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STURMIAN COMPARISON RESULTS FOR
QUASILINEAR ELLIPTIC EQUATIONS IN R"

TADIE

ABSTRACT. We obtain Sturmian comparison results for the nonnegative so-
lutions to Dirichlet problems associated with p-Laplacian operators. From
Picone-type identities [4,[9], we obtain results comparing solutions of two types
of equations. We also present results related to those operators using Picone-
type identities.

1. INTRODUCTION

In this work (2 denotes an open and bounded subset of R", n > 2 with 99 € ct,
> 1. Also a € CY(Q;0,00)), c € C(;R) and functions f,g € C*(Q;R). Define in
Q the operators

pu = V.{a(z)®(Vu)}
Pu =V {a(z)®(Vu)} + c(x)d(u).
Associated with the functions f and g define
Fu:= Pu+ f(z,u), Gu:= Pu+ g(z,u) (1.2)

where for ((,t) € R® x R, ®(¢) = [¢|*71¢, ¢(t) = [t|]*" and o > 0. Solutions of
(1.1) or (1.2) with regular boundary data

(e.g. ulpg = g € C(09Q)) will be supposed to belong to the space
D,(Q) :== {w € C(%R) : a(x)®(Vw) € CH[R)NC(4GR)}. (1.3)

(1.1)

For any other similar domain FE, Dp(FE) is defined similarly.

1.1. Picone-type formulae. Similar to [3, Theorem 1.1], let E be a bounded
domain in R" (n > 2) with a regular boundary (e.g. OF € C*, ¢ > 1), and define
for « > 0 and f,g € C(F x R;R) the operators

Fu:=V{a®(Vu)} + cop(u) + f(z,u)
Gv :=V.{AD(Vv)} 4+ Co(v) + g(x,v)
where a, A € CY(E;Ry), ¢,C € C(E;R).

(1.4)
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Lemma 1.1. If u,v € Dp(E) with v # 0 in E, then from

V.{%[(ﬁ(v)a@(vm]} = a|Vu|*™ + uFu — clu|*" —uf(x,u),
and
V. {ud(u) Aig”) } = (@ + 1) Ap(u/v) Vu.d (Vo) — aA|%Vv|O‘+1
U p(w)G — Clul*t — —2(w)g(z,v
# S0l — Cluf* — —oulgla.v),
we obtain

V{5 0ad(Ve) - o AB(Vo)]}
= (a — A)|Vu|*" + (C - ¢)|u|*H

+ A{|Vu*t = (o + 1)|%Vv|°‘_1Vu.(%Vv) + a\%waﬂ}

+ %{W(@Fu — ¢(u)Gv] + [p(u)g(x,v) — P(v) f(x,u)]}.

The following important inequality is also from [3, Lemma 2.1]: For all o > 0
and all £,7 € R”,

Y(&n) = g +ap*™ — (a+1)n|* " E&n 2 0. (1.6)
The equality holds if and only if & = 5. For u,v € C' define
Z(u,v) ==Y (Vu, Vv).
Some identities. If a = A, c=C, Fu= Gv =0 in E then (1.5 becomes
U
V~{wa[¢(v)¢(vlﬂ) — ¢(u)®(Vv)]}

= a{|Vul*" — (o + 1)|%W|a*1vu.(%vm + a|%wa+1}

(1.5)

gl [ L2 T "
— aZ(u,v) + up(u) [Qf;;j;) i };@;‘)].
Define
x( 1) = f;”(f;)’f).

For the functions v and v above7 if Q C E is open , non empty and f(x,t) = g(x,t),
then after integrating (1.6)) over Q we get for positive u and v

au v
A\ 1 o AVl 1 d
| au{vu ST S s

(1.8)
-/ [az<u,v>+|u|a“{x<x,v>—x(x,m}] dz.
Q
After interchanging v and v,
ov 8u
/ av{|Vv|*~ 1——¢( )| V! }d
0% (1.9)

- / (aZ (v, w) + [0 {x (2, 0) — x(z,0)})dx
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where vq denotes the outward normal unit vector to 9f2.
For the operators F' and G in (1.1)-(L.2), if u and v satisfy respectively Fu =
Gv =0 in Q, Equation (1.6]) leads to

u

Viwa[cb(v)‘l’(vﬂ) — o(u)@(Vo)l}
= ai(u,v) + up(u)x(z,v) ifv>0inQ, (1.10)
V~{¢(u)a[¢(U)‘1’(VU) — ¢(0)2(Vu)l}

=aZ(v,u) —vp(v)x(x,v) ifu>0in Q.
Remark 1.2. It is a classical result that if u and v are continuous and piecewise-C' !
in 2 and for pw := V.{a(x)®(Vw)} satisfies weakly
Giru:=pu+g(z,u) >0>pv+g(z,v) in
u<v in ﬁ,

then if g € C(Q x R) is non decreasing in its second argument , the existence of
such u and v leads to the existence of a solution w € Dp(Q) of pw + g(z,w) =0 in
Q; w|pqn = wo for any continuous wy satisfying u < wy < v on 9N.

Remark 1.3. Let 2 be bounded, € be an open subset of 2, ¢ € C(Q) and h €
C(Q x R). It is known (e.g. [I, [7]) that if u,v € D,(2) satisfy (weakly) for
H(w) := V{a(z)2(Vw)} + c(x)p(w) + h(z, w),

Hu>Hv inQ; (u—v)logr <0 (1.11)
then (u —v) < 0in Q' provided that Vo € Q, ¢(z)p(w) + h(x,w) is non increasing
in w for [w| < max{[u|re=(q), [v]r= @)}

2. MAIN RESULTS

Let a,c,... be as defined in the Introduction. Define in 2 the equations:
Pu =V {a(z)®(Vu)} + c(x)p(u) =0,
Fv:=V{a(x)®(Vv)} + c(z)p(v) + f(z,v) =0,
Grw =V {a(z)®(Vw)} + g(z,w) = 0.
Following the Remarks we have the following result for the problem
Giw:=pw+glz,w)=0 nQ; wloga=0 (2.4)

A
o
[N

b=

Theorem 2.1. (1) Assume that for all x in Q, g is increasing in the second ar-
gument and that a(x) > 0 is constant in Q. Then if there is a strictly positive
v € Dp(Q) which satisfies Giv < 0 in Q and v]gg > 0, then has a solution
u € Dp () which satisfies 0 < u < v in Q.

(2) If for all x in Q, g is non increasing in the second argument then has at
most one solution in Dp(Q).

Theorem 2.2. Assume that Q is bounded and connected and ¢ € C(Q) is non
positive.

(1) Let w € Dy(2) be a solution of
Py :=VA{a(z)®(Vu)} + c(z)p(u) =0 in Q

uloo = 0.
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Then u > 0 in Q if meas{z € Q : u(z) > 0} > 0.
(2) For the solutions w € Dy(2) of
Fu:=V{a(z)®(Vw)} + c(x)p(w) + f(z,w) =0 inQ
wlan =0

the same conclusion holds provided that in Q, f(x,t) <0 fort > 0.

Theorem 2.3.

(1) Assume that for all x € Q, f(x,t) > 0 fort > 0. Then if has a
strictly positive solution u which satisfies ulgg = 0 , cannot have a
solution strictly positive in Q) . Consequently if has a positive solution
u with the boundary condition u|sq = 0 then any non negative solution v

of (2.2) has a zero inside ).
(2) If (2.1) has a solution strictly positive in Q then if for allz € Q, f(x,t) <0
fort > 0, (2.2) has no nontrivial and nonnegative solution v satisfying
'U‘(‘)Q =0.
Theorem 2.4. Let f € C(Q x R;R) and let u,v € Dy(Q) be two solutions of
Fuw :=V{a®(Vw)} + cp(w) + f(z,w) =0; w>0 inQ; wlpa=0.
(1) If for all x in Q, t — x(x,t) = f(z,t)/d(t) is strictly increasing and positive in
t > 0 then

(i) the two solutions intersect in Q) ;
(ii) if for some open D C 2, v > u in D then

ou

au{|Vu|* 1 =—
| aufivue

and if in addition w = v on 0D, then

u o1 OV
—o()IVel S s > 0 (25)

/ {aZ(v,u) +v[* M X (2, u v)}dz <0 and
D

/ {aZ(u,v) + [u|*T' X (z,v : u) }dz > 0,
D

where X (z,w : z) = x(z,w) — x(x, 2).
(2) If for all x in Q
(i) t — x(z,t) = f(z,t)/P(t) is positive and strictly decreasing int >0 or
(ii) o f is positive and decreasing in t > 0 then the two solutions coincide.

(8) For connected ), the problem
Pw=VA{a®(Vw)} +cp(w) =0 inQ; wlpn =0

has at most one non negative solution in Dp(S).
This problem has at most one strictly positive solution even if Q) is not connected.

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem[2.1. (1) Taking in account remark we just need to build a
subsolution w € Dp(£2), such that

Giw>0>Gv and 0<w<wv in Q.
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Because v > 0 in © we consider any nonnegative U € C(£) which is piecewise
afine; i.e., there exists N := {n;;: =1,2,..., M} and some finite number (pairwise
disjoint) of subsets B;, 1 < i < N of Q such that with = (z1,22,...,2,) € Q
(i) B:==UY, B c;

(i) Vi,U(z) =Y iy mix; < v(zx) for z € By;

(iii) Ulspp = 0 and is extended by 0 outside B in .
Thus as a(z) is positive and constant in €2,

GU =¢g(z,U)>0>Gv and 0<U<wv in{.

The solution u of pu + g(z,U) =0 in Q;ulgg = 0 is in Dp () and satisfies Giu =

pu+g(z,u) >0>Gvand 0 <u<wvin Q. Thus from Remark [1.2] this leads to

the existence of such a required solution.

(2) Let g be decreasing in the second argument. Suppose that there are two distinct

solutions u and v € Dp(§2) such that for some subset B of { whose measure is

strictly positive v > u in B and (u — v)|sp = 0. In that case, as g is decreasing,
pu—pv = g(xz,v) —g(z,u) <0 inB and (u—v)ap >0.

This leads to u > v in B, conflicting with the assumption. Therefore any such two
solutions have to coincide in 2. O

The proof of Theorem follows from the lemma below.

Lemma 3.1. (1) Let u € D,(2) be a solution of
pu:=Vfa(z)®(Vu)} =0 in Q; -
ulan = 0; meas{Qt} >0 (3.1)

where QT :={x € Q:u(x) >0} and Q™ :={z € Q:u(x) > 0}. Thenu >0 a.c.
in . Moreover if in addition Q is connected then u > 0 in €.

(2) The same conclusions hold for the problems
Pu:=Vd{a(z)®(Vu)} + c(z)p(u) =0 in -
ulon =0; meas{Qt} >0 (3:2)

where ¢ € C(;R) remains non positive in €. -
The same conclusion holds for the operator F if in Q x Ry the function f is non
positive.

Proof. (1) Let k := maxq- |u(z)| and the function v(z) := u(z)y + k.
As (Vu — Vo)|g+ =0, Z(u,v) = 0 and weakly in QF,
V-{MGWU)‘D(VU) — p(u)@(Vv)]} = Wv){sb(v) — ¢(u)}Va(z)®(Vu)] = 0
by and . So, as v is constant in 27,
U ~ JaZ(u,k) inQ7,
V. gald() (V) = (7o)} = { arnR e

This implies after integration over €2 that

0= /_ a(x)Z(u, k)de = /_ a(x)|Vul*Tdz >0
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which is absurd unless meas{Q2~} = 0. The fact that a € C*(£;(0,00)) makes
the operator p here satisfy the conditions required for the case of the following
maximum principle.

[1, Theorem 2.2] If the bounded domain €2 is connected , p € (1, c0)

and u € WLP(Q) N C(Q) satisfies — div A(x, Du) + Alu[P~2u > 0,

u >0 in Q for a constant A € R then either u =0 or u > 0 in Q.

(2) If ¢ < 0 in 2 and meas{Q2~} > 0 proceeding as above with v defined as

before,

V{5 alo@e(va) - se(vo)}
_ Jufpu+tco(u)} — up(3){pu + cd(v)} in QF
aZ(u, k) +u{pu + cp(u)} —up()cp(v) in Q. (3.3)

w1 4(1)) i 0*
"\ aZ(u, k) + upu in Q.

From (3.2), upu = —cé(u) > 0 in Q provided that ¢ is non positive there.
For the operator F', (3.3)) reads

v.{ﬁaw(v)@(w — B(u)®(Vo)]}
—c(@)ud(L)d(0){d(v) — ()} — ud(L){f(z,v) — f(z,u)}

_ Fud(2) f(z,v) — uf(x,u) in QF
aZ(u, k) + 5 {—d(w)e(@)d(k) + f(z,})] (34)
+o(u) (2, k) — $(k) f(x,u)} in Q-

_ {—C(w)ufb(u){l — ¢(9)} + uf(z,u){e(¥) — 1} in QF
aZ(u, k) — c(x)ud(u) — uf(x,u) in Q.

Integrating of both sides of (3.3]) and (3.4) over Q provides an absurdity as the left
would be zero while the right would be strictly positive, unless 2~ has measure
zero. This completes the proof. O

Proof of Theorem[2-3. (1) If v and u are respectively solutions of
Fv=0; v>0 in{2 and
Pu=0; u>0 inQ; u|pa=0

with f € C(Q x R;[0,00)) . As in (1.5 we have
u
VAi{—=
()
Then integrating both sides of the equation leads to a contradiction.
(2) Similarly if in (3.5), v > 0 in ©Q and v|gpq = 0 after interchanging v and v in
(1.5) we get to

V{@

Then we complete as above. (I

[6(v)a®(Vu) — p(u)a®(Vo)]} = aZ(u,v) + usb(%)f(%v) > 0.

alp(u)®(Vv) — ¢(v)®(Vu)]} = aZ(v,u) — vf(z,v) > 0.
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Proof of Theorem[2.] The statement (2.5) follows from (1.8). Adding (I.8) and
(1.9), we get

/aD a(u —v){®(Vu) — ®(Vo)}.vpds
- /D {aZ(u,0) + aZ(v,u) + [l — [0 (x(z, v) — x(,w)) b

leading to (2.6)). For the two solutions, (1.6) (and interchanging u and v) leads
(after integration over ) to

0§/aZ(u,v)d:L'
Q

_ /Q up(u) { L ;;g;}? _f %L) L (3.6)

—/ u| T x (2, v) — x(z,u) }dz.
Q

and
OS/aZ(v,u)dx
Q

__ /Q w(v){f;f;;) - fgg;;))}dx (3.7)

- / (0] o v) — X (> w) Y.
Q

Assume that x(x,t) is increasing: If we suppose that v > w in € then provides
a contradiction and if we suppose that u > v, would lead to a contradiction.
Assume that x(z,t) is decreasing and define Q; := {x € Q : X(z) := x(z,v) —
x(xz,u) >0} and Q_:={zxe€Q: X(z) = x(z,v) — x(z,u) < 0}. Then (without
loss of generality) 0 < v < u in Q4 and v > u > 0 in Q_ whence

/|v\°‘+1X(x)dx§/ |u|* T X (z)dz,
Q4

Q4

(3.8)
/ |v\“+1X(x)da:§/ |u|* T X (2)da.
Q Q.

This implies from (3.6) and (3.7) that
0 g/ 0|" X (2)d g/ [+ X (2)dz < 0
Q Q

whence fQ Z(u,v)dx = 0, leading to v = u in Q by . If f is nonnegative and
decreasing in t, x is decreasing in ¢t and the same conclusion is reached.

(3) The statement follows immediately from or as we would get for any
such two solutions 0 = [, a(x)Z(u,v)dz the right hand side being strictly positive
unless u = v in . O
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