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CHAPTER 1 

 

1.  INTRODUCTION 

1.1 Motivation 

From the seminal work done in the 1980’s in regards to modeling bosonic 

systems, phase transitions at zero kelvin have been of immense interest 1.  The Bose 

Hubbard model, an extension of the Hubbard model, was first introduced in 1963 by 

Gersch and Knollman to quantify ground state phenomena of bosons 2.  This model can 

become very complicated very quickly and thus approximations were quickly in order.  

Quantum Monte Carlo simulations are the most detailed and are often considered the 

most accurate of approximations, but require immense computational power and thus are 

meant more for those with the necessary computational resources.3,4,5,6.  Other 

approximations surfaced due to the need for less computationally heavy methods in 

modeling bosonic phase transitions.  Local density approximations 7 allow for an accurate 

study of the insulating phase in bosons where a zero probability to tunnel between 

neighboring sites localizes particles into an insulating state.  From local density 

approximations came mean field approximations which have been studied extensively in 

different dimensions with different system parameters as a focus 1,8,9,10.  With the 

minimized computation time offered by mean field approximations, this is used as a 

simplification to the Bose Hubbard model in this thesis.  As much of the literature 

focuses on only specific system parameters and an expansive study in regards to the Bose 

glass phase in two dimensions is lacking, this thesis aims to extend the conclusions of 

past theory to encompass multiple variations of multiple different system parameters.   
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The Bose glass was first proposed as a phase in disordered bosonic systems at 

zero kelvin that prevents the direct transition from insulator to superfluid.  The Bose glass 

is an emergent phase, which presents when disorder is added to a system of bosons 

trapped in a periodic potential (e.g. an optical lattice).  Without disorder, either an 

insulating or a superfluid phase exists.  If an external potential is introduced (through the 

use of a speckle field 11 or second commensurate lattice 12), the system becomes 

disordered, and a third phase called the Bose glass presents 1.   

Phases are defined in bosonic systems by order parameters, where an abrupt 

change in one marks a phase transition.  Number density, superfluid density and 

compressibility are used in bosonic systems and are defined in 1.4. 

Bosons are of interest as they do not adhere to the Pauli Exclusion Principle, and 

thus, many may exist in the same quantum state at the same time.  M.P.A Fisher and his 

group completed the first somewhat exhaustive study of bosons in periodic and/or 

external potentials, arguing that a Bose glass phase exists in the presence of uniformly 

random disorder 1.  Their paper states, however, that using mean field theory, the Bose 

glass phase is most often missed due to over estimations in the coherence (superfluidity) 

of the system.  Fisher et al worked in one dimension and their ideas are extended to two 

dimensions.   

A.E. Niederle and H. Rieger 10 studied mean field theory in two dimensions, 

comparing  zero disorder and uniformly disordered systems.  They postulate that a Bose 

glass phase is realized in fully disordered systems using the mean field approach, both in 

spatially averaged and local order parameters.  The local phenomena of the Bose glass 

are defined using geometry called superfluid clusters which are regions in real space with 
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non-zero superfluid density that appear as islands of superfluid in a background of Mott 

insulator.  This definition of the Bose glass is extended to simple disorder configuration. 

One of the most important visualization tools used to study the phase transitions 

of bosonic systems is a phase diagram.  Buonsante et al 9 complete an in depth study of 

phase diagrams in one dimension, showing how increasing the complexity in the random 

disorder changes the behavior of phase space phenomena; that study is extended to two 

dimensions here. 

Further, as computation time is usually a limiting factor in many scientific 

calculations, a method was devised to approximate phase diagrams; disordered system 

phase diagrams can often take many days to compute even in the mean field 

approximation.  Zero disorder phase diagrams are “shifted” using the effective potential 

of the desired disordered system and the results are spatially averaged to give remarkably 

similar results to the fully calculated phase diagrams.  From the study of comparing order 

parameters between zero disorder and disordered systems, phase transitions in mean field 

theory were determined to be a local phenomenon.  This conclusion shows that real space 

plots are the important tools for studying phase phenomena using mean field 

approximations.  Thus, the phase diagram approximation technique devised allows one to 

see approximate locations of phase transitions and points of interest without having to go 

through the laborious process of full phase diagram calculations.  Only after full real 

space studies are the full phase spaces calculated for completeness.   
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1.2 Model 

The model used to calculate energy in a two dimensional bosonic system is the 

Bose Hubbard Hamiltonian:  

𝐻𝐵𝐻𝐻 =  −𝑡 ∑ (𝑎𝑖̂
†𝑎𝑗̂ + 𝑎̂𝑖𝑎̂𝑗

†)<𝑖,𝑗> +
𝑈

2
∑ 𝑛̂𝑖(𝑛̂𝑖 − 1)𝑖 − 𝜇 ∑ 𝑛̂𝑖𝑖 + ∑ Δ𝑖𝑖 .         (1) 

Here, t is the hopping probability amplitude between neighboring sites i and j, 𝑎𝑖̂
†(𝑎𝑖̂) is 

the creation (annihilation) operator for a boson in state i, U is the interaction potential 

between two bosons in the same state, 𝑛̂𝑖 = 𝑎𝑖̂
†𝑎𝑖̂ is the number operator, 𝜇 is the 

chemical potential, and Δ is the random on-site potential used to add disorder to the 

system.  Throughout this thesis, all energy values in the Hamiltonian are in units of 1/U 

and are thus unit-less.   

1.3 Mean Field Approximation 

 As computation time is often the most limiting factor in calculations, a mean field 

approximation technique is utilized.  Mean field theory approximates a many body, many 

site Hamiltonian by reducing it to a many body single site Hamiltonian.  This is achieved 

by approximating the hopping term in the Hamiltonian with average values for the 

operators at all neighboring sites,    

          𝑎̂𝑖
†𝑎̂𝑗 ≈ 𝑎̂𝑖〈𝑎̂𝑗

†〉 + 〈𝑎̂𝑖〉𝑎̂𝑗
† − 〈𝑎̂𝑗

†〉〈𝑎̂𝑖〉,            (2) 

Where the total Hamiltonian becomes  

  𝐻𝐵𝐻𝐻(2) = ∑ ℎ𝑖𝑖 ,               (3)  

And the sub-Hamiltonian is of the form 

                            ∑ ℎ𝑖 = −𝑡(𝑎𝑖
†〈𝑎𝑗〉 + 〈𝑎𝑗

†〉𝑎𝑖) +
𝑈

2
𝑛𝑖(𝑛𝑖 + 1) + (𝑉𝑖 − 𝜇)𝑛𝑖𝑗 .         (4) 
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1.4 Order Parameters 

 The system phases are defined both globally (in phase space) and locally (in real 

space) using number density (n), superfluid density (ρ) and compressibility (κ), either 

spatially averaged (𝑛̅, 𝜌̅, 𝜅̅) or site-by-site (𝑛𝑖 , 𝜌𝑖 , 𝜅𝑖).  Globally, the order parameters in 

real space are averaged over an n x n site, two dimensional lattice.  Locally, each site is 

looked to individually.  Number density is defined as the average value of the number 

operator,  

𝑛̅ =
1

𝑁
∑ 〈𝑛̂𝑖〉𝑖 = ∑ 〈𝑎𝑖

†𝑎𝑖〉𝑖 ,           (5) 

where N is the number of total lattice sites.  Superfluid density is the measure of 

coherence (connectivity across a lattice) and is defined as the average value of the 

annihilation operator,  

    𝜌̅ =
1

𝑁
∑ 𝜌𝑖𝑖 =

1

𝑁
∑ 〈𝑎𝑖〉𝑖             (6) 

Compressibility, however, is measured in two ways: (1) Globally, compressibility 

measures the change in particle density with respect to a change in chemical potential (𝜅̅), 

and (2) Locally, compressibility measures the variance in number density (𝜅𝑖).  The 

derivative definition of compressibility makes more sense globally as the chemical 

potential is constant at all sites in real space for local calculations.   This then leads 

naturally to the fact that the variance in number density is more appropriate for local 

calculations as the variance only measures the change in number density across the 

lattice.  Thus, 
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               𝜅̅ =
1

𝑁
∑

𝑑𝑛𝑖

𝑑𝜇𝑖 ,               (7) 

                            𝜅𝑖 =
1

𝑁
∑ (𝑖 〈𝑛̂𝑖

2〉 − 〈𝑛̂𝑖〉2).                      (8) 

 The phases of a bosonic system can thus be defined using the prescribed order 

parameters.  The Mott insulating phase, characterized by low kinetic energy, is defined to 

have an integer number density.  Due to the low kinetic energy (hopping amplitude) and 

thus low probability of particles hopping between sites, the Mott insulator has zero 

superfluid density and compressibility.   

The superfluid phase is characterized by a large kinetic energy and a variable, 

non-integer number density.  Although number density is non-integer in phase space, 

some sites in real space may contain integer number density; thus, number density is not 

necessarily an order parameter that can individually define a superfluid phase.  However, 

since the hopping potential is large, particles have a greater propensity to move across a 

lattice and thus the superfluid density and compressibility are non-zero in a superfluid 

region.   

In the Bose glass, theory states that number density and superfluid density behave 

like that of the Mott insulator, but that the glass is compressible like that of the 

superfluid.  The addition of a phase definition for the Bose glass was given by reference 

10 whereby certain real space geometry called “superfluid clusters” were defined to 

differentiate the phase.  In this definition, the Bose glass presents with superfluid clusters 

in a background of Mott insulator in real space, such that there are islands of non-zero 

superfluid density that have not yet percolated (connected) completely across the lattice; 
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this definition holds more soundly in terms of reproducibility than the characterization of 

a Bose glass in spatially averaged quantities.   

1.5 Calculation Method 

 Solutions to the Bose Hubbard model are calculated using nested functions in 

Matlab r2014a; functions work for all versions of Matlab from r2012a onward.  Disorder 

is added using a random seed generator as a nested function, to allow for purely random 

configurations over real space lattices.  The ladder operators and interaction term are a 

second nested function using switch and case statements to ensure the system is in the 

number basis.  The two nested functions are called into the third, main function which 

solves for the energy eigenvalues using an iterative process for the mean field 

approximations in real space and simple sum functions for the spatially averaged values 

in phase space.  All plots are created using pseudocolor, contour and histogram plots in 

Matlab.   

1.6 Outline 

In Chapter 2, the zero disorder system is studied as a starting point for the 

characterization of phases and transitions.  The method for studying both phase space and 

real space is shown and is used as the foundation for the study of disordered system.  As 

the clean system is the simplest system to understand, it is the most logical place to start.   

 Chapter 3 is the bulk of the thesis showing the effects of adding disorder slowly 

with simple disorder configurations.  Binary, ternary and quaternary disorder are the 

simple disorder configurations studied and these are compared and contrasted with the 

uniformly disordered system.  Conclusions are made about the Bose glass phase both in 
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phase space and real space and these results are compared to the results of M.P.A. Fisher 

et al 1, Niederle and Rieger 10 and Buonsante 9 as described in section 1.1. 

 Chapter 4 discusses the relationship between order parameters, specifically 

between number density and compressibility.  It is shown that there is a distinct similarity 

between clean and disordered systems and the unique pair values of number density and 

compressibility.  This relationship is used to show the local nature of phase transitions in 

disordered systems using mean field approximations. 

 The results of Chapter 4 are used in Chapter 5 to describe a method devised to 

quickly and accurately approximate phase diagrams.   

 The overall conclusions are made in Chapter 6 and the results of real and phase 

space characterizations are given for the Bose glass phase.   
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CHAPTER 2 

 

2.  CLEAN (ZERO DISORDER) SYSTEM 

In the absence of disorder, a direct transition occurs from an insulating to a 

superfluid phase at a critical hopping potential value.  To see this transition, one plots 

each order parameter as a function of hopping potential, while holding chemical potential 

constant.   

2.1 Phase Space 

Fig. 1 shows that each order parameter definitively indicates the phase transition 

at the same hopping potential value of t/U = 0.03825. 
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 Fig. 1 Number density (a), superfluid density (b) and compressibility (c) each as a function of 

hopping potential for zero disorder; chemical potential is held constant at µ = 0.5.  All 3 order parameters 

(d) plotted together as a function of hopping potential.  The dashed line marks the insulator to superfluid 

transition.  Energy parameters are in terms of 1/U. 

 

To see a more complete picture of the phase transitions, one looks to the phase 

diagrams of each order parameter as a function of both chemical and hopping potential 

over a range of each parameter.  This allows one to see the typical lobe behavior of the 

Mott insulator for small hopping potential surrounded by a region of superfluid.  Here 

chemical potential is ranged from µ = [0, 2] and hopping potential from t = [0, 0.045], 

while all energy parameters are in units of 
1

𝑈
.   

 

 

 

(𝜌
) 

SF 

SF 

SF 

SF 

(𝑛
) 

(𝜅
) 

MI 

MI 

MI 

MI 
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Fig. 2 Phase diagrams for number density (a), superfluid density (b) and compressibility (c) each 

as a function of chemical and hopping potential for a zero disorder system.  A white dashed line is 

superimposed to guide the eye along the phase boundaries  

 

Number density in a clean system in phase space is an integer in the Mott 

insulator and is a non-integer as hopping potential is increased out of the Mott lobes into 

the superfluid region.  Superfluid density is zero in the Mott insulator region and non-

zero in the superfluid region.  As with the superfluid density, compressibility is zero in 

the Mott insulating region and non-zero outside.  The code used to compute these order 

n = 1 

 

n = 2 

(𝑛̅) (𝜌̅) 

(𝜅̅) 
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parameters has a convergence of 10E-5, thus all values lower are effectively zero; on the 

logarithmic plots, these are values less than -5.   

Using the tool of the phase diagram allows one to choose a chemical potential and 

hopping potential pair in phase space and map the order parameters over a real space 

lattice for a given phase space point; this allows one to study local phase behavior and 

compare and contrast average phase space phenomena and real space phenomena.   

2.2 Real Space 

Without an external disorder term, the clean system effective potential is a 

constant.  This implies that each order parameter will be homogeneous in real space for a 

clean system, and one should expect a single value for each order parameter for each 

phase.  This also implies that system size is negligible in a clean system.  Thus, each 

order parameter in each phase is mapped over a 100 site, two dimensional lattice for the 

clean system.  Table 1 shows the chemical potential and hopping potential pairs chosen 

for the real space analysis of a clean system.   

 

 

 

Table 1 Chemical potential and hopping potential value used to generate real space plots.  Energy 

parameters are in units of 1/U. 

 

Energy Parameter MI SF 
µ/U 0.5 0.5 

t/U 0.0275 0.1 
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Fig. 3 Real space plots of each order parameter for zero disorder over a 100-site lattice (10 x 10).   

 

As is predicted, Fig. 3 shows that the order parameters are homogenous in real 

space for a zero disorder system in both the Mott insulator and the superfluid phases.  In 

the Mott insulator, number density is an integer at all sites (n = 1) while both superfluid 

density and compressibility are both zero at all sites.  In the superfluid, number density is 

a non-integer (n = 1.2246) at all sites and superfluid density and compressibility are both 

non-zero (ρ = 0.9223, κ = 0.4142) at all sites.   

 To ensure that every site in real space does in fact have the same value, one looks 

to population density plots; this may seem excessive for the clean system, but as disorder 

is added and becomes more complex, the distribution of order parameter values over the 

MI 

SF 

𝑛𝑖 𝜌𝑖 𝜅𝑖 
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real space lattice become important in distinguishing phases.  Histograms are used to 

show the percent of sites occupied by a given order parameter value.   

   

         

                    

                    

Fig. 4 Population density for zero disorder.   

 

 

Fig. 4 confirms that every site in real space for a clean system contains the same 

value for a given order parameter.   

The clean system is straightforward to understand.  The potential energy term is 

the constant effective potential of the system and thus the energy outputs are homogenous 

in real space.  In phase space, the Mott lobes each have an exact integer value for number 

density that increases with increasing chemical potential; the superfluid region surrounds 

the Mott lobes completely and has a non-integer number density value that increases both 

with hopping potential and chemical potential.  Each Mott lobe is defined by a range of 

MI 

SF 

𝑛𝑖 𝜌𝑖 𝜅𝑖 
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chemical potential and hopping potential values whereby the particles with these values 

are localized and thus superfluid density and compressibility is zero throughout.  The 

opposite is true for the superfluid region, whereby the particles are able to tunnel or hop 

between sites given a large enough kinetic energy; this results in a non-zero superfluid 

density and compressibility due to the coherence across the system.   

The next four chapters study the effects of adding disorder to the system in 

increasing complexity, ultimately looking to a uniformly disordered system in an attempt 

to mimic real world systems.  It is shown that the true nature of the system is elusive in 

mean field theory and that the Bose glass only presents as a real space phenomenon.    
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CHAPTER  3 

 

3.  DISORDERED SYSTEMS 

3.1 Binary Disorder 

To study and characterize the Bose glass phase, disorder is introduced to the 

system by adding the random external potential term (Δ) to the effective potential of the 

Hamiltonian.  The simplest disorder configuration is binary disorder, whereby the 

random on-site potential has a 50% chance of assuming either of two available values.  ∆ 

= 0.25 is the absolute disorder strength used for all disorder configurations in this thesis.   

 

 

 Fig. 5 Binary disorder map over a 10000 site lattice.  Sites are randomly occupied by a 

disorder strength of -0.25 or +0.25. 
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The disorder potential is randomly distributed over an n x n site lattice (Fig. 5) as 

a term in the effective potential such that one of two sub-Hamiltonians determines site 

energy:  

 

       ℎ+Δ =  
1

𝑈
∑ (Δ𝑖 − 𝜇)𝑛̂𝑖𝑖 +

1

2
∑ 𝑛̂𝑖(𝑛̂𝑖 − 1)𝑖 −

𝑡

𝑈
∑ 𝑎̂𝑖

†𝑎̂𝑗<𝑖,𝑗> ,          (9) 

 

          ℎ−Δ =
1

𝑈
∑ (−Δ𝑖 − 𝜇)𝑛̂𝑖𝑖 +

1

2
∑ 𝑛̂𝑖(𝑛̂𝑖 − 1)𝑖 −

𝑡

𝑈
∑ 𝑎̂𝑖

†𝑎̂𝑗<𝑖,𝑗> .       (10) 

 

 Here, Eqn. 9 is for the positive disorder potential and eqn. 10 the negative.  

Looking at these two equations, it appears evident that in evolving from the clean system, 

the chemical potential values in the clean system will be shifted up or down by ∆/U, 

changing the shape and location of the Mott lobes. 

3.1.1. Phase Space 

 Past theory states that in the presence of disorder, the Bose glass phase should 

present in phase space as an intermediate phase that prevents a direct transition from Mott 

insulator to superfluid 1.  As in the clean system, the first visualization method chosen is 

to plot each order parameter as a function of hopping potential.  Initially, the major 

difference when disorder is added is the postulation of an emergent phase presenting 

which has compressibility behavior akin to the superfluid phase but superfluid behavior 

the same as an insulator.  Since homogenity across real space is not expected in a 

disordered system, then one speaks of spatially averaged quantities in phase space and 

local, site-by-site quantities in real space.  Thus, to look to the order parameters as a 

function of hopping potential, one must use spatially averaged quantites for the order 
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parameters.  Since the Bose glass is defined to have zero superfluid density but non-zero 

compressibility, one first looks to the spatially averaged order parameters to see if this 

definition holds.   

 

 

 

 Fig. 6 Number density (a), superfluid density (b) and compressibility (c) each as a function of 

hopping potential for binary disorder; chemical potential is held constant at µ = 0.5.  All 3 order parameters 

(d) plotted together as a function of hopping potential.  The dashed line marks the insulator to superfluid 

transition.  Energy parameters are in terms of 1/U. 

  

Plots (a-c) appear to show a phase transition from insulating to superfluid phase, 

with no intermediate phase containing a spatially averaged superfluid density of zero but 

non-zero compressibility.  Plot (d) shows why it is important to plot each order parameter 

separately as both superfluid density and compressibility appear to become non-zero at 
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the same hopping potential value.  However, it does appear that both parameters do in 

fact become non-zero at the same hopping potential; therefore, a larger phase space 

picture is needed in an attempt to realize the Bose glass phase in binary disorder. 

 

             

 

Fig. 7 Number density (a), superfluid density (b) and compressibility (c) each as a function of 

chemical potential and hopping potential in a binary disordered system.  A white dashed line is 

superimposed to guide the eye along the phase boundaries.  Plots (b-c) are plotted logarithmically in the 

order parameter where values less than -5 are effectively zero.  
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 Each Mott lobe has either an integer or half integer number density.  The half 

integer number density arises from the addition of disorder and the disorder periodiocity; 

in this case f = 2 is defined as the periodicity of the disorder (binary disorder is said to 

have a peridiocity of 2, ternary 3 and so on, and f is used in these calculations to denote 

the division of the disorder or periodicity).  As binary disorder is added, the integer filling 

Mott lobes shift up and down, and a half integer lobe appears between the integer lobes.  

Fig. 7 is in direct agreement with the results obtained in the one dimensional case 9. 

 If a Bose glass is to present in phase space, there should be a region of zero 

superfluid density around the edge of each Mott lobe that relates to a region of non-zero 

compressibility.  Fig. 7 shows that the behavior in Fig. 6 is indicitive of the full phase 

space for binary disorder: no Bose glass phase presents in phase space for spatially 

averaged order parameters using mean field approximations.  Fig. 8 confirms this 

showing the phase boundary for both compressibility and superfluid density to be the 

same; thus no region in phase space contains a phase with zero superfluid density but 

finite compressibilty. 

 

 

 

 

 



 
 

2
1 

 

 Fig. 8 Superfluid density (𝜌̅) and compressibility (𝜅̅) phase diagram phase boundaries for binary disorder. 
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3.1.2. Real Space 

Following the path of the clean system study, real space plots are looked to in an 

attempt to see if the Bose glass is a local phenomenon in mean field approximations.  For 

completeness, points are chosen in phase space (Fig. 9) that on the Mott lobe boundaries 

in the so-called Bose Glass and in the superfluid region.  Table 2 gives the values tested 

in real space, while the red dots in Fig. 9 show the location in phase space. 
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 Fig. 9 Superfluid phase diagram for binary disorder used to determine µ, t pairs to be tested in real 

space.  The red dots represent the four values tested: 1 in a Mott insulator (MI) region, 1 in a superfluid 

(SF) region, and 2 in a supposed Bose glass (BG) region.  Superfluid density is plotted logarithmically 

where any value less than -5 is effectively zero.   

 

 

 

 

 

Table 2 Phase space values tested in real space for binary disorder.  Energy parameters are in units 

of 1/U. 

Energy Parameter  MI BG 1 BG 2 SF 

µ/U 0.5 0.5 0.5 0.5 

t/U 0.025 0.027 0.0275 0.029 
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.   

Fig. 10 Real space plots of each order parameter for binary disorder over a 10000-site lattice (100 

x 100).   
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 As in the clean system, the definition of a Mott insulator is preserved in binary 

disorder; number density is an integer at all sites and superfluid density and 

compressibility are zero at all sites.  The definition of a superfluid is also the same in 

binary disorder; however, as opposed to homogeneity in the clean system, there is a 

region of non-integer number density and non-zero superfluid density and compressibility 

values based on the random on site disorder potential.  A mixture of insulating and 

superfluid sites coexists on the same real space lattice in the Bose glass region.  This 

behavior, coined “superfluid clusters” is predicted and discussed in10.  Here it is shown 

that the cluster phenomenon occurs in 2D as well as 1D for binary disorder. 

 Population density histograms will clarify the difference between the Bose glass 

and the insulating and superfluid phases.  One expects similar behavior to the clean 

system for the insulating and superfluid phases while the Bose glass should show 

behavior indicative of a mixture of states.  
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Fig. 11 Population density for binary disorder.  The inserts in (g-l) show a zoomed in plot of 

number of sites as a function of each order parameter; each plot only shows up to 100 occupied sites to 

elucidate the tail behavior of the Bose glass region.   
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 Fig. 11 (a-c) shows a 100% of sites contain an integer number density and zero 

superfluid density and compressibility confirming this point to be a Mott insulator.  Fig. 

11 (d-f) shows a range of non-integer number density and non-zero superfluid density 

and compressibility values confirming this point to be a superfluid. Fig 11. (g-i) shows 

the first Bose glass point has behavior similar to the Mott insulating phase.  However, 

upon close inspection, the difference lies in the tail of values relating more to the 

superfluid phase.  Fig. 11 (j-l) shows the second Bose glass point has similar ‘tail’ 

behavior to the previous Bose glass point.  However, the tails in the second point (closer 

to the superfluid phase) are larger in the sense that more sites are populated with values in 

the tail, and the spike value around integer number density and zero superfluid density 

and compressibility is smaller.  Thus, as hopping potential increases towards a superfluid, 

the Bose glass phase transitions from looking like a Mott insulator with a superfluid-like 

tail, to looking more and more like a superfluid.   

 When binary disorder is added to the system, changes occur in phase space as 

well as in real space.  Although the Bose glass phase is not truly realized in phase space 

for mean field approximations, the behavior discussed by Buonsante and Vezzani 9 in 

regards to number density and the shifting Mott lobes observed in one dimension is 

confirmed here in two dimensions.  Given the binary disorder configuration, the clean 

system Mott lobes containing one integer number density value shift up and down, and a 

lobe appears between these original lobes.  This emergent lobe has chemical potential and 

hopping potential pair values that relate in real space to a lattice containing half the 

integer number density value of the lobe that shifted downward and half the integer 
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number density value of the lobe that shifted upward.  In other words, the n = 1 shifts 

upward and a lobe appears below it containing chemical potential and hopping potential 

pair values that result in a spatially averaged number density of n = 0.5.  This is a result 

of having a real space lattice containing half sites with n = 0 and half sites with n =1; 

thus, the spatial average becomes n = 0.5.  This is true for increasing chemical potential 

throughout phase space.  In other words, every integer filling factor lobe shifts such that a 

single lobe is intermitant between two integer filling factor lobes with a number density 

that is the average of the upper and lower lobe’s number density. 

 In regards to superfluid density and compressibilty, however, there is no region 

with spatially averaged zero superfluid density and non-zero compressibilty in phase 

space; the system transition directly from insulating to superfluid phases in phase space.  

Locally, the Bose glass presents as a global phenomenon over a real space lattice, but 

does not present at any single site; no new phases presents at any single site.  Thus, the 

transition in a binary disorderd system occurs through a region that appears to be a 

superfluid in phase space but in real space appears as a mixture of states existing on the 

same lattice.  The transition at any single site however, occurs directly from an insulating 

to a superfluid phase.  This leads to the postulate of a number of sublattices equal to the 

number of divisions in the disorder (periodicity) e.g. two sublattices in binary disorder, 

that will be discussed in the phase diagram approximation technique chapter.     
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3.2 Ternary Disorder 

 Adding another division to the disorder potential from binary disorder results in 

ternary disorder, whereby the Hamiltonian may take one of three forms: 

 

                       ℎ+Δ =  
1

𝑈
∑ (Δ𝑖 − 𝜇)𝑛̂𝑖𝑖 +

1

2
∑ 𝑛̂𝑖(𝑛̂𝑖 − 1)𝑖 −

𝑡

𝑈
∑ 𝑎̂𝑖

†𝑎̂𝑗<𝑖,𝑗> ,                  (11) 

 

                        ℎ−Δ =
1

𝑈
∑ (−Δ𝑖 − 𝜇)𝑛̂𝑖𝑖 +

1

2
∑ 𝑛̂𝑖(𝑛̂𝑖 − 1)𝑖 −

𝑡

𝑈
∑ 𝑎̂𝑖

†𝑎̂𝑗<𝑖,𝑗> ,       (12) 

 

                          ℎ0 =  −
1

𝑈
∑ 𝜇𝑛̂𝑖𝑖 +

1

2
∑ 𝑛̂𝑖(𝑛̂𝑖 − 1)𝑖 −

𝑡

𝑈
∑ 𝑎̂𝑖

†𝑎̂𝑗<𝑖,𝑗> .       (13) 

 

The third Hamiltonian (Eqn. 13) is just that for a zero disorder Hamiltonian; 

therefore, ternary disorder may have one of three disorder strengths such that ∆ = -∆, 0 or 

+∆. Fig. 12 shows a 10000 site lattice populated randomly with ternary disorder of 

strength µ = 0.25. 

 

 Fig. 12 Ternary disorder map over a 10000 site lattice; ∆ = ± 0.25 or 0. 
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 Making a prediction based on the evolution of the system when binary disorder is 

added from when the system contains no external random disorder, one should expect to 

see a direct transition in phase space from a Mott insulating phase to a superfluid phase; 

as no Bose glass was seen in phase space in binary disorder, it seems reasonable to 

assume that this would also be the case for ternary disorder.   

3.2.1 Phase Space 

One looks again to the plots of spatially averaged order parameters as a function 

of hopping potential (t/U). 
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 Fig. 13 Spatially averaged number density (a), supefluid density (b) and compressibility (c) as a 

function of hopping potential for ternary disorder; chemical potential is held constant at µ = 0.5.  All three 

are plotted on (d) to show the possible ambiguity between transition points for superfluid density and 

compressibility.  The dashed line marks the insulator to superfluid transition.  Energy parameters are in 

terms of 1/U. 

 

 The system does seem to transition directly from a Mott insulating phase to a 

superfluid phase with no region having zero superfluid density but finite compressibilty.  

However, as Fig.  13(d) shows, it is not completely apparent that both superfluid density 

and compressibilty become non-zero at the same hopping potential value.  To see a more 

complete picture of the phase transition in phase space, phase diagrams of each spatially 

averaged order parameter are plotted as a function of chemical potential and hopping 

potential.   
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Fig. 14 Number density (a), superfluid density (b) and compressibility (c) each as a function of 

chemical potential and hopping potential in a ternary disordered system.  A white dashed line is 

superimposed to guide the eye along the phase boundaries. 

 

  

 Number density as a function of chemical potential and hopping potential shows 

that the behavior of the intermitent, partial integer filling Mott lobes increases with 

increasing disorder complexity; it appears that if the disorder division is n, then there are 

n – 1 intermitent, partial integer filling Mott lobes between the integer filling Mott lobes.  
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Again, this partial integer filling is due to the periodicity in the disorder (number of 

divisions) 9.  Since ternary disorder has three possible divisions, then the intermitent Mott 

lobes will have a third integer number density.  This can be seen in Fig. 14a where the 

lowest Mott lobe has a number density of n = 1/3.  This occurs because 1/3 of the sites in 

real space have a  number density of n = 1 (the density of the nearest lobe above with 

integer filling) and 2/3 of the sites have a number density of n = 0 (the density of the 

nearest lobe below with integer filling).  Moving one lobe upward (increasing chemical 

potential) results in an integer filling factor of 2/3, which occurs because 1/3 of the sites 

in real space have a number density of n = 0 and 2/3 have a number density of n = 1.  

This is a recurring pattern as chemical potential is increased.  For ternary disorder, with a 

periodicity of three, two one-third integer filling lobes will appear between every integer 

filling lobe.  The lower of the two lobes will have 1/3 of the sites in real space occupied 

with the number density of the nearest lobe above it with integer number density and 2/3 

of the sites occupied with a number density of the neartes lobe below it with integer 

number density; the opposite is true for the upper third integer filling factor lobe.  The 

boundaries for superfluid density and compressibility are shown to be the same and thus 

there is no apparent Bose glass region in phase space.   



 
  

3
4

 

 

 Fig. 15 Superfluid (𝜌̅) and compressibility (𝜅̅) phase diagram boundaries for ternary disorder.  
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 Fig. 15 shows that there is in fact no region in phase space for ternary disorder 

that has a zero superfluid density but finite compressibility.  As in binary disorder, 

ternary disorder does not realize a Bose glass phase in phase space.   

3.2.2. Real Space 

 Following the same methodollogy as before, one then looks to a real space 

analysis of ternary disorder in an attempt to access the Bose glass phase.  Fig. 16 shows 

the superfluid phase diagram again with the four points chosen to test in real space 

indicated by red dots.   
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Fig 16. Superfluid phase diagram for ternary disorder used to determine µ, t pairs to be tested in 

real space.  The red dots represent the four values tested: 1 in a Mott insulator region, 1 in a superfluid 

region, and 2 in a supposed Bose glass region.  Superfluid density is plotted logarithmically where any 

value less than -5 is effectively zero.   

 

 

The values of each point in phase space are given in Table 3. 

  

 

Table 3 Phase space values tested in real space for ternary disorder.  Energy parameters are in 

units of 1/U. 

Order 

Parameter  
MI BG 1 BG 2 SF 

µ/U 0.5 0.5 0.5 0.5 

t/U 0.025 0.029 0.0295 0.035 
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 Fig. 17 Real space plots of each order parameters for ternary disorder over a 10000 site lattice 

(100 x 100).   

 

  

𝑛𝑖 𝜌𝑖 𝜅𝑖 

SF 

MI 



38 
  

 The Mott insulator region in real space is the same as in binary, showing that as 

disorder is added, the definition of a Mott insulator does not change; local number 

density is an integer at every site and both superfluid density and compressibility are zero 

at every site.  The superfluid region also has the same behavior in ternary as in binary 

disorder: sites of non-integer number density and non-zero superfluid density and 

compressibility percolate (connect) across the lattice.   

The first point in the supposed Bose glass region has similar behavior to the Bose 

glass points in binary disorder.  As Fig. 17 shows, small superfluid clusters dot a mostly 

Mott insulating background.  The relative size of the superfluid clusters in ternary 

disorder are slightly smaller than that of binary disorder, but this is most likely a 

coincidence of the randomness of the disorder distribution in the calculation.  There are, 

however, no sites with zero superfluid density and finite compressibility, and thus no 

Bose glass at any single site.  In Fig. 17(i – k), hopping potential is increased 

infinitesimally to see the evolution of the Bose glass region in real space.  As with binary 

disorder, as hopping potential is increased through the Bose glass region, superfluid 

clusters increase in both quantity and size without yet percolating entirely across the 

lattice; and as with the first point in the Bose glass phase in Fig. 17(f – h), no single site 

has zero superfluid density and finite compressibility.  In real space for ternary disorder, 

the Bose glass presents as a global phenomenon over a full real space lattice; the Bose 

glass can be characterized in real space with the use of Niederle and Rieger’s superfluid 

cluster geometry.  However, when looking to any one site, one sees that the phase 

transition is directly from an insulator to a superfluid.   
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 Population density histograms (Fig. 18) are again used to confirm real space 

phenomena and phase definitions.   
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Fig. 18 Population density for ternary disorder.  The inserts in (g-l) show a zoomed in plot of 

number of sites as a function of each order parameter; each plot only shows up to 100 occupied sites to 

elucidate the tail behavior of the Bose glass region.   
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As in binary disorder, all sites in a Mott insulator for ternary disorder have integer 

number density and both zero superfluid density and compressibility.  Comparing binary 

and ternary superfluid population density plots, one sees that number density is 

distributed around an equal number of values as the number of possible disorder values.  

In other words, binary disorder number density is distributed around two values while 

ternary is distributed around three values.  As in binary disorder, the Bose glass in real 

space has a spike at values in each order parameter relating to a Mott insulator with a tail 

of values that relate to superfluid characteristics. The second Bose glass point also has a 

large spike of values at a Mott insulating value with a tail of values characteristic of a 

superfluid.  However, and similar to that of the binary case, as hopping potential is 

increased away from the Mott lobe, the superfluid tail increases and the plot becomes 

more similar to a superfluid.   

 The Bose glass in ternary disorder presents many similarities as in binary 

disorder, with the simple extension that any phenomena inferred from the periodicity 

(number of divisions) in the disorder increases with the disorder.  Although not 

mathematically rigorous, this idea simply means that if the result in binary disorder is two 

fold (number density in the Mott lobes in phase space), then in ternary disorder it 

becomes three fold (third integer number density Mott lobes as opposed to half integer in 

binary disorder).  As in binary disorder, the Bose glass presents in ternary disorder as a 

global phenomenon in real space over a full real space lattice.  The most noticable 

difference between binary and ternary disorder configurations is the distribution of 

number density values in real space and how that affects the spatially averaged quantities 

in phase space.  However, all real space phenomena as well as population density 
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characteristics in the Bose glass are similar between binary and ternary disorder.  This 

leads to the prediction that quaternary disorder will present an extension of the phase 

space phenomena with one added possibility for disorder strength, but will present mostly 

similar real space phenomena to that of binary and ternary disorder.   

3.3 Quaternary Disorder 

 To complete the study of simple disorder configurations before looking to 

uniformly distributed disorder, the periodicity of the random external disorder is 

increased again by one to quaternary disorder.  The Hamiltonian now has four possible 

forms, two positive and two negative such that: 

           ℎ+Δ =  
1

𝑈
∑ (Δ𝑖 − 𝜇)𝑛̂𝑖𝑖 +

1

2
∑ 𝑛̂𝑖(𝑛̂𝑖 − 1)𝑖 −

𝑡

𝑈
∑ 𝑎̂𝑖

†𝑎̂𝑗<𝑖,𝑗> ,                  (14) 

                         ℎ−Δ =
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𝑈
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 Fig. 19  Quaternary disorder mapped in real space over 10000 sites; Δ = ± 0.25, ± 0.08333.   

 

Using the prediction from ternary disorder, one can again predict that no  

Bose glass will be seen in phase space.  Although past theory states that a Bose glass is 

realized in truly randomly disordered systems 10, quaternary disorder does not have a 

large enough periodicity to be considered uniformly random nor predict that a Bose glass 

will be realized in phase space. 
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3.3.1. Phase Space 

 

 

 Fig. 20 Spatially averaged number density (a), supefluid density (b) and compressibility (c) as a 

function of hopping potential for quaternary disorder; chemical potential is held constant at µ = 0.5.  All 

three are plotted on (d) to show the possible ambiguity between transition points for superfluid density and 

compressibility.  The dashed line marks the insulator to superfluid transition.  Energy parameters are in 

terms of 1/U. 

 

 As in ternary and binary disorder, quaternary disorder appears to transition 

directly from insulator to superfluid all at the same hopping potential value; the transition 

occurs at t = 0.035.  Unlike ternary disorder, however, quaternary disorder shows far less 

ambiguity in the critical hopping potential value where superfulid density and 

compressibilty both become non-zero.  Again, for completeness, full phase diagrams help 

to confirm that this notion in accurate.    
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Fig. 21 Number density (a), superfluid density (b) and compressibility (c) each as a function of 

chemical potential and hopping potential in a quaternary disordered system.  Superfluid density and 

compressibiltiy are each plotted logarithmically.  A white dashed line is superimposed to guide the eye 

along the phase boundaries. 

  

Number density in phase space has the same behavior as in binary and ternary 

disorder with f – 1 intermittent, partial integer occupancy Mott lobes appearing between 

the integer occupancy lobes of a zero disorder system (f is the periodicity of the disorder).  

Thus, quaternary disorder with a periodicity of four has three intermitent Mott lobes each 
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with a quarter integer number density.  The filling factors for the quarter integer lobes is 

as follows:  Looking to the three lobes between the n = 1 and n = 2 lobes, one finds that 

the lowest of the three lobes contains, in real space, 75% of sites with n = 1 number 

density and 25% of sites with n = 2 number density resulting in a spatially averaged value 

of n = 1.5.  The middle intermittent lobe has 50% of sites with n = 1 and 50% of sites 

with n = 2 resulting in a spatially averaged number density of n = 1.5.  The upper 

intermittent lobe has 25% of sites with n = 1 and 75% of sites with n = 2 resulting in a 

spatially averaged number density of n = 1.75.  A general method for determining the 

number density of an intermittent lobe for any disorder periodicity is shown in Chapter 

6. 

 The superfluid and compressibility boundaries appear to be the same and, again, 

looking to the phase boundaries plotted together in Fig. 22, one sees that the boundaries 

are in fact the same.  As was predicted, no Bose glass presents in phase space for 

quaternary disorder. 



 
   

4
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 Fig. 22 Superfluid (𝜌̅) and compressibility (𝜅̅) phase diagram boundaries for quaternary disorder. 



48 
   

 Concluding the simple disorder configuration study of phase spaces shows that no 

Bose glass presents in phase space using mean field approximations.  Either a Mott 

insulator or a superfluid presents in phase space with a direct transition occuring at some 

critical energy value.  Although phase space may not show a region with the definition of 

a Bose glass, one may still acertain information from phase diagrams e.g. phase 

boundaries.  As has been shown, the phase boundaries allow one to determine values of 

chemical and hopping potential to study real space phenomena.  Thus, it is prudent to 

start a study of phase transitions in bosonic systems by looking to phase diagrams.  

Chapter 5 will show a method to accurately approximate phase diagrams to avoid the 

extensive computation time required to accurately calculate full, disordered phase 

diagrams.  This will then justify the claim that phase space is a qualitatively appropriate 

place to start when studying these types of phase phenomena, even though the full 

calculation will eventually be time consuming.  It is, however imperative that the full 

phase space be calculated eventually to ensure that the approximation technique has been 

properly implemented.  The approximation, ultimately, is a way to determine which 

general phase regions and points of interest are to be tested in real space.  

3.3.2. Real Space 

 The critical points chosen to study in real space are shown in Fig. 23 as red dots 

and are tabulated in Table 4. 
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 Fig. 23 Superfluid phase diagram for quaternary disorder used to determine µ, t pairs to be tested 

in real space.  The red dots represent the four values tested: 1 in a Mott insulator region, 1 in a superfluid 

region, and 2 in a supposed Bose glass region.  Superfluid density is plotted logarithmically where any 

value less than -5 is effectively zero.   

 

 

 

 Table 4 Phase space values tested in real space for quaternary disorder.  All energy parameters 

are in units of 1/U. 

Order 

Parameter  
MI BG 1 BG 2 SF 

µ/U 0.5 0.5 0.5 0.5 

t/U 0.03 0.0305 0.031 0.032 
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 Fig. 24 Real space plots of each order parameters for quaternary disorder over a 10000 site lattice 

(100 x 100).   
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The real space plots for a Mott insulator and superfluid region show the same 

behavior as in binary and ternary disorder.  Number density is an integer at every site and 

superfluid density and compressibility are both zero in the Mott insulator, while in the 

superfluid region, number density is a non-integer at every site and superfliud density and 

compressibility are both non-zero.  The Bose glass region also shows the same behavior 

as in binary and ternary disorder with islands of superfluid in a background of Mott 

insulator.  Also, as in binary and ternary disorder, as hopping potential is increased away 

from the Mott insulator region, the Bose glass “superfluid clusters” increase in size, until 

the superfluid region is reached in phase space and the superfluid clusters percolate 

(connect) completely across the real space lattice.   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

     



52 
   

 

                    

                    

                    

                    

Fig. 25 Population density for quaternary disorder.  The inserts in (g-l) show a zoomed in plot of 

number of sites as a function of each order parameter; each plot only shows up to 100 occupied sites to 

elucidate the tail behavior of the Bose glass region.   

.   
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 Population density plots confirm that the real space behavior is simliar between 

all simple disorder configurations.  The major difference is in the tail of values that make 

the Bose glass a unique phase; input parameters determine the shape and size of the tail. 

 A Mott insulator is generally the same, except with the increase in periodicity of 

the disorder changing the number density such that multiple integer values exist on the 

same real space lattice.  In other words, the spatially averaged number density over a 

large real space lattice will change from being an integer to being a partial integer; this 

arising from the periodicity of the disorder configuration.  However, in real space, a Mott 

insulator has an integer number density at every site.  Superfluid density and 

compressibility are always zero at all sites in real space for all simple disorder 

configurations. 

 A superfluid has the same behavior in all simple disorder configurations such that 

number density is a non-integer at every site.  The defining characteristic for a superfluid 

in simple disorder configurations, however is coherence and thus percolation of non-zero 

superfluid density and compressibility across a real space lattice.  It must be stated here 

that a true superfluid can only be realized in infinite systems 1, but mean field theory 

allows the testing of smaller systems.  The superfluid density and compressibility are not 

required to be non-zero at every site for the chemical potential and hopping potential pair 

value to be considered a superfluid in phase space.  To fully determine if a point in phase 

space is a superfluid, however it is required to test coherence in real space.   

 The Bose glass has both integer and non-integer values of number density 

populating a real space lattice and thus may appear like a superfluid.  However, when 
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looking to the superlfluid density and compressibilty one sees that there are the “islands” 

of superfluid clusters as predicted by Niederle and Rieger 10.  What makes the point in 

phase space a Bose glass is the fact that any site with integer number density and zero 

superfluid density also has zero compressibility.  In other words, the Bose glass is a real 

space phenomenon that presents across a real space lattice, but not at any site.  Thus, in 

the mean field approximation using simple disorder configurations, all transitions in both 

phase space and at any single site are from Mott insulator to superfluid; no Bose glass 

exists in the mean field approximation at any sites in phase or real space. 

 As the periodicity is increased in the disorder, the system will have more potential 

values of disorder randomly distributed over a finite lattice.  Thus, increasing the 

periodicity to ten creates a system with randomly distributed disorder across a 10,000 site 

lattice where the behavior is more similar to experiment.  M.P.A. Fisher et al stated that 

the Bose glass would only be truly realized in the mean field approximation using 

uniformly random disorder 1.  However, Niederle and Rieger showed that a real space 

study is necessary to realize the Bose glass in the 1-D mean field approximation 10, and 

this has been confirmed in this thesis in 2-D.  Thus, the random uniformly disordered 

system is studied to compare and contrast the results with simple disorder configurations 

and the postulates of Fisher et al.   

3.4 Uniform Disorder 

 To see a more realistic picture, the disorder configuration must be more uniformly 

random.  Thus, f = 10 is studied to see if the results agree with the initial postulates of 1 in 

that a Bose glass may only be realized in mean field theory in a uniformly random 
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disordered system, and if the Bose glass phase found in 10 can be repeated for a uniformly 

disordered system in two dimensions.   

 

 

Fig. 26 Uniform disorder map over a 10000 site lattice; ∆ has a periodicity of 10. 

 

 Ten possible disorder values are randomly distributed over a 10,000 site lattice in 

Fig. 26 and one can see that this will result in a more realistic system study; any behavior 

in real space will be truly unique to the chemical potential and hopping potential pair in 

phase space. 
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3.4.1. Phase Space 

   

 

 Fig. 27 Spatially averaged number density (a), supefluid density (b) and compressibility (c) as a 

function of hopping potential for uniform disorder; chemical potential is held constant at µ = 0.5.  All three 

are plotted on (d) to show the possible ambiguity between transition points for superfluid density and 

compressibility.  The dashed line marks the insulator to superfluid transition.  Energy parameters are in 

terms of 1/U. 

 

 Plot (d) in Fig. 27 shows that the mean field approximation does not agree among 

different studies; this uniformly disordered system has a direct insulator to superfluid 

transition.  The conclusion is that certain system parameters may be slightly different 

between different codes and coding software used to solve for energy outputs.  As the 

Bose glass is purported to be a very small region in phase space for a uniformly 

disordered system, any deviation in methodolgy may show quite different results using 

the same general approach to modeling the system.  The full phase diagram is necessary 
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to determine if there is any small compressibile region of zero superfluid density for very 

small values of hopping potential. 

 

   

 

 Fig. 28 Spatially averaged number density (a), supefluid density (b) and compressibility (c) as a 

function of hopping potential for uniform disorder; chemical potential is held constant at µ = 0.5.  All three 

are plotted on (d) to show the possible ambiguity between transition points for superfluid density and 

compressibility.  Plots (b-c) order parameters are plotted logarithmically where any value less than -5 is 

effectively zero. 
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 Number density now has a periodicity of ten, where there are nine intermitent, 

partial integer Mott integer lobes between the two lobes of spatially averaged integer 

density.  The superfluid density and compressibility phase diagrams seem to have the 

same boundaries; at least no compressible region of zero superfluid density exists.  This 

is illustrated in Fig. 29.   All inputs being the same, it appears that a real space study is in 

fact required to determine the phase space region of Bose glass using the mean field 

approximation.   

  



 
   

5
9

 

 

 Fig. 29 Superfluid (𝜌 ̅) and compressibility (𝜅 ̅) phase diagram boundaries for uniform disorder.
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3.4.2 Real Space 

 The phase space points tested in real space are shown as red dots on Fig. 30 and 

are tabulated in Table 5. 

 

 Fig. 30 Superfluid phase diagram for uniform disorder used to determine µ, t pairs to be tested in 

real space.  The red dots represent the four values tested: 1 in a Mott insulator region, 1 in a superfluid 

region, and 2 in a supposed Bose glass region.  Superfluid density is plotted logarithmically where any 

value less than -5 is effectively zero.   

 

 

Table 5 Phase space values tested in real space for quaternary disorder.  All energy parameters 

are in units of 1/U.   

Order 

Parameter  
MI BG 1 BG 2 SF 

µ/U 1 1 1 1 

t/U 0 0.005 0.0105 0.02 
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 Fig. 31 Real space plots of each order parameters for ternary disorder over a 10000 site lattice 

(100 x 100).   
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 In a uniformly disordered system, the Mott insulator has many values of number 

density across a real space lattice; it is crucial to look to the full numerical output and 

ensure all sites are integer to define the Mott insulator.  Superfluid density and 

compressibility are zero at all sites in a Mott insulator.   

 Not all sites must be non-integer in a superfluid, as coherence across a system 

does not necessarily mean all sites have percolated.  Thus, in a superfluid, the spatially 

averaged number density is a non-integer.  The same is true of superfluid density and 

compressibility, in that not all sites have to be non-zero for the phase space point to be 

considered a superfluid.  However, the sites that do have non-zero superfluid density also 

have non-zero superfluid density. 

 In the Bose glass, number density is similar to the superfluid region in that some 

sites have integer number density and some sites have non-integer number density.  The 

difference is that regions of non-zero superfluid density and compressibility present as 

islands in a background of zero superfluid density and compressibility for a Bose glass; 

percolation has not occurred thus these islands are separated from one another and the 

region is not yet a superfluid.  The Bose glass is in fact a global phenomenon over a real 

space lattice presented as islands of  superfluid in a background of Mott insulator that are 

completely separated (no percolation).   
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 Fig. 32 Population density for uniform disorder.  The inserts in (g-l) show a zoomed in plot of 

number of sites as a function of each order parameter; each plot only shows up to 100 occupied sites to 

elucidate the tail behavior of the Bose glass region. 
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 Finally, the population density plots (Fig. 32) show similar behavior between a 

uniformly disordered system and simple disorder configurations.   

 In the Mott insulator region, all sites in real space contain an integer number 

density (does not have to be the same integer, but every site has an integer number 

density) and both zero compressibility and superfluid density.  The Mott insulator 

maintains the same definition in real space across all disorder configurations.  However, 

in phase space, number density can be a partial integer based on the periodicity of the 

disorder.  Thus it is important to look to real space and population density plots of a point 

in a Mott insulator in phase space to ensure all sites contain an integer number density 

and both zero superfluid density and compressibility.   

 In the superfluid region, sites may contain either integer or non-integer number 

density.  However, all sites contain non-zero superfluid density and compressibility.  The 

superfluid region maintains the same definition in real and phase space across all disorder 

configurations.  The major difference between phase and real space is that the spatially 

averaged number density in phase space is always a non-integer.  As with the Mott 

insulator it is important to look to real space; for a slightly different reason than the Mott 

region, however.  Real space allows one to differentiate between the Bose glass and 

superfluid region by determining if the superfluid clusters have connected (percolated), 

thus indicating a superfluid region.   

 The distinct difference in uniform disorder lies in the Bose glass.  This region, for 

a very small hopping potential has behavior much more like a superfluid; little to no tail 

exists for an order parameter.  In simple disorder configurations, the Bose glass is a 
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region with a population density spike at a value relating to a Mott insulator (integer 

number density and both zero superfluid density and compressibility) and tail of values 

relating to a superfluid (non-zero superfluid density and compressibilty).  However, with 

uniform disorder, there is no spike at an integer number density or zero superfluid density 

or compressibility; the values are more spread out like a superfluid.   

 A Bose glass was indeed found for very small hopping potential in a uniformly 

disordered system as predicted by Fisher et al 1, but was not found in phase space as 

predicted by Niederle and Rieger 10.   
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CHAPTER 4 

 

4.  ORDER PARAMETER RELATIONSHIPS 

4.1 Number Density and Compressibility 

 After a thorough comparison of order parameters in disordered systems to those 

of the clean system, it was discovered that pairs of compressibility and number density in 

the disordered system were very similar to those in a clean system.  A full phase space 

study was done on a clean system over a range of chemical and hopping potential values 

and this was compared to a single chemical potential and hopping potential pair in a 

uniformly disordered system.  As there is only one value of each order parameter for a 

given chemical potential and hopping potential pair in a clean system, it was required that 

many chemical potential and hopping potential pairs in a clean system be compared to 

one pair in a disordered system.  Fig. 33 shows a range of chemical potential and hopping 

potential pairs from a large phase space study, and one can see that not all pair values 

exist.  This motivated the comparison to a disordered system. 
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Fig. 33 Compressibility and number density for many different µ,t pairs in phase space for a clean system.  Color here represents the 

quantity of sites with the given compressibility and number density values.   
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Only a few certain pair values of compressibility and number density exist at 

a large number of sites in the clean system, so this region is compared to the 

same range of order parameter values in Fig. 34. 

    
 Fig. 34 Density maps of lattice sites that correspond with a certain number density and 

compressibility value. (a) is over a single disordered lattice with a system chemical potential of 𝜇 = 1.0 

and 𝑡 = 0.0255. (b) is over a large phase space of many chemical potential and hopping potential values in 

a clean system ranging over 𝜇 = [0,2] and 𝑡 = [0,0.045].  All energy parameters are in units of 1/U. 

 

 Looking at Fig. 34, one can see that the pair values of compressibility and number 

density occupying a large number of sites is remarkably similar in both the clean and 

disordered system.  This leads to two conclusions: (1) phase behavior and phase 

transitions are a local phenomenon and (2) the system may be looked at as a number of 

sublattices equal to the periodicity of the disorder, where a certain number density value 

relates to only a given compressibility.  The second conclusion is what led to the 

hypothesis that the superfluid clusters of Niederle and Rieger 10 are actually sublattices of 

only Mott insulator or only superfluid; no mixture of states exists on any sublattice.  This 

comes from the extensive study of simple and uniformly random disordered systems and 

there never being any single site with the definition of a Bose glass.  Consequently, these 
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two conclusions also led to the technique described in chapter 5, whereby the energy 

inputs required to describe a disordered system are used to “shift” and spatially average 

values in phase space of a clean system which results in phase diagrams remarkably 

similar to fully calculated disordered phase diagrams.   
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CHAPTER 5 

 

5.  PHASE DIAGRAM APPROXIMATION TECHNIQUE 

           The conclusion of phase transitions being a local phenomenon allows one to see 

that phase diagrams may be approximated.  The approximation technique uses the inputs 

from the disorder periodicity being studied to shift and spatially average values in a clean 

system.  Since the phase diagram is the most important tool in determining energy inputs 

to test in real space, being able to accurately approximate a disordered phase diagram 

alleviates the need to fully calculate disordered phase diagrams until after the real space 

study.  Full calculations must be done, though, to ensure the approximation technique is 

accurate enough for the individual’s need. 

5.1. Method 

          As the clean (zero disorder) system is relatively easy to calculate (pencil and 

paper), a method that uses the clean phase diagram will help to reduce computation time 

significantly.  Thus, the simple clean system phase diagram parameters are used as a base 

to shift chemical potential values up and down by the disorder strength and periodicty of 

the system being studied.  After this “shift,” order parameter values are spatially averaged 

over the respective real space lattice and a new phase diagram is plotted.  The results for 

three different disorder configurations are shown in 5.2. 
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5.2. Plots 

 The techinque was created after full phase diagrams had been studied, so the 

original calculations were used to validate the accuracy of the approximation technique.  

As Fig. 34 shows, the results are remarkably simliar to the full calculations.  However, as 

stated before, the full calculation must eventually be done for comparisson.  Fig. 34 

shows phase diagrams for f = ½ (binary), 1/5 and 1/41.   
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 Fig. 35 Phase diagram comparison for approximation technique.  The first column is the 

approximated phase diagram and the second is the fully calculated phase diagram.  The rows are different 

disorder configurations such that row one f = ½, row two f = 1/5 and row three f = 1/41. 
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 The most astonishing realization after studying the results of the approximation 

technique are that the accuracy appears to increase with the increase in disorder 

complexity.  Thus, as theory stated that a fully uniform disorder configuraion was 

required to realize a Bose glass, this technique is powerful in the mean field 

approximation and allows one to “compute” (approximate) a fully disorded phase 

diagram in a fraction of the time using Matlab programing.  Periodidicity of f = 1/10 

takes roughly four days to compute having broken the phase space down into subphase 

spaces and computing each subphase space on a separate computer.  It allows one to look 

to phase space for general phase behavior, and determine points of interest to test in real 

space.  As this is the general methodolgy for studying phase transitons in bosonic system, 

it is highly appropriate to use the approximation technique early in a study to look to real 

space phenomena in the mean field approximation.   
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CHAPTER 6 

 

6. CONCLUSION 

 

 The Bose glass phase has been shown to be a global phenomenon in real space 

using mean field approximations.   

 

 The postulates of M.P.A. Fisher et al 1 about the Bose glass in the one 

dimensional mean field theory are confirmed in two dimensions; no Bose glass presents 

in phase space using mean field approximations.  Although their conclusions were made 

for a uniformly disordered system, it has been shown that the same conclusions hold true 

in simple disorder configurations.   

 The superfluid clusters of Niederle and Rieger’s 10 work are confirmed in real 

space in simple disorder configurations.  However, the claim that a Bose glass may be 

found in phase space for a uniformly disordered system is not able to be corroborated; it 

is shown that the system transitions directly from an insulator to a superfluid in phase 

space.  As stated by M.P.A. Fisher et al, this is likely due to the overestimate of 

coherence in the system in using mean field approximations. 1  Thus, any small deviation 

between the two individual approaches to mean field theory could result in different 

results using the same general method.    

 Phase space behavior in simple disorder configurations, first studied at length in 

one dimension by Buonsante 9 are confirmed in two dimensions.  The increase in 

periodicity of simple disorder configurations creates a quantifiable change in phase space 



 

75 
 

in regards to the order parameter number density.  If the periodicity of disorder is f, then f 

– 1 emergent Mott lobes form in phase space between the clean system’s, single valued 

integer filling lobes.  Number density in phase space, thus will be a partial integer with 

the same periodicity as the disorder.  The value in each lobe in phase space will depend 

on where it is positioned in regards to the single valued integer filling lobes.  If the 

emergent lobe is immediately next to the lower full integer lobe, in real space, the 

majority of sites will be populated with the same number density as the lower full integer 

lobe.  One must determine the percent of sites occupied by the lower full integer lobe to 

determine how the percentage of sites changes for each lobe as chemical potential is 

increased.  This is a straightforward task and the result allows one to determine how each 

emergent lobe is populated in real space.   

 Although the Bose glass presents as a phenomenon in real space, it must be 

emphasized that the phase transition at any one site in real space is still directly from 

insulator to superfluid; no new phase is found at any one site.  Thus, the Bose glass is a 

phase characterized by superfluid like behavior in phase space and superfluid cluster 

behavior over a full real space.  To realize a Bose glass in the mean field approximation it 

is necessary to look to both phase space and real space as well as the full real space data 

(population density plots) to see the robust nature of the emergent phase.  Though the 

Bose glass may be elusive in phase space, this space is still of importance to determine 

the values to be tested over a real space lattice where the Bose glass may be fully studied.  

 Therefore, to fully study the Bose glass phase, more advanced and powerful 

calculation methods must be studied.  The mean field approximation is computationally 

efficient and allows for qualitatively appropriate studies of the Bose glass; however, the 
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limitations of mean field approximations are apparent.  However, mean field theory does 

give a quantitatively accurate measure of real space phenomena and thus may be used to 

understand the important qualities discussed within.   
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