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ENERGY QUANTIZATION FOR YAMABE’S PROBLEM IN
CONFORMAL DIMENSION

FETHI MAHMOUDI

ABSTRACT. Riviere [II] proved an energy quantization for Yang-Mills fields
defined on n-dimensional Riemannian manifolds, when n is larger than the
critical dimension 4. More precisely, he proved that the defect measure of
a weakly converging sequence of Yang-Mills fields is quantized, provided the
W2 norm of their curvature is uniformly bounded. In the present paper, we
prove a similar quantization phenomenon for the nonlinear elliptic equation

—Au = uful =2

in a subset €2 of R™.

1. INTRODUCTION

Let Q be an open subset of R" with n > 3. We consider the equation
—Au = ufu[Y 2 in Q (1.1)

We will say that u is a weak solution of (l.1)) in Q, if, for all & € C*°(Q) with
compact support in 2, we have

- /Q AD(2)u(z)dz — /Q (2 )u(z) [u(z)Y "D dz (1.2)

If in addition u satisfies

Ou Qu 007 1 o 20" n =2 0600
/Q|:axi Oz Ox; 2 vl ox; * 2n Jul O, dr =0 (1.3)

for any ® = (@1, ®2...,®") € C°(Q) with compact support in €2, we say that u
is stationary. In other words, a weak solution u in H'(Q) N L>"/("=2/(Q) of (L1
is stationary if the functional E defined by

1 n—2 n/(n—

is stationary with respect to domain variations, i.e.

d
%(E(ut))lt:o =0

where u;(z) = u(x + t®). It is easy to verify that a smooth solution is stationary.
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2 F. MAHMOUDI EJDE-2006/71

In this paper we prove a monotonicity formula for stationary weak solution u in
H'(Q) N L2 "=2(Q) of (T.1) by a similar idea as in [6]. More precisely we have
the following result.

Lemma 1.1. Suppose that v € L>*/("=2)(Q) "H'(Q) is a stationary weak solution
of (1.1)). Consider the function

d
E,(z,7r) = / u|>"/ (" =2) dy 4 —/ u?ds + r_l/ u?ds.
B(z,r) dr JoB(z,r) B(a,r)

Then r — E,(x,7) is positive, nondecreasing and continuous.

This monotonicity formula together with ideas which go back to the work of
Schoen [12], allowed to prove the following result.

Theorem 1.2. There exists € > 0 and ro > 0 depend only on n such that, for any
smooth solution u € H(Q) N L*""=2(Q) of (L.1)), we have: For any x¢ € Q, if

/ Vul? + [u*/ 72 < e,
B(CE(),T(])

then
Cle)
||u||L°°(B%(wo)) < W for any 1 <To,
where Bz (xo) is the ball centered at xo with radius 5 , and C(e) — 0 as e — 0.

Zongming Guo and Jiay Li [5] studied sequences of smooth solutions of (1.1)
having uniformly bounded energy, they proved the following result.

Theorem 1.3. Let u; be a sequence of smooth solutions of (1.1) such that
lwillzr @) + l[will p2n/;-2) (@)

is bounded. Let us be the weak limit of u; in H (Q) NL*Y"=2(Q). Then us is
smooth and satisfies equation (1.1) outside a closed singular subset ¥ of Q. More-
over, there exists rog > 0 and 9 > 0 such that

Y = No<rero {2 € Q: liminf By, (2,7) > &0 }.

We define the sequence of Radon measures
1 2, M—2  on/(n-2
m = GVl 4 ) de
Assumption that the sequence (||Vuilg () + [[willp2n/ -2 (q))i is bounded, and up
to a subsequences, we can assume that 7; — 7 in the sense of measures as i — co.
Namely, for any continuous function ¢ with compact support in €2

lim [ pdn = / $dn.
1— 00 Q Q

Fatou’s Lemma then implies that we can decompose
n—2
2n
where v is a nonnegative Radon measure. Moreover, we prove that v satisfies the

following lemma.

1 2n_
n=(5IVul® + = =[ul") de + v

Lemma 1.4. Let 6 > 0 such that Bs C Q2. Then we have
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(i) ¥ C spt(v)
(ii) There exists a measurable, upper-semi-continuous function © such that

v(r) =0(x)H |, forxzeX.
Moreover, there exists some constants ¢ and C > 0 (only depending on n and )
such that

ceog<O(x)<C H’—ae in¥

where H°| Y is the restriction to X of the Hausdorff measure and © is a measurable
function on X.

The main question we would like to address in the present paper concerns the
multiplicity © of the defect measure which has been defined above. More precisely,
we have proved the following theorem.

Theorem 1.5. Let v be the defect measure of the sequence (|Vug|? + |u;[*™/ *=2))dx
defined above. Then v is quantized. That is, for a.e x € X,

2n/(n—2
O@) = Y IVoaslltam + Ivagllniin ) (1.4)
j=1

where N is a positive integer and where the functions v, ; are solutions of Av +
vz = 0 which are defined on R", issued from (u;) and that concentrate at x as

1 — 00.

The sentence “issued from (u;/) and that concentrate at x as ¢ — o0” means
that there are sequences of conformal maps ¢} , a finite family of balls (Bf j)l such
that the pulled back function

iy = (V) ui
satisfies

U;; — v; strongly in LQ(]R” \ UlBé,j)),
Vi ; — Vu;  strongly in - L*(R™ \ UB. )

In the context of Yang-Mills fields in dimension n > 4 a similar concentration
result has been proven by Riviere [I1I]. More precisely, Riviere has shown that,
if (A;); is a sequence of Yang-Mills connections such that (|VaVaFallLi(sr)): is
bounded, then the corresponding defect measure v = OH"#|% of a sequence of
smooth Yang-Mills connections is quantized.

The proof of Theorem uses technics introduced by Lin and Riviere in their
study of Ginzburg-Landau vortices [10] and also the technics developed by Riviere
in [5]. These technics use as an essential tool the Lorentz spaces, more specifically
the L>°°-L2! duality [14].

This paper is organized in the following way: In Section 2 we establish first
a monotonicity formula for smooth solutions of problem which allows us to
prove an e-regularity Theorem. Then, we prove Theorem [I.2] and Lemma [T.4]
While Section 3 is devoted to the proof of our main result, Theorem
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2. A MONOTONICITY INEQUALITY

In this section, we establish a monotonicity formula for smooth solutions of
problem . Using Pohozaev identity: Multiplying by xi% (summation
over i is understood) and integrating over B(x,r), the ball centered at x of radius
r, we obtain

7/ Ou —Audy = f/ Ou ulu|* =2 dy
B(z,r) 83)1 B(z,r) 83)1

By Green formula, we get

) —9
e R N T
2 JB@n 2 JB@n

-2 1
_n / |u|2n/(nf2) ds + 77"/ |Vu|2ds (2.1)
2n OB(z,r) 2 OB(z,r)

ou
= |57y
/BB(x,r) or

On the other hand, multiplying (1.1) by w and integrating over B(z, ), we get

0
/ |Vu|*dy — / ua—uds = / u|?"/(n=2) gy (2.2)
B(z,r) OB(z,r) r B(z,r)

Deriving (2.2]) with respect to r, we obtain

d 0
/ |Vu|*dy — —/ ulds = / |u|?"/ (=2) gy (2.3)
OB (z,r) dr OB(z,r) or OB (z,r)

Combining (2.1)), (2.2) and (2.3), we get

_r / 20/ 0=2) g
OB(x,r)

1
d ua—u ds—r/ |8—u|2 dy—|—7“71u% ds.
2 dT‘ OB(z,r) or OB(z,r) r

Moreover, we have that

2 -1
d—z( u?ds) = i(2/ u% ds + = / u? ds)
dr OB(x,r) dr OB(z,r) or r OB(z,r)
2 ou n—1 1
=(n-1)= —ds — 2d
(n ) |:’I" /SB(:L’ r) ! or * ( 72 7"2 ) OB (z,r) B 5i|

+2£/ u%ds

-1 0 -2
_n [2/ u—uds—kn / u2ds}
r OB (z,r) or r OB (z,r)

+ 2i / u% ds.
dr OB(z,r) or
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Hence
1d 1 d?
|u|2n/(n 2) d + - u2 ds
ndr B(x,r) ndr dB(x,r)
2 m—3 ou (n—-1)n-2) ,,
= _—t ds.
/(93(xr)<87’| o " or + 4 et ds
Moreover
d 1
—(7/ u?ds)
dr'r OB (z,r)
1 2 0 —1
=—= ulds + f/ u—uds + i 5 / u?ds
r OB(z,r) " JoB(z,r) or r OB (z,r)
-2 2
_n 5 / u’ds + 7/ u@ds.
r OB (z,r) " JoB(z,r) or
‘We obtain

11
i[l/ |u|2n/ n— 2)d + = Ld w2ds — 77/ u2ds}
drln B(z,r) ndr OB(z,r) OB (z,r)
_ 2)2
- 24 (n—2)t + (r-27 r—2u?)ds
Lo e+ =2t 4 )

ou n—2 _; .,
= — + r—u)?ds > 0
»/83(x,r)(aT 2

We conclude that
1
Buer) = [ quprie-tay
" JB(z,r)

is a nondecreasing function of r. Using the fact that

/ |2/ (=2 dy — / |Vul*dy = —/ u%ds,
B(z,r) 9B (z,r) OB (z,r) or

one can easily get

1 1d 1
E, (z,r) = 7/ |2/ (=2 gy 4 = / u?ds — 774—1/ u?ds
" JB(z,r) 4 d?" OB (z,r) 4 OB(z,r)

n

n 1-1n
— 2 / |u|2n/(nf2)dy + 2 / |u‘2n/(n72)dy
" JB(z,r) n B(z,r)

1d 1
+ -— ulds — 77“_1/ u?ds
4 dr OB(z,r) 4 OB (x,r)

= 1/ |Vu|*dy — 1/ u@ds _n-2 / |2/ ("=2) gy
2 2 ar 2n
B(z,r) OB (z,r) B(z,r)

1d 1
+ - u?ds + 77“*1/ uds (2.4)
n d’l" B(z,r) n B(z,r)

1d 1
4+ —-— u?ds — 77“_1/ u?ds
4 dr OB (x,r) 4 OB(x,r)
1 / 2 n — 2 2 /( 72) 1 d 2
=- (IVul* = ——u|*" "N dy + - u” ds
2 B(z,r) 2n 4d7” OB(z,r)

— 1r*l/ wlds — 1/ u—ds.
4 OB (z,r) 2 OB(z,r) or
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We obtain an equivalent formulation of E,(x,r)

1 -2 -2
E.(z,7) = 2/3( )(\Vu\Q - %|u|2"/("72)dy+ n4r1/aB( )uzds (2.5)

Moreover, using the fact that

d 0 -1
— ulds = 2/ u—uds + i / u?
dr JoB(z,r) oB(z,r) OT T JoB(a,r)

we obtain
1 1 d 2
f/ u?ds = —/ u?ds — / u@ds
" JoB(x,r) n—1dr OB(z,r) n—1 OB (z,r) or

o n—1dr OB(z,r)

2
+ {/ |u|2n/(n—2) dy _/ |Vu|2 dy}
n—=10/p@m B(z,r)

Then E,(z,r) can also be written

E, (z,7)

1 / 2 n—2 2 /( _2) n — 2 d / 2
=—- Vu|® + ——|u]*/ dy + —-— u” ds.
Q(TL - 1) B(z,r)q | n I | ) 4(” - 1) dr OB(z,r)

Proof of Lemmal[I.1l To prove that (x,r) — Ey(x,r) is continuous it suffices to
prove that

(z,7) — u?ds
OB (z,r)

is continuous with respect to z and r. We have

0
/ uZlds = / |Vul> — / u[>/ (" =2) gy
OB (x,r) or B(z,r) B(x,r)

Thus (z,r) — faB(:c,r)u% is continuous, and this allows to get the conclusion.
Now, to prove that E, is positive, we proceed by contradiction. If the result is
not true, then there would exists z €  and R > 0 such that E,(z,R) < 0. For
almost every y in some neighborhood of z, we have
ou

lim u—ds =0
r—0 OB(z,r) or

integrating F, (x,r) over the interval [0, R] and using the fact that r — E,(x,r) is
increasing, we obtain

/RE (y,r)dr = b /Rdr/ (|Vu|2 + n—z 2|u\2”/(”_2))dx

0 e 2(n —1) Jo B(y,r) 2n

n—2 / 9

+ — u<ds
4(n—1) dB(y,R)

<RE,(y,R) <0

which is not possible. This proves Lemma |1.1 (I
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Lemma 2.1. There exist rg > 0 and some constant ¢ > 0, depending only on n,
such that

/ (|Vul® + |u\2"/(”_2)) dy < cE,(z,7)
B(z,r)

for any r < ro/2.

Proof. Using the fact that (x,r) — E,(z,r) is nondecreasing, we have
rEuer) 2 [ Bue.s)ds
0
1 " n—2
— d 2 2n/(n—2) d
e A L Ml

n—2 "
b [as[ o
4(” - 1) 0 OB(z,s)

1 ”—2/7" / 2, y20/(n=2)
> —_— ds Vul® + |ul*™™" dy
oty ) )

20wy [ (Ve ) dy
T3

where C'(n) is a positive constant depending only on n. This gives the desired
result. |

As a consequence of Lemma [2.1] we have the following result.
Lemma 2.2. Assume that there exist xg and ro > 0 such that E,(xo,r9) < & then

-2
[ v+ "2
B(z,r) n

where C' is a positive constant depending only on n.

u\Q"/("_z)) dy<Ce YV 0<r<2r

Proof. Let xg and rg be such that E,(xg,70) < € and let 0 < r < r¢, then for all
x € B(xo, 5) we have

B(x, g) C B(=zg,r) C B(xo,70)

Thus
n—2
E,(xzo,70) > 7/ |u|2”/(”72) dy
2n(n —1) Jp,z)
1 / 9 n—2 d 9
+—— |Vul dy—l—if/ u® ds
2(n—=1) Jp(,x) 4n—=1)dr Jop (o

1 / o/ (n— n—2 d
D — (u n/(n 2)+Vu2)dy+7f/ u?ds
2(7'L — 1) B(l%) | | | 4(” - 1) d?" aB(l'OJ')
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Integrating between 0 and r, we obtain

TEu(ﬁo,To)
1 /T / 2 -2 2 n—2 2
>— [ ds (Ju[?/ =2 L ul?) dy + —— u? ds
2(n—1) Jo B(z,%) 4(n —1) JoB(wer)
ST
> ds
2(n—1) Jo B(z,%

1 /T / 2 2n/(n—2)
2 ds (IVul® + [u*/ =) dy
2(n—1) J: B(z.3)
1 T

)(IWI2 + [uf*"/"=2)) dy

> —— (|Vul* + |u 2/ (n=2)) gy,
2<n—1>2/3(z,;> 2 4 fuf>/ )
Then )
Buloo,ro) 2 g [ (Va4 ) dy,
4(n—1) /(.1
thus
/ (|Vul? + [u]> =) dy < Ce  Vr < 2rg.
B(z,r)
This proves the desired result. O

Proof of Theorem[1.4 Without loss of generality, we can assume that zo = 0 and
we denote by B, the ball of radius r( centered at o =0 .
We use the idea of Schoen [12]. For r < rg, we define

F(y) = (5 = ly) "2 %u(y)

Clearly F'is continuous over Bz, then there exist yo € Bz such that
r

= Ly (n=2)/2 _(r_ (n—2)/2
F(yo) yrgg);(2 lyl) u(y) (2 o) u(yo)

Let 0 <o < 3, for all y € B,, we have

(5 = lyo) "=/
uy) < S smayya “wo)
(5 = ly =272

Then
(5 — lyo|) =272

sup u(y) < 20U
sup uly) < e

sup u(y)
YyEBo,

where og = |yo|. Let y1 € By, be such that

u(y1) = sup u(y)
yEBq

We claim that
2(n72)/2

U <.
W) = o

Indeed, on the contrary case, we get

(u(y2) ™" < = (5 = Iyol)

DN | =

Let p = (u(y1))~% (=2, We have
B,(y1) C Bog+z
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(Iz — 11| < p take |2| < w) Hence
(5 = lyol)t" =72

sup - u(y) < -

B e Ba— — 9(n=2)/2,,
vEB,. (1) (Il n2)2 (y1) ()

Let v(z) = ™2/ 2u(ux + y1). Easy computations shows that v satisfies
Av?n/(n=2) — o [L + 2v4/("*2)|Vv\2 + U%Av}

n—2ln—2
2n  n+2 2n nt2
> vz Av = — v2n=2
n—2 n—2

On the other hand

n—2 2n 2n

in/(n—2)(0) =p z nzyn-z(y)) =1

Moreover, we have

supv(x) = p" /2 sup u(pz + 1)
By By

= p"22 sup u(x)
B“(yl)
< W=D 29=D/2, (Y 9(n=2)/2,

Then sup g, v2"/("=2) < 2" Therefore,
— A (=2 < O (n)p?/ (=2,
We conclude that
1 =02/ =2)(0) < C’/

02/ 0=2) (1) gy — Oy / W2 ) () < Ce.
B,

Bl"
For € sufficiently small, we derive a contradiction. It follows that
W) (5 — |yo|)(P=2)/2 9(n—2)/2 9(n—2)/2
supu(y) < == p— T p— = p— .
B; (5 = ly)¢=272 (5 = lyo)n=272 (5 = [y =)/

For |y| < r/4, we have

supu(y) < C(n)/r"=?/?
Br

This in turns proves the Theorem [1.3 (]
Proof of Lemma[I.j, We keep the above notations. To show (i), suppose zo €
B1 \ %, then there exists 71 > 0 such that

liminf B, (o, 71) < €o.
1— 00
Then, we may find a sequence n; — 0o as j — oo such that

sup Eunj (zo,71) < €0.
nj

We deduce from the e-regularity Theorem (Theorem that
C

sup  sup  fuy,| < W

nj x€Br (z0)
16

for some constant C' depending only on n. Then
Up, = u in CY(Bri (z0))

‘1
16
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a similar argument allows to show that
Vi, — Vu in Cl(B% (z0))
Then

(1 2, =2 9 /(n-2) 1 2, =2 9n/(n-2)
P 7= <2|Vun].| + 5 n; dx — 2|Vu| + T dx

as radon measure. Hence v = 0 on Bry (20) i.e 2o ¢ supp(v) and then we deduce
that supp(v) C X.
To show (ii), let us first recall some properties of the function E,(z,r) that has
been defined above:
e For all z € Q, there exists 79 > 0 and a constant C' > 0 such that
Ligup & P22 20/ (-2) o
/13(7;,7-)(2 |Vul® + 57 [ul ) < CEy(z,r9) VYr< 5

This is explained in the proof of Lemma |l.1
e Using the fact that F,(z,.) is increasing on r together with the fact that

lim By (z,7) =0 H’—ae z€Q
N0

we deduce that for H%a.e. z € ¥, lim,~ o fB(m Y exists. and the density O(n,.)
defined by

=1 B, 2.
©(n,z) lim n(B:(x)) (2.6)
exists for every x € 2. Moreover, for H%a.e. z € Q, ©,(x) = 0, where
. ]. 2 n — 2 2n
u e 1 _ n—2 d . 2,
O,(x) lim B(I7T)(2|Vu| + ™ lul™=2) dy (2.7)

Now, for r sufficiently small and 4 sufficiently large

1 -2 _
/ SV 4+ 22D < OB, (2,r) < C(A, Q) (2.8)
B(z,r) 2 2n

where A is given above and C(A,{2) is a constant depending only on A and Q.
Hence

n(B(z,r)) < C(A,Q) for z € BY (2.9)

In particular, this implies that 7| X is absolutely continuous with respect to H°| .
Applying Radon-Nikodym’s Theorem [4], we conclude that

n|E =0(x)H’|X for H'ae z€X (2.10)
Using 2.8 we conclude that
v(z) = O(z)H"|Z (2.11)

for a H%-a.e. z € X (recall that n = (%|Vu|2+"2—;2\u|'%2) dx+v and supp(v) C X).
The estimate on © follows from 2.9 O

For any y € BT and any sufficiently small A > 0, we define the scaled measure
My A by
My () =1y + Az) (2.12)
We have the following lemma.
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Lemma 2.3. Assume that (\;); satisfies im;_,oo A; = 0. Then, there exist a
subsequence (Aj/); and a Radon measure x defined on , such that Myx;r — X 0
the sense of measures.

Proof. For each ¢ € N, we define the scaled function u; 4 x by
Uiy a(T) 1= /\nTﬁu,-(/\x +vy) forye BY. (2.13)
Then u; 4, is a solution of
—Au = ufu|¥®™=2  on BI.

In addition, for any r > 0 sufficiently small, we have

[Vu,, >\| Jr \uz >\|’* 2> dx
/BT(O) < . 2n Y

:/ ( Vu l| + \ul\" 2> dx < C(A, Q).
B (v) 2n
Finally for fixed A,

(2.14)

1
<2|Vui,y,>\|2 +

1 n—2 n/ (n—
A G WW ) (k) d

n(Az +y) = nya(z)

2 a0 2>) (2) do

in the sense of measures as i — co. On the other hand letting ¢ tends to infinity in
(2.14)), we conclude that for any r > 0

My (Br(0)) < C(Q,A). (2.15)

Hence, we may find a subsequence {\’} of {A;} and a Radon measure x such that
Ny, x; converge weakly to x as Radon measure on 2. Then

lim lim ( [Vt g |2 +2== 5 \uly)\ B 2) de = lim 7,y (z) = x
j—o0 J

‘]*)OO 71— 00

Using a diagonal subsequence argument, we may find a subsequence i; — 00, such
that

lim ( |Vuz],y7>\| —|— o |uzj7y>\/|" 2)dm=x

Jj—o0

This proves the Lemma. O
Remark 2.4. Observe that
X(B:(0) = lim .3, (B(0)) = lim n(By, () = ©(.9)

In particular, we deduce that x(B,(0)) is independent of r.
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3. PROOF OF THEOREM [L.5]

The idea of the proof comes from Riviere [I1] in the context of Yang-Mills Fields.
To simplify notation and since the result is local, we assume that €2 is the unit ball
B™ of R™. Let (ux) be a sequence of smooth solutions of ([1.1]) such that

(e e g + sk lgzn o2

is bounded and let v be the defect measure defined above. We claim that for § > 0,
we have

lim sup / (|uk\2n/("_2) + |Vuk|2) >e(n) (3.1)
Bs(yo)

k=00 ye B, (z0)

where €(n) is given by Theorem Indeed if (3.1) would not hold, we have for
0 >0 and k € N large enough

sup / (|uk|2"/(”_2) + |Vuk|2) < e(n)
y€B1(z0) v Bs(yo)

and by Theorem [I.2] we have
IVurll= s, @) < Ce)/rm/?

This contradict the concentration phenomenon and the claim is proved. We then
conclude that there exists sequences 6, — 0 as k — oo and (yx) C Bi(xo) such
that

/ <|uk|2n/(n—2)+‘vuk|2) dr = sup / <|uk|2n/(n—2)+|vuk|2) dx
Bs,, (yo) y€B1(x0) J Bs, (yo)

_e(n)
==

(3.2)
In other words, ¥ is located at a bubble of characteristic size d;. More precisely,
if one introduces the function

ug(x) = 6,2”72)/2uk(6kx + yr);
we have, up to a subsequence, that

Up — Uso In Cha(R") as k — oo,

Vg — Vs in CL (R™) as k — oo.
Therefore,
—Atp = uoo\uoo|4/("_2) in R™.

This is the first bubble we detect. On the other hand, we have clearly that

/ (|uw|2”/("72) + |Vuoo|2) dz = lim lim (|uk|2"/(”72) + |Vuk|2> dx.

R—o0 k—oo Bras, (yi)

(3.3)
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Indeed:

lim lim
R—o0 k—o0 BR(S (yw)

20D 1 [V ?) da

= lim lim
R—o00 k—oo Br(0)

[/ 4 V() |?) (S + ) 5 do

(@) (=2 4 15,5556, Vﬂk(x)|2> 8T d

R— o0 k—oo Br(0)

(1

(
= lim lim (|5k

(

= lim lim
R—o00 k—o0 r(0)

[ ()2 ) 4 | Viig()]?) do

— lim <|uoo(x)|2n/ (2 4 |Vue (2)2) de
Br(0)

R— o0

— [ (el P02 4 [Fun @) o
R’!L

Assume first that we have only one bubble of characteristic J;. We have shown
that

© = lim (Vs + 2/ =) da = / (19t 2 + e /)
B} (0) R"

k—o0
(3.4)
where O is defined above. It suffices to prove that
lim lim Jug () |27/ =2 4 |Vuk(a:)|2) dz = 0. (3.5)

R—00 k=00 BT (0)\BRrs,, (yy,)

In other words there is no “neck” of energy which is quantized.

To simplify notation, we assume that y; = 0. We claim that for any ¢ > 0 small
enough, there exists R > 0 and ko € N such that for any k > kg and R, <r < %,
we have

/ (Jus () P2 - (g (2)?) o < < (3.6)
(0)\ B0y

Indeed, if is not the case, we may find 9 > 0, a subsequence &’ — oo (Still denoted
k) and a sequence 7 such that

/ <|uk(a:)|2”/("_2) + \Vuk(:c)|2) dx > o,
(0)\B:(0)

Tk
— — 00 as k— oo
Op

(3.7)

Let o — 0 such that ri/ax = o(1) and ayrg/dr — oo and let
v (x) = T,(C"_Q)/Quk(rkx)
clearly v, satisfies
—Avy, = vg|og|Y ™™ in Byg, \ Ba,
Therefore,

/ (|Uk(x)|2"/("_2) + |Vvk(x)|2> dx > e(n)
B3 (0)\B1(0)

and then we have a second bubble. This contradict our assumption.
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We deduce from (3.7) and Theorem [1.2] that for any e < £(n), there exist R > 0
and ko € N such that for all &k > kg and |z| > Rdy
Vug|(z) < Cle)/|a]"?
where C'(g) — 0 as ¢ — 0. Then
[Vug|*(z) < C(e)/|z]™. (3.8)

We define E’)f by
EY = meas {z € R" : |Vug|(z) > \}
We have E¥ < C(g)/\%; indeed

n n . < CE)
fr e R": [Vugl(x) > X} € {r e B : ol < T}
and
C C

meas {x ER": |z|" < /\(28)} < )\(26)

We deduce from (3.8)) that
[Vtkl2 = gy ) < CC) (3.9)

where L** is the Lorentz space defined in [14], the weak L? space, and | - |2, is

the weak norm defined by
| fllLzee = sup £/2f%(2)
0<t<oo
where f* is the nonincreasing rearrangement of |f|. Indeed

IVurllee=ca,, ) = Oj;lfwtl/z(vuk)*(t)
by definition,
(Vug)*(t) = inf{\ > 0/E¥ <t}

For all ¢t > 0 such that C/\(ZE) < t, we have EY¥ <t. Then

inf{)\>O:E§§t}§inf{)\>O:0(6)gt}

\2
§inf{)\>0:)\2(c7(:21/2}
_ (C@en'?
t1/2
Hence t'/2(Vuy)*(t) < C(e) and so
IVurllLz< (o, ) < Cle) (3.10)

We claim that the sequence (Vuy) is uniformly bounded in the Lorentz space
L*'(B}) (see [14] for the definition). We prove this claim using an iteration pro-
ceeding; Indeed, the sequence (uy) is bounded in Lo (B7). Then

Auy, = fuk|uk|4/("72)
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is bounded in L%(B{L) which implies by the elliptic regularity Theorem that

the sequence (ug) is bounded in WQ%(B{L) Using the imbedding Theorem for
Sobolev spaces

W™P(BY) C WH*(BT) ifm>r, p>sand m— LG

n
p S

In particular, WQT%?(B{L) is continuously imbedded in W?(B7}). On the other
hand by Proposition 4 in [14], we have

WH(BY) — L*3(BY) = Lo (BY)
continuously. We then deduce that

Auy, = —uk.|uk|4/("72)

n 2(n-2)
is bounded in L2 w72 (B7). Here, we have used the following lemma.

Lemma 3.1. If f € L»(B}) and o € Q, then f* € L& (B}).
Proof. In the case where a € N, the result follows from the fact that

feL®(B?) and g € LYB?) = f.g € LY"(BY}),

where % =14 2and L =1+ (see [2]). The general case is a consequence of the

fact that the increasing rearrangement of the function |f|? is equal to the puissance
f3 of the increasing rearrangement of | f| since (f2)* is the only one function verifying

meas{z € R" : f(z) > A\} = meas{t > 0: (f%)*(z) > \}
This in turns proves Lemma O

Now, using in [I4, Theorem 8|, we deduce from (3.7) that (Vuy) is uniformly
* 2(n—2) 2(n—2)

bounded in the space L) (B}) = L>7##2 (B}). Hence (uz) is bounded

. g% 2(n—2)
in L " 7»F2 (B}). Then

Auy, = —uk|uk|4/("72)

2n 2(71—2)2
is bounded in L™*” +»* (B}). Hence, again by [14, Theorem 8], the sequence

)

2(n—2)2
(Vuy) is bounded in L> 22 (BT) and by elliptic regularity Theorem

Auk = —uk|uk|4/("_2)

2n 2("—2)3

is bounded in L™+ »+2% (B}"). We obtain after p iterations that

Auy, = —uk|uk|4/("_2)

on 2(n—2)P
is bounded in Ltz Geo7 (BT). We choose p > 0 such that 6p > n, we have in
2(n—2)?

particular nF2)7

< 1 which gives

Auy, = —up|ug| ¥ =2
is bounded in L%J(B{’). Here we have used the fact that
LY (BY) € LY (BY) if 1 < g
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We use also [14, Theorem 8] to deduce that (Vuy) is bounded in L(%)*’l(B{L) =
L271(B?). In particular, there exist a constant C' > 0 depending only on n such
that

Hvuk||L271(B{L) S C (311)
We deduce from (3.10)), (3.11) together with the L% — L*°° duality that
IVurllLz(sp\rs,) < IVukllLzasp\rs ) IVurllz. < s, ) < Cle)

for a constant C(¢) — 0 as ¢ — 0. Now, we use the embedding H' — L2/ ("2
continuously, we obtain

”uk||L2”/("*2)(B{‘\BR§]C) < C||Vuk||L2(B;\BR5k)
<C(e) -0 ase—0.
We deduce that

lim lim (Jug|>™ =2 4+ |Vug|?) () dz = 0
fimoo k=00 JB1 (0)\ Brsy, (4
This proves Theorem in the case of one bubble.

The case of more than one bubble can be handled in a very similar way and we
just give few details for m = 2. The proof starts the same until which cannot
hold any more otherwise we would have had one bubble only as it is holds.
It remains to show that: for any € > 0, there are sufficiently large R > 0 and a
sequence r; — 0 such that for any Ré; <r; <1/2,

1 2 -2 _
lim lim (|Voi| + 22 |2 "Dy gz = 0,
R—o0 i—00 {O}XB?;\BEQ (0) 2 2n (3 12)
. 1 2, N—=2  9n/(n-2) -
1 1V, ——|v; =
im (2|Vv |+ 5 |vi] Ydx =0

=00 J{0yx By, \ By (0)

where v; is defined by v;(y) = r;(n=2)/2 ui(ryy) , y € R™

The proof of can be done exactly as the proof of , the case of 2 bubbles
is then proved. To prove the general case, for any number m > 2, one can follow
exactly the same strategy.
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