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ABSTRACT 
 

Most publicly available datasets are in a tabular format. It is one of the common 

data formats used for machine learning (ML) applications, especially in HPC, where 

models solve regression problems, such as predicting the execution time. Existing ML 

techniques leverage the correlations among features given tabular datasets, disregarding 

any relationship between the samples. Moreover, the success of the downstream analysis 

techniques depends on how well information is extracted from the raw features. For high-

quality embeddings, existing methods rely on extensive feature engineering and 

preprocessing steps, which come at a high cost and require a human in the loop. To fill 

these two gaps, we propose a novel idea of transforming performance data into graphs to 

leverage the advancement of graph neural network-based (GNN) techniques in capturing 

complex relationships between features and samples. In contrast to other ML application 

domains such as social networks, the graph is not given; instead, we need to build it. To 

address this gap, we propose graph building methods where nodes represent samples, and 

the edges are automatically inferred iteratively based on the similarity between the 

features in the samples. We evaluate the effectiveness of the generated embeddings from 

GNNs based on how well they make even a simple feed-forward neural network perform 

for regression tasks compared to other state-of-the-art representation learning techniques. 

Our evaluation demonstrates that even with up to 25% random missing values for each 

dataset, our method outperforms commonly used graph and deep neural network (DNN)-



 

xii 

based approaches and achieves up to 51.77% improvement in MSE loss over the DNN 

baseline.
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1. INTRODUCTION 

Most publicly available datasets that researchers use on machine learning models 

are in a tabular format due to the user-friendly interfaces that make it easier to collect 

data from various applications (e.g., google forms and online questionnaires). In a tabular 

dataset, each row contains a data sample, and each column either contains a feature or a 

target that needs to be predicted. An example of a tabular dataset is the House Prices 

dataset [1], where the columns contain features including Lot Area, Year Built, Utilities, 

etc. The machine learning (ML) task is to predict each house’s Sale Price. 

 

Figure 1. A sample for the House Prices Tabular dataset contains numerical and 
categorical features in the first eleven columns, and the last column is the prediction 
target (Sale Price). Note that values colored in red (NaN) are missing values. 

To use machine learning (ML) algorithms on tabular data, we need to split the 

data into training and testing sets, where both sets contain input features and a target 

value. Splitting the dataset is necessary to evaluate the model’s accuracy and its ability to 

generalize to unseen data samples during testing. The downstream ML models can only 

operate on a vector representation of each sample, called feature representation, so the 

raw data needs to be transformed in that format.  
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1.1 Motivation 
 

HPC is critical for solving many complex problems, and big tech companies are 

interested in predicting the time to develop a new product. HPC configurations (e.g., 

number of threads, nodes, power cap, thread binding) significantly impact resource 

utilization and execution time. It is critical in the HPC systems to predict the runtime 

precisely since scheduling systems allocate job time based on these predictions, which 

means under prediction will cause the jobs to exceed the time limit; therefore, the job will 

need to be resubmitted. Over-predict the runtime causes the system to be idle, which 

means system underutilization. Hence, over and under predictions of runtime waste both 

user time and expensive system resources. 

To enable precise runtime prediction, the performance analytics research area in 

HPC leverages ML techniques. The problem of interest is extracting the most meaningful 

information from seemingly unrelated user inputs (i.e., configurations and algorithms) to 

preserve the correlation between input features and target performance metrics. 

Effectively learning to represent information is a fundamental problem because the 

accuracy of downstream ML models heavily depends on the quality of information 

captured.  

While the existing performance analytics research captures user inputs and the 

respective application performance in tabular formats, this format only allows most of the 

downstream ML models to exploit relationships across the features within each sample. 

Here, a feature is the ML terminology for describing a user input, and a sample is the 

instance of an application run. This thesis proposes investigating a novel approach of 

transforming tabular data into a graph data structure. Specifically, we hypothesize that 
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using a graph structure to describe a performance dataset (spanning many samples) 

enables implicitly describing similarities between samples and, thus, constructing the idea 

of neighborhoods. This novel idea of building a graph from a performance dataset [2] 

with many samples enables learning from similarities across samples and features to infer 

the edges and their weights across samples (or nodes). In contrast, the existing tabular 

data representation approaches require explicit distance measures to define similarity, 

which is challenging for multimodal data. Moreover, for a streaming performance 

analytics system, where finding labeled data is scarce and rebuilding models when new 

samples arrive is too expensive, new unlabeled samples can be easily placed in the 

existing dataset based on their inherent neighborhood similarity. 

1.2 Representation Learning 
 

Representation learning is a technique that allows the model to automatically 

learn the representations from raw input data that is needed for feature extraction. Then 

the model uses the features extracted to predict the required task. Representation learning 

brought a lot of breakthroughs in image processing and Natural Language Processing by 

learning representations within the data with various levels of abstraction [3]. 

Researchers use many methods, such as preprocessing, feature engineering, 

dimensionality reduction, etc., to encode the salient information from these features into 

the representation vector, also known as embeddings. Depending on their types, some of 

these methods are easy to use, others not. One of the requirements in the HPC community 

is to provide explainability to the downstream models. So, feature engineering methods 

such as dimensionality reduction using Principal Component Analysis (PCA) [4] that 

obfuscate the features cannot be used. On the other hand, techniques like Long-Short-
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Term-Memory (LSTM) do not support multimodal data. They require an explicit distance 

function to find the correlation between samples making HPC performance prediction 

even more difficult. 

Finding an effective solution for tabular data is an active research problem, where 

researchers proposed a lot of work to enhance the model’s performance. Tree-based 

models like XGBoost [5] have achieved encouraging enhancement in performance 

prediction for real-world applications.  However, when the data has a lot of missing 

values in the features or if the data sample is unlabeled, existing supervised algorithms 

perform poorly or become inapplicable. To overcome these two issues, existing literature 

has proposed Attentive Interpretable Tabular Learning like the TabNet model [6]. 

Nonetheless, the TabNet model also uses deep learning techniques which leverage the 

correlations among features within each sample given a tabular dataset but disregard any 

relationship between the samples. Existing methods based on tabular data format rely on 

extensive feature engineering and preprocessing steps to overcome this shortcoming, 

which come at a high cost and require a human in the loop.  

To leverage correlations across features and samples without investing time and 

effort in the manual feature engineering process, we suggest a new representation 

learning technique that automatically encodes the input into the best possible 

representation to address the previously mentioned problems.  We transform tabular data 

into a graph structure which allows relationships between the data to be implicitly 

modeled.  To improve the graph, we automatically infer edges based on similarity, which 

makes graph transformation autonomous and results in explainable models downstream.  

To validate the performance of our hypothesis, we would use High-Performance 
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Computing (HPC) data to test how we could leverage representation learning. Our 

representation learning technique is effective for a streaming performance analytics 

system, where finding labeled data is scarce and rebuilding models when new samples 

arrive is too expensive.  New unlabeled samples can be easily placed in the existing 

dataset based on their inherent neighborhood similarity.  The experimental results show 

that our representation learning technique combined with automated edge inference 

improves performance predictions in the HPC domain compared to deep learning 

modeling. 

1.3 Summary of Contributions 
• To capture relationships between samples, we transform tabular data into a graph 

data structure, where each node represents a sample, and each edge represents a 

relation between two samples.  

• We propose a novel representation learning technique that can automatically 

refine the edges based on feature and sample similarities and use Graph Neural 

Networks (GNN) to build effective embeddings. 

• We develop an end-to-end framework for autonomous graph transformation and 

representation learning that results in explainable models downstream.
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2. BACKGROUND 

Since the ML model does mathematical operations on the input data, the 

categorical data in the tabular dataset needs to be converted into numerical values. This 

process is called categorical encoding. There are multiple algorithms like One-hot 

Encoding, Label Encoding, etc. For example, Label encoding detects unique values in the 

categorical columns and assigns classes to them. The numerical values range between 0 

and the number of unique values -1, and based on that, a look-up table is created where 

each categorical value maps to a numerical number. If the value is repeated, it converts it 

to the same value assigned previously in the look-up table.  

2.1 Data Description 
 

We need to specify the learning type of the algorithm based on the task given. For 

example, the input data to a supervised learning algorithm, which is an algorithm that 

learns to predict a target value based on the input features, are a feature and a target 

vector. In our tabular format case, the input feature vector after transformation will be N 

x M size, where N is the count of samples and M is the number of columns -1. The target 

vector size is N x 1, where N is the number of samples, and 1 is the predicted value. 

On the other hand, in an unsupervised learning algorithm, the input is only a feature 

vector. The algorithm attempts to find relationships in the data and groups them together. 

The input feature vector size is N x M where N is the number of samples and M is the 

number of columns.  
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2.2 Preprocessing 
 

Data preprocessing makes the data samples consistent, making it easier for the 

model to find relationships and patterns. Thus, it is necessary to improve the model’s 

performance, which can be divided into three main steps: data cleaning, data reduction, 

and data transformation. 

In data cleaning, the primary focus is handling missing data, which is common in 

datasets and usually happens due to the user or program errors. The ML model does not 

understand missing values, so they must be cleaned and replaced with numerical values. 

We can use imputation techniques like simple imputer provided by the sklearn library [7]. 

The simple imputer finds the missing values. Based on the strategy, it replaces all missing 

values in the column for the given strategy (i.e., it replaces all missing values with the 

mean value of the column). Other imputation algorithms are KNNimputer [8], 

IterativeImputer [9, 10], and DataWig [11], which is a Deep Neural Network (DNN) 

model for learning the imputation of missing values. 

Data reduction techniques are commonly used with large datasets, increasing the 

computation time of the model. Usually, large datasets cause memory errors (e.g., out-of-

memory errors) due to the massive amount of data that needs to be running in the 

memory. A common technique is Principal Component Analysis (PCA) [4] and t-

Distributed Stochastic Neighbor Embedding (t-SNE) [12]. Both are used for 

dimensionality reduction using a mathematical algorithm that reduces complexity and can 

plot figures in 2-D or 3-D to notice patterns and better visualize the data.  

Data transformation enhances the model performance dramatically when the input 

features have a different scale. For example, if one feature ranges from 0 to 1, and 
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another feature ranges from 1 million to 100 million, the model will understand that the 

second feature is more critical, giving it more weight in the prediction decision. The most 

common data transformation technique is data normalization, where all features are 

normalized into a specific range using a standard scale. Normalization transforms the 

data into new values while maintaining the correlation and main distribution between 

data samples. The most popular normalization algorithms provided by sklearn are 

Standard Scaler [13], Min-Max Normalization [14], and Robust Scaler [15]. 

2.3 Feature Engineering 
 

Feature engineering is the process of inspecting the dataset and converting the raw 

data into more fine-grained features. Most feature engineering techniques have a similar 

approach to preprocessing techniques except for feature creation. Feature creation is the 

procedure of creating new columns in the tabular format that can help the model correlate 

and enhance its performance. For example, suppose we are predicting the price of a TV 

in an electronic store. In this case, a useful Boolean feature can be created, indicating if 

today is a weekend or a holiday. The model can correlate the current day with two 

features considering the price prediction. 

The ML researchers have used many feature extraction models to understand the 

data better and achieve the required predictive task. In recent years, approaches like deep 

neural networks have been commonly used for modeling. Feature extraction models have 

shown a considerable improvement in predicting specific tasks compared to neural 

networks and have been the focus ever since.  
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2.4 Neural Networks and Deep Learning 
 

Neural networks have been a topic of research for over 70 years. It started in 1943 

when McCulloch and Pitts provided a way to describe brain functions in abstract terms. 

They proposed the idea of a neuron where simple elements connected in a neural network 

can have immense computational power [16]. In 1949 Introduced the Hebb’s low, which 

explained how close neurons fire together, making coupling tighter, illustrating the basis 

of neural pathways and synaptic transmission. It was not until 1959 that we had the first 

computation model represented in the Mark 1 Perceptron, a machine designed for image 

recognition; it had an array of 400 photocells, randomly connected to the neurons. 

Weights were encoded in potentiometers, and an electric motor performed weight updates 

during learning. At this time, Frank Rosenblatt went into a public academic debate with 

Marvin Minsky, who was an MIT professor researching neural networks as Rosenblatt 

claimed that any classification for which a solution exists will always yield a solution in 

finite time using his perceptron. Minsky proved that the function was too simple to map 

underlying distributions, which turned other researchers in this field away from the topic 

of neural networks in the research community. In 1986, Rumelhart, Hinton, and Williams 

popularized gradient calculation for the multi-layer network. Until this point, no one 

could train a multiple-layer network consistently, and the algorithm was popularly called 

Back-Propagation. It won the pattern recognition prize in 1993 and became the de-facto 

machine learning algorithm in the 1990s. In 1989 Yann LeCun used back-propagation to 

learn the Convolutional Kernel Coefficients directly from images of hand-written 

numbers. Learning was thus fully automatic, performed better than manual coefficient 

design, and solved a broader range of image recognition problems. In 1995 Sepp 
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Hochreiter proposed Long Term Short Memories (LSTM), which, unlike feed-forward 

neural networks, LSTM has feedback connections. It can process single data points (such 

as images) and entire sequences of data (e.g., text, speech, and videos). In the early 

2000s, other tree-based models like Random Forest and Support Vector Machines with 

kernels gained much traction over neural networks. It was not until 2004 that Hinton 

secured funding from CIFAR and published a paper in 2006 on using pre-training and 

Restricted Boltzmann Machines (RBMs), followed by another paper in 2007 claiming 

that deep networks are more efficient than RBMs. In 2009 Hinton’s lab along with 

Andrew Ng’s lab, started using GPUs for training networks which decreased the training 

time by 70 folds. In 2012, Hinton’s lab entered the ImageNet competition and won by 

over 10% from the second place using convolutional neural networks, and the computer 

vision community adopted it en masse. 

Existing tabular approaches require many labeled data; they cannot self-regulate 

based on unlabeled samples and need retraining when slightly different data samples are 

introduced to the model. Additionally, these approaches consider each sample or batch as 

input without leveraging the similarities or dissimilarities between the input samples 

regarding the predictive task. 

Tabular datasets used in the production environment require extensive 

preprocessing and feature engineering since both are the key to improving the ML 

model’s performance. This process also requires time, resources, and human 

involvement. Nevertheless, finding the best representations of the input data is necessary 

to save resources by choosing less complex models that will still perform well and 

generate reliable results because the input is well structured. Another commonly used 
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technique is feature importance algorithms (e.g., the Random Forest algorithm) [17]. The 

Random Forest algorithm is a supervised ML algorithm that automatically ranks features 

based on their importance, allowing the removal of the poor or irrelevant features. 

However, when it has empty values in the features, it performs poorly, and if the data 

sample is unlabeled, it will not work since it is a supervised algorithm. 

2.5 Graph Data Structure  
 

A graph is a special kind of data structure consisting of a set of vertices and edges 

to connect vertices. A graph can be cyclic where at least one path of the starting vertice is 

the ending vertice or can be acyclic and does not contain any cycles. The edges of the 

graph can be directed or undirected. A directed graph has one-way relationship 

connectivity, e.g., node A is connected to node B; however, node B is not connected to 

node A. Undirected graph means every edge connects the two vertices using a two-way 

relationship. Graphs are heavily used in real-world applications. For example, on a social 

network like Facebook, a user can be a node, and when they become a friend with 

another user, there is an undirected edge between them. Another application is google 

maps, where graphs are used to find the path from the source to the destination where the 

data are represented in a graph structure. We ran the shortest path from source to 

destination to find the fastest available path for the user. We plan to explicitly model the 

relationships between the input data samples and leverage the findings on a graph-based 

ML model. 
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3. RELATED RESEARCH 

This chapter will discuss research related to graph building methods for different 
tasks.  

3.1 Deep Modeling Explain-ability using Graphs  
  
 Researchers have previously used graphs in model explain-ability where tabular 

data was transformed into a graph to produce explainable predictions. This model is 

called TableGraphNet [18].  TableGraphNet architecture builds a single graph or multiple 

graphs for each data sample. The graph node contains the feature attributes, and the graph 

edges contain the distance between the feature attributes. Using the generated graphs for 

the input samples, they extracted node and attribute-centric features for every attribute. 

They fed the extracted features into a deep neural network to get the desired prediction 

task. Researchers evaluated their proposed architecture using three classification datasets 

and eight regression data sets. Their experiments concluded that TableGraphNet performs 

similarly to a regular Deep Neural Network model. However, the TableGraphNet is 

robust towards missing data, providing consistency and explainability behind the 

predictions. TableGraphNet resulted in better predictions due to better explainability, 

improving the overall model’s performance. Their architecture did not perform better 

than DNN. On the other hand, our architecture gets evaluated with a DNN as a baseline, 

and the results show significant improvement. For more information about the results, 

please refer to the results chapter. 

3.2 Tabular Data Prediction using Multiplex Graphs 
 
 Recently researchers at 4Paradigm published “TabGNN” [19], a new framework 

architecture in 2021, to leverage relations between samples by building Multiplex graphs 
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[20]. Multiplex graphs were constructed to model relations between people that can be 

used in many applications (e.g., friend suggestions on Facebook). Multiple graphs 

explore the links between two people based on similarity and suggest new connections.  

TabGNN framework takes tabular data as input, constructs a directed multiplex 

graph based on the table columns referred to as features, and encodes each sample for an 

initial node embedding. Researchers used a graph neural network to produce latent 

feature embedding for each data sample. After getting the final representation 

embedding, they use Auto Feature Engine (AutoFE) to choose significant features and 

then use a Multi-Layer Perceptron to get the final prediction. They evaluated the 

proposed approach by doing experiments on nine private and two public datasets. The 

framework heavily relies on AutoFE and DeepFM [21] to become scalable, two popular 

feature engineering methods used for tabular data. AutoFE is a feature engineering tool 

developed by 4Paradigm [22] that provides automated feature generation for tabular data 

and has been used by various users in different fields. DeepFM is a deep neural network 

architecture based on factorization machines and deep feature learning that automates the 

feature engineering process and requires only raw data. The experiments showed that 

utilizing both AutoFE+TabGNN and DeepFM+TabGNN outperforms using AutoFE or 

TabGNN alone. In contrast, our approach leverage the graph data structure without 

requiring any complex feature engineering DNNs, significantly improving the 

training/testing time. 

3.3 Knowledge Graph for Efficient Meta-learning 
 
 Researchers explored the idea of graph structure to improve Meta-learning [23] in 

recent work like Automated Relational Meta-learning (ARML) [24]. ARML generates 
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multiple prototypes from training samples based on tasks given. Each task has a 

prototype feature vector representing it and is utilized to build a knowledge graph called 

the “Meta-knowledge graph”. The meta-knowledge graph then computes the similarity 

between the prototypes and itself to update the graph. The output graph, which they call 

SuperGraph, contains information regarding previous samples and successfully adapts 

when a new task is introduced into the model by finding the most similar structure in the 

meta-graph. 

The Researchers evaluated their proposed approach on a 2D toy (random 

numbers) for regression and image classification. They concluded that ARML leverages 

the meta-knowledge graph to obtain fine-grained structure more than other gradient-

based meta-learning implementations. The single limitation of this implementation is that 

it can only be used with meta-learning algorithms and has been evaluated by image 

classification datasets that are not in tabular format. The ARML architecture uses DNN to 

transform the input data into a better representation. One idea to leverage the ARML 

architecture is to use our approach for the data transformation to produce more fine-

grained representation leveraging both feature extraction and the relationship between the 

input data.
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4. METHODOLOGY 

This section will discuss the core concepts of our proposed approaches, data 

preprocessing, and embedding generation. 

We propose transforming tabular data as a graph, where nodes represent samples 

and edges represent relationships between the samples. We hypothesize that holistically 

capturing the relationships across samples and parameters enabled by the graph 

formulation can improve the effectiveness of the downstream ML tasks. 

Unlike other research domains where the graph structure is explicitly provided, 

the graph from tabular data needs to be constructed. While data samples can directly map 

to nodes, edges between samples must be defined explicitly or inferred automatically. 

The rationale for organizing data as a graph compared to the state-of-the-art dictionary-

based approach is that a graph structure can inherently describe relationships among 

features and samples, allowing downstream ML tasks to capture information from 

relevant neighbors by exploiting these interrelations. On the other hand, the dictionary-

based approach only leverages feature extraction to generate the representation vector. In 

contrast, the graph structure leverages both feature extraction and the relationship 

between the samples in generating the representation vector. 

 
Figure 2. Our proposed ML pipeline. 

The graph design adopts the architecture of an undirected weighted graph G = (V, 

E, A) to represent a performance dataset, where each node 𝑉𝑉𝑖𝑖 ∈ V denotes a sample, and 

edge ∈ E denotes a relationship with another measurement. A ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁 is an adjacency 
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matrix that specifies the weights on the edges, where 𝐴𝐴𝑖𝑖,𝑗𝑗 corresponds to the edge weight 

between nodes 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 that can be calculated based on their similarities. 

For data that belongs to the Euclidean space, 𝐴𝐴𝑖𝑖𝑖𝑖  can be calculated using a 

distance metric between 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗. However, for non-Euclidean or dense data such as a 

tree, building 𝐴𝐴𝑖𝑖𝑖𝑖  using Euclidean distance is not meaningful. Hence, instead of using 

explicit distance measures to construct the graph, we propose to learn 𝐸𝐸𝑖𝑖𝑖𝑖and 𝐴𝐴𝑖𝑖𝑖𝑖 through 

automated graph edge inference method using self-supervised learning, which starts from 

a fully connected graph with measurements as node features and then iteratively refines 

node and edge features based on their similarities without any explicit distance measure.  

4.1 Self Supervision 
 

Supervised learning is a bottleneck for building more intelligent models that 

represent the world and can do multiple tasks without massive amounts of labeled data. 

Practically speaking, it is impossible to curate everything in the world and give it a label. 

We propose that using Self-supervised learning (SSL) enables ML systems to learn from 

the order of magnitude more unlabeled data, which is essential to recognize and 

understand patterns of more subtle, less common representations of the world. The main 

idea of SSL is to automatically generate a helpful representation of the input data and 

learn using a supervisory signal from the model that helps achieve the desired task. The 

advantage of SSL is that it learns from unlabeled data. On the other hand, supervised 

learning algorithms require extensive labeled data, which is time-consuming and hard to 

collect. 

SSL algorithms have been heavily used in recent years due to their promising 

results and the breakthrough of developing Transformers, which was a massive milestone 
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in Natural Language Processing (NLP) and resulted in state-of-the-art models in NLP like 

OpenAI GPT2 [25] and Google’s BERT [26]. We effectively use self-supervised learning 

to develop an automated edge-inference-based method that optimizes the graph edge 

weights. 

4.1.1 Automated Edge-inference-based 
 

The automated edge-inference-based method has been shown to create effective 

embeddings that improve the predictive performance of the downstream analysis 

algorithms [27]. After building the graph, we will use graph-based models like Graph 

Neural Network (GNN) [28], Graph Convolutional Network (GCN) [29], or Graph 

Attention Layer (GAT) [30] for the embedding generation and use a simple model, e.g., 

Linear regression for the predictive task. 

4.2 Neighborhood Similarity  
 

Our hypothesis is to leverage input features and relationships between the input 

samples. So In order to determine which samples are related or similar to each other, we 

use similarity distance algorithms to detect the relevance between multiple samples. The 

most popular algorithms regarding distance calculation in 2-D data are Euclidean, 

Manhattan, and Minkowski distances. Since most data scientists use multi-dimensionality 

datasets and have many features, we chose the Cosine and Mahalanobis algorithms since 

they function better in higher dimensionality. We found that Cosine Similarity performs 

better, so that was our choice. The cosine similarity works by plotting the data on an N-

dimensional plot based on the number of features and then measuring the cosine of the 

angle between the current sample and all other samples. The high cosine similarity 
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indicates that the angle between the two samples is slight. Therefore, the two samples are 

similar to each other. To further understand, let us look at figure 3. We take sample 0, 

calculate the cosine similarity between all other samples, and then choose the top N 

similar samples. N is a hyperparameter that the user can change, and it determines the 

number of edges in the graphs.  

 

Figure 3. Example of building a graph from cosine similarity. We utilize the Top N 
approach, which is the number of edges.  
 
In figure 3, N is equal to three, and after finding the top three samples (150, 151, and 30) 

based on the cosine similarity, we create a node for each of them where each node 

contains the sample’s feature then build the edges accordingly. This process happens for 

each sample within the dataset, so the final output is a large graph representing the 

dataset set and the relationship between the samples. 
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4.3 Graph-based models 
 

Recent research has found that neural network-based learning on graphs [31] 

accommodates unlabeled data and outperforms traditional convolutional neural networks. 

The graph can learn to represent graph nodes, edges, and sub-graphs in low-dimensional 

vectors, which captures relationships across samples and parameters to embed the whole 

dataset effectively and learn from unlabeled samples by exploiting their similarities. The 

graph will be used in multiple tasks like node classification, link prediction, community 

detection, or graph classification. 

 The most common graph models are GNN and GCN, so let us discuss their 

differences. GNN is a specific kind of  Neural Network (NN) [32] that takes graph data 

structure as an input. The main advantage of the GNN over the NN is that the learning 

equation includes the neighborhood of the current node vector representation based on 

the edges connected with the current node. This operation is known as message passing. 

Researchers kept developing the GNN architecture until GraphSage [33] was introduced 

in 2017. GraphSage optimized the learning equation by learning the vector representation 

of each node inductively and having more complex aggregation functions for the message 

passing. That makes the GNN perform better and generalize for unseen samples during 

the deployment of the model by representing the unseen sample to the neighboring nodes. 

GCN is a specific kind of Convolution Neural Network (CNN) [34]. The GCN behaves 

similarly to the GNN, where we include the message passing perspective in the learning 

equation. The main difference is the hidden layers architecture. The GCN stacks several 

graph convolution layers to extract a high-level node vector. On the other hand, the GNN 

contains Multi-Layer Perceptron (MLP) [35] for the hidden layer representation to extract 
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the node feature vector. 

Later on, graph-based models gained much interest, explicitly improving the GCN 

architecture, and many GCN architecture variations have been proposed. The GAT model 

was one of the top-performing variations. GAT has a unique architecture where the 

model finetunes the neighborhood message using self-attention layers. The purpose of the 

self-attention layer is to generate the attention coefficient 𝛼𝛼𝑖𝑖𝑖𝑖 which acts like a weight 

that defines how 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 related to  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖. The attention coefficient effectively improves 

edge connections and generates overall more fine-tuned message passing embeddings, 

making GAT a state-of-the-art algorithm broadly used in the research and production 

industries. 

This thesis uses the graph-based model to generate a vector representing each 

node. Then apply semi-supervised node regression, which produces a regression value for 

each node.  

Based on a deeper understanding of the problem, we developed two main 

approaches for graph generation. 

4.4 Graph Generation 
 

This sub-section explains how to generate the graph from the tabular data and 

provides a general discussion about each approach and how to optimize it further. 

4.4.1 First Approach: Single Graph 
 

Building a single graph for the whole dataset where each node is a data sample 

and the edges can be fully connected. The edge weights will be initialized by one value 

and updated using self-supervision learning. The model will encode the input data to 
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discover valuable representations, giving higher edge weight to similar data and lower 

edge weight to dissimilar data. This approach has high computation cost, can cause 

limitations by the memory based on the dataset size, and can cause averaging effect since 

the graph is fully connected, resulting in having an edge between two unrelated nodes.  

Figure 4. Transforming tabular data into a fully connected graph. 
 
The number of nodes represents the number of samples in the fully connected graph. In 

Figure 4, the Fully connected graph contains seven nodes and 42 edges representing the 

dataset. To optimize this approach further, we used a cosine distance measure to generate 

the edges between N similar nodes, where N is the number of edges connected to each 

node. N is treated like a hyperparameter that the user can adjust for better model 

performance or specify based on memory-specific constraints. 

 

Figure 5. Reducing the graph into a more approximated graph.   
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In the above figure, we chose N =2 for easier visualization, and we can see that 

each node has only two output edges connected to the nodes with the highest similarity. 

 

Figure 6. The framework uses a self-supervision module to generate more fine-tuned 
edge weights iteratively through the convolution layer. Then we feed the optimized graph 
to the graph-based model and extract the embeddings from the last hidden layer of the 
model to evaluate its effectiveness on a simple regression model. 

The figure above explains our ML pipeline. We extracted the embedding from the hidden 

layer of the graph-based model to get embeddings that represent the features and their 

relationship. Then fed the embeddings to a simple model to see the improvement 

percentage. 

4.4.2 Second Approach: Batched Graph 
 

Generating clusters using unsupervised learning to find groups within the data 

based on similarity to build M graphs, where M is the number of clusters. This approach 

is memory efficient since we have batches of samples connected together and positively 

leverage the averaging effect. We still have high computation cost due to N*N-1 edges 

being fully connected. To further optimize this approach, we can reduce the number of 

edges using top N similar nodes to each node as explained in the first approach. 
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In the figure above, there are 5 clusters found, and each cluster has a different number of 

samples. For example, the red cluster has 5 data points while the green cluster has 3. 

This approach’s performance heavily relies on the chosen unsupervised learning 

algorithm. Based on several experiments, we found that some clustering algorithms, e.g., 

K-means clustering [36], are sensitive to noise and tend to group one large cluster and 

multiple small clusters that are usually outliers. We chose Hierarchical Density-based 

Spatial Clustering of Applications with Noise (HDBscan) [37] due to its parameter 

flexibility, where we can adjust parameters like “min_samples” and “min_cluster_size” 

to control minimum cluster size and when to split up one large cluster into two or more 

clusters. HDBscan encodes the input samples into transformed space according to their 

density and then builds a minimum spanning tree (MST) using standard MST algorithms 

like Prim’s [38] to find the cluster hierarchy. The final step in HDBscan is to extract the 

generated cluster, so we first condense the cluster using the minimum cluster size 

Figure 7. Transforming the graph into smaller batched graphs based on clusters found. 
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parameter and then extract the remaining parts. 

We used the same top N technique as the first approach based on cosine similarity to 

optimize this approach further and prevent the averaging effect. In approaches one and 

two, we used the graph-based model as GNN, specifically, the deep graph library 

implementation called GraphSage [39, 40]. 

4.5 Preprocessing  
           

Since the core of our approach is to find a better representation of the input data 

automatically, we used minimal processing, precisely three preprocessing techniques, 

categorical encoding, standardization, and imputation of missing values. 

Categorical Encoding: Since the ML model does mathematical operations on the input 

data, the categorical data in the tabular dataset needs to be converted into numerical 

values. This process is called categorical encoding. There are multiple algorithms like 

One-hot Encoding, Label Encoding, etc. We used the One-hot Encoding implementation 

Figure 8. The Approximated batched graphs get fed to the pipeline one graph at a time. 
The framework uses a self-supervision module to generate more fine-tuned edge weights 
iteratively through the convolution layer. Then we feed the optimized graph to the graph-
based model and extract the embeddings from the last hidden layer of the model to evaluate 
its effectiveness on a simple regression model. 
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by Pandas library [41]. One-hot encoding detects unique values in the categorical 

columns and creates a binary column for each unique value. This column will have a 

value of 1 for each sample corresponding to its original column and assign a 0 otherwise.  

Standardization: To standardize the input data into a common scale, we transform the 

data using the standard scaler algorithm provided by sklearn [13]. The standard scaler 

removes the mean and scales the data based on the unit variance so that the scaling of 

each feature is independent of the other features, but eventually, they are all scaled in the 

same way and have equal weights. 

Imputation: To address the missing values in the input data, we used Simpler Imputer 

provided by sklearn [42]. The simple imputer finds the missing values and replaces all 

missing values in the column based on the selected strategy. We used the strategy 

parameter as the mean, replacing the missing value with the feature column’s mean. 

4.6 Classifier Optimization 

4.6.1 Generalization   
 

We used the drop-out layers concept to prevent overfitting and assure model 

generalization. 

Drop-out Layer: Randomly dropping neurons in the hidden layer is a well-designed 

technique developed in 2013 [43] to counter the overfitting problem. It works by 

randomly dropping some of the edges to the subsequent layer neurons during the training 

phase. We used the technique effectively on the input and hidden layers of the model and 

chose the drop-out probability using a hyper-parameter optimization tool. The drop-out 

technique does not affect the testing set since it is only used during training. 
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4.6.2    Optimizer  

The loss gets calculated based on the loss function in every epoch, and the 

optimizer tweaks the model parameters to minimize the loss. In other words, the loss 

function is the guide for the optimizer, making sure it is working in the right direction. 

This makes the optimizer a key parameter in the model performance. We used the Adam 

optimizer [44]. Adam is commonly used in the ML field due to being computationally 

efficient, memory-optimized, and robust against noisy gradients. Adam is built based on 

two algorithms, The Root Mean Square Propagation (RMSProp) [45] and the Adaptive 

Gradient Algorithm (AdaGrad) [46], taking advantage of both of them and continuing on 

it. The unique idea of Adam is that it takes the exponential moving mean of the squared 

gradient and the gradient. Adam also has additional parameters like beta1 and beta2 to 

adjust the decay rates of the moving mean. Based on that, Adam is the ML default 

optimizer, and it outperforms most of the other optimizers [47]. 

 

4.6.3 Activation Function 

The activation function is critical for designing the model since it decides how to 

propagate the weighted sum of the current layer into the next layer neuron. It is being 

used in each neuron node in the neural network. Based on multiple experiments, we 

chose Rectified Linear Unit ReLU. ReLU became widely used due to its simple 

implementation, faster training of the model, overcomes the vanishing gradient problem, 

and usually outperforms other activation functions, thus achieving better performance for 

the model. The ReLU function removes any negative value and replaces it with a zero, 

and for all positive values, it returns the same value. The following equation explains the 
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implementation of the ReLU: 

ReLU(x) = max(0 , x) 
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5. IMPLEMENTATION AND EXPERIMENTAL SETUP 

5.1 Implementation 
We Implemented our code using two main libraries in python: 

• Networkx (NX) [48] 

• Deep Graph Library (DGL) [49] with Pytorch [50] backend 

5.1.1 Networkx 
 Networkx is an open-source python library that is commonly used for building, 

visualizing, and studying complex graphs to understand and manipulate the structure of 

the data. 

 We developed our code to generate the graph using NX based on similarity 

measures and initialized edge weight of ones. Then we can extract the adjacency matrix 

network.linalg.graphmatrix.adjaceny_matrix() function that returns a SciPy [51] sparse 

matrix of the agency. We also used the nx.draw() function to visualize the graph and 

understand the ML model's input. 

 

Figure 9. A sample for the NX visualizing a fully connected graph with eight nodes and 
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56 edges where each node has seven edges.  

5.1.2 Deep Graph Library 
 
 DGL is an open-source python library developed specifically to provide an end-

to-end application for the graph data structure. DGL delivers high-performance and 

scalable ML algorithms integrated with the back end of major ML frameworks like 

TensorFlow [52], PyTorch, and Apache MXNet [53]. DGL is efficient regarding memory 

parallelization due to the usage of message passing primitives that scales complex graphs 

using distributed training and GPU acceleration infrastructure. 

 We extracted the NX graph using DGL.from_networkx() function, which returns 

a DGLGraph object. We then can leverage DGL to do all the heavy lifting and 

parallelization for the model. DGL provides more than twenty state-of-the-art graph 

algorithms that can be used in different domains. It has examples and detailed 

documentation that helps manipulate the algorithms to achieve the required task. 

5.2 Experimental Setup 
 

We ran out experiments in parallel using two systems: Penguin Computing On 

Demand (POD) [54] and Google Colab [55]. 

5.2.1 Penguin Computing On-Demand 
 
  We used a machine with 96 AMD EPYC CPUs. Each CPU has 8GB RAM and is 

based on the x86 64 architecture. We used 8 MI50 AMD GPUs for the computing power 

with 512GB total memory. 
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5.2.2 Google Colab 
 
  We used a machine with Intel(R) Xeon(R) CPU with 26.75GB RAM and one 

NVIDIA Tesla P100 GPU with 16GB memory. The GPU is equipped with CUDA 11.2 

toolkit by NVIDIA. The CPU consists of 2.30GHz Intel (R) CPU with two cores based 

on the x86 64 architecture.  

5.3 Performance Metrics 
 

Since we are working with a regression dataset where the label is a numerical 

value, we cannot calculate the model’s accuracy. We estimate the model’s performance 

by seeing the prediction value close to the actual label value. There are multiple 

techniques following this idea, and let us talk about Mean Squared Error (MSE). MSE is 

commonly used in statistics and, based on the name, it calculates the error by getting the 

average square of the two numbers, and the output is always positive. Let us take an 

example to understand, if our model predicts a value of 50 and the label is 25, then the 

mean squared is (predicted –  actual )2 which yields to (50 –  25 )2 = 625, which 

means the model error is high because the prediction value is double the actual value for 

just one sample. The model tries to update its weights to lower that the loss is in the 

direction of zero loss which is the best case. We do the equation above N times, where N 

is the number of samples to calculate the loss. More specifically, the average MSE after 

an epoch (one epoch is where the model passes through all samples one time) is: 

1
𝑁𝑁
�(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 )2
𝑁𝑁

𝑘𝑘=1

 

In our thesis, we will investigate other metrics to quantify the performance of the ML 

methods, e.g., using average MSE, Root Mean Squared Error (RMSE), and training time.  



 

31 

  We compared the suggested approach using four datasets from different domains. 

Using DNN and graph-based models, we generate coarse-grained embeddings and 

evaluate them using a Linear Regression Model as a baseline. The Linear regression 

model achieves the target prediction by finding a linear relationship between the input 

and the output. The model adjusts the weights during the training phase to decrease the 

loss of the learning function and get better predictions. It is widely used in simple ML 

tasks like predicting the weather or time series analysis due to being fast, efficient, and 

having less complex architecture than other models. We used the implementation of the 

linear regression model by sklearn [56]. 

5.4 Hyper-Parameter Tunning 
 

To achieve the best hyperparameters, we utilized the Optuna framework [57]. 

Optuna is a widely used hyperparameter optimization framework that does an automatic 

search for the best parameters and does that efficiently by using state-of-the-art searching 

algorithms. Optuna also handles large searching spaces and straightforward 

parallelization and creates trials history that can be visualized easily. 

The DNN and graph-based model parameters are optimized in all experiments 

using Optuna. Specifically, the tuned model parameters are in the following table: the 

number of hidden neurons, convolution layers, drop-out rate, and learning rate. 

Table 1. Hyperparameters search summary 

Model Hyper-parameters Search range  

DNN and Hidden Layer Dimension [25, 600] 
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Graph-Based Number of Hidden Layers  [2,6] 

Learning Rate [1e−5, 1e−1] 

Dropout [0,1] 

Optimizers  [Adam, Adagrad, Adadelta, 

SGD, RMSprop] 

Activation function  [relu, elu,  leaky_relu] 

Graph-Based Hidden Layer Aggregation [ pool, mean,  gcn] 

Self Supervision Conv Layer 

activation function  

[relu, elu,  leaky_relu, sigmoid, 

tanh] 

Number of Attention Heads 

(GAT model only) 

[1,2] 

 

5.5 Datasets Description 
 
 We used four regression datasets to evaluate our two approaches and the new 

representation learning technique.  We chose the datasets from the HPC domain. 

Specifically, three datasets were collected from supercomputers in our previous research 

teamwork. 

Catalyst  

The dataset was introduced in SC’19 [2], and it was the first dataset collected 

from multiple systems and various user-level parameters on a production HPC cluster. 

The features contain numerical values like thread count and categorical values like the 
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application used. The dataset has various information since changes in the number of 

nodes, cores per node, and service levels were introduced during data collection across 

five benchmarks applications. 

Vulcan 

This dataset captured all information being used by the system and was collected 

from a supercomputer in a production environment. The label of the dataset is the 

process’s runtime. The features contain numerical values, including the number of 

threads running, reload collisions and input size, and categorical values like the 

application used. The dataset has various information since adjustments in the input size 

were introduced during the data collection process. 

Cab 

The dataset was collected from a supercomputer in a production environment, 

capturing rich features that decide the process’s runtime. The features contain numerical 

values, including the number of faults, cache references and input size, and categorical 

values like the application used. The dataset has various information since changes in the 

input size were introduced during the data collection process. 

Table 2. Datasets description 

Dataset Samples Features Domain Target Evaluation 

Catalyst 3992 10 HPC Runtime Regression (MSE) 

Cab 320 148 HPC Runtime Regression (MSE) 

Vulcan 321 172 HPC Runtime Regression (MSE) 
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5.6 Cross-Validation 
 

Researchers frequently use the cross-validation technique to estimate the model 

generalization over the whole dataset by randomly splitting the train/test sets multiple 

times and evaluating the model by averaging the results. In all experiments, we used K-

fold, where K is equivalent to five, meaning we split the data into five train/test splits, 

generating five different results. Those five splits are randomly chosen to cover the whole 

dataset without changing anything in the actual data.  Then we calculate the mean and 

standard deviation to get the generalized model performance and range.
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6. RESULTS 

 This section will compare our approach using graph-based models with the DNN 

approach.  

6.1 Model and Embedding Assessment 
 

We assess the model from multiple perspectives to validate our approach. First, to 

validate the model’s ability to learn, we train the model to predict the value, look out for 

the training loss, and compare it to the testing loss to see if the model can learn and do 

feature extraction on the input. Then we notice the difference between training and 

testing losses and see the model’s ability to generalize. If the model is overfitting, we 

apply drop-out layers and L2 regularization. Second, after making sure the model can 

learn, we use the same approach as the first step. Still, instead of noticing the model 

performance, we extract the model embeddings through the hidden layer before the final 

prediction layer. Then we use those embeddings on a simpler model like linear regression 

to see the change in performance and how effective the generated embeddings are. 

6.2 Experiments  

6.2.1 Experiment One 
 

To evaluate the quality of embeddings generated by our graph representation 

learning method. We use a simple regression model which takes the generated 

embeddings as an input and outputs the predicted task. We measure the performance 

using the improvement percentage in the MSE loss using DNN as a baseline. Also, to 

compare our two approaches, Self-Supervised GNN (SSGNN) and Self-Supervised 
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Batched GNN (SSBGNN), with other existing graph-based models like GAT and GCN-

MP. 

 Table 3. Evaluation of embeddings 

Dataset Catalyst  Vulcan Cab 

 MSE Improvement MSE Improvement  MSE Improvement  

DNN 21.69 - 617.64 - 140.96 - 

GCN-MP 22.28 -2% 510.12 17.4% 142.16 -0.8% 

GAT 29.05 -33.9% 536.05 13.2% 133.85 5% 

SSGNN 16.39 24.4% 455.69 26.2% 131.52 6.6% 

SSBGNN 10.46 51.7% 477.49 22.6% 122.73 12.9% 

 

As shown in table 3, one of our two approaches consistently outperforms all other 

models. Specifically, SSGNN achieved up to 51.7% performance improvement on the 

Catalyst dataset, and SSBGNN achieved up to 26.2% performance improvement on the 

Vulcan dataset.  

 

Figure 10. Comparison of DNN and SSBGNN in performance prediction. The x-axis 
represents the runtime range, and the y-axis represents the predicted runtime. 

In figure 10, it is visually apparent that the SSBGNN model (represented in red) is closest 

to the best fit line of the ground truth compared to the DNN model (represented in blue) 

and is more robust toward outliers. Also, the DNN usually under-predicts higher 
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runtimes, which will cause the jobs to be resubmitted and waste system resources. 

6.2.2 Experiment Two 
 
 Since most publicly available tabular data contain a lot of missing values, we 

concluded that to evaluate the robustness and generalizability of the embeddings 

generated, we need to make multiple manipulations to the data. Based on that, we did five 

experiments where we randomly injected a specific missing values ratio on each dataset, 

and this ratio is 5%, 10%, 15%, 20%, and 25%. After manipulating the input, we evaluate 

and compare the generated embeddings on multiple models like DNN, GNN, GCN-MP, 

and GAT.  

As shown in figure 11, we introduced the three HPC datasets with different 

missing values percentages. The results show that our approach one, SSGNN, and 

approach two, SSBGNN, consistently improve the prediction performance better than all 

other models. More specifically, they performed the best in 16 out of 18 experiments. 

 

Figure 11. Summary of evaluation of the five models on the HPC datasets: the y-axis 
represents the normalized RMSE value. The x-axis represents the Dataset name and the 
missing value per dataset percentage. 
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6.3 Impact of Graph Representation 
 

As shown in the experiments, we can notice that most of the time, the graph-based 

representation learning approach outperforms the DNN. The graph-based models reveal 

the proposed representation learning method's effectiveness and confirm the usefulness of 

the relations between the data samples for the tabular data. It can be leveraged during the 

model prediction.  

 The automated edge-inference-based method using self-supervision combined 

with the graph representation, which is the core of our two approaches, outperformed all 

the other models in 88.8% of the experiments. 

6.3.1 Online Prediction 
 

Another significant benefit of graph representation is online prediction. New 

samples fed to the model in an online matter will first see the similar samples in previous 

data that the model has trained on. Then create edges between them to build the graph 

and get enhanced predictions since the model leverages their relationship. 

6.4 Computational Overhead 
 

We evaluate the computational overhead to ensure the feasibility of the graph 

representation learning method and its usage in the production environments. Figure 12 

evaluates the average of multiple training runs for 500 epochs. 
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Figure 12. Training time for each model based on 500 epoch, the y-axis represents the 
model name, and the y-axis represents time in seconds. 

 
We can notice that, on average, the graph-based models are taking more time to train 

because of the extra time to load the graph into memory and do operations on it. This 

extra time can be acceptable considering the performance improvement mentioned in 

Figures 10 and 11. Compared to the other solution, manual feature engineering needs a 

human to provide more fine-tuned input. SSBGNN takes significantly more time than all 

other models because it loads batches of graphs, and DGL implementation of graph batch 

loader API is a bottleneck for the training phase. However, since SSBGNN uses batch 

training, we can optimize the training even further by using multiple GPUs, which will 

dramatically decrease the training time.
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7. CONCLUSION 

 In this thesis, we proposed a new representation learning method and developed 

two models that use an automated edge-inference-based method using self-supervision. 

Our primary motivation for the thesis is to enhance tabular datasets that are commonly 

used in real-world ML production systems, such as runtime prediction for the HPC 

domain. The critical element in the graph representation is that it leverages samples 

relationships and input features together to create more fine-grained embeddings. On the 

other hand, most deep learning approaches only use input features without leveraging the 

sample relations. 

Given the tabular data as an input, we construct a graph out of it by using a cosine 

similarity distance measure where the number of edges is a parameter that can be defined 

by the user and reflects on the samples similar to the current sample. Then we feed this 

graph to the self-supervised graph-based model, and in the last layer, we extract the 

embeddings to assess it on a linear regression model. 

We evaluated our approach using multiple graph-based models with a DNN 

model on four datasets with a total of 18 experiments. On average, graph-based models 

outperform the DNN model. We integrated an automated edge-inference-based method 

using self-supervision with the GNN model to optimize the graph-based model 

architecture (approaches one & two) to achieve the best performance in 88.8% of the 

experiments. With that said, graph representation learning significantly enhances the 

embeddings produced and all four datasets. It reveals the effectiveness of the relationship 

between samples in tabular datasets and the resilience toward missing values in the 

dataset.
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