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Analysis for a Molten Carbonate Fuel Cell ∗

C. J. van Duijn and Joseph D. Fehribach

Abstract

In this paper we analyze a planar model for a molten carbonate elec-
trode of a fuel cell. The model consists of two coupled second-order ordi-
nary differential equations, one for the concentration of the reactant gas
and one for the potential. Restricting ourselves to the case of a posi-
tive reaction order in the Butler-Volmer equation, we consider existence,
uniqueness, various monotonicity properties, and an explicit approximate
solution for the model. We also present an iteration scheme to obtain
solutions, and we conclude with a few numerical examples.

1 Introduction.

Fuel Cells convert chemical energy in gases such as H2, CH4 and O2 into elec-
trical energy through electrochemical reactions. These cells tend to be highly
efficient and are thus attractive ecological alternatives for generating electrical
power. The electrodes in a typical fuel cell (the anode and the cathode) have a
porous structure to obtain a large reactive area per unit of geometric area and
hence a high current density. In this paper we consider a simple, dual-porosity,
agglomerate-type model for the porous anode and cathode of a molten carbon-
ate fuel cell. The model, first introduced by Giner & Hunter (1969) and later
extended by Yuh & Selman (1984), is based on a phenomenological treatment of
mass transport, electrode kinetics and ionic conduction, combined with struc-
tural assumptions. The aim of the model is to predict and optimize electrode
performance in a small differential-conversion cell.

The electrode structure is represented schematically in Figure 2. It is as-
sumed to consist of an array of porous slabs with a microporous structure,
separated by void regions (macro pores). In each slab, catalyst particles form
agglomerates (metal matrices) which, under working conditions, are saturated
with electrolyte. Throughout this paper, each slab is assumed to be a homo-
geneously distributed continuum of catalyst particles and electrolyte. When
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current is drawn from the electrodes, reactant gas diffuses horizontally across
the void regions, arrives at the vertical surface of a slab, and dissolves in the
electrolyte contained in the agglomerate. After diffusing a certain distance, the
gas reacts electrochemically at available sites on the catalyst particles. These
electrochemical reactions create an ionic current which flows through the elec-
trolyte in the vertical z-direction of the slab, and an electron current which flows
through the electrode material in the opposite direction.

Yuh & Selman consider a cylindrical geometry with micropore cylinders
instead of slabs. This leads to radial diffusion through the pores. The corre-
sponding analysis is similar but much less explicit in that the ordinary differ-
ential equations that arise cannot be directly integrated. We shall consider this
case in a future study. The specific system of equations to be considered in this
work are as follows:

(P )



(a) uxx = αupf(v(z)) 0 < x < 1, 0 < z < 1,
(b) ux(0; v(z)) = 0 0 < z < 1,
(c) u(1; v(z)) = 1 0 < z < 1,
(d) vzz = βux(1; v(z)) 0 < z < 1,
(e) v(1) = V > 0
(f) vz(0) = 0.

(1.1)

For compact notation, the variables x and z are used as subscripts to denote
differentiation. The derivation of this system from physical assumptions is given
in Section 2. As discussed in that section, u is a dimensionless concentration, v,
a dimensionless potential, and V , a reference potential. The exponent p is the
reaction order. In general it can be positive, negative or zero. In this paper,
however, we restrict ourselves to the case where p > 0 since this case is of most
practical importance for molten carbonate fuel cells. The function f(·) in (1.1a)
is defined by

f(v) := eαav − e−αcv (1.2)

where αa and αc are dimensionless constants (discussed below). Note that f is
a smooth, strictly increasing function satisfying f(0) = 0. Finally α and β are
dimensionless, lumped parameters (both positive).

In (1.1a-c), the variable v(z) appears only as a parameter. Therefore u(·; v(z))
for any z ∈ [0, 1] will have the smoothness of solutions of the auxiliary boundary
value problem

(P1)

 (a) w′′ = λwp (w ≥ 0) 0 < x < 1,
(b) w′(0) = 0,
(c) w(1) = 1.

(1.3)

Comparing (1.1a) and (1.3a), one observes that λ > (<)0 corresponds to points
z ∈ [0, 1] where v(z) > (<)0. If Problem (P1) has a solution w, then

λ > (<)0⇐⇒ w′(1) > (<)0. (1.4)
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Figure 1: Schematic contour plot of the the solution (u, v). Note that v (dashed
lines) is a function only of z, while u (solid lines) depends on both x and z.

Let (u, v) be a solution of Problem (P ). Then using observation (1.4), one
derives that

v > (<)0⇐⇒ vzz > (<)0. (1.5)

From this second observation and the boundary condition (1.1e), if follows that
there cannot be a point z0 ∈ [0, 1] where v(z0) < 0 and vz(z0) = 0, which implies
that

v(z) ≥ 0 and vz(z) ≥ 0 ∀z ∈ [0, 1]. (1.6)

Later (in Section 5) a stronger result is proven, viz.

v(z) > 0 ∀z ∈ [0, 1] and vz(z) > 0 ∀z ∈ (0, 1]. (1.7)

These results are displayed in Figure 1 in a typical schematic contour plot of
(u, v) on [0, 1]× [0, 1].

In Section 3 the solutions of Problem (P1) are described for all p > 0.
Because of (1.6), only the case λ ≥ 0 will be considered. We show for p ≥ 1 and
λ ≥ 0, or for 0 < p < 1 and 0 ≤ λ < λ(p) := 2(p+ 1)/(1− p)2, that all solutions
are positive. For 0 < p < 1 and λ ≥ λ(p), the solutions become zero in part
of the domain, i.e., so-called deadcore solutions arise. Such a deadcore is also
displayed in Figure 1. There the upper boundary potential, V , is sufficiently
large so that u ≡ 0 in the region near (0, 1). For p < 0, Problem (P1) has
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been studied by Levine (1989) who presents a general survey of results for this
parameter range. He shows that a bifurcation occurs for each p < 0 and that
for −1 < p < 0, non-classical deadcore solutions exist for λ ≥ λ(p).

In Section 4 several monotonicity results are proven, and then these re-
sults are used to prove uniqueness for Problem (P ). In addition this section
contains an explicit approximation for the potential v which is valid when the
concentration u has a deadcore. In Section 5 the existence of smooth solutions
is established for all parameter values using a Schauder fixed-point argument.
Finally Section 6 presents an alternative existence proof using a monotone it-
eration scheme and gives some computational results. As is the case for the
approximation, however, this iteration scheme does not work for all parameter
values.

2 Physical Derivation.

In this section, we discuss the physical basis of the fuel cell model under study.
To set up the mathematical model, the following assumptions are made:

1. The electrode consists of a number of porous slabs containing catalyst par-
ticles, and the agglomerate (metal matrix) is flooded with electrolyte. As
shown in Figure 2, each slab has constant thickness 2L and height H with
L/H � 1. Each slab is assumed uniform in the direction perpendicular
to Figure 2 making a two-dimensional description possible. (To simplify
notation, the perpendicular width of the slab is taken to be unity.)

2. The electrolyte and the catalyst in the agglomerate slabs are homoge-
neously mixed and form a quasicontinuum.

3. Only one reactant gas (dissolved oxygen) is present. In this respect the
present work follows Giner & Hunter. Yuh & Selman extended the model
to allow for more reacting species.

4. The Butler-Volmer equation as expressed in (2.1) below is a suitable repre-
sentation of the electrode kinetics. In particular, the local current density
is directly proportional to a power p (positive in this paper) of the local
reactant concentration. The transfer coefficients αa and αc are constant.

5. The current flows in the slab only in the z-direction and is uniformly
distributed over each cross-section. Hence the potential gradient with
respect to x can be disregarded. We also disregard the concentration
gradient in the z-direction for the transport equation.

6. The system is isothermal, isobaric and at steady state.

7. All physical parameters here are constant.
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Figure 2: Schematic representation of the model.

Let i = i(x, z) be the local current density, i.e., the current per unit area into
the slab at the point (x, z). This current density is given by the Butler-Volmer
equation:

i = i0

(
C(x, z)

C0

)p
[exp(αaη(z)F/RT )− exp(−αcη(z)F/RT )] (2.1)

where the various quantities are

C(x, z) : concentration of dissolved oxygen,
C0 : reference concentration,
p : reaction order,
αi : transfer coefficients for i = a, c (both positive and both of order

unity),
F : Faraday constant (9.65× 104 Coulombs/mole),
R : gas constant (8.32 joules/mole K),
T : temperature,

η(z) : overpotential as a function of height z.

Steady state species balance incorporating diffusion and reaction is given by

D
∂2C

∂x2
=
sÃi

nF
, −L < x < L, 0 < z < H (2.2)
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where

D : effective diffusivity of the reactant gas in the electrolyte affected
by the microporosity and the tortuosity,

Ã : specific surface area,
s : stoichiometric constant,
n : number of electrons involved in the electrode reactions.

One more equation is needed to determine the overpotential. It comes from the
current balance equation. By Ohm’s law,

dη

dz
= −

j(z)

2Lκ
(2.3)

where
j(z) : total ionic current at height z,
κ : effective electrolytic conductivity.

Current balance then yields

−
dj

dz
(z) =

∫ +L

−L
Ãi(x, z)dx (2.4)

and consequently

d2η

dz2
=

Ã

2Lκ

∫ +L

−L
i(x, z)dx, 0 < z < H. (2.5)

Now combining (2.2) and (2.5), and noting that the problem is symmetric about
x = 0, one obtains

d2η

dz2
=
DnF

sLκ

∂C

∂x
(L, z), 0 < z < H. (2.6)

The problem at hand then is to solve the coupled set of equations (2.1), (2.2)
and (2.6) subject to the boundary conditions

C(±L, z) = C0, 0 < z < H, (2.7)

and
(a) η(H) = ηH > 0,

(b) dη
dz (0) = 0

(2.8)

where ηH is the prescribed potential (or polarization).
Next we scale the problem by defining dimensionless variables and parame-

ters: Let

u ≡
C

C0
, x∗ ≡

x

L
, z∗ ≡

z

H
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and

v ≡
Fη

RT
, V ≡

FηH

RT
.

Also define the lumped parameters

α ≡
L2i0sÃ

DC0nF
, β ≡

DnF 2C0H
2

RTsL2κ
. (2.9)

Writing (2.1), (2.2), (2.6)-(2.8) in terms of these dimensionless variables and
parameters and dropping the asterisks leads to the compact system of equations
(1.1). Some typical values for the constants in (2.9) are given by Giner and
Hunter. For H = 10−2 cm, L = 10−4 cm and io = 10−8A/cm2, those values
imply that α ' 10−2 and β ' 10−1. For the scaled potential, V ' 10 when
ηH = 300 mV.

3 Preliminaries: the problem auxiliary (P1).

In this section we consider solutions of Problem (P1) for p > 0 and λ ≥ 0. The
case λ = 0 implies the trivial solution w(x) ≡ 1 for 0 ≤ x ≤ 1. We therefore
concentrate on solutions for which λ > 0. From the differential equation and
the left boundary condition (1.3a,b), it follows that w is smooth (at least C2)
and satisfies

w′′ > 0 and w′ > 0 on {x ∈ (0, 1) : w(x) > 0}. (3.1)

There are two types of solutions of interest: positive solutions and deadcore
solutions where w = 0 in part of the domain [see for example Bandle, Sperb
& Stakgold (1984)]. In view of (3.1), the corresponding deadcore, i.e. the set
where w = 0, must be an interval of the form [0, x0] with x0 ∈ [0, 1).

Assume now that w is any solution. Multiplying (1.3a) by w′ and integrating
yields

1

2
(w′)2 =

λ

p+ 1

(
wp+1 − wp+1

0

)
(3.2)

with w0 = w(0) > 0 for positive solutions and w0 = 0 for deadcore solutions.
Rearranging and integrating once more leads to the expression∫ 1

w(x)

ds

{sp+1 − wp+1
0 }1/2

=

√
2λ

p+ 1
(1− x) for 0 ≤ x ≤ 1. (3.3)

Explicitly evaluating this integral with w0 = 0 yields the following form for the
deadcore solutions provided that 0 < p < 1 and λ ≥ λ(p) := 2(p+ 1)/(1− p)2:

w(x) =

 0 0 ≤ x ≤ x0(
1− 1−p

2

√
2λ
p+1 (1− x)

) 2
1−p

x0 < x ≤ 1
(3.4)
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where

x0 = 1−
2

1− p

√
p+ 1

2λ
.

To find the positive solutions, consider (3.3) at x = 0. Define

Fp(w0) :=

∫ 1

w0

ds

{sp+1 − wp+1
0 }1/2

=

√
2λ

p+ 1
. (3.5)

Whenever one can solve this equation for a positive w0, then using that value
of w0, expression (3.3) defines a solution of Problem (P1). Thus we need to
investigate the function Fp(w0) for 0 < w0 ≤ 1. For this analysis, it is convenient
to write Fp(w0) as

Fp(w0) = w
1−p

2
0

∫ w−1
0

1

ds

{sp+1 − 1}1/2
. (3.6)

First we consider the behavior as w0 ↓ 0. If p > 1 the integral converges but

w
1−p

2
0 →∞, and if p = 1 the integral diverges. Hence

lim
w0↓0

Fp(w0) = +∞ ∀p ≥ 1. (3.7)

If 0 < p < 1 the integral diverges, but now w
1−p

2
0 → 0. Using the l’Hôpital rule,

one finds

lim
w0↓0

Fp(w0) = lim
w0↓0

1

w
p−1

2 0
0

∫ w−1
0

1

ds

{sp+1 − 1}1/2

=
2

1− p
lim
w0↓0

1

{1− wp+1
0 }1/2

=
2

1− p
. (3.8)

Turning our attention to other facts regarding Fp, from (3.6) we see that
Fp ∈ C∞((0, 1)), and differentiation yields

F ′p(w0) =
1

w0
{

1− p

2
Fp(w0)−

1

{1− wp+1
0 }1/2

}, 0 < w0 < 1. (3.9)

Using
lim
w0↑1

Fp(w0) = 0 ∀p > 0 (3.10)

in (3.9), one arrives at

lim
w0↑1

F ′p(w0) = −∞ ∀p > 0. (3.11)

Moreover for p ≥ 1, (3.9) implies

F ′p(w0) < −
1

w0{1− w
p+1
0 }1/2

< 0, 0 < w0 < 1. (3.12)
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Combining (3.7), (3.10) and (3.12), we find that for every p ≥ 1 and for every
λ > 0, equation (3.5) has a unique positive solution w0(λ; p). Setting w0 =
w0(λ; p) in expression (3.3) implies that Problem (P1) has a unique positive
solution for p and λ in these parameter ranges. Also the smoothness of Fp and
(3.12) imply that w0(·; p) ∈ C∞((0,∞)) ∩ C([0,∞)).

Finally, we finish the case 0 < p < 1 by constructing an upper bound for Fp
and using this bound to show again that F ′p < 0. Substituting the estimate

up+1 − wp+1
0 > (u− w0)p+1 for 0 < w0 < u ≤ 1

into (3.5) gives the desired upperbound:

Fp(w0) <

∫ 1

w0

ds

{s− w0}
p+1

2

=
2

1− p
(1− w0)

1−p
2 . (3.13)

Hence from (3.9),

F ′p(w0) <
1

w0

{
(1− w0)

1−p
2 −

1

{1− wp+1
0 }1/2

}
< 0 (3.14)

for 0 < w0 < 1, and so Fp is also strictly decreasing when 0 < p < 1. To
illustrate this result, Figure 3 shows the function F1/2(w0) for 0 ≤ w0 ≤ 1.
It was constructed using a numerical integration routine from the computer
algebra package Mathematica. Combined with (3.8) and (3.10), it follows from
(3.14) that for every 0 < p < 1 and 0 < λ < λ(p), equation (3.5) has again
a unique positive solution w0(λ; p), leading to a unique positive solution of
Problem (P1) (again after setting w0 = w0(λ; p) in expression (3.3)). And
again the smoothness of Fp and (3.14) imply that w0(·; p) ∈ C∞((0, λ(p))) ∩
C([0, λ(p)]).

Lemma 3.1 summarizes all of the results obtained so far in this section:

Lemma 3.1 For every p > 0 and λ > 0, Problem (P1) has a unique solution
w(x;λ, p) which is strictly increasing and convex at points where w > 0. The
solution is strictly positive (w(0;λ, p) > 0) if p ≥ 1, or if 0 < p < 1 and
0 < λ < λ(p). Deadcore solutions with w(0;λ, p) = 0 arise in the case 0 < p < 1
and λ ≥ λ(p). The later solutions can be written explicitly and are given by
(3.4).

Because the derivative of u with respect to x, at x = 1, is used in the right
hand side of equation (1.1d), it is necessary to investigate for every p > 0 the
function Φp : [0,∞)→ [0,∞) defined through Problem (P1) by

Φp(λ) := w′(1;λ, p), λ ≥ 0. (3.15)
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Figure 3: Numerical evaluation of the function F1/2(w0), 0 ≤ w0 ≤ 1.

Proposition 3.2 For every p > 0,

(i) Φp is strictly increasing on [0,∞);

(ii) Φp(λ) ≤
√

2λ
p+1 for all λ ≥ 0 and lim

λ→∞

1√
λ

Φp(λ) =
√

2
p+1 . In particular

Φp(λ) =
√

2λ
p+1 for 0 < p < 1 and λ ≥ λ(p);

(iii) Φp ∈ C1([0,∞)).

Proof. Using expression (3.2), one can write

Φp(λ) =

√
2λ

p+ 1
{1− wp+1

0 (λ; p)}1/2. (3.16)

The properties of the function Fp discussed above imply that w0(0; p) = 1 for
all p > 0 and

w0(·; p) is strictly decreas-
ing on

{
[0,∞) with w0(∞; p) = 0 if p ≥ 1.
[0, λ(p)] with w0(λ(p), p) = 0 if 0 < p < 1.

Moreover, w0(λ; p) = w(0;λ, p) = 0 for 0 < p < 1 and λ ≥ λ(p). These
observations, applied to w0(λ; p) in (3.16), prove (i) and (ii). To prove (iii), we
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first note that the smoothness properties of w0(λ; p) imply

Φp ∈ C([0,∞)) ∩ C∞((0,∞)) for p ≥ 1

and
Φp ∈ C([0,∞)) ∩ C∞((0,∞)\{λ(p)}) for 0 < p < 1.

Thus it remains to verify differentiability at 0+ and at λ(p). To this end, we
write (3.5) as

{Fp(w0(λ; p))}2 =
2λ

p+ 1
, with 0 < w0(λ; p) < 1.

Differentiation with respect to λ gives

Fp(w0)F ′p(w0)
dw0(λ; p)

dλ
=

1

p+ 1
. (3.17)

From (3.9) we obtain

Fp(w0)F ′p(w0) =
1− p

2w0
F 2
p (w0)−

Fp(w0)

w0{1− w
p+1
0 }1/2

.

But using l’Hôpital and again (3.9) yields

lim
w0↑1

Fp(w0)

{1− wp+1
0 }1/2

= lim
w0↑1

−2F ′p(w0){1− wp+1
0 }1/2

(p+ 1)wp0
=

2

1 + p
.

Hence

lim
w0↑1

Fp(w0)F ′p(w0) = −
2

1 + p
,

and thus

lim
λ↓0

dw0(λ; p)

dλ
=
dw0(0+; p)

dλ
= −

1

2
.

This implies

lim
λ↓0

Φ′p(λ) = lim
λ↓0

[
1√

2(p+1)

{
1−wp+1

0 (λ;p)

λ

}1/2

−√
p+1

2

{
λ

1−wp+1
0 (λ;p)

}1/2

wp0(λ; p)dw0(λ;p)
dλ

]
= 1 (= Φ′p(0

+)).

(3.18)

To prove that Φp is differentiable at λ = λ(p) (for 0 < p < 1), we use again
(3.9) which we now write as

F ′p(w0) =
1− p

2

{
Fp(w0)− Fp(0)

w0

}
+

1

w0

{
1−

1

{1− wp+1
0 }1/2

}
. (3.19)
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From this expression, it follows that either lim
w0↓0

F ′p(w0) = 0 or that this limit

does not exist. Differentiating (3.9) yields

w0F
′′
p (w0) =

{
1− p

2
− 1

}
F ′p(w0)−

p+ 1

2
wp0

{
1− wp+1

0

}−3/2

. (3.20)

From (3.14)

F ′p(w0) <
1

w0

{
1−

1− p

2
w0 − 1

}
= −

1− p

2
.

Substitution into (3.20) yields

w0F
′′
p (w0) >

(
1 + p

2

)(
1− p

2

)
−
p+ 1

2
wp0

{
1− wp+1

0

}−3/2

> 0

with w0 ∈ (0, δ) for some δ > 0. Thus

F ′p(w0) decreases monotonically as w0 ↓ 0.

Then in view of (3.19), the only possibility is that

lim
w0↓0

F ′p(w0) = −∞ for 0 < p < 1. (3.21)

Combining (3.17), (3.21) and (3.8) yields

lim
λ↑λ(p)

dw0(λ; p)

dλ
= 0.

which implies, from (3.16), the desired differentiability of Φp at λ(p). 2

4 Uniqueness, monotonicity and an approximate
solution.

Assume for some
v ∈ C2([0, 1])

and
u(·; v(z)) ∈ C2([0, 1]) for all 0 ≤ z ≤ 1

that (u, v) is a solution of Problem (P ). Here we demonstrate that such a solu-
tion is unique and that it satisfies certain monotonicity properties. In addition
for the deadcore case where u can be written explicitly, we construct an explicit
approximation for v. The crucial property used in the monotonicity proofs is
the monotonicity of the function Φp (see Proposition 3.2 (i)). The basic tool is
the following comparison lemma.



EJDE–1993/06 C. J. van Duijn and J. D. Fehribach 13

Lemma 4.1 For i = 1, 2, let wi ∈ C2([0, 1]) satisfy{
w′′i = gi(wi) 0 < z < 1,
w′i(0) = 0, wi(1) = 1,

where the functions gi are nondecreasing and g1 ≥ g2 on IR. Then w1 ≤ w2 on
[0, 1].

Proof. Subtract the two equations and multiply the difference by (w1−w2)+ =
max{(w1 − w2),0}. Integrating the result by parts gives∫

{w1>w2}

[
{(w1 − w2)′}2 + {g1(w1)−

g1(w2)}(w1 − w2) + {g1(w2)− g2(w2)}(w1 − w2)

]
dz = 0.

Since all three terms are nonnegative on {w1 > w2}, we must have

{w1 > w2} = ∅ or w1 ≤ w2 on [0, 1].

2

To use this lemma, we define (see also (3.15))

Ψ(v) := βΦp(αf(v)) (v ≥ 0) (4.1)

and write (1.1 d− f) as

(P2)

 v′′ = Ψ(v) 0 < z < 1,
v′(0) = 0,
v(1) = V.

Problem (P2) is in fact equivalent to Problem (P), and we can prove

Theorem 4.2 Problem (P ) has at most one solution (u, v).

Proof. Suppose on the contrary that there are two pairs (u1, v1) and (u2, v2)
that satisfy Problem (P ). Since

uix(1; vi(z)) = Ψ(vi(z)) for 0 ≤ z ≤ 1,

we note that both v1 and v2 are solutions of Problem (P2). Applying Lemma
4.1 gives directly v1 = v2(=: v) on [0, 1] and consequently using Lemma 3.1,
u1(·; v(z)) = u2(·; v(z)) on [0, 1] for every z ∈ [0, 1]. 2

Next we consider the monotone dependence of the solutions with respect to
the parameters α, β, p and V from in Problem (P ).
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Theorem 4.3 For i = 1, 2, let (ui, vi) denote the solution of Problem (P )
corresponding to the parameter set {αi, βi, pi, Vi}. In each of the following
statements we vary only one parameter; the remaining three are fixed. Then we
have

(i) 0 < α1 < α2 <∞ implies v1 ≥ v2 on [0, 1];

(ii) 0 < β1 < β2 < ∞ implies v1 ≥ v2 on [0, 1] and u1(·; v1(z)) ≤ u2(·; v2(z))
on [0, 1] for each 0 ≤ z ≤ 1;

(iii) 0 < p1 < p2 <∞ implies v1 ≤ v2 on [0, 1];

(iv) 0 < V1 < V2 < ∞ implies v1 < v2 on [0, 1] and u1(·; v1(z)) ≥ u2(·; v2(z))
on [0, 1] for each 0 ≤ z ≤ 1.

Proof.

(i) Let
Ψi(v) := βΦp(αif(v)) for v ≥ 0 and i = 1, 2.

The monotonicity of Φp and f(v) ≥ 0 imply Ψ1(v) ≤ Ψ2(v) for all v ≥ 0.
Since both v1 and v2 satisfy Problem (P2), with in the right hand side Ψ1

and Ψ2 respectively, we obtain v1 ≥ v2 on [0, 1] after applying Lemma 4.1.
In this case we have no information about sign (α1f(v1(z))−α2f(v2(z))),
except near z = 0. Therefore no statement can be given about sign (u1 −
u2) which holds for all z ∈ [0, 1].

(ii) Let
Ψi(v) := βiΦp(αf(v)) for v ≥ 0 and i = 1, 2.

As under (i) one shows that v1 ≥ v2 on [0, 1]. Here we know that
αf(v1(z)) ≥ αf(v2(z)) and consequently u1(·; v1(z)) ≤ u2(·; v2(z)) on [0, 1]
for each z ∈ [0, 1] (again applying Lemma 4.1, now to the boundary value
problem (1.1a− c)).

(iii) Let
Ψi(v) := βΦpi(αf(v)) for v ≥ 0 and i = 1, 2.

First we apply Lemma 4.1 to Problem (P1). This gives w(·;λ, p1) ≤
w(·;λ, p2) on [0, 1] and therefore w′(1;λ, p1) ≥ w′(1;λ, p2). From this
Ψ1(v) ≥ Ψ2(v) follows. Then proceed as under (i).

(iv) The inequality v1 ≤ v2 on [0, 1] follows from a similar argument as used
in the proof of Lemma 4.1. To prove strict inequality we argue by con-
tradiction. Suppose there exists z0 ∈ [0, 1] where v1(z0) = v2(z0)(=: a).
Because v1 ≤ v2 we also must have v′1(z0) = v′2(z0)(=: b). The smoothness
of Ψ guarantees that the initial value problem{

v′′ = Ψ(v) z > z0

v(z0) = a , v′(z0) = b
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has a unique solution. This contradicts v1(1) = V1 < V2 = v2(1). The
inequality for the concentrations ui follows as under (ii). 2

A small modification of the above arguments shows that many of the in-
equalities are strict. We have

Corollary 4.4

(i) 0 < α1 < α2 <∞ implies v1 > v2 on [0, 1) and v′1(1) < v′2(1),

(ii) 0 < β1 < β2 <∞ implies v1 > v2 on [0, 1) and v′1(1) < v′2(1),

(iii) 0 < p1 < p2 <∞ implies v1 < v2 on [0, 1) and v′1(1) > v′2(1).

Finally in the deadcore case, we derive an explicit set of bounds on the
function v(z). In principal, these bounds could be used to construct an existence
proof for this case, but instead a different, more general approach will be used
to prove existence in the next section. The bounds are interesting in their
own right, however, because they give an explicit approximate solution which is
accurate for a significant parameter range. Using the explicit deadcore solution
for u given for the auxiliary problem in (3.4), Eqn. (1.1d) becomes

vzz = β

(
2αf(v(z))

p+ 1

)1/2

0 < z < 1. (4.2)

where again f(v) := eαav − e−αcv. Since v is an increasing function, and since
the value of v at the top, V , may be 10 or larger while αi ' 1, it is reasonable
to construct bounds on vzz by replacing e−αcv with either e−αcv(0) or e−αcV .
These bounds can then be integrated twice to obtain the following result:

Theorem 4.5 For deadcore solutions, the potential satisfies

v0 −
4

αa
ln
[
cos(

c0αa

4
eαav0/4z)

]
≤ v(z) ≤ v0 −

4

αa
ln

[
cos(

Cαa

4
eαav0/4z)

]
where v0 ≡ v(0) and c0 ≡ c(v0) ≤ C ≡ c(V ) with

c(·) := 2
√
β/αa

(
2α

p+ 1

)1/4 (
1− e−(αa+αc)(·)

)1/4

.

In addition, setting z = 1, one finds that v0 satisfies

V +
4

αa
ln

[
cos(

Cαa

4
eαav0/4)

]
≤ v0 ≤ V +

4

αa
ln
[
cos(

c0αa

4
eαav0/4)

]
To see that either bound in Theorem 4.5 is in fact a good approximation,

consider the typical parameter values discussed in Section 2: V = 10, αa =
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αc = 1, p = 1/2, α = 0.01 and β = 0.1. These values satisfy for all z ∈ [0, 1] the
requirement discussed in Section 3 for the formation of a deadcore in u, viz.

2(p+ 1)

(1− p)2
≤ αf(v(z)).

Plugging these parameter values into a numerical package (Maple V was used
here), one finds that v0 lies in the range 9.347056686 ≤ v0 ≤ 9.347056688,
and that c0 = 0.2149139860 and C = 0.2149139862. And indeed this sort of
accuracy should be expected as long as the value of v0 does not become to close
to zero.

5 Existence.

In Section 3 we discussed the solvability of Problem (P1) for any given λ ≥ 0
and p > 0. From the results obtained there, it follows that the boundary value
problem (1.1a-c) has a unique solution u(·; v(z)) for any z ∈ [0, 1] and any
v : [0, 1]→ [0,∞). Moreover the function Ψ : [0,∞)→ [0,∞), defined by (4.1)
and (3.15), i.e.

Ψ(v(z)) = βΦp(αf(v(z))) = βux(1; v(z)) for v ≥ 0,

satisfies
Ψ ∈ C1([0,∞)),
Ψ(0) = 0,
Ψ′(v(z)) > 0 for all v ≥ 0.

It remains to find a nonnegative potential v which satisfies the boundary value
problem (1.1d-f) for any V > 0. For the deadcore case, the classical bounds
given in Theorem 4.5 essentially prove the existence of such a potential. For the
general problem, however, where no explicit formula for the concentration u is
available, such bounds are more difficult to arrive at. Therefore we turn to a
functional-analytic approach using a Schauder fixed-point argument to prove a
general existence result.

For this purpose, we introduce the function

h(z) := V − v(z) for 0 ≤ z ≤ 1 (5.1)

which should satisfy

(P̃2)

{
−h′′ = Ψ(V − h) 0 < z < 1 ,
h′(0) = 0, h(1) = 0 .

Because of the homogeneous boundary conditions, we can use the Green’s func-
tion

G(z; s) =

{
1− s 0 ≤ z ≤ s
1− z s < z ≤ 1
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to recast Problem (P̃2) as a fixed-point problem:

(FP )

{
Find h : [0, 1]→ [0, V ] such that for all 0 ≤ z ≤ 1

h(z) =
∫ 1

0
G(z; s)Ψ(V − h(s))ds (=: Th(z)).

(5.2)

To show the existence of a solution of Problem (FP ), we use the following
lemma (for a proof see Gilbarg & Trudinger (1977)):

Lemma 5.1 (Schauder). Let Σ be a closed, convex set in a Banach space
B and let J : Σ → Σ be continuous with J(Σ) precompact. Then J has a
fixed-point, i.e. Jx = x for some x ∈ Σ.

Let

Σ = {h ∈ C([0, 1]) : 0 ≤ h ≤ V },

and define the map T0 : Σ→ Σ by

T0h(z) := min{V, Th(z)} for h ∈ Σ and z ∈ [0, 1]. (5.3)

Below we prove two propositions which allow us to apply Lemma 5.1.

Proposition 5.2 T0 is continuous.

Proof. Let r, t ∈ Σ. Then

|(T0r−T0t)(z)| =


0 z ∈ {Tr ≥ V } ∩ {T t ≥ V }
V − T t(z) ≤ (Tr− T t)(z) z ∈ {Tr ≥ V } ∩ {T t < V }
V − Tr(z) ≤ (T t− Tr)(z) z ∈ {Tr < V } ∩ {T t ≥ V }
|(Tr− T t)(z)| z ∈ {Tr < V } ∩ {T t < V }

Hence for all 0 ≤ z ≤ 1

|(T0r − T0t)(z)| ≤ |(Tr − T t)(z)|

≤
∫ 1

0 G(z; s)|Ψ(V − r(s)) −Ψ(V − t(s))|ds
≤ C ‖r − t‖∞

where C := max
0≤ζ≤V

|Ψ′(ζ)|. Consequently

‖T0r − T0t‖∞ ≤ C‖r − t‖∞.

2

Proposition 5.3 T0(Σ) is precompact.
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Proof. Let 0 ≤ a < b ≤ 1 and h ∈ Σ. Then

Th(a)− Th(b) =
∫ 1

0 {G(a; s)−G(b; s)}Ψ(V − h(s))ds

= (b− a)
∫ a

0
Ψ(V − h(s))ds+

∫ b
a

(b− s)Ψ(V − h(s))ds.

Hence

0 ≤ Th(a)− Th(b) ≤
1

2
Ψ(V )(b2 − a2). (5.4)

This implies that for the operator T0,

0 ≤ T0h(a)− T0h(b) =

 Th(a)− Th(b) if Th(a) < V
V − Th(b) if Th(a) ≥ V, Th(b) < V
0 if Th(b) ≥ V,

and again we have

0 ≤ T0h(a)− T0h(b) ≤ Th(a)− Th(b). (5.5)

Combining (5.4) and (5.5) gives that

{T0h}h∈Σ is equicontinuous and bounded.

The precompactness now follows from the Arzela-Ascoli theorem. 2.
Hence there exists ĥ ∈ Σ such that

ĥ = T0ĥ , where ĥ is monotonically decreasing on [0, 1]. (5.6)

Next we must show that ĥ(z) < V for 0 ≤ z < 1. Suppose not. Then for some
0 ≤ z0 < 1,

ĥ(z) =

 V for 0 ≤ z ≤ z0

∈ (0, V ) for z0 < z < 1
0 for z = 1.

Clearly

ĥ(z) = T ĥ(z) for z0 ≤ z ≤ 1,

and thus

T ĥ(z0) = V.

If z0 > 0, then for 0 ≤ z ≤ z0 by continuity

T ĥ(z) =
∫ 1

z0
G(z; s)Ψ(V − ĥ(s))ds

=
∫ 1

z0
(1− s)Ψ(V − ĥ(s))ds = constant = V.

(5.6)

Hence ĥ satisfies

ĥ(z) = T ĥ(z) for all 0 ≤ z ≤ 1.
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This means that ĥ ∈ C2([0, 1]) also satisfies the differential equation

−ĥ′′ = Ψ(V − ĥ) on (0, 1) (5.7)

and the conditions

ĥ(z0) = V and ĥ′(z0) = 0 (z0 ≥ 0). (5.8)

The smoothness of Ψ implies that the initial value problem (5.7), (5.8) has

ĥ(z) ≡ V , 0 ≤ z ≤ 1, as its unique solution. However, this contradicts the

boundary condition ĥ(1) = 0. Hence

0 ≤ ĥ(z) < V for 0 ≤ z ≤ 1.

Introducing the potential v̄ = V − ĥ, we have shown

Theorem 5.4 Given any α, β, p and V > 0, there exist unique functions
v̄ ∈ C2([0, 1]) and ū(·; v̄(z)) ∈ C2([0, 1]) for each 0 ≤ z ≤ 1 which solve Problem
(P ). The potential satisfies

0 < v̄ ≤ V and v̄zz > 0 on [0, 1]

and consequently
v̄z > 0 on (0, 1].

6 Iteration procedure.

Section 5 demonstrates the existence of solutions for Problem (P ) for any combi-
nation of the positive parameters α, β, p and V using a Schauder argument. In
this section, an alternative, more constructive existence proof is given in which
the solution is obtained by successive iterations. This method, however, only
converges when the parameters α and β are sufficiently small.

The Method. Define sequences {vn = vn(z)}∞n=0 and {un = un(x,z)}∞n=1

with x,z ∈ [0, 1] in the following three-step iteration:

1. Let v0 := V on [0, 1].

2. With vn given, let un be the solution of

unxx = αf(vn(z))upn 0 < x < 1
un(1, z) = 1
unx(0, z) = 0.

 0 ≤ z ≤ 1
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3. With un given, let hn+1 be the solution of

hn+1zz = βunx(1, z) 0 < z < 1
hn+1z(0) = 0
hn+1(1) = V,

and set vn+1(z) = max{hn+1(z), 0}, 0 ≤ z ≤ 1.

The following inequalities then hold:

Proposition 6.1

v0 ≥ v2 ≥ v4 ≥ · · · · · · ≥ v5 ≥ v3 ≥ v1 ≥ 0 on [0, 1]

and
u0 ≤ u2 ≤ u4 ≤ · · · · · · ≤ u5 ≤ u3 ≤ u1 on [0, 1]× [0, 1].

Proof. The proof is by induction. Let IM := {n ∈ IN0|n is even}. For n ∈ IM,
consider the following statement:

(Un)

{
vn+1 ≤ vn+3 ≤ vn+2 ≤ vn on [0, 1]
un+1 ≥ un+3 ≥ un+2 ≥ un on [0, 1]× [0, 1].

We have to prove

(i) U0 is true;

(ii) Un =⇒ Un+2 for arbitrary n ∈ IM.

(i) Since v0 = V , we obtain for u0 the problem:

u0xx = αf(V )up0
u0x(0, z) = 0, u0(1, z) = 1,

and for h1:
h1zz = βu0x(1, z) > 0
h1z(0) = 0, h1(1) = V.

Thus v1 = max{h1, 0} ≤ v0 on [0, 1]. Consequently f(v1) ≤ f(v0), and as
in Lemma 4.1, this implies

u1 ≥ u0 on [0, 1]× [0, 1].

From the boundary condition at x = 1, it follows that

0 ≤ u1x(1, z) ≤ u0x(1, z) for 0 ≤ z ≤ 1,
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and thus h2 ≥ h1 on [0, 1]. Therefore

V = v0 ≥ v2 ≥ v1 ≥ 0 on [0, 1]. (6.1)

Again as in Lemma 4.1, this gives

u0 ≤ u2 ≤ u1 on [0, 1]× [0, 1],

and thus

u0x(1, z) ≥ u2x(1, z) ≥ u1x(1, z) ≥ 0 for 0 ≤ z ≤ 1

which means that h1 ≤ h3 ≤ h2 on [0, 1]. Together with (6.1), this implies
the desired inequalities for the potentials. The corresponding inequalities
for the concentrations follow after again applying Lemma 4.1.

(ii) Suppose Un holds for some n ∈ IM. Then

un+2 ≤ un+3 ≤ un+1 on [0, 1] × [0, 1]

which gives

un+2x(1, z) ≥ un+3x(1, z) ≥ un+1x(1, z) for z ∈ [0, 1].

This means
hn+3 ≤ hn+4 ≤ hn+2 on [0, 1],

and thus
vn+3 ≤ vn+4 ≤ vn+2 on [0, 1]. (6.2)

As above this implies

un+3 ≥ un+4 ≥ un+2 on [0, 1]× [0, 1]. (6.3)

Now repeating the arguments gives

vn+4 ≥ vn+5 ≥ vn+3 on [0, 1] (6.4)

and
un+4 ≤ un+5 ≤ un+3 on [0, 1]× [0, 1]. (6.5)

The combination of (6.2)-(6.5) gives the statement Un+2. 2

The inequalities from Proposition 6.1 and its proof imply the existence of
lower and upper potentials v, v̄ (or h, h̄) and concentrations u, ū such that

hn ↓ h̄, vn ↓ v̄ and un ↑ u pointwise on [0, 1] as n→∞ through even values,
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and

hn ↑ h, vn ↑ v and un ↓ ū pointwise on [0, 1] as n→∞ through odd values.

Here
h̄ ≥ h, v̄ = max{0, h̄}, v = max{0, h} and ū ≥ u. (6.6)

Using the integral representation, as in (5.2), for the solutions un and hn+1, one
finds immediately that the limit functions are classical solutions of the boundary
value problems:

(i) Letting n (even) →∞ in step 2:{
uxx = αf(v̄)up 0 < x < 1
ux(0, z) = 0, u(1, z) = 1,

0 ≤ z ≤ 1 (6.7)

(ii) Letting n (even) →∞ in step 3:{
hzz = βux(1, z) 0 < z < 1
hz(0) = 0, h(1) = V,

(6.8)

(iii) Letting n (odd) →∞ in step 2:{
ūxx = αf(v)ūp 0 < x < 1
ux(0, z) = 0, ū(1, z) = 1,

0 ≤ z ≤ 1 (6.9)

(iv) Letting n (odd) →∞ in step 3:{
h̄zz = βūx(1, z) 0 < z < 1
h̄z(0) = 0, h̄(1) = V.

(6.10)

Next we show that at least for a specified parameter range, the upper and
lower solutions are identical.

Theorem 6.2 If 0 < αβ max
0≤s≤V

f ′(s) < 2, then the iteration process converges:

i.e.
u := ū = u on [0, 1]× [0, 1] and v := v̄ = v on [0, 1].

Moreover (u, v) satisfy Problem (P ).
Proof. Integrating equation (6.9) with respect to x from x = 0 to x = 1

and substituting the result into equation (6.10) gives

h̄zz = αβf(v(z))

∫ 1

0

ūp(x, z)dx, 0 < z < 1. (6.11)
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Similarly one finds

hzz = αβf(v̄(z))

∫ 1

0

up(x, z)dx, 0 < z < 1. (6.12)

Hence

(h̄− h)zz + αβ{f(v̄(z))− f(v(z))}
∫ 1

0
ūp(x, z)dz

= αβf(v̄(z))
∫ 1

0 {ū
p(x, z)− up(x, z)}dx ≥ 0.

(6.13)

Multiplying this equation by φ := h̄−h and integrating the result by parts with
respect to z leads to

−

∫ 1

0

{φz}
2dz + αβ

∫ 1

0

[φ(z){f(v̄(z))− f(v(z))}

∫ 1

0

ūp(x, z)dx]dz ≥ 0. (6.14)

Set M := max
0≤s≤V

f ′(s). Then using f(v̄) − f(v) ≤ M(v̄ − v) and 0 ≤ ū ≤ 1 in

(6.14), we obtain the estimate

−

∫ 1

0

{φz}
2dz + αβM

∫ 1

0

φ(z){v̄(z)− v(z)}dz ≥ 0.

Further we observe that φ(z){v̄(z)− v(z)} ≤ φ2(z) for all 0 ≤ z ≤ 1. Thus we
arrive at the inequality

−

∫ 1

0

{φz}
2dz + αβM

∫ 1

0

φ2dz ≥ 0. (6.15)

Using ∫ 1

0

φ2dz ≤
1

2

∫ 1

0

{φz}
2dz, (6.16)

yields {
−1 +

1

2
αβM

}∫ 1

0

{φz}
2dz ≥ 0.

From this expression and (6.16) it follows that

αβM < 2 =⇒ φ = 0 on [0, 1] =⇒ h̄ = h(=: h) =⇒ v̄ = v(=: v) on [0, 1]
=⇒ ( from (6.7) and (6.9)) ū = u(=: u) on [0, 1]× [0, 1].

Next we show 0 < h = v on [0, 1]. Suppose not. Then there exists z0 ∈ [0, 1]
such that h(z) ≤ 0 (with v(z) = 0) on [0,z0] and h(z) > 0 (with h(z) = v(z)) on
(z0,1]. Equation (6.7) then implies u(x, z) = 1 for (x, z) ∈ [0, 1] × [0, z0]. But
this means that hzz = hz = 0 on [0, z0]. Consequently vz(z0) = 0. Thus the
function v satisfies

vzz = Ψ(v), for z0 < z < 1,
v(1) = V,
v(z0) = vz(z0) = 0.
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Figure 4: Computational results in case of convergence.

This gives a contradiction, again with a local uniqueness argument. Therefore
we conclude that h = v > 0 on [0, 1] and that (u, v) solves Problem (P ). 2

To illustrate the iteration method, we present computations for which we
owe thanks to Jacqueline Prins. In Figure 4 we have chosen α,β and V so
that numerically the method converges. Note that because the condition from
Theorem 6.2 that αβmax f ′(s) < 2 is not sharp, it is not strictly required. In
fact, in Figure 4 we have αβf ′(V ) = 7.524. (We use here f ′(V ) = max f ′(s) if
αa = αc.)

As a second illustration, in Figure 5 we have selected values of the parameters
so that no convergence occurs. Hence v̄ > v on [0, 1). The actual solution v
(which exists by Theorem 5.3) is denoted by the middle dashed-curve. It was
computed using a shooting procedure for Problem (P2). The details of this
procedure will be given elsewhere.
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