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AN EQUATION FOR THE LIMIT STATE OF A
SUPERCONDUCTOR WITH PINNING SITES

JIANZHONG SUN

Abstract. We study the limit state of the inhomogeneous Ginzburg-Landau
model as the Ginzburg-Landau parameter κ = 1/ε→∞, and derive an equa-

tion to describe the limit state. We analyze the properties of solutions of the

limit equation, and investigate the convergence of (local) minimizers of the
Ginzburg-Landau energy with large κ. Our results verify the pinning effect of

an inhomogeneous superconductor with large κ.

1. Introduction

Since the presence of vortices is inevitable for high temperature superconductors
in high magnetic fields, it is desirable to pin the vortices to some specific locations,
so that the supercurrent pattern around the vortices will be stable under the in-
fluence of the applied magnetic field and thermal fluctuation, which are important
in applications (see [15, 18, 13]). One of the pinning mechanisms is to add normal
impurities to the superconductors to attract the vortices, however, this procedure
destroys the homogeneity of the superconductors, introduces an inhomogeneous
structure inside the superconductor. The analysis of the behavior of inhomoge-
neous superconductors provides a good help for the understanding of such pinning
mechanism.

Inhomogeneous models of superconductor under Ginzburg-Landau frame work
have been discussed in both physics and mathematical literatures (see [2, 4, 11, 12]
[17] etc.). We consider a Ginzburg-Landau system describing an inhomogeneous
superconducting material used in [4], through the study of the limit case of such
system,we derive an equation to describe the limit system, which is useful to un-
derstand the pinning effect. The following is the energy of the inhomogeneous
superconductor with the parameter ε:

Jε(ψ,A) =
∫

Ω

( |(∇− i A)ψ|2 +
1

2ε2
(a− |ψ|2)2 + |curlA−He|2)dx, (1.1)

where the parameter ε = 1/κ is a nonnegative number, and κ is the Ginzburg-
Landau parameter of the superconductor material; Ω ⊂ R2 is a bounded simply
connected domain with a smooth (C2,β) boundary, represents the cross-section of an
infinite cylindrical body with e3 as its generator; He = hee3 is the applied magnetic
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field with he being a constant; A ∈ H1(Ω; R2) is the magnetic potential and curlA =
∇ × (A1, A2, 0) is the induced magnetic field in the cylinder; ψ ∈ H1(Ω; C) is
complex-valued, with |ψ|2 = ψ∗ψ represents the density of superconducting electron

pairs and j =
i

2
(ψ∗∇ψ − ψ∇ψ∗) − |ψ|2A denotes the superconducting current

density circulating in Ω; a : Ω → [0, 1] is a bounded continuous function, describing
the inhomogeneities of the material, the zero set of a(x) corresponds to normal
regions in the material.

In order to analyze the limit problem as ε→ 0, we define the energy

J0(ψ,A) =
∫

Ω

|(∇− i A)ψ|2 + |curlA−He|2 dx, (1.2)

where (ψ,A) ∈ H1
a ×H1(Ω; R2), a(x) is the same as in (1.1),

H1
a ≡ {ψ ∈ H1(Ω; C) such that |ψ|2 = a almost everywhere}. (1.3)

In Lemma 2.1, we show that for each u ∈ H1
a , there is a unique well-defined degree

D ≡ (d1, . . . , dn) ∈ Zn around ΩH , denote the homotopy class in H1
a corresponding

to D as H1
a,D, then

H1
a =

⋃
D∈Zn

H1
a,D .

Since H1
a,D is a nonempty open and (sequentially weakly) closed subspace of H1

a

(Theorem 2.3), we can find the minimizer of J0 in H1
a,D × H1(Ω; R2), and call it

the local minimizer of J0 in H1
a ×H1(Ω; R2).

In [4] Andre, Bauman and Phillips have considered the case a(x) vanishes at a
finite number of points {x1, . . . , xn}, and showed that for sufficiently large κ = 1/ε
the local minimizers of Jε in (1.1) have nontrivial vortex structures, which are
pinned near the zero points of a(x) with any prescribed vortex pattern. In this
paper we consider the case where a(x) vanishes in subdomains (holes), which is
more realistic in the presence of normal inclusions.

Our situation is different from the cases studied in [19] or [20], where they have
considered the energy Jε with a ≡ 1 in a multiply connected domain without applied
magnetic field, they have shown the existence of the local minimizers of Jε with
prescribed vortex structures within certain homotopy class. In a recent paper [3]
by Alama and Bronsard, they studied the energy Jε with a ≡ 1 in a multiply
connected domain with applied magnetic field, and achieved deeply results related
to the pinning phenomena. They proved the interior vortex will not be shown until
the applied magnetic field exceeds Hc1 of order |ln ε|, when the applied magnetic
filed exceeds Hc1 , the vortices are nucleated strictly inside the multiply connected
domain. Their techniques and results are similar to those from [1], [2], [4], [21] and
[22].

We analyze the limit state through the investigation of the structure of local
minimizers of J0, and derive an equation to describe the limit state. Our methods
and results are similar to those of [4]. While, we concentrate more on the analysis
of the properties of the solutions of the limit equation, especially various nontrivial
properties of the base functions of the solutions, which is a consequence of the
setting of a(x).

In detail, a(x) satisfies the following conditions:
a ∈ C1(Ω\ΩH),

√
a ∈ H1(Ω), a(x) ≥ 0 for all x in Ω, and a(x) = 0 iff x ∈ ΩH ⊂ Ω,

where ΩH = ∪n
j=1Ωj corresponds to the inhomogeneities of the superconductor,
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n ∈ N, and Ωj , j = 1, . . . , n, are simply connected Lipschitz subdomains with
Ωj ⊂ Ω. There also exists a constant 0 < r1 < 1 such that

dist{Ωi, Ωj} > r1, i 6= j, 1 ≤ i, j ≤ n, and dist{ΩH , ∂Ω} > r1.

In addition, for x ∈ Ω \ Ωj , with dj(x) = dist{x, Ωj} < r1, there are positive
constants C0, C1, αj , such that

C0d
αj

j (x) ≤ a(x) ≤ C1d
αj

j (x),
∣∣dj(x)

∇a(x)
a(x)

∣∣ ≤ C1 j = 1, 2, . . . , n. (1.4)

Choose one xj ∈ Ωj , and fix it, for any x ∈ Ω \ Ωj , write

nj(x) =
x− xj

|x− xj |
, (1.5)

then nj ∈ C∞(Ω \ Ωj ,R2) with |nj | = 1. Moreover, we can rewrite nj(x) in term
of its azimuthal angle θj(x), so that

nj(x) = (cos θj(x), sin θj(x)), 1 ≤ j ≤ n. (1.6)

Note that eiθj(x) and ∇θj(x) are single-valued with eiθj(x) ∈ H1(Ω \ Ωj ,C).
Set

M≡ H1(Ω; C)×H1(Ω; R2), M0 ≡ H1
a ×H1(Ω; R2),

then M and M0 are the domains of the functional Jε and J0 respectively.
If (ψ,A) ∈M(M0) and φ ∈ H2(Ω), the gauge transformation of (ψ,A) under φ

is defined by

(ψ′, A′) = Gφ(ψ,A) ≡ (ψeiφ, A+∇φ) ∈M(M0) . (1.7)

(ψ′, A′) is gauge equivalent to (ψ,A) whenever (1.7) has been satisfied for some
φ ∈ H2(Ω). As is well-known that Jε, ε ≥ 0, are gauge invariant, i.e. Jε(ψ,A) =
Jε(ψ′, A′). Hence if (ψ,A) is a (local) minimizer of Jε in M0, so is (ψ′, A′).

In this paper, we fix a gauge by requiring that A satisfy
divA = 0 in Ω,
A · n = 0 on ∂Ω .

(1.8)

This can be done by choosing a gauge φ such that
4φ = −divA in Ω,
∂φ

∂n
= −A · n on ∂Ω.

(1.9)

Apply (1.7) to (ψ,A), we get (ψ′, A′) = Gφ(ψ,A) satisfies (1.8).
Since Jε(

√
a, 0) = J0(

√
a, 0) =

∫
Ω
|∇
√
a| + h2

e |Ω| < ∞, it makes sense to talk
about the minimizers and local minimizers of J0 and Jε in M0 and M respectively.
In Section II, we derive a few preliminary results. In Section 3, we analyze the local
minimizers of J0 in M0, and establish the following equation to describe them.

Theorem 1.1 (see Theorem 3.3). Fix he. Let (ψD, AD) be a minimizer of J0 in
H1

a,D ×H1(Ω; R2) under gauge (1.8), define hD by curlAD = hDe3, then hD ∈ V
is the unique solution of∫

Ω\ΩH

a−1∇h · ∇fdx+
∫

Ω

hfdx =
n∑

j=1

2πdjfj ,

∀f(x) ∈ V ∩H1
0 (Ω), and h− he ∈ V ∩H1

0 (Ω) ,

(1.10)
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where the space

V ≡ {f ∈ H1(Ω) | f |Ωj = fj = constant,1 ≤ j ≤ n,∫
Ω\ΩH

a−1(x) |∇f(x)|2 d x <∞}, (1.11)

and fj is the constant for f on Ωj , j = 1, 2, . . . , n.

Note that V is nontrivial, since a ∈ V by
√
a ∈ H1(Ω). We further reveal

the relation between the local minimizers and critical points of J0 in M0, namely
critical points are the same as local minimizers, as below.

Theorem 1.2 (see Theorem 3.5). Fix he. For each D = (d1, . . . , dn) ∈ Zn, J0

has a unique minimizer in H1
a,D ×H1(Ω; R2) ⊂ H1

a ×H1(Ω; R2) in sense of gauge
equivalence; moreover for any two such minimizers, say (ψ,A) and (ψ′, A′), under
gauge (1.8), then A = A′ and ψ = ψ′eic for some c ∈ R.

Combine Theorem 1.1 and Theorem 1.2, we can see there is a one to one relation
between the solutions of (1.10) and the gauge equivalent minimizers of J0 in M0.

In Section IV, we study the properties of solutions of (1.10), where we show its
solution can be represented by a linear combination of n+1 independent functions in
C(Ω)∩V (see Theorem 4.1), we derive more detailed properties of the independent
functions. Under a slightly stronger assumption on a(x), we also achieve higher
regularity of the solution.

In Section V, we discuss the motivation of our analysis of the limit problem. We
show (see Theorem 5.2) the minimizers of Jε converge to the minimizer of J0 in
M. Moreover, for ε sufficiently small, all vortices of minimizers of Jε are pinned
near ΩH , the zero set of a(x). Since the zero set of a(x) corresponds to the normal
regions, the result confirms the effectiveness of the pinning mechanism by adding
normal impurities to a superconductor to attract vortices.

Consider the local minimizers of Jε in the neighborhood of a local minimizer of
J0, similar to the above result, we have the following theorem.

Theorem 1.3. Fix he and D ∈ Zn. Let (ψD, AD) be a minimizer for J0 in
H1

a,D × H1(Ω; R2) under gauge (1.8). Choose r > 0 such that Br ∩M0 = Br ∩
[H1

a,D ×H1(Ω; R2)]. Then for all ε > 0 sufficiently small, Br(ψD, AD) contains a
local minimizer, (ψε, Aε), of Jε inM, such that, |ψε| →

√
a in C(Ω), and (ψε, Aε) →

(ψD, AD) in M as ε → 0. In addition, for each 0 < σ < r1 and all ε sufficiently
small, |ψε| is uniformly positive outside

⋃n
j=1 Ω

σ

j and the degree of ψε around Ωσ
j

is dj, j = 1, 2, . . . , n.

Where Br ≡ Br(ψD, AD) = {(ψ,A) ∈M|‖(ψ,A)− (ψD, AD)‖H1(Ω) ≤ r}.

2. Preliminaries

In this section, we describe some properties of two Sobolev spaces to be used
for our later analysis. Section 2.1 is about the properties of H1

a defined in (1.3),
Section 2.2 is about the properties of the weighted Sobolev space V in (1.11), where
we generalize the space ideas from [4].

2.1. Space H1
a . Recall that we have defined

H1
a ≡ {ψ ∈ H1(Ω; C), such that |ψ|2 = a almost everywhere}.

By the assumption on a(x),
√
a ∈ H1

a , H1
a is nonempty. The following lemma

justifies the existence of the degree for any u ∈ H1
a .
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Lemma 2.1. For every u ∈ H1
a , there is a unique D ≡ (d1, . . . , dn) ∈ Zn, depending

only on u, such that for any subdomain Gj and any function fGj , 1 ≤ j ≤ n,
satisfying

Gj ⊂ Ω, be a simply connected smooth subdomain with Gj ∩ ΩH = Ωj , (2.1)

fGj
∈ C∞(Ω), 0 ≤ fGj

≤ 1, fGj
= 1 on Ω \Gj , and supp{fGj

} ⊂ Ω \ Ωj , (2.2)

then we have the representation

dj = deg(u/
√
a, ∂Gj) =

1
π

∫
Gj\Ωj

J(
ufGj√
a

)dx . (2.3)

Where J(w) is the Jacobian of the map w : Gj → C. Write x = (x1, x2) ∈ Gj,
w = w1 + iw2, then

J(w) =
∂(w1, w2)
∂(x1, x2)

= det

[
∂w1
∂x1

∂w1
∂x2

∂w2
∂x1

∂w2
∂x2

]
.

Proof. Fix u ∈ H1
a , set v(x) = u(x)/

√
a(x) = u(x)/|u(x)| in Ω \ ΩH , and v(x) = 0

for other case. By the assumption on a(x), v ∈ H1
loc(Ω \ΩH ;S1), where S1 = {z ∈

C : |z| = 1}.
Let Gj be as in (2.1) and fGj as in (2.2), we have vfGj is well defined on Gj , in

addition, supp{vfGj
}∩Gj ⊂ Gj \Ωj , vfGj

∈ H1(Gj), and
∣∣vfGj

∣∣ = |v| = 1 a.e. on
∂Gj . From [8] (Property 5 at page 220 and lemma 11 at page 337),

deg(v, ∂Gj) = deg(vfGj
, ∂Gj) =

1
π

∫
Gj

J(vfGj
)dx =

1
π

∫
Gj\Ωj

J(
ufGj√
a

)dx , (2.4)

deg(v, ∂Gj) is well-defined, integer-valued and independent of fGj ,
Now to show deg(v, ∂Gj) is independent of the choice of Gj .

Claim: If two subdomains G1
j , G

2
j satisfy (2.1) with G2

j ⊂ G1
j ⊂ Ω, then

deg(v, ∂G1
j ) = deg(v, ∂G2

j ).

Proof of the Claim: By v ∈ H1(G
1

j \ G2
j ), there is a constant δ = δ(G1

j , G
2
j , v),

such that for any set A ⊂ G1
j \G2

j and meas{A} < δ, ‖v‖2H1(A) < 1. Then for any
two simply connected smooth subdomains B1, B2 with G2

j ⊂ B2 ⊂ B1 ⊂ G1
j and

meas{B1 \B2} < δ, from (2.4), we have∣∣deg(v, ∂B1)− deg(v, ∂B2)
∣∣ = ∣∣∣ 1

π

∫
B1
J(vfG2

j
)dx− 1

π

∫
B2
J(vfG2

j
)dx
∣∣∣

=
∣∣ 1
π

∫
B1\B2

J(v)dx
∣∣

≤ 2‖v‖2H1(B1\B2)/π < 1 .

Since the left-hand side is integer-valued, deg(v, ∂B1) = deg(v, ∂B2).
Choose a finite number of nested simply connected smooth subdomains, say

G1
j = A1 ⊃⊃ A2 ⊃⊃ A2 ⊃⊃ · · · ⊃⊃ Ak = G2

j , such that meas{A` \A`+1} < δ, ` =
1, . . . , k − 1, then deg(v, ∂G1

j ) = deg(v, ∂A1) = deg(v, ∂A2) = · · · = deg(v, ∂G2
j ).

From the above claim, we know for any two subdomains G1
j , G

2
j satisfy (2.1),

deg(v, ∂G1
j ) = deg(v, ∂(G1

j ∩G2
j )) = deg(v, ∂G2

j ).
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Hence deg(v, ∂Gj) is constant for any Gj satisfying (2.1), i.e., (2.3) is well-defined,
and dj ≡ deg(v, ∂Gj) = deg(u/

√
a, ∂Gj) depends on u only. �

Lemma 2.2. Each u ∈ H1
a can be written in the form of

u(x) =
√
a(x)eiΘ(x), x ∈ Ω \ ΩH ,

where Θ(x) = φ(x) +
n∑

j=1

djθj , θj(x) is from (1.6) defined on Ω \ Ωj, D ∈ Zn is

from (2.3), uniquely decided by u ∈ H1
a , and φ ∈ H1

loc(Ω \ ΩH) is unique up to an
additive constant 2πk for k ∈ Z, satisfying

∫
Ω\Ωj

a|∇φ|2 ≤ C(ΩH , a,D)+
∫
Ω
|∇u|2.

We follow the same idea as in [4, Theorem 1.4] to prove the lemma, please see
the proof in the appendix.

For each D = (d1, . . . , dn) ∈ Zn, we define the homotopy class

H1
a,D = {u ∈ H1

a | degree for u around Ωj is dj , j = 1, 2, . . . , n}.

By Lemma 2.2, u ∈ H1
a,D, if and only if u =

√
ae

i[φ(x)+
nP

j=1
djθj ]

, where φ ∈ H1
loc(Ω \

Ωj) and
∫
Ω\Ωj

a|∇φ|2 ≤ C(ΩH ,Ω, a,D) +
∫
Ω
|∇u|2; Lemma 2.1 implies that H1

a =⋃
D∈Zn

H1
a,D and H1

a,D ∩H1
a,D′ = ∅ for D 6= D′ in Zn; the following theorem further

reveals the topology of H1
a .

Theorem 2.3. For each D ∈ Zn, H1
a,D is a nonempty, open and closed subset of

H1
a . In addition, H1

a,D is sequentially weakly closed in H1(Ω; C), i.e., if {uk}∞k=1 ⊂
H1

a,D and uk ⇀ u in H1(Ω; C) as k →∞, then u ∈ H1
a,D.

Proof. Since
√
a ∈ H1(Ω) and nj ∈ C∞(Ω \ Ωj ; R2), 1 ≤ j ≤ n, according to

Lemma 2.2,
√
aei

Pn
j=1 djθj ∈ H1

a,D, so that H1
a,D 6= ∅.

Assume u0 ∈ H1
a,D, let Br(u0) =

{
u ∈ H1

a : ‖u − u0‖H1(Ω;C) < r
}
, where

r > 0 to be chosen later. Pick any u ∈ Br(u0), set v0 = u0/|u0| = a−1/2u0,
v = u/|u| = a−1/2u. Fix Gj as in (2.1) and fGj

as in (2.2), 1 ≤ j ≤ n, by (2.3),

dj =
1
π

∫
Gj\Ωj

J(v0fGj
)dx and d̃j =

1
π

∫
Gj\Ωj

J(vfGj
)dx,

then

‖J(v0fGj
)−J(vfGj

)‖L1(Gj) ≤ C · (1+‖u−u0‖H1(Gj)) · ‖u−u0‖H1(Gj) ≤ Cr(1+r) ,

where C = C(a, v0, Gj). It follows that for r small (say r = 1
2C+1 ) dj = d̃j and

u ∈ H1
a,D. Thus Br(u0) ⊂ H1

a,D for r small, H1
a,D is an open subset of H1

a .
Since H1

a =
⋃

D∈Zn H1
a,D and Ha,D ∩ H1

a,D′ = ∅ for D 6= D′ in Zn, from the
closeness of H1

a , we obtain that H1
a,D is a closed subset of H1

a .
Now prove H1

a,D is weakly sequentially closed in H1
a . Assume that {uk}∞k=1 ⊂

H1
a,D and uk ⇀ u weakly in H1(Ω; C) as k → ∞. By compactness, a subsequence

(which we relabel as {uk}∞k=1) satisfies uk → u in L2(Ω) as k → ∞, so |u| = a1/2

a.e. in Ω, and u ∈ H1
a , according to Lemma 2.1, u ∈ H1

a,D̃
for some D̃ ∈ Zn. We

show D = D̃.
Set vk(x) = uk(x)/|uk(x)|, v(x) = u(x)/|u(x)| in Ω\ΩH , then vk ⇀ v in H1

loc(Ω\
ΩH) and vk → v in L2

loc(Ω \ ΩH), as k →∞.
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Choose Ω1
j ⊃ Ω2

j satisfying (2.1), assume ‖vk‖H1(Ω1
j\Ω2

j ) < M,M ∈ Z, k =
1, 2, 3, . . . . Partition Ω1

j \ Ω2
j into 4M2 + 1 subdomains enclosing Ω2

j , say, they
are G(l) \G(l+1), l = 1, 2 . . . 4M2 + 1, where

Ω1
j = G(1) ⊃⊃ G(2) ⊃⊃ · · · ⊃⊃ G(4M2+2) = Ω2

j .

For any vk, at least on one of the G(l) \ G(l+1), ‖vk‖H1(G(l)\G(l+1)) <
1
2 . Choose

G(l) \ G(l+1) with infinitely many vk such that ‖vk‖H1(G(l)\G(l+1)) <
1
2 . Let Gj =

G(l), G̃j = G(l+1), and take the corresponding subsequence on G(l) \ G(l+1) (still
labelled as {vk}), then Ωj ⊂⊂ G̃j ⊂⊂ Gj and ‖vk‖H1(Gj\G̃j)

< 1
2 , for all k ≥ 1. By

the weak convergence, ‖v‖H1(Gj\G̃j)
< 1

2 ,
∫

Gj\G̃j
|J(vk)| ≤ ‖vk‖2H1(Gj\G̃j)

< 1
4 , and∫

Gj\G̃j
|J(v)| ≤ ‖v‖2

H1(Gj\G̃j)
< 1

4 . Pick fGj
satisfying (2.2). By (2.3),

dj =
1
π

∫
Gj\G̃j

J(vkfGj
)dx, d̃j =

1
π

∫
Gj\G̃j

J(vfGj
)dx.

∫
Gj\G̃j

(J(vkfGj
)− J(vfGj

))dx

=
∫

Gj\G̃j

f2
Gj

(J(vk)− J(v))dx

+
∫

Gj\G̃j

fGj

∂fGj

∂x1
Re
(
ivk(

∂vk

∂x2
)∗ − iv(

∂v

∂x2
)∗
)
dx

+
∫

Gj\G̃j

fGj

∂fGj

∂x2
Re
(
ivk(

∂vk

∂x1
)∗ − iv(

∂v

∂x1
)∗
)
dx .

Since fGj

∂fGj

∂x1
∈ C∞(Gj), vk → v in L2, and ∂vk

∂x2
⇀ ∂v

∂x2
weakly in L2, it fol-

lows that
∫

Gj\G̃j
fGj

∂fGj

∂x1
Re
(
ivk(∂vk

∂x2
)∗ − iv( ∂v

∂x2
)∗
)
dx → 0, as k → ∞. Similarly∫

Gj\G̃j
fGj

∂fGj

∂x2
Re
(
ivk(∂vk

∂x1
)∗ − iv( ∂v

∂x1
)∗
)
dx→ 0, as k →∞.

By 0 ≤ fGj
≤ 1,

∫
Gj\G̃j

f2
Gj
|J(vk)− J(v)| dx ≤ 1

2 , for any k,
∣∣∣dj − d̃j

∣∣∣ < 1
2 .

Since dj , d̃j ∈ Z, dj = d̃j , j = 1, 2, . . . n. Thus D = D̃ and u ∈ H1
a,D. �

2.2. Space V. By (1.11), V ≡ {f ∈ H1(Ω) : f |Ωj
= fj = constant, 1 ≤ j ≤ n,∫

Ω\ΩH
a−1(x) |∇f(x)|2 dx < ∞} is a weighted Sobolev space. Define the norm of

V as

‖f‖V =
(∫

Ω\ΩH

a−1(x) |∇f(x)|2 d x+
∫

Ω

f2
)1/2

. (2.5)

Lemma 2.4. V is a Hilbert space with norm (2.5).

Proof. Assume {fk}∞k=1 ⊂ V is a Cauchy sequence under norm (2.5). By 1/a(x) >
c > 0 in Ω \ ΩH for some constant c ∈ R, we know {fk}∞k=1 is a Cauchy sequence
in H1(Ω). Hence there is a f ∈ H1(Ω), such that fk → f in H1(Ω). Also fk ∈ V
implies that f is constant on Ωj , 1 ≤ j ≤ n. By {∇fk/

√
a}∞k=1 is a Cauchy sequence

in L2(Ω \ ΩH), there are g1, g2 in L2(Ω \ ΩH), such that ∇fk/
√
a → (g1, g2) in

L2(Ω \ ΩH), from 1/
√
a is bounded away from 0, we get ∇fk → (

√
ag1,

√
ag2) in

L2(Ω \ ΩH). Therefore (
√
ag1,

√
ag2) = ∇f by the uniqueness of the convergence

in L2(Ω \ ΩH), i.e. ∇f/
√
a ∈ L2(Ω \ ΩH), and we get f ∈ V , fk → f in V . �
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Using the same idea as above, we can obtain that V is weakly closed under the
norm (2.5). In addition, we have the following lemma proved in the appendix.

Lemma 2.5. C1(Ω) ∩ V is dense in V .

To go forward, let us first investigate properties of the Lipschitz domain Ωj ⊂
Rd, 1 ≤ j ≤ n, d is the dimension. By saying Ωj is Lipschitz, we means that for every
point p ∈ ∂Ωj , there is a neighborhood Up of p, and a function φp : Rd−1 → R, such
that there is a Cartesian coordinate system in Up with p as the origin, satisfying:

(i) |φp(x̃)− φp(ỹ)| ≤ A |x̃− ỹ|, where A = A(Ωj), x̃, ỹ ∈ Rd−1.
(ii) Ωj∩Up = {(x̃, xd)|xd < φp(x̃)}∩Up, and Up\Ωj = {(x̃, xd)|xd > φp(x̃)}∩Up,

where x̃ ∈ Rd−1.
(iii) For all x ∈ Up, d(x) = dist{x, ∂Ωj} > |xd − φp(x̃)| /gp, for some constant

gp > 1.

Since ∂Ωj is compact, we can choose {Uj
k}

nj

k=1 to cover it, j = 1, 2, . . . , n, where

Uj
k = {x = (x̃, xd) ∈ Rd| |x̃| ≤ λj

k, and
∣∣∣xd − φj

k(x̃)
∣∣∣ < λj

k}, λ
j
k is constant, φj

k is as
in (i) and (ii).

Apply (iii), for any x = (x̃, xd) ∈ U j
k , there is a constant g = g(ΩH) > 1,

∣∣∣xd − φj
k(x̃)

∣∣∣ /g ≤ d(x) ≤
∣∣∣xd − φj

k(x̃)
∣∣∣ k = 1, 2, . . . , nj , j = 1, . . . , n. (2.6)

Since ∂Ωj ⊂ ∪nj

k=1U
j
k and Uj

k is open, there is a constant r1, such that for σ < r1,
Ω

σ

j \ Ωj ⊂ ∪nj

k=1U
j
k , where Ωσ

j = {x ∈ Ω|dist{x, Ωj} < σ}, j = 1, 2, . . . , n. Choose
a partition of unity for Ω

r1

j \ Ωj subordinate to {Uj
k}

nj

k=1, say, {βj
k}

nj

k=1, such that,

βj
k ∈ C

∞
0 (Uj

k), 0 ≤ βj
k ≤ 1, and

nj∑
k=1

βj
k(x) = 1 x ∈ Ω

r1

j \ Ωj , 1 ≤ j ≤ n. (2.7)

Lemma 2.6. Assume f ∈ C1(Ω)∩ V , and f |Ωj
= fj, 1 ≤ j ≤ n, pick the constant

g satisfying (2.6), then for any σ0 < r1/g,

∫
∂Ω

σ0
j

a−1(x) |f − fj |2 ds ≤ c(Ωj)σ0

∫
Ω

gσ0
j \Ωj

a−1(x) |∇f |2 dx .

Proof. By ∂Ωσ0
j ⊂ Ωr1

j \ Ωj ⊂ ∪nj

k=1U
j
k and the partition of unity,

∫
∂Ω

σ0
j

a−1(x) |f − fj |2 ds =
∫

∂Ω
σ0
j

nj∑
k=1

βj
k(x)a−1(x) |fj − f |2 ds

=
nj∑

k=1

∫
∂Ω

σ0
j ∩Uj

k

βj
k(x)a−1(x) |fj − f |2 ds .
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Then apply the local coordinate system on Uj
k , we obtain∫

∂Ω
σ0
j ∩Uj

k

βj
k(x)a−1(x) |f − fj |2 ds

=
∫

∂Ω
σ0
j ∩Uj

k

βj
k(x)a−1(x)

∣∣∣∣∣
∫ xd

φj
k(x̃)

∇f · eddt

∣∣∣∣∣
2

ds

≤
∫

∂Ω
σ0
j ∩Uj

k

a−1(x)

(∫ xd

φj
k(x̃)

|∇f |2 dt
∫ xd

φj
k(x̃)

dt

)
ds

≤
∫

∂Ω
σ0
j ∩Uj

k

∣∣∣φj
k(x̃)− xd

∣∣∣ ∫ gσ0

φj
k(x̃)

a−1(x(s)) |∇f |2 dtds

≤c(Ωj)σ0

∫
Ω

gσ0
j \Ωj

a−1(x) |∇f |2 dx .

Where ed is the d−th unit vector in the local coordinate system,. In the proof,
(1.4), (2.6), 0 ≤ βj

k(x) ≤ 1 and the Lipschitz property (i) are used. Hence∫
∂Ω

σ0
j
a−1(x) |f − fj |2 ds ≤ c(Ωj)σ0

∫
Ω

gσ0
j \Ωj

a−1(x) |∇f |2 dx, 1 ≤ j ≤ n. �

3. Limit Equation

In this section, we prove Theorem 1.1 and Theorem 1.2 stated in the introduction.
First let us give a result concerning the existence of the minimizers of J0 in H1

a,D×
H1(Ω; R2).

Lemma 3.1. For fixed he and D ∈ Zn, there is a minimizer of J0 in H1
a,D ×

H1(Ω; R2) under gauge (1.8), which is a local minimizer of J0 in M0.

Proof. By the gauge equivalence in (1.7) and (1.9), we need only to consider the
situation under the fixed gauge (1.8), i.e., in the space

{(ψ,A) ∈ H1
a,D ×H1(Ω; R2) : div A = 0 in Ω and A · n = 0 on ∂Ω}.

According to Theorem 2.3, H1
a,D is sequentially weakly closed in H1(Ω; C), we can

apply direct method in the calculus of variations to find the minimizer of J0 in
H1

a,D × H1(Ω; R2). Since H1
a,D is both open and closed in H1

a , the minimizer in
H1

a,D ×H1(Ω; R2) is also a local minimize of J0 in M0. �

From (1.2), we get the Euler-Lagrange equations of the minimizer of J0,

div
[
− i

2
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A

]
= 0 in Ω ,[

− i
2
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A

]
· n = 0 on ∂Ω ,

(3.1)

and
curl curlA = − i

2
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A ≡ j0 in Ω ,

curlA = hee3 on ∂Ω.
(3.2)

Where A = (A1, A2), curl curlA = (∂x2x1A2 − ∂x2x2A1,−∂x1x1A2 + ∂x2x1A1).
Note: Taking divergence on both sides of the second equation (3.2) in above, we

could get the first equation of (3.1) in distribution sense.
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Assume (ψ,A) is under gauge (1.8), from (1.9), we see that (3.2) becomes

4A = − i
2
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A in Ω.

curlA = hee3 on ∂Ω.
A · n = 0 in ∂Ω.

Since divA = 0 in Ω and A · n = 0 on ∂Ω, according to Poincaré’s lemma, rewrite
A = (A1, A2) with (A2,−A1) = ∇ζ for some ζ ∈ H1

0 (Ω), from the above equation,
ζ ∈W 3,2(Ω), so that we obtain the following regularity result on A:

Lemma 3.2. If (ψD, AD) under gauge (1.8) is a minimizer in H1
a,D ×H1(Ω; R2),

then AD ∈W 2,2(Ω).

Now we prove Theorem 1.1 in the introduction, for the convenience to read, let
us restate it.

Theorem 3.3. Fix he. Let (ψD, AD) be a minimizer of J0 in H1
a,D ×H1(Ω; R2)

under gauge (1.8), define hD by curlAD = hDe3, then hD ∈ V is the unique
solution of ∫

Ω\ΩH

a−1∇h · ∇fdx+
∫

Ω

hfdx =
n∑

j=1

2πdjfj .

∀f(x) ∈ V ∩H1
0 (Ω), and h− he ∈ V ∩H1

0 (Ω).

(3.3)

Proof. First we show hD ∈ V . From the boundary condition, h = he on ∂Ω. By
ψD ∈ H1

a,D and ψ|ΩH
= 0, (3.2) implies,

curl(hDe3) = 0 in ΩH . (3.4)

Hence in Ωj , ∇hD = 0, i.e., hD = hD,j a.e., where hD,j is a constant depending on
Ωj , 1 ≤ j ≤ n. On Ω \ ΩH , |ψD| =

√
a 6= 0, we can write ψD =

√
aeiθD , so that

curl(hDe3) = jD = a(∇θD −AD) in Ω \ ΩH . (3.5)

Since |(∇− iAD)ψD|2 = |∇
√
a|2 + |

√
a(∇θD −AD)|2 and J0(ψD, AD) is bounded,

a−1/2|∇hD| =
√
a|∇θD −AD| ∈ L2(Ω), so that hD ∈ H1(Ω), and hD ∈ V .

Now we prove hD satisfies (3.3). Divide on both sides of (3.5) by a(x), then
take curl to annihilate ∇θD, then curl 1

a(x) curl(hDe3) = − curlAD = (0, 0,−hD),
rewriting the equation, we obtain

∇ · 1
a(x)

∇hD = hD in Ω \ ΩH (3.6)

in the sense of distributions. Set

Ωσ
j = {x ∈ Ω|dist{x, Ωj} < σ}, Ωσ =

n
∪

j=1
Ωσ

j .

Since a ∈ C1(Ω \ ΩH) and a > 0 in Ω \ ΩH , hD ∈ H2
loc(Ω \ ΩH), and ∇θD ∈

H1
loc(Ω \ ΩH). Take the test function f(x) ∈ C1(Ω) ∩ V ∩ H1

0 (Ω) for (3.6), and
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integrate by parts,∫
Ω\Ωσ

(a−1(x)(∇hD · ∇f) + hD(x)f(x))dx

=
∫

∂(Ω\Ωσ
)

ν · ∇hDf

a(x)
ds

= −
∫

∂Ωσ

n · ∇hDf

a(x)
ds

= −
∫

∂Ωσ

n · ∇hDfj

a(x)
ds−

∫
∂Ωσ

n · ∇hD(f − fj)
a(x)

ds .

Here n is the outward normal of ∂Ωσ, ν = −n is the inward normal. Assume τ is
the counterclockwise tangent vector field of ∂Ωσ, use (3.2) on ∂Ωσ,

−
∫

∂Ωσ

n · ∇hDfj

a(x)
ds = fj

∫
∂Ωσ

τ · curlhD

a(x)
ds = fj

∫
∂Ωσ

(τ · ∇θD − τ ·AD)ds

= 2πdjfj − fj

∫
Ωσ

curlADdx = 2πdjfj − fj

∫
Ωσ

hDdx

= 2πdjfj −
∫

Ωσ

hDfdx−
∫

Ωσ

hD(fj − f)dx

= 2πdjfj −
∫

Ωσ

hDfdx− o(1), as σ → 0.

Using the Cauchy inequality,

∣∣ ∫
∂Ωσ

n · ∇hD(f − fj)
a(x)

ds
∣∣ ≤ (∫

∂Ωσ

|f − fj |2

a(x)
ds
)1/2(∫

∂Ωσ

|∇hD|2

a(x)
ds
)1/2

.

By Lemma 2.6, for d(x) ≤ r1,∫
∂Ωσ

|f − fj |2

a(x)
ds ≤ c(r1)σ

∫
Ωgσ\ΩH

|∇f |2

a(x)
dx .

Because
∫
Ωσ\ΩH

|∇hD|2
a(x) dx → 0, as σ → 0, there is a sequence {σm}∞m=1, σm → 0,

σm+1 < σm, and
∫

∂Ωσm

|∇hD|2
a(x) ds ≤ c(a,Ω)

σm
, as m→∞, then

∣∣ ∫
∂Ωσm

n · ∇hD(f − fj)
a(x)

ds
∣∣ ≤ c(a,Ω)

(∫
Ωgσm\ΩH

|∇f |2

a(x)
dx
)1/2

→ 0,

as σm → 0. Now we have∫
Ω\Ωσm

a−1(∇hD∇f + hDf)dx =
n∑

j=1

2πdjfj −
∫

Ωσm

hDfdx− o(1) ,

i.e. ∫
Ω\Ωσm

a−1∇hD · ∇fdx+
∫

Ω

hDfdx =
n∑

j=1

2πdjfj − o(1) .
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If σ ∈ (σm+1, σm),∫
Ω\Ωσ

a−1∇hD · ∇fdx+
∫

Ω

hDfdx

=
∫

Ω\Ωσm
a−1∇hD · ∇fdx+

∫
Ω

hDfdx+
∫

Ωσm\Ωσ
a−1∇hD · ∇fdx .

As σ → 0, meas{Ωσm \ Ω
σ} → 0,

∫
Ωσm\Ωσ a−1∇hD · ∇fdx→ 0, then∫

Ω\Ωσ
a−1∇hD · ∇fdx+

∫
Ω

hDfdx→
n∑

j=1

2πdjfj , as σ → 0 .

Hence the weak form of hD becomes∫
Ω\ΩH

a−1∇h · ∇fdx+
∫

Ω

hfdx =
n∑

j=1

2πdjfj ,

∀f(x) ∈ C1(Ω) ∩ V ∩H1
0 (Ω) and h− he ∈ V ∩H1

0 (Ω).

By Lemma 2.5, C1(Ω)∩V ∩H1
0 (Ω) is dense in V ∩H1

0 (Ω), thus the above equation
is true for ∀f(x) ∈ V ∩H1

0 (Ω), i.e. we get (3.3).
Now to prove the solution of (3.3) is unique. Assume that h1 and h2 are solutions,

then h = h1 − h2 ∈ V ∩H1
0 (Ω). Apply h as a test function to the corresponding

equations about h1 and h2 respectively, then take their difference,∫
Ω\ΩH

a−1 |∇h|2 dx+
∫

Ω

h2dx = 0 ,

whence h1 − h2 = 0 in V . �

Lemma 3.4. For fixed he ∈ R and D ∈ Zn, there is a unique solution for (3.3).

Proof. Existence: For the given he and D ∈ Zn, by Lemma 3.1, we can find
(ψD, AD) as the minimizer(i.e. a minimizer) of J0 in H1

a,D × H1(Ω; R2) under
gauge (1.8), apply Theorem 3.3, we know hDe3 = curlAD satisfying eq (3.3).
Uniqueness is exactly the last part of Theorem 3.3. �

Note that for any he ∈ H1(Ω), Lemma 3.4 holds.

Theorem 3.5. For any fixed he and D = (d1, . . . , dn) ∈ Zn, J0 has a unique
minimizer in the space H1

a,D ×H1(Ω; R2) ⊂ H1
a ×H1(Ω; R2) in the sense of gauge

equivalence; moreover, for any two such minimizers, say (ψ,A) and (ψ′, A′), under
gauge (1.8), then A = A′ and ψ = ψ′eic for some c ∈ R.

Proof. The existence follows from Lemma 3.1. Uniqueness: By (1.7) and (1.9), we
only need to consider the situation under gauge (1.8). Without loss of generality,
we assume the two minimizers (ψ,A) and (ψ′, A′) in H1

a,D ×H1(Ω; R2) are under
gauge (1.8), so that divA = divA′ = 0 and A · n = A′ · n = 0, according to
Poincaré’s lemma, we have A − A′ = (− ∂ζ

∂y ,
∂ζ
∂x ) for some ζ ∈ H1(Ω), where (x, y)

are the coordinates in 2−dim. we can also derive that ζ is constant on ∂Ω from
(A − A′) · n = 0. Through Theorem 3.3, we get curlA = curlA′, which implies
4ζ = 0 in Ω, thus ζ is constant on Ω, i.e. A = A′. Then by (3.2), we have j0 = j′0,
so ∇θ = ∇θ′ in Ω \ΩH , i.e. eiθ−iθ′ = eic, for some c ∈ R, hence ψ = ψ′eic, and We
have proved the later part of the theorem. If take φ = c = constant, we then have
(ψ′, A′) = Gφ(ψ,A), i.e. they are gauge equivalent. �
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We need to mention that Theorem 3.5 is a generalization of the Theorem 3.2
in [4] under our setting.

Now suppose (ψD, AD) is a critical point of J0, i.e. a solution of (3.1) and
(3.2), then from the first part of Theorem 3.3, hD in curlAD = hDe3 is the unique
solution of (3.3), hence (ψD, AD) is a local minimizer of J0 in M0. On the other
hand, by Lemma 2.2, every local minimizer (ψ,A) belongs to H1

a,D×H1(Ω; R2) for
some D ∈ Zn, hence it satisfies (3.1) and (3.2), and by Theorem 3.5, it is gauge
equivalent to the minimizer in H1

a,D × H1(Ω; R2). Thus we have the following
statement.

Corollary 3.6. All critical points of J0 are local minimizers in H1
a ×H1(Ω; R2).

As is easy to see that if we obtain the solution hD of (3.3), then we can recover
AD with the condition divAD = 0 in Ω, and recover ψD from (3.2), so that (3.3)
describes the limit system completely.

4. Properties Of The Solutions Of The Limit Equation

Consider the n+ 1 functions in V ∩H1
0 (Ω), {η0, η1, . . . ηn} satisfying∫

Ω\ΩH

a−1∇η0 · ∇fdx+
∫

Ω

η0 fdx = 0 ,

∀f(x) ∈ V ∩H1
0 (Ω) and η0 = 1 on ∂Ω

(4.1)

and ∫
Ω\ΩH

a−1∇ηj · ∇fdx+
∫

Ω

ηjfdx = 2πfj ,

∀f(x) ∈ V ∩H1
0 (Ω) and ηj = 0 on ∂Ω , j = 1, . . . , n .

(4.2)

The existence and uniqueness of solutions in V for both (4.1) and (4.2) follows the
result in Lemma 3.4. We can use them to represent the solution of (3.3).

Theorem 4.1. Fix he ∈ R, D ∈ Zn. If hD solves (3.3), then hD ∈ C(Ω) and

hD =
n∑

j=1

djηj + heη0 . (4.3)

Moreover, if αk > 1, k = 1, 2, . . . , n, then hD ∈ C1(Ω), where αk is from (1.4).

The proof of Theorem 4.1 is a consequence of properties of η0 and ηj , j =
1, 2, . . . , n. We will postpone it to the end of this section. We first discuss some
properties of {η1, . . . ηn}.
Property(i) ηj ≥ 0 in Ω, 1 ≤ j ≤ n.
Property(ii) η1, . . . , ηn are linear independent in V ∩H1

0 (Ω), i.e.,
∑n

j=1 wjηj ≡ 0
for wj ∈ R, 1 ≤ j ≤ n, if and only if wj = 0, 1 ≤ j ≤ n.

Proof. To prove this property (i), we use the test function f = min{ηj , 0} in (4.2)
and obtain ∫

Ω\ΩH

a−1 |∇f |2 dx+
∫

Ω

|f |2 dx ≤ 0.

So that f ≡ 0, i.e., ηj ≥ 0 in Ω for 1 ≤ j ≤ n, and (i) is proved.
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Assume g =
∑n

j=1 wjηj ≡ 0 for some wj ∈ R, 1 ≤ j ≤ n. From (4.2), g satisfies
the equation ∫

Ω\ΩH

a−1∇g · ∇fdx+
∫

Ω

gfdx = 2π
n∑

j=1

wjfj ≡ 0 ,

∀f(x) ∈ V ∩H1
0 (Ω), and g = 0 on ∂Ω .

(4.4)

Fix k ∈ {1, . . . , n}. Choose σ,m such that Ωσ
k ∩ ΩH = Ωk and m > 2/σ. Set

χσ
k as the characteristic function of Ωσ

k , Ωσ
k = {x ∈ Ω|dist{x, Ωk} < σ}. Let

fk ≡ χσ
k ∗ ρm(x), where ρm(x) = m2ρ(mx), ρ(x) is defined as in (6.4). Then

fk ∈ V ∩H1
0 (Ω), fk

k = 1 and fk
j = 0 if k 6= j, for 1 ≤ j ≤ n. Apply fk as a test

function for (4.4), we have wk = 0, for k = 1, 2, . . . , n. Thus η1, . . . , ηn are linear
independent in V ∩H1

0 (Ω), we have (ii). �

Property (iii) Assume ηk
j is the value of ηj on Ωk, then ηj

j = ess sup Ωηj <

2π/meas{Ωj} and ηj
j > ηk

j for k 6= j, 1 ≤ k, j ≤ n.

Proof. Using f = ηj as a test function for (4.2), then

2πηj
j =

∫
Ω\ΩH

a−1 |∇ηj |2 dx+
∫

Ω

|ηj |2 dx > 0.

On the other hand, Using f = (ηj − ηj
j )+ as a test function for (4.2), then∫

Ω\ΩH

a−1
∣∣∣∇(ηj − ηj

j )+
∣∣∣2 dx+

∫
Ω

ηj(ηj − ηj
j )+dx = 0,

so that (ηj − ηj
j )+ = 0 a.e., i.e. ηj

j = ess sup Ωηj . By using test functions from
C1

0 (Ω \ ΩH) in (4.2), we see that

−∇ · a−1∇ηj + ηj = 0 in Ω \ ΩH ,

ηj = 0 on ∂Ω, for 1 ≤ j ≤ n.
(4.5)

Since ηj is nonconstant, by the maximum principle in (4.5), there is no local maxima
for ηj in Ω \ ΩH . If ηk

j = ηj
j for some k 6= j, fix σ such that Ωσ

k ∩ ΩH = Ωk. Let
ck = ess sup

Ωσ
k\Ω

σ/2
k

ηj , then ck < ηj
j = ess, sup Ωηj .

Using f = χσ
k(ηj − ck)+ 6≡ 0 as a test function in (4.2), we have

0 =
∫

Ωσ
k\Ωk

a−1 |∇f |2 dx+
∫

Ωσ
k

fηjdx > 0,

a contradiction, so that ηj
j > ηk

j for k 6= j, 1 ≤ k, j ≤ n. Using ηj as a test function
in (4.2), we have (ηj

j )
2 meas{Ωj} < 2πηj

j , so that ηj
j < 2π/meas{Ωj}. Therefore,

(iii) is proved. �

Property (iv) ηj ∈ C0(Ω) ∩ V , j = 1, 2, . . . , n.

Proof. By (4.5) and a−1 ∈ C1(Ω \ ΩH), we apply the standard estimate for the
weak solution of an elliptic equation (say [16] theorem 8.8 at page 183 and theorem
8.12 at page 186), ηj(x) in H2(Ω′), for any Ω′ ⊂⊂ Ω \ΩH , by Sobolev embedding,
ηj(x) ∈ C0(Ω \ ΩH). Since ηj(x) is a bounded constant in Ωk, 1 ≤ k ≤ n, with
ηj ∈ H1(Ω), i.e.,

ηj(x) ∈ H1(Ω) ∩ C0(Ω \ ΩH). (4.6)
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We show ηj(x) is C0 on the boundary of ΩH . Since Ωk is Lipschitz, k = 1, 2, . . . , n,
there is a constant σk < r1, for any x0 ∈ Ω\ΩH with d = dist{x0, Ωk} < σk, we can
find a rectangle with sides parallel to the local coordinate axes, its top x0x1, above
the boundary graph and its bottom y0y1, below the graph, dist{x0, x1} = d1+αk/3,
dist{x0, y1} = ckd, where ck is a constant depending on Ωk, x0x1 represents the
line segment starting at x0 and ending at x1, y0y1 is the line segment starting at
y0 and ending at y1. Note the rectangle is not unique, but it does not matter.
Claim: For all f ∈ C0(Ω \ ΩH) ∩ V ,

d−1−αk/3

∫ x1

x0

|f(xs)− fk| dH1 ≤ bkd
αk/3(x)‖f‖V ,

where the integral is in x0x1, and xs = (1− s)x0 + sx1, and s ∈ [0, 1].
Proof of the Claim: Assume f ∈ C1(Ω) ∩ V , then f(y) = fk in y0y1 and∫ x1

x0

|f(xs)− fk| dH1 =
∫ x1

x0

|f(xs)− f(ys)| dH1 =
∫ x1

x0

∣∣∣∫ ys

xs

∇f · nxsysdH
1
∣∣∣dH1 ,

where nxsys
is the unit vector from xs to ys. So that∫ x1

x0

|f(xs)− fk| dH1 ≤
∫ x1

x0

∫ ys

xs

|∇f | dx

≤
(∫ x1

x0

∫ ys

xs

a−1 |∇f |2 dx
)1/2

·
(∫ x1

x0

∫ ys

xs

a(x)dx
)1/2

≤ ‖f‖V

(∫ x1

x0

∫ ys

xs

C1d
αkdx

)1/2

≤ bkd
1+2αk/3‖f‖V ,

here bk = C1ck. From the above inequality,

d−1−αk/3

∫ x1

x0

|f(xs)− fk| dH1 ≤ bkd
αk/3‖f‖V .

Because C1(Ω) ∩ V is dense in C0(Ω) ∩ V , we have proved the claim.

Now we continue the proof of Property (iv). Since ηj(x) ∈ C0(Ωσk

k \ Ωk), for
every x0 ∈ Ωσk

k \ Ωk, we have∣∣ηj(x0)− ηk
j

∣∣
=≤ d−1−αk/3

∫ x1

x0

∣∣ηj(xs)− ηk
j

∣∣ dH1 + d−1−αk/3

∫ x1

x0

|ηj(xs)− ηj(x0)| dH1

≤ bkd
αk/3‖ηj‖V + d−1−αk/3

∫ x1

x0

|ηj(xs)− ηj(x0)| dH1,

To estimate d−1−αk/3
∫ x1

x0
|ηj(xs)− ηj(x0)| dH1, consider (4.5) in the ball Bd/2(x0).

Scaling Bd/2(x0) to a unit ball, (4.5) becomes

−4d−2∇y · a−1(yd/2 + x0)∇yηj = −ηj in B1(0) .

Apply Hölder estimate [16, theorem 8.22 page 200] in the ball B2dαk/3(0) for
the dilated equation, we have osc ηj ≤ Cdβαk/3‖ηj‖L∞ , where C depends on
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β,Ωk and αk, β ∈ (0, 1). By Property (iii), ‖ηj‖L∞ ≤ 1/meas{Ωj}, so that
|ηj(xs)− ηj(x0)| ≤ C(Ωk, αk)dβαk/3, i.e.,∣∣ηj(x0)− ηk

j

∣∣ ≤ bkd
αk/3‖ηj‖V + C(Ωk, αk)dβαk/3 ≤ b̃kd

βαk/3(1 + ‖ηj‖V ), (4.7)

for all x0 ∈ Ωσk

k \Ωk. Since d(x) → 0 as x→ ∂Ωk, ηj(x) → ηk
j at ∂Ωk, i.e., ηj(x) is

continuous at ∂Ωk. Combining this with (4.6), we have ηj ∈ C0(Ω), and Property
(iv) is proved. �

Property (v) ηj > 0 a.e. in Ω, j = 1, 2, . . . , n. Hence ηk
j > 0, 1 ≤ k, j ≤ n.

Proof. We prove that meas{x ∈ Ω|ηj(x) = 0} = 0 for j = 1, 2, . . . , n. By (iv), it
makes sense to talk about the level set of ηj(x). Let Γj

0 = {x ∈ Ω|ηj(x) = 0},
Γj

δ = {x ∈ Ω|ηj(x) ≤ δ}, then Γj
0 ⊂ Γj

δ, meas{Γj
δ \ Γj

0} → 0 as δ → 0. By ηj
j > 0,

Ωj ∩ Γj
δ = ∅ for δ < ηj

j . In the proof, we always assume δ < ηj
j , i.e., Ωj ∩ Γj

δ = ∅.
Denote χΓj

δ
as the characteristic function of the set Γj

δ, δ ≥ 0. Set

gδ(v) =

{
v, v ≤ δ/2
(δ − v)+, v > δ/2

and hδ(v) =

{
v/2, v ≤ 2δ/3
(δ − v)+, v > 2δ/3 .

Using fδ = χΓj
δ
hδ(ηj) ∈ H1

0 (Ω) ∩ V as a test function in (4.2), we have∫
Γj

δ\ΩH

a−1h′δ(ηj) |∇ηj |2 dx+
∫

Γj
δ

ηjfδdx = 0.

By the sign of h′δ in Γj
δ,∫

Γj
δ\(ΩH∪Γj

2δ/3)

a−1 |∇ηj |2 dx = 1/2
∫

Γj
2δ/3\ΩH

a−1 |∇ηj |2 dx+
∫

Γj
δ

ηjfδdx

≤ 1/2
∫

Γj
2δ/3\ΩH

a−1 |∇ηj |2 dx+
∫

Γj
δ

|ηj |2 dx .

Do the same thing in Γj
2/3δ,Γ

j
22/32δ,Γ

j
23/33δ, . . . , to get∫

Γj
δ\(ΩH∪Γj

2δ/3)

a−1 |∇ηj |2 dx ≤
∞∑

k=0

2−k

∫
Γj

2kδ/3k

|ηj |2 dx

<
∞∑

k=0

2−k

∫
Γj

δ

|ηj |2 dx = 2
∫

Γj
δ

|ηj |2 dx .

Similarly, ∫
Γj

2δ/3\(ΩH∪Γj
4δ/9)

a−1 |∇ηj |2 dx < 2
∫

Γj
2δ/3

|ηj |2 dx .

Summing the above two equations, we have∫
Γj

δ\(ΩH∪Γj
4δ/9)

a−1 |∇ηj |2 dx < 4
∫

Γj
δ

|ηj |2 dx .

Use the test function χΓj
δ
gδ(ηj) in (4.2), get∫

Γj
δ\(ΩH∪Γj

δ/2)

a−1 |∇ηj |2 dx =
∫

Γj
δ/2\ΩH

a−1 |∇ηj |2 dx+
∫

Γj
δ

ηjgδ(ηj)dx ,
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i.e., ∫
Γj

δ\(ΩH∪Γj
δ/2)

a−1 |∇ηj |2 dx >
∫

Γj
δ/2\ΩH

a−1 |∇ηj |2 dx .

So that∫
Γj

δ\ΩH

a−1 |∇ηj |2 dx ≤ 2
∫

Γj
δ\(ΩH∪Γj

δ/2)

a−1 |∇ηj |2 dx

≤ 2
∫

Γj
δ\(ΩH∪Γj

4δ/9)

a−1 |∇ηj |2 dx ≤ 8
∫

Γj
δ

|ηj |2 dx .

Consider the function g(x) = χΓj
δ
(δ − ηj)+ ∈ H1(Ω), then ∇g = ∇ηj a.e. in Γj

δ.
By g ≡ 0 on Ωj , and meas{Ωj} > 0, we can apply Sobolev inequality to g(x), then∫

Γj
δ

|g|2 dx ≤ c(Ω)
∫

Γj
δ

|∇g|2 dx = c(Ω)
∫

Γj
δ

|∇ηj |2 dx

≤ c(a,Ω)
∫

Γj
δ\ΩH

a−1 |∇ηj |2 dx ≤ c(a,Ω)
∫

Γj
δ

|ηj |2 dx .

Therefore,

δ2 meas{Γj
0} ≤

∫
Γj

δ

|g|2 dx ≤ c(a,Ω)
∫

Γj
δ

|ηj |2 dx ≤ c(a,Ω)δ2 meas{Γj
δ \ Γj

0} ,

i.e., meas{Γj
0} ≤ c(a,Ω) meas{Γj

δ \ Γj
0} → 0, as δ → 0, thus meas{Γj

0} = 0, ηj > 0

a.e.. Since meas{Ωk} > 0, for 1 ≤ k ≤ n, and ηj > 0 a.e., ηk
j =

R
Ωk

ηj(x)dx

meas{Ωk} > 0. So
that Property (v) is proved. �

Property (vi) For every domain Gk with Gk ∩ ΩH = Ωk, ηk
j < supGk

ηj , where
k 6= j, k, j = 1, 2, . . . , n.

Proof. If ηj is constant on any subdomain of Ω \ΩH , then ∇ηj is zero, from (4.5),
ηj is also zero, which contradict with (v). So that, ηj is not a constant on any
subdomain of Ω \ ΩH . We use contradiction to prove Property (vi). Assume
ηk

j = supGk
ηj , for some Gk as in (vi). Set

σ < dist{∂Gk,Ωk}, ck = ess sup
Ωσ

k\Ω
σ/2
k

ηj ,

use f = χΩσ
k
(ηj − ck)+ as a test function in (4.2), for k 6= j,∫

Ωσ
k\Ωk

a−1 |∇f |2 dx+
∫

Ωσ
k

fηjdx = 0

i.e., f ≡ 0, ηk
j = ck > 0. So that ηj achieves its nonzero local maximum in Ωσ

k \Ω
σ/2

k ,
which contradicts with the maximum principle applicable to (4.5), hence Property
(vi) holds. �

Property (vii) If αk > 1, k = 1, 2, . . . , n, then ηj ∈ C1(Ω), j = 1, 2, . . . , n, where
αk is from (1.4).
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Proof. Without loss of generality, we write ηj as η in the proof. The C1 continuity
of η in Ω \ ΩH is from the standard elliptic argument (See [16], theorem 8.33 on
page 210). We focus on the proof of the C1 continuity of η close to ΩH , and show
that |∇η| is forced to 0 as x close ∂ΩH . For T ≤ ηj

j , denote ΣT = {x|η(x) ≥ T},
use the test function (η − T )+ in (4.2), then∫

ΣT \ΩH

a−1 |∇η|2 dx+
∫

ΣT

η(η − T )dx = 2π(ηj
j − T ).

Apply the co-area formula (see [14]),∫
{η=T}\ΩH

a−1 |∇η| dH1(x) +
∫

ΣT

ηdx = 2π. (4.8)

For any point x0 close to Ωk with d = dist{x0, Ωk} ≤ r1, (4.2) becomes (4.5) in
Bd/2(x0), with a(x) of order dαk

k (x), where dk(x) = dist{x, Ωk}. Scaling Bd/2(x0)
to the unit ball B1(0), write η̃(y) = η(dy/2 + x0), then (4.5) can be simplified as

−4y(η̃ − η(x0)) +
d

2
∇xa

a
· ∇y(η̃ − η(x0)) = −a

(d
2
)2
η̃, in B1(0).

Apply Hölder estimate [16, Theorem 8.32 page 210] in the ball B1/2(0) for the above
dilated equation, then η̃ ∈ C1,β(B1/2(0)), ∀β ∈ (0, 1), and ∃C̃ depending only on
αk, C1, such that

|∇y η̃|C0,β(B1/2(0))
≤ C̃

(
|η̃ − η(x0)|C0(B1(0))

+
∣∣∣a(x0)(

d

2
)2η̃
∣∣∣
C0(B1(0))

)
.

Fix β. From (1.4), a(x0) is bounded by dαk . Pull back to Bd/2(x0), then∣∣∣(d
2
)1+β∇xη

∣∣∣
C0,β(Bd/4(x0))

≤ C̃
(
|η − η(x0)|C0(Bd/2(x0))

+ dαk+2
)
. (4.9)

Let T = η(x0),M = |∇η(x0)|,we iterate to obtain the bound on ∇η(x0). First by
the uniform bound of η and (4.9), |∇η|C0,β(Bd/4(x0))

≤ C̃1d
−1−β , so that |∇η(x)| >

M
2 for x ∈ Br̃1(x0), where r̃1 =

(
M
2C̃1

)1/β
d1+1/β .

By (4.8),
∫
{η=T}∩Br̃1 (x0)

a−1 |∇η| dH1(x) ≤ 2π, then M
2dαk

meas{{η = T} ∩

Br̃1(x0)} ≤ 2π. If meas{{η = T} ∩ Br̃1(x0)} ≥ r̃1, then M1+1/βd1+1/β

2dαk (2C̃1)1/β
≤ 2π,

i.e. M ≤ C̃2d
βαk/(1+β)−1.

If meas{{η = T} ∩ Br̃1(x0)} < r̃1, by the continuity of η and the intermediate
value theorem, {η = T} ∩ Br̃1(x0) will be a closed curve inside Br̃1(x0), we use
(T − η)+χBr̃1 (x0) as the test function in (4.2), then∫

{η≤T}∩Br̃1 (x0)

(
−a−1 |∇η|2 + η(T − η)

)
dx = 0 ,

so that
M

2C1dαk
meas{{η ≤ T} ∩Br̃1(x0)} ≤

∫
{η≤T}∩Br̃1 (x0)

η(T − η)dx

≤ Cmeas{{η ≤ T} ∩Br̃1(x0)},

we have M ≤ C̃2d
αk . Hence |∇η(x)| ≤ C̃2d

−1+βαk/(1+β) for all x ∈ Ωr1
k , which

yields
|η̃ − η(x0)|C0(Bd/2(x0))

≤ C̃2d
βαk/(1+β) .
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Back to (4.9), then |∇η|C0,β(Bd/4(x0))
≤ C̃3d

−1−β+βαk/(1+β). Consider in Br̃2(x0),

where r̃2 =
(

M
2C̃3

)1/β
d1+1/β−αk/(1+β). Using the same way as above, we obtain

M1+1/βd1+1/β−αk/(1+β)

2dαk(2C̃3)1/β
≤ 2π,

i.e., M ≤ C̃4d
−1+βαk/(1+β)+βαk/(1+β)2 . Iterate N times,

M ≤ C̃2Nd
−1+βαk((1+β)−1+(1+β)−2+···+(1+β)−N ) = C̃2Nd

−1+αk(1−(1+β)−N−1).

Take N = 1+blog1+β
αk

αk−1c, then γk = (1−(1+β)−N−1)αk−1 > 0, and |∇η(x)| ≤
C̃2Nd

γk for any x with dist{x, Ωk} ≤ r1/2. Thus as x approaches Ωk, |∇η(x)|
approaches 0 with the order of dγk

k (x). The above argument is held for all x close
to Ωk, k = 1, 2, . . . , n, hence as x approaches ΩH , |∇η(x)| approaches 0. �

Similar to Properties (i)–(vii) of ηk, k = 1, 2, . . . , n, we have the following results.

Lemma 4.2. η0 has the following properties:
(i) 0 ≤ η0 ≤ 1 in Ω
(ii) η0 ∈ C0(Ω) ∩ V
(iii) Assume ηk

0 is the value of η0 on Ωk, then ηj
0 6= 1, for 1 ≤ k ≤ n.

(iv) η0 6= 0 a.e.. η0 6= 1 a.e.; i.e. ηj
0 6= 0 for 1 ≤ k ≤ n.

(v) For any subdomain Gk with Gk ∩ΩH = Ωk, ηk
0 < supGk

η0, for 1 ≤ k ≤ n.
(vi) If αk > 1, k = 1, 2, . . . , n, then η0 ∈ C1(Ω).

Proof. (i) can be proved by using test functions (η0 − 1)+ = max{η0 − 1, 0} and
f = min{η0, 0} for (4.1) respectively.

The proof of (ii) is the same as the proof of Property (iv) above.
Using test functions from C1

0 (Ω \ ΩH) in (4.1), we get

−∇ · a−1∇η0 + η0 = 0 in Ω \ ΩH ,

η0 = 1 on ∂Ω.
(4.10)

Fix σ such that Ωσ
k∩ΩH = Ωk. If ηk

0 = 1 for some k, let ck = ess sup
Ωσ

k\Ω
σ/2
k

η0, then
ck < 1 = ess supΩ η0 by the maximum principle for (4.10). Use f = χσ

k(η0−ck)+ 6≡ 0
as a test function in (4.1),

0 =
∫

Ωσ
k\Ωk

a−1 |∇f |2 dx+
∫

Ωσ
k

fη0dx > 0,

a contradiction, so that ηk
0 < 1 for 1 ≤ k ≤ n. (iii) is showed.

Applying the maximum principle for (4.10), η0 can not achieve the maximum
value in Ω \ ΩH , combine with (iii), then η0 6= 1 a.e..

To show η0 6= 0 a.e., we use the same idea as in the proof of Property (v) to
show meas{Γj

0} = 0, where Γj
0 = {x ∈ Ω|η0(x) = 0}. Let Γj

δ{x ∈ Ω|η0(x) ≤ δ},
then Γj

0 ⊂ Γj
δ, and meas{Γj

δ \ Γj
0} → 0 as δ → 0. By η0 = 1 on ∂Ω, Γj

δ ∩ ∂Ω = ∅
for all 0 ≤ δ < 1. Use fδ = −χΓj

δ
(δ − η0)+ ∈ H1

0 (Ω) ∩ V as a test function in (4.1),
then∫

Γj
δ\ΩH

a−1 |∇fδ|2 dx+
∫

Γj
δ

η0fδdx = 0, i.e.,
∫

Γj
δ\ΩH

a−1 |∇fδ|2 dx =
∫

Γj
δ

η0 |fδ| dx .
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By the Sobolev embedding,∫
Γj

δ

|fδ|2 dx ≤ c(Ω)
∫

Γj
δ

|∇fδ|2 dx

≤ c(a,Ω)
∫

Γj
δ\ΩH

a−1 |∇fδ|2 dx

≤ c(a,Ω)
∫

Γj
δ

η0 |fδ| dx .

Therefore,

δ2 meas{Γj
0} ≤

∫
Γj

δ\Γ
j
0

|fδ|2 dx ≤ c(a,Ω)δ2 meas{Γj
δ \ Γj

0};

i.e., meas{Γj
0} ≤ c(a,Ω) meas{Γj

δ \ Γj
0} → 0, as δ → 0. Therefore, meas{Γj

0} = 0
and (iv) is proved.

The proof of (v) is the same as the proof of Property (vi) above. To prove
(vi), use (T − η0)+ as the test function in (4.1). The rest is similar to the proof
of Property (vii) above, use the coarea formula, elliptic estimates and iteration to
obtain the desired result. �

Proof of Theorem 4.1. The representation of the hD follows from the linearity of
(3.3) and its uniqueness of solution. The regularity of hD follows from the regularity
of η0 and ηj , j = 1, 2, . . . , n. �

5. Consequence of the Limit Problem

In this section, we follow [4] closely to give a few applications of the limit problem.
Set

aij =
∫

Ω\ΩH

a−1∇ηi · ∇ηjdx+
∫

Ω

ηiηjdx, 1 ≤ i, j ≤ n,

bj =
∫

Ω\ΩH

a−1∇η0 · ∇ηjdx+
∫

Ω

(η0 − 1)ηjdx, 1 ≤ j ≤ n,

b0 =
∫

Ω\ΩH

a−1∇η0 · ∇η0dx+
∫

Ω

(η0 − 1)2dx,

and apply the same argument as [4, Theorem 3.4] (also see [3, Lemma 2.2]). We
can represent the local minimum energy of J0 as the follows.

Lemma 5.1. Fix he. If (ψD, AD) minimizes J0 in H1
a,D ×H1(Ω; R2), then

J0(ψD, AD) =
∫

Ω

|∇
√
a|2dx+

n∑
i=1

n∑
j=1

aijdidj + 2
n∑

j=1

bjdjhe + b0h
2
e . (5.1)

For a minimizing sequence of Jε in M, we also prove the following result.

Theorem 5.2. Fix he and a sequence εk → 0+ as k →∞. Let (ψεk
, Aεk

) minimize
Jεk

in H1(Ω; C)×H1(Ω; R2) under gauge (1.8), then |ψεk
| →

√
a in C(Ω), and there

is a subsequence (ψεk`
, Aεk`

) → (ψD, AD) in M as ` → ∞, where (ψD, AD) is a
minimizer of J0 in M0, and (ψD, AD) ∈ H1

a,D × H1(Ω; R2) for some D ∈ Zn.
Consequently, Jεk`

(ψεk`
, Aεk`

) → J0(ψD, AD) as ` → ∞, moreover, for any 0 <
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σ < r1 and ` sufficiently large, |ψεk`
| is uniformly positive outside

⋃n
j=1 Ω

σ

j , and
the degree of ψεk`

around Ωσ
j is dj , j = 1, 2, . . . , n.

Proof. Use the same argument as [4, Theorem 4.2], we can prove the first part of
the theorem; the second part follows from the definition of the degree in (2.3) and
the fact that (ψεk`

, Aεk`
) → (ψD, AD) in M as k` →∞. �

From Theorem 5.2, for sufficiently small ε, the vortex set of the minimizers of Jε

in M is forced to close the zero set of a(x), by zero set of a(x) corresponds to the
normal impurities in the inhomogeneous superconductor, the vortices of the min-
imizers of Jε is pinned near the normal impurities, which verifies the effectiveness
of the pinning mechanism by adding normal impurities to a superconductor.

Proof of Theorem 1.3. By Theorem 2.3, H1
a,D is both open and closed inH1

a , we can
always find r > 0 sufficiently small, such that Br ∩M0 = Br ∩ [H1

a,D ×H1(Ω; R2)].
Apply the same argument as in [4, Theorem 4.6 ], we derive Theorem 1.3. �
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6. Appendix

In this part, we list some lengthy proofs omitted in Section II.

Proof of Lemma 2.2. First we can find a sequence of nested C∞ domains to ap-
proximate ΩH , say they are

Ω1
H ⊃⊃ Ω2

H ⊃⊃ · · · ⊃⊃ ΩH with dist{∂Ωm
H , ∂ΩH} → 0, as m→∞.

Then by the proposition of Schoen and Uhlenbeck [23, page 267] (also see [8, Lemma
A.11 page 244] ), there exists a sequence {vm}∞m=1, such that

vm ∈ C2(Ω \ Ωm
H ;S1) ∩H1

loc(Ω \ ΩH), vm → v in H1
loc(Ω \ ΩH), as m→∞. (6.1)

From (2.3), for any Gj satisfying (2.1), fGj
satisfying (2.2), the degree of vm on

∂Gj will converge to the degree of v = u/
√
a on ∂Gj , i.e. for all m sufficiently

large, we have

dj = deg(vm, ∂Gj) =
1
π

∫
Gj\Ωj

J(vmfGj )dx =
1

2πi

∫
∂Gj

(vm)∗(vm)τ ds . (6.2)

Here τ is the counterclockwise tangent vector field of ∂Gj , and the most right-
hand side is derived by using integral by part, it is the standard definition of the
degree (winding number) of C1 function on ∂Gj . We define a sequence of real
two-dimensional vector fields by

Fm(x) = −
n∑

j=1

dj∇θj + i(vm)∗∇vm, m = 1, 2, . . . , x ∈ Ω \ Ω
m

H . (6.3)

Note that ∇θj is a single-valued smooth vector field on Ω\ΩH , and
∫

∂Gj
∇θj ·τ ds =

2π, 1 ≤ j ≤ n, for any Gj as in (2.1). From (6.2),
∮

C
Fm · τds = 0 for any

closed curve C ⊂⊂ Ω \ ΩH , and all m sufficiently large with C ⊂ Ω \ Ω
m

H . Hence
there exists a φm ∈ H1(Ω \ Ω

m

H), such that ∇φm = Fm in Ω \ Ω
m

H for all m
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sufficiently large. Use (6.3), then vm∇φm = −vm
∑n

j=1 dj∇θj + i∇vm. As a result,
vm(x) = eiφm(x) · ei

Pn
j=1 djθj(x) = ei[φm(x)+

Pn
j=1 djθj(x)].

Since vm → v = u/
√
a in H1

loc(Ω \ ΩH), as m → ∞, ∇θj ∈ C∞(Ω \ ΩH), it
follows that eiφm ≡ vm · e−i

Pn
j=1 djθj(x) → v · e−i

Pn
j=1 djθj(x) in H1

loc(Ω \ ΩH), as
m→∞, and ∇φm → −

∑n
j=1 dj∇θj +iv∗∇v in L2

loc(Ω\ΩH), as m→∞. It follows
that, after possibly subtracting constants 2πkm, km ∈ Z,m = 1, 2, . . . , φm → φ
in H1

loc(Ω \ ΩH), as m → ∞, where φ ∈ H1
loc(Ω \ ΩH), and v = ei(φ+

Pn
j=1 djθj)

in H1
loc(Ω \ ΩH). Setting Θ(x) = φ(x) +

n∑
j=1

djθj , then u =
√
av =

√
aeiΘ(x). By

|∇θj | ≤ C(ΩH), 1 ≤ j ≤ n,∫
Ω\ΩH

a|∇φ|2 =≤
∫

Ω\ΩH

|∇u|2 + C

∫
Ω\ΩH

a|
n∑

j=1

dj∇θj |2

≤
∫

Ω\ΩH

|∇u|2 + C(ΩH , D, a) .

To show φ ∈ H1
loc(Ω \ ΩH) is unique (up to an additive constant 2πk, k ∈ Z).

Assume φ̃ ∈ H1
loc(Ω \ ΩH), satisfying u =

√
aei(φ̃+

Pn
j=1 djθj), then ei(φ−φ̃) = 1 in

H1
loc(Ω \ ΩH), with φ− φ̃ ∈ H1

loc(Ω \ ΩH), so φ− φ̃ = 2πk, for some k ∈ Z. �

Proof of Lemma 2.5. Our proof is standard. We first construct a family of functions
in V to approximate a given f ∈ V , then use a mollifier to smooth them, and apply
the diagonal rule to finish the proof. Take σ < r1, so that Ωσ

j ∩ Ωσ
k = ∅, k 6= j, 1 ≤

k, j ≤ n. Let

α(r) =


1, 0 ≤ r ≤ 1

2

2− 2r, 1
2 < r ≤ 1

0, r > 1 .

Then | d
drα| ≤ 2 If x = (x̃, xd) ∈ U j

k \ Ωj represented in the local coordinate system
of Uj

k , define the shift of x away from Ωj in sense of the local coordinate as

mkj
σ (x) = x+ α(

φj
k(x̃)− xd

σ
)((x̃, φj

k(x̃))− x),

it can be verified that
∣∣∇mkj

σ (x)
∣∣ ≤ c(ΩH) a.e. in Uj

k \ Ωj .
For any f ∈ V, σ small enough, define

fσ(x) =

{∑nj

k=1 β
j
k(x)f(mkj

σ (x)) for x ∈ Ωσ
j ⊂ Ωr1

j , j = 1, 2, . . . , n,
f(x) for other x,

where {βj
k}

nj

k=1 is the partition of unity from (2.7). Clearly fσ ∈ H1(Ω), we ver-

ify fσ ∈ V . For x ∈ Ωσ/2g
j , by (2.6),

∣∣∣φj
k(x̃)− xd

∣∣∣ ≤ gd(x) ≤ σ/2, mkj
σ (x) =

(x̃, φj
k(x̃)) ∈ ∂Ω, so that fσ(x) = fj = constant, and ∇fσ = 0; from (1.4),

a(x) > C0(σ/2g)αj for x ∈ Ω \ Ωσ/2g
j , then fσ ∈ V . Moreover, calculate in the

local coordinates, and sum together the difference of f and fσ in V−norm, we
obtain,

‖fσ − f‖2V ≤ C(ΩH)
∫

Ωσ\ΩH

(a−1 |∇f |2 + f2)dx .

Since meas{Ωσ \ ΩH} → 0, as σ → 0, we have ‖fσ − f‖V → 0, as σ → 0.
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Choose a mollifier

ρ ∈ C∞
0 (B1(0)) ∩ C∞

0 (Rd), ρ ≥ 0, and
∫

B1(0)

ρ(x)dx = 1, (6.4)

and set ρm(x) = mdρ(mx), where B1(0) is the unit ball in Rd. Then for m > 6g/σ,
ρm ∗ fσ ∈ C∞(Ω) ∩ V , and ρm ∗ fσ = fj in Ω

σ/3g

j .

From (1.4), |a(x)| ≥ C0(σ/3g)αj ≥ C(ΩH , σ) > 0 in Ω \ Ω
σ/3g

, we obtain

‖fσ − ρm ∗ fσ‖2V ≤ C(ΩH , σ)‖fσ − ρm ∗ fσ)‖2H1 .

Hence by ρm ∗fσ → fσ,m→∞ in H1, we have ρm ∗fσ → fσ,m→∞ in V . Apply
the diagonal rule, pick up the ρmσ

∗ fσ ∈ C∞(Ω) ∩ V , such that
ρmσ

∗ fσ → f in V , as σ → 0. �
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