problem (1.4). As ε→ 0, we have

uε → u0 in Lp(0, T ;W 1,p
0 (Ω))-weak (3.9)

∂uε
∂t

→ ∂u0

∂t
in Lp

′
(0, T ;W−1,p′(Ω))-weak (3.10)

∂uε
∂xj

→ ∂u0

∂xj
+ ∂ju1 in Lp(Q)-weak Σ (1 ≤ j ≤ N), (3.11)

where u = (u0, u1) is the unique solution of (3.8).

Proof. The first point is to check that the sequence (uε)ε>0 is bounded in V p. To
this end, observe that uε ∈ V p0 (Remark 2.2) and∫ T

0

(u′ε(t), v(t))dt+
∫
Q

aε(x, t,Duε(x, t)) ·Dv(x, t)dx dt =
∫ T

0

(f(t), v(t))dt (3.12)

for all v ∈ V p0 , where ε > 0 is arbitrarily fixed. Taking in particular v = uε and
using ∫ T

0

(u′ε(t), uε(t))dt =
1
2
‖uε(T )‖2L2(Ω) ≥ 0 (3.13)

and (2.7)-(2.9), we obtain by mere routine

sup
ε>0

‖uε‖Lp(0,T ;W 1,p
0 (Ω)) <∞. (3.14)

Using (2.7)-(2.8), once again, it follows

sup
ε>0

‖aε(·, ·, Duε)‖Lp′ (Q)N <∞,

hence sup
ε>0

‖div aε(·, ·, Duε)‖Lp′ (0,T ;W−1,p′ (Ω)) <∞. We deduce by (1.4) that

sup
ε>0

∥∥∥∂uε
∂t

∥∥∥
Lp′ (0,T ;W−1,p′ (Ω))

<∞,

which combines with (3.14) to show that the sequence (uε)ε>0 is bounded in V p,
hence also in V p0 .

Thus, given an arbitrary fundamental sequence E, the quasi-properness of Σ (see
especially (QP2)) guarantees the existence of a subsequence E′ from E and of some
u = (u0, u1) ∈ F1,p

0 = V p0 × Lp(Q;H) such that as E′ 3 ε → 0, (3.9)-(3.11) hold
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true (see Remark 3.3). Therefore, thanks to Lemma 3.2, the theorem is proved once
we have established that the vector function u = (u0, u1) satisfies the variational
equation in (3.8) (the conclusive argument is classical; see, e.g., the proof of [21,
Theorem 4.1]).

To do this, let Φ ∈ F∞0 (see Lemma 3.1), i.e., Φ = (ψ0, Jy(ψ̂1)) with ψ0 ∈
DR(Q), ψ1 ∈ DR(Q) ⊗ [RA∞τ ⊗ (RA

∞
y /C)] (see Remark 3.4), ψ̂1 = G ◦ ψ1 and

Jy(ψ̂1) = Jy ◦ ψ̂1 (ψ̂1 viewed as a function of Q×∆(Aτ ) into D(∆(Ay))/C). Define
Φε as in (3.5). Clearly Φε ∈ DR(Q). In (3.12), take v = Φε and then use (2.9) to
get

0 ≤
∫ T

0

(f(t)− u′ε(t), uε(t)− Φε(t))dt−
∫
Q

aε(·, ·, DΦε) · (Duε −DΦε)dxdt

or, according to (3.13),

1
2
‖uε(T )‖2L2(Ω) ≤

∫ T

0

(f(t), uε(t)− Φε(t))dt+
∫ T

0

(u′ε(t),Φε(t))dt

−
∫
Q

aε(·, ·, DΦε) · (Duε −DΦε)dxdt
(3.15)

and that for any ε > 0. Our goal now is to pass to the limit when E′ 3 ε→ 0.
First, as ε→ 0, we have

∂Φε
∂xj

→ ∂ψ0

∂xj
+ ∂jψ̂1 in Lq(Q)-weak Σ (1 ≤ j ≤ N) (3.16)

∂Φε
∂t

→ ∂ψ0

∂t
+ ∂0ψ̂1 in Lq(Q)-weak Σ, (3.17)

and that for any given 1 ≤ q < ∞. Choosing in particular q = p and using [18,
Propositions 2.5 and 4.4], it follows that Φε → ψ0 in W 1,p

0 (Q)-weak. Hence Φε →
ψ0 in Lp(0, T ;W 1,p

0 (Ω))-weak as ε → 0, since W 1,p
0 (Q) is continuously embedded

in Lp(0, T ;W 1,p
0 (Ω)). Recalling (3.9) (when E′ 3 ε → 0 ), we finally arrive at∫ T

0
(f(t), uε(t) − Φε(t))dt →

∫ T
0

(f(t), u0(t) − ψ0(t))dt when E′ 3 ε → 0. Next,
observe that ∫ T

0

(u′ε(t),Φε(t))dt = −
∫
Q

uε
∂Φε
∂t

dxdt.

Thanks to the fact that V p (for 2 ≤ p < ∞) is compactly embedded in the space
Lp(0, T ;L2(Ω)) (this is a classical property; use, e.g., [16, p.58, Theorem 5.1]) and
that the latter is continuously embedded in L2(Q), we have (from (3.9)-(3.10 ))
uε → u0 in L2(Q) as E′ 3 ε→ 0. Combining this with (3.17) (for q = 2), it follows
that ∫ T

0

(u′ε(t),Φε(t))dt→
∫ T

0

(u′0(t), ψ0(t))dt as E′ 3 ε→ 0.

Now, based on (3.11) (when E′ 3 ε → 0, of course) and (3.16) (with q = p), a
quick application of Corollary 3.1 yields∫

Q

aε(·, ·, DΦε) · (Duε −DΦε)dxdt→
∫ ∫

Q×∆(A)

b(DΦ) · D(u− Φ) dx dt dβ

as E′ 3 ε→ 0, where, for v = (v0, v1) ∈ Lp(0, T ; W 1,p
0 (Ω)) ×Lp(Q;H), we denote

Dv = Dv0 + ∂v1 with D = (Dxi)1≤i≤N and ∂ = (∂i)1≤i≤N . Finally, as pointed out
in Remark 2.2, the transformation v → ‖v(T )‖2L2(Ω) is continuous on V p0 . On the
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other hand, according to (3.9)-(3.10), we have uε → u0 in V p0 -weak as E′ 3 ε→ 0.
Hence, by a classical argument it follows that

‖u0(T )‖2L2(Ω) ≤ lim inf
E′3ε→0

‖uε(T )‖2L2(Ω) .

Therefore, taking the lim infE′3ε→0 of both sides of (3.15) and using

1
2
‖u0(T )‖2L2(Ω) =

∫ T

0

(u′0(t), u0(t))dt,

one arrives at

0 ≤
∫ T

0

(f(t)− u′0(t), u0(t)− ψ0(t))dt−
∫ ∫

Q×∆(A)

b(DΦ) · D(u− Φ)dx dt dβ

and that for any Φ ∈ F∞0 . Thanks to Lemma 3.1, this still holds true for Φ ∈
Lp(0, T ;W 1,p

0 (Ω; R))×Lp(Q;H), hence for Φ ∈ F1,p
0 . Therefore the theorem follows

by a classical line of reasoning (proceed as in the proof of [21, Theorem 4.1]). �

The variational problem (3.8) is called the global homogenized problem for (1.4)
under the abstract structure hypothesis (3.1) with Σ quasi-proper (for the given
real p ≥ 2). The term global is used here to lay emphasis on the fact that (3.8)
includes both the local (or microscopic) equation for u1(x, t) (where (x, t) is fixed
in Q) and the macroscopic homogenized equation for u0. Specifically, by choosing
in (3.8) the test function v = (v0, v1) such that v0 = 0 and v1(x, t) = ϕ(x, t)w with
ϕ ∈ DR(Q) and w ∈ H, we obtain the so-called local equation at (fixed) (x, t) ∈ Q
: ∫

∆(A)

b(Du0(x, t) + ∂u1(x, t)) · ∂w dβ = 0 for all w ∈ H. (3.18)

As regards the derivation of the macroscopic homogenized equation, let r ∈ RN
be freely fixed. Consider the so-called cell problem

π(r) ∈ H :∫
∆(A)

b(r + ∂π(r)) · ∂w dβ = 0 for all w ∈ H

which uniquely determines π(r), thanks to Remark 3.1 (see [14, Chap.3]). Then,
taking in particular r = Du0(x, t) with (x, t) arbitrarily fixed in Q, and comparing
with (3.18), it follows at once

u1 = π(Du0) (3.19)

where the right-hand side stands for the function (x, t) → π(Du0(x, t)) from Q
to H. Hence, substituting (3.19) in (3.8) and choosing there the test functions
v = (v0, v1) such that v1 = 0, we are led to the so-called macroscopic homogenized
problem for (1.4), viz.

∂u0

∂t
− div q(Du0) = f in Q

u0 = 0 on ∂Ω× (0, T )

u0(x, 0) = 0 in Ω,

(3.20)

where q(r) =
∫
∆(A)

b(r + ∂π(r))dβ (r ∈ RN ).
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Remark 3.5. A vector function u = (u0, u1) satisfies (3.8) if and only if the
macroscopic component u0 solves (3.20) and the microscopic component, u1(x, t),
at a given point (x, t) ∈ Q solves (3.18). Thanks to Lemma 3.2, this guarantees the
uniqueness in (3.20).

Remark 3.6. We have q(ω) = 0 and further it can be shown that the function
r → q(r) satisfies inequalities of the same type mutatis mutandis as in Remark 3.1.

3.5. Study of a concrete case. Harmonic H-structures. We start with the
following definition.

Definition 3.2. The H-structure (of class C∞) Σy on RN is termed p-harmonic
(for some given 1 < p <∞) if the following conditions are satisfied:

(H1) Σy is total for p
(H2) To any f = (fj)1≤j≤N ∈ Lp(∆(Ay)N satisfying∫

∆(Ay)

f ·Ψ̂dβy ≡
N∑
j=1

∫
∆(Ay)

fjψ̂jdβy = 0 (with ψ̂j = G(ψj)) (3.21)

for all Ψ = (ψj) ∈ Vdiv = {u ∈ (A∞y )N : divy u = 0}, there is attached a
unique χ ∈W 1,p

# (∆(Ay)) such that fj = ∂jχ (1 ≤ j ≤ N).

We turn now to the proof of the following statement.

Proposition 3.2. Suppose Σy is p-harmonic (for some given real p > 1). Then
Σ = Σy × Στ is quasi-proper for p.

Proof. We need verify only (QP2). So let (uε)ε∈E be a bounded sequence in V p,
E being fundamental. Based on the reflexivity of V p and on the Σ-reflexivity of
Lp(Q) [18, Theorem 4.1], we can find a subsequence E′ from E, a function u0 ∈ V p
and a family (zj)1≤j≤N ⊂ LpR(Q×∆(A)) such that as E′ 3 ε→ 0, we have uε → u0

in V p-weak and ∂uε

∂xj
→ zj in Lp(Q)-weak Σ (1 ≤ j ≤ N). Thus, the proposition

is proved if we can establish that there is some function u1 ∈ Lp(Q;H) such that

zj =
∂u0

∂xj
+ ∂ju1 (1 ≤ j ≤ N). (3.22)

To do this, let Φ = (φj)1≤j≤N , φj ∈ Lp
′
(Q;A), with

φj(x, t, y, τ) = ϕ(x, t)ψj(y)w(τ) ((x, t) ∈ Q, y ∈ RN , τ ∈ R),

where ϕ ∈ D(Q), Ψ = (ψj) ∈ Vdiv and w ∈ A∞τ . Clearly
N∑
j=1

∫
Q

∂uε
∂xj

ψεjw
εϕdx dt = −

N∑
j=1

∫
Q

uεψ
ε
jw

ε ∂ϕ

∂xj
dx dt.

Passing to the limit (as E′ 3 ε→ 0) on both sides gives
N∑
j=1

∫ ∫
Q×∆(A)

zjψ̂jŵϕ dx dt dβ =
N∑
j=1

∫ ∫
Q×∆(A)

∂u0

∂xj
ψ̂jŵϕ dx dt dβ

where, regarding the right-hand side, we have used the facts that uε → u0 in L2(Q)
as E′ 3 ε→ 0 (see the proof of Theorem 3.1) and ψεjw

ε →
∫
∆(A)

ψ̂jŵdβ in L2(Q)-
weak as ε → 0. Using first the arbitrariness of ϕ and then that of w, we quickly
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arrive at (3.21) for all Ψ ∈ Vdiv, where

fj(s) = zj(x, t, s, s0)−
∂u0

∂xj
(x, t) (s ∈ ∆(Ay)),

(x, t) ∈ Q and s0 ∈ ∆(Aτ ) being fixed. Thanks to the p-harmonicity of Σy, this
yields a function u1 ∈ Lp(Q;H) such that (3.22) holds (to show this is an easy
matter), as claimed. �

This is worth illustrating the results above.

Example 3.1. Suppose Σy is an almost periodic H-structure on RN [18, Example
3.3]. Then Σ = Σy × Στ (where Στ is any H-structure of class C∞ on R) is quasi-
proper for p = 2. Indeed, Σy is 2-harmonic (this is established in a preprint by the
first author) and so the claimed property follows by Proposition 3.2.

Example 3.2. Suppose Σy is the periodic H-structure on RN represented by a
network R ⊂ RN , say R = ZN (see [18, Example 3.2]). Then Σy is p-harmonic for
any real p > 1 (see [21, Subsection 3.3]). Consequently, according to Proposition
3.2, the H-structure Σ = Σy × Στ (where Στ is an arbitrary H-structure of class
C∞ on R) is quasi-proper for any real p > 1.

4. Concrete homogenization problems for (1.4)

This section provides concrete examples of homogenization problems for (1.4).
More precisely, we study here the limiting behaviour, as ε→ 0, of uε (the solution
of (1.4)) under various concrete structure hypotheses. It should be noted that in
practice the statement of a homogenization problem makes no mention of the con-
cept of a homogenization structure, still less of that of a quasi-proper H-structure.
The term concrete used above is precisely intended to stress this fact, as opposed
to the abstract nature of (3.1).

In fact, in view of the fundamental results achieved in the preceding section,
our only concern in each example under consideration below will be to show that
the concrete structure hypothesis supplementing (1.4) (so as to yield a solvable
homogenization problem) can be reduced to (3.1) for a suitable quasi-proper H-
structure Σ. This is the general point of view. We will see that the particular case
where the diffusion term in (1.4) is linear entails considerable simplifications with
regard to practice.

4.1. General case. Just as in the preceding subsections, it is not specified here
whether the diffusion term in (1.4) is linear or nonlinear.

Problem I. (Periodic setting) As we mentioned in Section 1, the homogenization
of (1.4) under the periodicity hypothesis has been sufficiently investigated. We
will only draw attention to the fact that the present study includes the periodic
setting. Indeed, suppose for each fixed λ ∈ RN , the function (y, τ) → a(y, τ, λ) is Y -
periodic in y ∈ RN and Z-periodic in τ ∈ R with, e.g., Y = (0, 1)N and Z = (0, 1).
It amounts to saying that for any k ∈ R = ZN and any l ∈ S = Z, we have
a(y + k, τ + l, λ) = a(y, τ, λ) a.e. in (y, τ) ∈ RN×R. Immediately we see that the
appropriate homogenization structures are the periodic H-structures Σy = ΣR and
Στ = ΣS represented by R = ZN and S = Z, respectively (see [18, Example 3.2]).
In other words, in the present case we have Ay = Cper(Y ), Aτ = Cper(Z), and hence
A = Cper(Y ×Z). Then, as pointed out in Example 3.2, the product homogenization
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structure Σ = Σy × Στ is quasi-proper for any 1 < p < ∞. Hence, the results of
Subsection 3.4 (and especially the conclusion of Theorem 3.1) are valid, as claimed.
Finally, for the sake of exactness, we should change there ∆(Ay) (resp. ∆(Aτ ),
∆(A)) in Y , (resp. Z, Y × Z), ∂j in Dyj

(1 ≤ j ≤ N), ∂0 in d
dτ , and βy (resp.

βτ , β) in dy (resp. dτ, dydτ).

Problem II. (Almost periodic setting) For the benefit of the reader we begin by
recalling the notion of an almost periodic function [4, 11, 15] we will be dealing
with. By an almost periodic continuous complex function on Rd (d ≥ 1) is meant
a function u ∈ B(Rd) whose translates {τhu}h∈Rd (with τhu(y) = u(y − h), y ∈ Rd
) form a relatively compact set in B(Rd). Such functions form a closed subalgebra
of B(Rd) denoted by AP (Rd). This fundamental notion, which is due to Bohr
[5], has been generalized to Lploc spaces. A function u ∈ Lploc(Rd) (1 ≤ p < ∞)
is said to be almost periodic in Stepanoff sense if u lies in the amalgam space
(Lp, l∞)(Rd) [10, 20] and further the translates {τhu}h∈Rd form a relatively compact
set in (Lp, l∞)(Rd). Such functions form a closed vector subspace of (Lp, l∞)(Rd)
denoted by LpAP (Rd). It seems useful to recall that (Lp, l∞)(Rd) is the space of
functions u ∈ Lploc(Rd) such that

‖u‖p,∞ = sup
k∈Zd

( ∫
k+(0,1)d

|u(y)|p dy
)1/p

<∞.

Equipped with the norm ‖·‖p,∞, (Lp, l∞)(Rd) is a Banach space. The appropriate
norm on LpAP (Rd) is the (Lp, l∞)(Rd)-norm. It is also worth noting that AP (Rd)
is a dense vector subspace of LpAP (Rd).

Now, let M denote the mean value on Rd as stated in Subsection 3.1. Considered
as defined on AP (Rd), the mapping M extends to a continuous linear form on
LpAP (Rd) still denoted by M . This follows immediately by the inequality( ∫

B

∣∣∣u(x
ε

)∣∣∣p dx)1/p

≤ c ‖u‖p,∞ (0 < ε ≤ 1) (4.1)

for all u ∈ (Lp, l∞)(Rd), where B is a fixed bounded open set in Rd and c is a
positive constant independent of both ε and u.

Now, given a countable subgroup R of Rd, we will put

APR(Rd) = {u ∈ AP (Rd) : Sp(u) ⊂ R}

LpAP,R(Rd) = {u ∈ LpAP (Rd) : Sp(u) ⊂ R}

where Sp(u) stands for the spectrum of u, i.e., Sp(u) = {k ∈ Rd : M(uγk) 6= 0}
with γk(y) = exp(2iπk ·y) (y ∈ Rd). Equipped with the (Lp, l∞)-norm, LpAP,R(Rd)
is a Banach space. As regards APR(Rd), this is a homogenization algebra on Rd, the
associated H-structure being the so-called almost periodic H-structure represented
by R [18, Examples 2.2 and 3.3]. It is worth knowing that APR(Rd) is dense in
LpAP,R(Rd). Indeed, given u ∈ LpAP,R(Rd) (1 ≤ p < ∞), the same procedure as
followed in the proof of [21, Proposition 3.2] leads to

‖u ∗ θn − u‖pp,∞ ≤
∫
θn(x) ‖u− τxu‖pp,∞ dx (integers n ≥ 1),

where θn ∈ D(Rd) is a mollifier. By using the fact that τxu → u in (Lp, l∞)(Rd)
as |x| → 0 (there is no serious difficulty in verifying this), we deduce that u ∗
θn → u in (Lp, l∞)(Rd) as n → ∞. But u ∗ θn ∈ AP (Rd) and M([u ∗ θn]γk) =
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M(uγk)Fθn(−k), where F denotes the Fourier transformation on Rd. Hence u∗ θn
∈ APR(Rd) and so the claimed result follows.

Having made this point, let us turn now to one fundamental result.

Proposition 4.1. Let (fi)i∈I be a countable family in LpAP (Rd). There exists a
countable subgroup R of Rdsuch that fi ∈ LpAP,R(Rd) for all i ∈ I.

Proof. Indeed, the set U = ∪i∈ISp(fi) is countable, since I and Sp(fi) (for each
fixed i ∈ I) are countable. Therefore, the set R of finite combinations

∑
finite tiki

(ti ∈ Z, ki ∈ U) is countable. But R is a subgroup of Rd and Sp(fi) ⊂ R for all
i ∈ I. Hence the proposition follows. �

As a consequence of this, we have the following result.

Corollary 4.1. Let X be a separable metric space and let (ϕi)i∈I ⊂ C(X;LpAP (Rd)),
where the index set I is countable. Then, there is some countable subgroup R of Rd
such that ϕi ∈ C(X;LpAP,R(Rd)) for every i ∈ I.

Proof. Let D be a dense countable set in X. Thanks to Proposition 4.1, there
is a countable subgroup R of Rd such that ϕi(ζ) ∈ LpAP,R(Rd) for all i ∈ I and
all ζ ∈ D. Now let i ∈ I be fixed. Fix also some x ∈ X. Let η > 0. By the
continuity of ϕ and the density of D in X, we may consider some ζ ∈ D such that
‖ϕi(x)− ϕi(ζ)‖p,∞ ≤ η

c where c is a positive constant such that |M(u)| ≤ c ‖u‖p,∞
(u ∈ LpAP (Rd)). It follows that |M(ϕi(x)γk)−M(ϕi(ζ)γk)| ≤ η for all k ∈ Rd.
But M(ϕi(ζ)γk) = 0 for all k ∈ Rd\R. By the arbitrariness of η we deduce that
M(ϕi(x)γk) = 0 for all k ∈ Rd\R. Hence ϕi(x) ∈ LpAP,R(Rd). This completes the
proof. �

We are now in a position to study the almost periodic homogenization of (1.4).

Example 4.1. Our goal here is to investigate the limiting behaviour, as ε→ 0, of
uε, the solution of (1.4) for p = 2, under the structure hypothesis

ai(·, ·, λ) ∈ L2
AP (RN+1) for fixed λ ∈ RN (1 ≤ i ≤ N). (4.2)

According to Theorem 3.1, this homogenization problem is quite solvable and
the results are available in Subsection 3.4 if we can find a suitable quasi-proper
H-structure Σ = Σy×Στ for p = 2 such that (3.1) holds for p = 2. To achieve this,
we shall require the following property: For Ψ ∈ AP (RN+1; R)N , we have

sup
k∈ZN+1

∫
k+Z

|a(y − r, τ − σ,Ψ(y, τ))− a(y, τ,Ψ(y, τ))|2 dydτ → 0 (4.3)

as |r| → 0 and σ → 0, where Z = (0, 1)N+1.

Remark 4.1. Condition (4.3) is satisfied if the following condition holds: For each
bounded set Λ ⊂ RN and each real η > 0, there exists a real ρ > 0 such that

|a(y − r, τ − σ, λ)− a(y, τ, λ)| ≤ η (4.4)

for all λ ∈ Λ and for almost all (y, τ) ∈ RN+1 provided |r|+ |σ| ≤ ρ.
Indeed, if (4.4) holds and if Ψ is given in AP (RN+1; R)N , then by choosing

Λ = Ψ(RN+1) (range of Ψ) we get at once (4.3).
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This being so, let (θn)n≥1 be a sequence with θn ∈ DR(RN+1), θn ≥ 0, Supp θn ⊂
1
nBN+1 (BN+1 the open unit ball of RN+1, BN+1 its closure) and

∫
θn(y, τ)dydτ =

1. Let
ζin(y, τ, λ) =

∫
θn(r, σ)ai(y − r, τ − σ, λ)drdσ (1 ≤ i ≤ N)

for λ, y ∈ RN and τ ∈ R, which defines a function (y, τ, λ) → ζin(y, τ, λ) of RN ×
R × RN into R. Clearly ζin(·, ·, λ) ∈ AP (RN+1) for each λ ∈ RN , and further
|ζn(y, τ, λ)− ζn(y, τ, µ)| ≤ α1 |λ− µ| for all λ, µ, y ∈ RN and all τ ∈ R, where
ζn = (ζin)1≤i≤N . Now, thanks to Corollary 4.1, there exists a countable subgroup
R of RN+1 such that ζin(·, ·, λ) ∈ APR(RN+1) (1 ≤ i ≤ N) for all λ ∈ RN and all
integers n ≥ 1. Let Ry = pry(R) and Rτ = prτ (R), where pry (resp. prτ ) stands
for the natural projection of RN+1 = RNy × Rτ onto RNy (resp. Rτ ). The set Ry

(resp. Rτ ) is a countable subgroup of RN (resp. R). Therefore R = Ry ×Rτ is a
countable subgroup of RN+1 with moreover R ⊂ R. Hence

ζin(·, ·, λ) ∈ A = APR(RN+1) (λ ∈ RN , n ∈ N∗, 1 ≤ i ≤ N) (4.5)

and
ΣR = ΣRy

× ΣRτ
(see [18, Example 3.6]) (4.6)

where ΣR (resp. ΣRy
,ΣRτ

) is the almost periodic H-structure on RN+1 (resp.
RN , R) represented by R (resp. Ry, Rτ ). Recalling that ΣR is quasi-proper for
p = 2 (see Example 3.1), we see that the problem under consideration is completely
solved if we show that (3.1) holds with Σ = ΣR and p = 2. To this end, starting
from (4.5) and following the same line of reasoning as in [21, Subsection 5.5] leads
to ζin(·, ·,Ψ) ∈ A for all Ψ ∈ (AR)N (n ∈ N∗, 1 ≤ i ≤ N). On the other hand, by
an obvious adaptation of the procedure in [21, Subsection 5.6] one quickly arrives
at the following result :

Given Ψ ∈ (AR)N and 1 ≤ i ≤ N , to each η > 0 there is assigned some
integer ν ≥ 1 such that

∥∥ζin(·, ·,Ψ)− ai(·, ·,Ψ)
∥∥

2,∞ ≤ η for all n ≥ ν.

Since (L2, l∞)(RN+1) is continuously embedded in Ξ2(RN+1) (this follows immedi-
ately by (4.1)), the desired result follows from all that.

Remark 4.2. If instead of (4.2) we consider the structure hypothesis:

ai(·, ·, λ) ∈ AP (RN+1) for fixed λ ∈ RN (1 ≤ i ≤ N),

then (4.3) may be disregarded. Indeed, proceeding directly as in [21, Subsection
5.5] we arrive at ai(·, ·,Ψ) ∈ A for all Ψ ∈ (AR)N (1 ≤ i ≤ N), which leads at once
to (3.1) with ΣR as in (4.6), and with p = 2, of course.

Problem III. The present problem deals with two closely connected examples.

Example 4.2. We assume here that the family {a(·, ·, λ)}λ∈RN satisfies the condi-
tion
(BUE) For each bounded set Λ ⊂ RN and each real η > 0, there exists a real

ρ > 0 such that |a(y − r, τ − σ, λ)− a(y, τ, λ)| ≤ η for all λ ∈ Λ and all
(y, τ) ∈ RN × R provided |r|+ |σ| ≤ ρ.

Remark 4.3. Condition (BUE) is more practical than its analog (UE) in [21,
Subsection 5.4]. In fact, [21, Proposition 5.2] and its proof remain unchanged if the
sole points λ considered in (UE) are those lying in an arbitrarily fixed bounded set
Λ ⊂ RN . This remark carries over mutatis mutandis to [21, Subsection 5.7].
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Assuming (BUE), we want to study the homogenization of (1.4) (for any given
real p ≥ 2) under the structure hypothesis

ai(·, ·, λ) ∈ B∞(R; Cper(Y )) for any λ ∈ RN (1 ≤ i ≤ N) (4.7)

where Y = (0, 1)N . We recall that Cper(Y ) denotes the space of continuous complex
functions on RN that are Y -periodic (i.e., that satisfy f(y + k) = f(y) for all
y ∈ RNand all k ∈ ZN ), and B∞(R; Cper(Y )) denotes the space of those f ∈
C(R; Cper(Y )) such that f(τ) has a limit in B(RN ) when |τ | → ∞. Now, let ΣZN be
the periodic H-structure on RN represented by the network ZN , and Σ∞ be the H-
structure on R of which B∞(R) is the image (see [18, Example 3.4]). The product
H-structure Σ = ΣZN × Σ∞ on RN × R is quasi-proper for any 1 < p < ∞ (see
Example 3.2) and its image is precisely A = B∞(R; Cper(Y )) (see [18, Proposition
3.3]). Thus, the present study falls under the framework of Section 3 provided it is
shown that (3.1) holds true for the above H-structure. Clearly it suffices to check
that ai(·, ·,Ψ) ∈ A for all Ψ ∈ (AR)N (1 ≤ i ≤ N). But this follows by proceeding
exactly as in the proof of [21, Proposition 5.2].

Example 4.3. Assuming here that (4.4) holds true, let us consider the homog-
enization problem for (1.4) (for any real p ≥ 2) under the structure hypothesis

ai(·, ·, λ) ∈ B∞(R;L∞per(Y )) for any λ ∈ RN (1 ≤ i ≤ N). (4.8)

By a simple adaptation of [21, Subsection 5.7] one is led to (3.1 ) with Σ =
ΣZN ×Σ∞ as above. Hence, thanks to Theorem 3.1, the same conclusion as above
follows.

4.2. The linear case. In this subsection we assume that the function λ→ a(·, ·, λ)
of RN into itself is linear. Then, there is a family {aij}1≤i,j≤N , aij ∈ L∞R (RN ×R)
(thanks to (1.1)-(1.2) and part (ii) of ( 1.3)), such that

ai(y, τ, λ) =
N∑
j=1

aij(y, τ)λj for all λ ∈ RN (1 ≤ i ≤ N).

In the sequel we suppose p = 2. Now, it is clear that the results obtained in
Subsection 4.1 remain valid in the present case. In addition, by turning the linearity
to good account we can get round technical difficulties and thus, with the help of
further concrete examples, point out the wide scope of Theorem 3.1.

This being so, it is immediate that (3.1) holds true if and only if

aij ∈ X2
Σ (1 ≤ i, j ≤ N). (4.9)

Thus, in the sequel, the aim will be to reduce to (4.9) the concrete examples under
consideration.

Problem IV. Our purpose here is to study the homogenization of (1.4) under the
structure hypothesis

aij ∈ F∞,AP (1 ≤ i, j ≤ N) (4.10)
where F∞,AP denotes the closure of B∞(R;AP (RN )) in (L2, l∞)(RN+1). To this
end, let us consider

ζnij ∈ B∞(R;AP (RN )) (n ∈ N, 1 ≤ i, j ≤ N)

such that as n → ∞, ζnij → aij in (L2, l∞)(RN+1) for 1 ≤ i, j ≤ N . According
to Corollary 4.1, there exists a countable subgroup R of RN such that ζnij ∈
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B∞(R;APR(RN )) for all integers n ∈ N and all indices 1 ≤ i, j ≤ N . Let Σ = ΣR×
Σ∞, where ΣR is the almost periodic H -structure on RN represented by R and Σ∞
is theH-structure on R introduced in Example 4.2. TheH-structure Σ on RN×R is
quasi-proper for p = 2 (Example 3.1) and its image is precisely the H-algebra A =
B∞(R;APR(RN )) [18, Proposition 3.3]. Therefore, the homogenization problem
before us is solved through Theorem 3.1 if we can check that (4.9) holds for the
preceding H-structure. But this follows immediately by the fact ( already pointed
out before) that (L2, l∞)(RN+1) is continuously embedded in Ξ2(RN+1). Let us
illustrate this.

Example 4.4. The structure hypothesis (generalizing (4.7)) aij ∈ B∞(R;AP (RN ))
(n ∈ N, 1 ≤ i, j ≤ N) reduces to (4.10). The same is true of the structure
hypothesis (generalizing (4.8)) aij ∈ B∞(R;L2

AP (RN )) (1 ≤ i, j ≤ N). Indeed,the
first assertion is evident. Regarding the next one, observe that B∞(R;AP (RN ))
is dense in B∞(R;L2

AP (RN )) provided with the B(R; (L2, l∞)(RN ))-norm, and the
latter is continuously embedded in (L2, l∞)(RN+1).

Example 4.5. The structure hypothesis aij ∈ L2(R;L2
AP (RN )) (1 ≤ i, j ≤ N)

reduces to (4.10). Indeed, K(R;AP (RN )) (a subspace of B∞(R;AP (RN ))) is dense
in L2(R;L2

AP (RN )) and the latter is continuously embedded in (L2, l∞)(RN+1).

Example 4.6. Suppose our goal is to study the homogenization of (1.4) under the
following structure hypothesis, where the two indices 1 ≤ i, j ≤ N are arbitrarily
fixed:

(1) The function τ → aij(·, τ) maps continuously R into (L2, l∞)(RN )
(2) As |τ | → ∞, aij(·, τ) has a limit in (L2, l∞)(RN )
(3) For each fixed τ ∈ R, the function aij(·, τ) is Yτ -periodic, where Yτ =

(0, cτ )N with cτ > 0.

Then this leads us to Problem IV. Indeed, it is not hard to check that the preceding
structure hypothesis implies that aij belongs to B∞(R;L2

AP (RN )) (Example 4.4).

Our last problem states as follows.

Problem V. Let Aτ be an H-algebra on R with the property that A∞τ is dense in
Aτ . The matter in hand here is to study the homogenization of (1.4) under the
hypothesis that

aij lies in the closure of AP (RN )⊗Aτ in (L2, l∞)(RN+1) (1 ≤ i, j ≤ N). (4.11)

To begin with, let ζnij ∈ AP (RN ) ⊗ Aτ (n ∈ N, 1 ≤ i, j ≤ N) be such that
ζnij → aij in (L2, l∞)(RN+1) (1 ≤ i, j ≤ N) as n→∞. By Proposition 4.1 one is
easily led to some countable subgroup R of RN such that ζnij ∈ APR(RN ) ⊗ Aτ
for all n ∈ N and all indices 1 ≤ i, j ≤ N . Let Σ = ΣR × Στ , where ΣR is as in
Problem IV and Στ is the H-structure of class C∞ on R of which Aτ is the image.
The H-structure Σ on RN×R is quasi-proper for p = 2 and its image is the closure,
A, of APR(RN ) ⊗ Aτ in B(RN × R) (see [18, Proposition 3.2]). Thus, we will be
through if we have shown that ( 4.9) holds. But this is a direct consequence of the
fact that (L2, l∞)(RN+1) is continuously embedded in Ξ2(RN+1). Therefore, the
homogenization problem under consideration lies within the scope of Theorem 3.1
and so we are led to the results of Subsection 3.4.
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Remark 4.4. According to (4.11), the function (y, τ) → aij(y, τ) is almost periodic
in y ∈ RN whereas in the variable τ ∈ R it admits a great variety of behaviours.
This is illustrated below.

Example 4.7. Property (4.11) includes (4.10) as a particular case. Indeed, this
follows by choosing Aτ = B∞(R) in (4.11) and observing that AP (RN )⊗B∞(R) is
a dense subspace of B∞(R;AP (RN )).

Example 4.8. Our purpose in the present example is to study the homogenization
of (1.4) under the following assumptions, where the pair of indices 1 ≤ i, j ≤ N is
arbitrarily fixed:

(SH1) aij(·, τ) ∈ L2
AP (RN ) a.e. in τ ∈ R

(SH2) The function τ → aij(·, τ) from R to L2
AP (RN ) is piecewise constant in the

sense that there exists a mapping qij : Z → L2
AP (RN ) such that

aij(·, τ) = qij(k) a.e. in k ≤ τ < k + 1 (k ∈ Z). (4.12)

However, in order to have a “well posed” homogenization problem, we need to be
informed about the behaviour of the coefficient qij . We assume here that

(SH3) qij ∈ B∞(Z;L2
AP (RN ) where B∞(Z;L2

AP (RN )) denotes the space of map-
pings q : Z → L2

AP (RN ) that converge at infinity, i.e., such that q(k) has a
limit in L2

AP (RN ) when |k| → ∞.

It is well to note in passing that such a q is necessarily bounded.
Let us show that the structure hypothesis made up of (SH1)–(SH3) reduces to

(4.11), so that the problem under consideration is quite solvable.

Proposition 4.2. Let F be the set of functions f : R → C of the form

f =
∑
k∈Z

r(k)τkϕ (r ∈ B∞(Z), ϕ ∈ K(Z)) (4.13)

with Z = (0, 1), where K(Z) is identified with the space of functions in K(R) with
supports contained in Z. Let Aτ be the closure in B(R) of the space of functions of
the form

ψ = c+
∑
finite

fi (c ∈ C, fi ∈ F).

Then the following assertions are true.

(i) Aτ is an H-algebra on R with the further property that A∞τ is dense in Aτ .
(ii) The family {aij}1≤i,j≤N satisfies (4.11).

Proof. Part (i) is proved in [20]. Thus, we need only show (ii). Let a pair of
indices 1 ≤ i, j ≤ N be freely fixed. Based on the density of AP (RN ) ⊗ B∞(Z) in
B∞(Z;AP (RN )) (this follows by [6, page 46, Proposition 5]) and recalling that
AP (RN ) is a dense subspace of L2

AP (RN ), we see immediately that AP (RN ) ⊗
B∞(Z) is dense in B∞(Z;L2

AP (RN )). Hence, in view of (SH3), we may consider a
sequence (qnij)n∈N in AP (RN )⊗ B∞(Z) such that qnij → qij in B∞(Z;L2

AP (RN ))
as n→∞. It is useful to specify that qnij writes as

qnij(y, k) =
∑
l∈I

ζlnij(k)u
l
nij(y) (y ∈ RN , k ∈ Z) (4.14)
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where ζlnij ∈ B∞(Z), ulnij ∈ AP (RN ), and I is a finite set (depending on qnij). On
the other hand, it is worth bearing in mind that (4.12) is equivalent to

aij(y, τ) =
∑
k∈Z

qij(y, k)χk+Z(τ) a.e. in (y, τ) ∈ RN × R

where χk+Z denotes the characteristic function of k + Z = (k, k + 1) in R, and
where the sum on the right is locally finite. Now, let

anij(y, τ) =
∑
k∈Z

qnij(y, k)χk+Z(τ) (y ∈ RN , a.e. in τ ∈ R). (4.15)

It is clear that anij lies in L∞(R;AP (RN )) ⊂ (L2, l∞)(RN+1) and further

‖anij − aij‖2,∞ ≤ sup
k∈Z

‖qnij(k)− qij(k)‖2,∞ .

Hence anij → aij in (L2, l∞)(RN+1) as n→∞.
On the other hand, substituting (4.14) in (4.15) yields

anij(y, τ) =
∑
l∈I

ulnij(y)f
l
nij(τ) (y ∈ RN , a.e. in τ ∈ R)

where f lnij ∈ L∞(R) with

f lnij(τ) =
∑
k∈Z

ζlnij(k)χk+Z(τ) (a.e. in τ ∈ R).

But if η > 0 is arbitrarily given and if ϕ ∈ K(Z) is such that ‖χZ − ϕ‖L2(R) =
‖1− ϕ‖L2(Z) ≤

η
c , where c > 0 with

∣∣ζlnij(k)∣∣ ≤ c (k ∈ Z), then
∥∥f lnij − ψlnij

∥∥
2,∞ ≤

η with ψlnij =
∑
k∈Z

ζlnij(k)τkϕ (see (4.13)).

Finally, let

Φnij(y, τ) =
∑
l∈I

ulnij(y)ψ
l
nij(τ) (y ∈ RN , τ ∈ R),

which defines a function in AP (RN ) ⊗ Aτ . It is an elementary exercise to deduce
from the preceding development that for any η > 0, there is some integer n ∈ N
such that ‖aij − Φnij‖2,∞ ≤ η. This completes the proof. �

Example 4.9. The case to be examined here states as in Example 4.8 except
that in (SH3), B∞(Z;L2

AP (RN )) is substituted by the space `1(Z;L2
AP (RN )) of

mappings q : Z → L2
AP (RN ) such that

∑
k∈Z ‖q(k)‖2,∞ < ∞. Without going too

deeply into details let us verify that the present case leads to the same conclusion
as in the preceding example. First, let `10(Z) denote the closure in `∞(Z) of the
set of functions r ∈ `∞(Z) of the form r = c + r0 with c ∈ C and r0 ∈ `1(Z). We
claim that the statement of Proposition 4.2 is still valid when B∞(Z), in (4.13), is
replaced by `10(Z). Indeed, there is no real difficulty in verifying that the proof of
the said proposition holds when the symbol B∞ is replaced by `1 (not `10!). The
details are left to the reader.

Remark 4.5. The coefficient qij in Example 4.8 is qij(k) =
∫ k+1

k
aij(·, τ)dτ (k ∈

Z).
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