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AN EQUATION FOR THE LIMIT STATE OF A
SUPERCONDUCTOR WITH PINNING SITES

JIANZHONG SUN

ABSTRACT. We study the limit state of the inhomogeneous Ginzburg-Landau
model as the Ginzburg-Landau parameter k = 1/¢ — oo, and derive an equa-
tion to describe the limit state. We analyze the properties of solutions of the
limit equation, and investigate the convergence of (local) minimizers of the
Ginzburg-Landau energy with large x. Our results verify the pinning effect of
an inhomogeneous superconductor with large k.

1. INTRODUCTION

Since the presence of vortices is inevitable for high temperature superconductors
in high magnetic fields, it is desirable to pin the vortices to some specific locations,
so that the supercurrent pattern around the vortices will be stable under the in-
fluence of the applied magnetic field and thermal fluctuation, which are important
in applications (see [15] [I8] 13]). One of the pinning mechanisms is to add normal
impurities to the superconductors to attract the vortices, however, this procedure
destroys the homogeneity of the superconductors, introduces an inhomogeneous
structure inside the superconductor. The analysis of the behavior of inhomoge-
neous superconductors provides a good help for the understanding of such pinning
mechanism.

Inhomogeneous models of superconductor under Ginzburg-Landau frame work
have been discussed in both physics and mathematical literatures (see [2] [, 1T, 12]
[T7] etc.). We consider a Ginzburg-Landau system describing an inhomogeneous
superconducting material used in [4], through the study of the limit case of such
system,we derive an equation to describe the limit system, which is useful to un-
derstand the pinning effect. The following is the energy of the inhomogeneous
superconductor with the parameter e:

L) = [ =i + 55

Q €
where the parameter ¢ = 1/k is a nonnegative number, and « is the Ginzburg-
Landau parameter of the superconductor material; @ C R? is a bounded simply
connected domain with a smooth (C?#) boundary, represents the cross-section of an
infinite cylindrical body with es as its generator; H, = h.es is the applied magnetic

(a—|¢[*)? + |curl A — H,|*)da, (1.1)
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field with k. being a constant; A € H'(Q;R?) is the magnetic potential and curl A =
V x (Aj,A2,0) is the induced magnetic field in the cylinder; ¢ € H(Q;C) is
complex-valued, With [1|? = 9p*1) represents the density of superconducting electron

pairs and j = %(z/;*w; — ¢Vp*) — |¢|>A denotes the superconducting current

density circulating in Q; a :  — [0, 1] is a bounded continuous function, describing
the inhomogeneities of the material, the zero set of a(x) corresponds to normal
regions in the material.

In order to analyze the limit problem as € — 0, we define the energy

Jo(zp,A):/Q|(V—iA)z/;|2+|cur1A—He|2dx, (1.2)

where (1, A) € H! x H*(Q;R?), a(z) is the same as in (1.1,
H! = {¢ € H(©; C) such that |[¢|* = a almost everywhere}. (1.3)

In Lemma we show that f0£ each u € H], there is a unique well-defined degree
D = (dy,...,d,) € Z™ around Q, denote the homotopy class in H} corresponding

to D as H;)D, then
Hy=|J H)p.
Dezn
Since H, ; p is a nonempty open and (sequentially weakly) closed subspace of H}
(Theorem , we can find the minimizer of Jy in H;’D x HY(Q;R?), and call it
the local minimizer of Jy in H} x H(Q;R?).

In ] Andre, Bauman and Phillips have considered the case a(x) vanishes at a
finite number of points {x1,...,z,}, and showed that for sufficiently large x = 1/¢
the local minimizers of J, in have nontrivial vortex structures, which are
pinned near the zero points of a(x) with any prescribed vortex pattern. In this
paper we consider the case where a(z) vanishes in subdomains (holes), which is
more realistic in the presence of normal inclusions.

Our situation is different from the cases studied in [19] or [20], where they have
considered the energy J. with a = 1 in a multiply connected domain without applied
magnetic field, they have shown the existence of the local minimizers of J. with
prescribed vortex structures within certain homotopy class. In a recent paper [3]
by Alama and Bronsard, they studied the energy J. with ¢ = 1 in a multiply
connected domain with applied magnetic field, and achieved deeply results related
to the pinning phenomena. They proved the interior vortex will not be shown until
the applied magnetic field exceeds H,., of order |In¢|, when the applied magnetic
filed exceeds H.,, the vortices are nucleated strictly inside the multiply connected
domain. Their techniques and results are similar to those from [I], [2], [4], [2I] and
[22].

We analyze the limit state through the investigation of the structure of local
minimizers of Jy, and derive an equation to describe the limit state. Our methods
and results are similar to those of [4]. While, we concentrate more on the analysis
of the properties of the solutions of the limit equation, especially various nontrivial
properties of the base functions of the solutions, which is a consequence of the
setting of a(zx).

In detail, a(x) satisfies the following conditions:

a € CHQ\Qy),vae€ HY(Q), a(z) > 0forall zin Q, and a(z) = 0iff z € Oy C Q,
where Qg = U;‘zlﬂj corresponds to the inhomogeneities of the superconductor,
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n € N, and §;,7 = 1,...,n, are simply connected Lipschitz subdomains with
2; C €. There also exists a constant 0 < 7 < 1 such that

dist{Q;, Q;} > 71,71 # j,1 <4,j <n, and dist{Qq, OQ} > rq.
In addition, for z € Q\ Q;, with d;(z) = dist{z, Q;} < ry, there are positive

constants Cop, C1, o, such that

Cod?” (x) < alw) < Cud (2),  |dy(a)

<C, j=1,2,....n. (1.4

n;(r) = —2, (1.5)

then n; € C*>(Q\ Q;,R?) with |n;| = 1. Moreover, we can rewrite n;(z) in term
of its azimuthal angle 6;(x), so that
n;(z) = (cosb;(x),sind;(x)),1 < j <n. (1.6)
Note that €% () and V6, (x) are single-valued with ¢ (®) ¢ H1(Q\ Q;,C).
et
i M= H'(QC) x HY(Q;R?), Mo = H! x HY(Q;R?),
then M and M are the domains of the functional J. and Jy respectively.

If (¢, A) € M(Mp) and ¢ € H?(Q2), the gauge transformation of (¢, A) under ¢
is defined by

(¥, A) = Gy(, A) = (ve'?, A+ V) € M(My). (1.7)

(', A’) is gauge equivalent to (¢, A) whenever has been satisfied for some
¢ € H*(Q). As is well-known that J., e > 0, are gauge invariant, i.e. J (1, A) =
Je (¢, A"). Hence if (¢, A) is a (local) minimizer of J. in My, so is (¢, A’).

In this paper, we fix a gauge by requiring that A satisfy

divA=0 inQ,

A-n=0 ondQ. (1.8)
This can be done by choosing a gauge ¢ such that
Ap=—divA in Q,
¢ (1.9)

%:—/Ln on 0f2.

Apply (L.7) to (¢, A), we get (¢, A") = Gy(¢, A) satisfies (L.8).

Since J(v/a,0) = Jo(v/a,0) = [, |Vi/a| + h2|Q| < oo, it makes sense to talk
about the minimizers and local minimizers of Jy and J. in Mg and M respectively.
In Section II, we derive a few preliminary results. In Section |3 we analyze the local
minimizers of Jy in My, and establish the following equation to describe them.

Theorem 1.1 (see Theorem [3.3). Fiz h.. Let (¢p,Ap) be a minimizer of Jy in
H, p x H'(Q;R?) under gauge , define hp by curl Ap = hpes, then hp € V.
is the unique solution of

/ a*1Vh-Vfdx+/hfdszQFdjfj7
O\Ox Q =

Vi(x) e VN HYQ), and h—h. €V NHIQ),

(1.10)
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where the space
V={feH (Q) | fla, = fj = constant,1 < j <n,
Jona, @1 @) [V f (@) dw < oo},
and f; is the constant for f on Q;,7=1,2,...,n.

Note that V is nontrivial, since a € V by a € H'(Q). We further reveal
the relation between the local minimizers and critical points of Jy in Mg, namely
critical points are the same as local minimizers, as below.

Theorem 1.2 (see Theorem [3.5). Fix h.. For each D = (dy,...,d,) € Z™, Jy
has a unique minimizer in H(},D x HY(;R?) € HY x HY(Q;R?) in sense of gauge
equivalence; moreover for any two such minimizers, say (v, A) and (¢', A’), under
gauge (@, then A = A" and v = '€’ for some c € R.

Combine Theorem and Theorem we can see there is a one to one relation
between the solutions of and the gauge equivalent minimizers of Jy in M.

In Section IV, we study the properties of solutions of , where we show its
solution can be represented by a linear combination of n+1 independent functions in
C(Q)NV (see Theorem 7 we derive more detailed properties of the independent
functions. Under a slightly stronger assumption on a(z), we also achieve higher
regularity of the solution.

In Section V, we discuss the motivation of our analysis of the limit problem. We
show (see Theorem the minimizers of J. converge to the minimizer of Jy in
M. Moreover, for e sufficiently small, all vortices of minimizers of J. are pinned
near O, the zero set of a(z). Since the zero set of a(x) corresponds to the normal
regions, the result confirms the effectiveness of the pinning mechanism by adding
normal impurities to a superconductor to attract vortices.

Consider the local minimizers of J. in the neighborhood of a local minimizer of
Jo, similar to the above result, we have the following theorem.

Theorem 1.3. Fiz he and D € Z". Let (¢Yp,Ap) be a minimizer for Jy in
H, p X HY(Q;R?) under gauge , Choose 7 > 0 such that B, N My = B, N
[H,iD x HY(;R?)]. Then for all € > 0 sufficiently small, B, (¢p, Ap) contains a
local minimizer, (Ye, Ac), of Je in M, such that, || — /a in C(Q), and (e, Ac) —
(Yp,Ap) in M as € — 0. In addition, for each 0 < o < r1 and all € sufficiently
small, || is uniformly positive outside U?:l ﬁj and the degree of 1. around Qiz’
isdj, j=1,2,....n.

Where B, = Br(waAD) = {(w,A) S M|||(1/J,A) — (’(/JD,AD)HHl(Q) < T}.

2. PRELIMINARIES

(1.11)

In this section, we describe some properties of two Sobolev spaces to be used
for our later analysis. Section is about the properties of H} defined in (1.3),
Sectionis about the properties of the weighted Sobolev space V in (|1.11]), where
we generalize the space ideas from [4].

2.1. Space H_. Recall that we have defined
H! = {4y € H'(Q;C), such that |¢)|*> = a almost everywhere}.

By the assumption on a(x), \/a € H}, H! is nonempty. The following lemma
justifies the existence of the degree for any u € H}.
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Lemma 2.1. For everyu € H}, there is a unique D = (dy, . ..,d,) € Z", depending
only on w, such that for any subdomain G; and any function fg,, 1 < j < n,
satisfying

G; C Q, be a simply connected smooth subdomain with G; N Qg = Q;,  (2.1)

fa; € C=(Q),0 < fg, <1, fq, =1 on Q\ G, and supp{fa,} CQ\Qy, (2.2)
then we have the representation
uij

d; = deg(u/v/a,dG;) = 1/(;\9 I

Where J(w) is the Jacobian of the map w : G; — C. Write v = (x1,22) € Gj,
W = wy + iws, then

Ydx . (2.3)

J(w) = O(wy,wa) _ dot 21;11 ?91:21
Oy, w2) e on
Proof. Fix u € H}, set v(x z)/~v/a(x) = u(z)/|u(z)] in Q\ Qp, and v(z) =0

for other case. By the assumptlon on a(x ), v e HE (Q\Qpy; St), where ST = {z €
C: |z =1}.

Let G be as in and fg, asin , we have vfg, is well defined on Gj, in
addition, supp{vfa, }OG C G;\ 9y, vfg € H'(Gy), and |vfg,| = [v| =1 a.e. on
0G;. From [§] (Property 5 at page 220 and lemma 11 at page 337),

1 1
dea(v,0G;) = des(v]s,, 0C;) = /G Twfo, )iz = /G gl

J

ufa;

Va

Ydx, (2.4)

deg(v, 0G}) is well-defined, integer-valued and independent of fg,,

Now to show deg(v, 9G;) is independent of the choice of G;.
Claim: If two subdomains G;, G? satisfy with G? C Gjl C €, then
deg(v, 0G}) = deg(v, dG3).
Proof of the Claim: By v € Hl(a; \ G?)7 there is a constant 6 = 5(G},G§,v),
such that for any set A C G \ G7 and meas{A} < ¢, ||v||%11(A) < 1. Then for any
two simply connected smooth subdomains B!, B? with G? CcB*cB'C G} and
meas{B' \ B*} < 4, from (2.4), we have

[deg(v,05") - deg(v,08%)| = | [ Jtoferido— - [ Hwfep)da
Bl / B2 ’
= |7/ J(v)dz|
BI\BQ

< 2||UHH1(31\BQ)/7T <1.

Since the left-hand side is integer-valued, deg(v, dB') = deg(v, 0B?).

Choose a finite number of nested simply connected smooth subdomains, say
Gj = A' DD A? 5D A2 5> --- 5D AF = G3, such that meas{Al\A”l} <3, 0=
1,...,k — 1, then deg(v,aG;) = deg(v, aAl) = deg(v,0A?) = = deg(v,9G?).
From the above claim, we know for any two subdomains Gjl, G? satisfy ,

deg(v, BG}) = deg(v, 5‘(G} N G?)) = deg(v,aG?).
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Hence deg(v, 0G,) is constant for any G; satisfying (2.1)), i.e., (2.3) is well-defined,
and d; = deg(v, 9G;) = deg(u/v/a,0G,) depends on u only. O

Lemma 2.2. Each u € H} can be written in the form of
u(z) = Va(x)e®W 2z e Q\ Qy,
where O(z) = ¢(x) + Y d;0;, 0;(x) is from defined on Q\ Q;, D € Z" is
j=1

from ([2.3)), uniquely decided by uw € H}, and ¢ € HL (Q\ Qg) is unique up to an
additive constant 2k for k € Z, satisfying fﬂ\ﬁj alVé|> < C(Qp,a,D)+ [, [Vul.

We follow the same idea as in [4, Theorem 1.4] to prove the lemma, please see
the proof in the appendix.
For each D = (dy,...,d,) € Z", we define the homotopy class

H, p = {u € H;| degree for u around Q; is d;,j = 1,2,...,n}.

L , il6()+ 3 d;6;) .

By Lemma 2.2 w € H, p, if and only if u = Vae i=1 , where ¢ € H_ (2

Q;) and fﬁ\ﬁj alVol> < C(Qu,Q,a,D) + [, |Vul?; Lemmaimplies that H! =
U H;’D and H;’D N H;,D' = for D # D’ in Z"; the following theorem further

Dez™

reveals the topology of H}.

Theorem 2.3. For each D € 7", H;’D is a monempty, open and closed subset of
H,. In addition, H, 1, is sequentially weakly closed in H'(Q;C), i.e., if {ur}32, C
H, p and up, — u in H'(Q;C) as k — oo, then u € H,, 1.

Proof. Since /a € H'(Q) and n; € C®(Q\ Q;;R?), 1 < j < n, according to
Lemma Vae! 2i-14% ¢ H, p, so that H, , # 0.
Assume ug € H} ), let Bp(ug) = {u € H} : |lu — uollmi(qc) < r}, where

r > 0 to be chosen later. Pick any u € B,(ug), set vo = uo/|uo| = a=?uy,
v =u/|u| = a1 ?u. Fix G;j as in 1) and fg, as in |i 1<j<n,by 1)
1 ~ 1
d; = f/ J(vofg,)dx and d; = f/ J(vfg,)dx,
T Ja\; T Ja\;
then

1T (vofe,;) = J(wfe)lia,) < C-(+llu=vollm(a)) - lu—uollara;) < Cr(l+r),

where C' = C(a,vo,G;). It follows that for r small (say r = Tlﬂ) d; = d; and
u € H) . Thus B,.(ug) C H, p, for r small, H, ,, is an open subset of H,.

Since H! = Upezn H;’D and H, p ﬂHiD/ = for D # D’ in Z", from the
closeness of H!, we obtain that H;’D is a closed subset of H_}.

Now prove H, 5, is weakly sequentially closed in H,. Assume that {uz};>, C
H;’D and up — u weakly in H'(£;C) as k — oco. By compactness, a subsequence
(which we relabel as {u;}?2 ) satisfies ux — u in L2(Q) as k — o0, so |u| = al/?
a.e. in Q, and u € H}, according to Lemma u € Hi,[) for some D € Z". We
show D = D.

Set vy (z) = ug(x)/|ur(z)],v(z) = u(z)/|u(z)| in Q\Qpq, then vy, — vin HE (O
Qp) and v, — vin LE (Q\ Qpn), as k — oo.
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Choose Q D QF satisfying (2.1), assume okl @ivezy < MM € Zk =
1,2,3,.... Partition Q} \ Q? into 4M? + 1 subdomains enclosing Q?, say, they
are GO\ GUAD 1 =1,2...4M? + 1, where

Ql =GW 55 GP 55 ... 5o UMD = 2,
For any vy, at least on one of the G\ GUTY | lu| g1 gy gurny < 3. Choose
GO \~G(l+1) with infinitely many vy such that [|og | g1 (goy\gu+ny < 3. Let G =
GO, G; = GU*Y and take the corresponding subsequence on G\ G+ (still
labelled as {vx}), then Q; CC G; CC G, and ||”k||H1(Gj\éj) <1 forallk>1. By
the weak convergence, [[v]| 1,6, < 1 ij\éj |J (vr)| < HU}C”?{l(G-\Gj) <1 and
Jip, TN < 10ye g1, < 3 Pick fo, satistying (B3). By ©.3).

1 ~ 1
d; = —/ ) J(ka(;j)dx, d; = */ B J(Uij)d'r'
™ G;\G; ™ Gi\Gj

/ (T(wfa,) - J(vfe,))dz
G;\Gj

= [ () = J(v))da
Gj\G;

fGJ Ovg, ., Ov
+/G]_\ijaj 75 Ro (in(G22)" ~ () ) da

fG] Ovg, ., Ov
+/Gj\G fo, 9 Re (inn( G257 — in(2 )" ) o,

. dfa; — . . .
Since fq. fo, € C°° G- , vp — v in L%, and % — 9% weakly in L2, it fol-
j J xo Oxo ?

Ox1
lows that fG \G ng (%1 - Re (wk(gg’;) w(aa: )*) dx — 0, as k — oo. Similarly
fG \G fGJ 8302 (ka(avk> 7,’1}(88; )*) dr — O7 as k — oo.
By 0 < fo; <1, [Jga f&17(0) = J(u)|dz < 3, for any k, |d; —d;| < 3.

Since dj,(ij €Z,d; = Cij,j =1,2,...n. Thus D =D and u € Hé,D' =

2.2. Space V. By (L11)), V = {f € H'(Q) : flo, = f; = constant, 1 < j < n,
~“Ua) |V f(z)]* dv < oo} is a weighted Sobolev space. Define the norm of

£y = (/Q\Q a—l(x)|Vf(gc)|2dx+/ﬂf2)1/2. (2.5)

Lemma 2.4. V is a Hilbert space with norm .

Proof. Assume {fi}72, C V is a Cauchy sequence under norm (2.5)). By 1/a(z) >
c¢>0in Q\ Qpy for some constant ¢ € R, we know {f;}?2, is a Cauchy sequence
in H'(Q2). Hence there is a f € H'(Q2), such that fr — f in H(Q). Also fx € V
implies that f is constant on ;,1 < j < n. By {V fi/\/a}?2, is a Cauchy sequence
in L2(Q\ Qp), there are g1,92 in L%\ Qg), such that Vfi/v/a — (g1,g2) in
L%2(Q\ Qp), from 1//a is bounded away from 0, we get Vfi, — (v/agi,/agz) in
L?(Q\ Q). Therefore (v/agi,v/ags) = Vf by the uniqueness of the convergence
in L2(Q\ Qp), ie. Vf/v/ae L*(Q\Qy),and we get f €V, fr — fin V. O

fQ\ﬁH a
V as
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Using the same idea as above, we can obtain that V is weakly closed under the
norm ([2.5)). In addition, we have the following lemma proved in the appendix.

Lemma 2.5. C1(Q)NV is dense in V.

To go forward, let us first investigate properties of the Lipschitz domain Q; C
R? 1 < j < n, dis the dimension. By saying €, is Lipschitz, we means that for every
point p € 9§15, there is a neighborhood U, of p, and a function ¢, : R4 — R, such
that there is a Cartesian coordinate system in U, with p as the origin, satisfying:

(i) 6p() — ¢p(7)| < A|Z — §|, where A = A(Qy), 7,5 € R
(i) QN = {(Z, za)lra < dp(Z)}NUp, and Up\QY; = {(Z, za)|xa > ¢p(Z)}NUp,
where 7 € RI~1,

(iii) For all z € Uy, d(z) = dist{z, 0} > |zq — ¢,(Z)| /gp, for some constant

gp > 1.

Since 0f); is compact, we can choose {Z/l,g Z;l to cover it, j = 1,2,...,n, where
Ll,z ={x = (%,7q4) € RY|Z| < /\i, and ‘xd - qﬁ{c(i)’ < /\i}, /\i is constant, (bi is as
in (i) and (ii). _

Apply (iii), for any z = (Z,z4) € U}, there is a constant g = g(Qp) > 1,

’xd—¢i(i)‘/g§d(x)§’xd—¢i(5ﬂ)’ k=1,2,....n5, j=1,....n.  (2.6)

Since 092; C uZ;lug and Z/{,Z is open, there is a constant rq, such that for o < rq,
Q7 \ Q; € UL U, where Q7 = {z € Q|dist{z, Q;} <o}, j =1,2,...,n. Choose
a partition of unity for ﬁ;l \ ©; subordinate to {U;};7,, say, {81};.,, such that,

BleCrMU]),0< B <1, and Y Bl(x)=1 z€Q; \Q, 1<j<n (27
k=1

Lemma 2.6. Assume f € C1(Q)NV, and flo; = fj, 1 < j < n, pick the constant
g satisfying (2.6)), then for any o9 < r1/g,

[ ot @l - plds <o [ ol @) |96 do.
BQjO

QI70\Q;

Proof. By 0Q7° C Q7' \ Q; C ugglu,{ and the partition of unity,

/89;0 a tx)|f - fj|2 ds = /g}QJ”O ;ﬂi(aﬁ)cfl(z) = f|2 ds

=S @@l - s,

k=1
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Then apply the local coordinate system on Ll,z, we obtain

/ Bl(@)a () |f — £ ds
16)

Q70U
. T4
= Bwa@ | Ve
Q70 Nty 7. (%)

Tq Zq
g/ o (x) </ |Vf|2dt/‘ dt) ds
8070 iy, #.(F) ¢3 (%)
. goo
s/ @1(%) — x4 / a"Yx(s)) |V f]? dtds
Q70 Nty ¢

7 (®)
<e(@on [ @) VI do.
QI70\Q;

2
ds

Where eq is the d—th unit vector in the local coordinate system,. In the proof,
(T.4), (.6), 0 < Bl(x) < 1 and the Lipschitz property (i) are used. Hence
Jongo @M @) |f = ;I ds < e(Q))00 fgumo\q, 0™ (@) [VF| dz, 1 <G <. O

3. LimiT EQUATION

In this section, we prove Theorem[I.I]and Theorem[I.2]stated in the introduction.
First let us give a result concerning the existence of the minimizers of Jy in H, ; p X
HY(Q;R?).

Lemma 3.1. For fized he and D € Z", there is a minimizer of Jo in H, p %
HY(;R?) under gauge @, which is a local minimizer of Jy in M.

Proof. By the gauge equivalence in (1.7) and (1.9), we need only to consider the
situation under the fixed gauge (|1.8)), i.e., in the space

{(w,A) e Hy p x H'(;R?): div A=0inQand A-n =0 on 00Q}.

According to Theorem H, p, is sequentially weakly closed in H'($;C), we can
apply direct method in the calculus of variations to find the minimizer of Jy in
H;D x H'(Q;R?). Since HiD is both open and closed in H!, the minimizer in
H,  x H'(Q;R?) is also a local minimize of Jy in Mo. O

From (1.2)), we get the Euler-Lagrange equations of the minimizer of Jy,

div H(w*vw — V) — WA] —0 nQ,
. (3.1)
5 Ve - uT) 4] m =0 on g,
and )
curlcurl A = —%(z/}*Vz/) V) — [PPA=jo in Q,
curl A = hoez on 0f).

Where A = (A1, Ag), curl curlA = (Oppuy A2 — Orgas A1, =012, A2 + Onyay Ar).
Note: Taking divergence on both sides of the second equation (3.2)) in above, we
could get the first equation of (3.1]) in distribution sense.

(3.2)
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Assume (¢, A) is under gauge (1.8), from (|1.9), we see that (3.2]) becomes
b . :
NA = —§(¢ Vi —pVp*) — [P2PA in Q.
curl A = heeg on Of).
A-n=0 in 09.

Since divA =01in 2 and A-n = 0 on 91, according to Poincaré’s lemma, rewrite
A = (Ay, As) with (Aa, —A;) = V( for some ¢ € H}(2), from the above equation,
¢ € W32(Q), so that we obtain the following regularity result on A:

Lemma 3.2. If (¢p, Ap) under gauge is a minimizer in Hy , x H'(Q;R?),
then Ap € W2(Q).

Now we prove Theorem in the introduction, for the convenience to read, let
us restate it.

Theorem 3.3. Fiz he. Let (Yp, Ap) be a minimizer of Jo in Hy p, X H'(Q;R?)
under gauge @), define hp by curl Ap = hpes, then hp € V s the unique
solution of

a_1Vh-Vfdx+/hfdx: o2md; f; .
/Q\QH o ; T (3.3)
Vf(x) e VN HLQ), and h—he €V NH;(Q).

Proof. First we show hp € V. From the boundary condition, h = h, on 0f). By
vp € HY ;, and g, =0, (B:2) implies,

curl(hpes) =0 in Qp. (3.4)

Hence in Q;, Vhp =0, i.e., hp = hp ; a.e., where hp ; is a constant depending on
Q;,1<j<n. OnQ\Qu, [¢¥p| =+a+#0, we can write ¢p = \/ae'?? so that

curl(hDeg) = jD = a(VGD - AD) in Q\QH (35)

Since |(V — idp)vp|* = |Vval” + [Va(VOp — Ap)|” and Jo(1p, Ap) is bounded,
a=2|Vhp| = a|Vp — Ap| € L*(Q), so that hp € H'(2), and hp € V.

Now we prove hp satisfies (3.3)). Divide on both sides of by a(x), then
take curl to annihilate V6@p, then curl ﬁ curl(hpes) = —curl Ap = (0,0, —hp),

rewriting the equation, we obtain
1
a(x)

in the sense of distributions. Set

\Y% Vhp =hp in Q\QH (3.6)

Q7 = {z € Q|dist{z, %} <o}, Q7= U Q.

j=1 7

Since a € CY(Q\ Q) and a > 0in Q\ Qu, hp € HZ (Q\ Qu), and VOp €
HE (Q\ Qp). Take the test function f(z) € C1(2) NV N HF(Q) for (3.6), and
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integrate by parts,

/ (@ N @)(Vhp - Vf) + hp(x) f(z))de
Q\Q

/ v-Vhpf
= —ds
A7) a(z)

/ n-Vhpf
= — —ds
oas  a(z)

_ n-Vhpfj, n-Vhp(f - fj)
= Am alx) Lm alx)

Here n is the outward normal of 9Q°, v = —n is the inward normal. Assume 7 is
the counterclockwise tangent vector field of 907, use (3.2) on 907,

. ) . 1
_/ L’%ijdszfj/ Mdszfj/ (r-Vp —7- Ap)ds
oae  a(T) o0 a(z) Q7

= 27defj - fj/ CUI‘IADdJ? = 27defj - fj hDdZ‘
4 ¢

Q 27

:27rdjfj—/m thda:—/Qa hp(fj — f)dx
:27defj—/Qgthd1'—0(1)7 as o — 0.

Using the Cauchy inequality,
n-Vhp(f - f;) / If = £il? vz/ [Vhpl®  \1/2
—— " ds| < = (s ds )
| o0 a(x) | ( a0s  a() ) ( oas  a() )

By Lemma for d(z) < rq,

\f — £l ik
Lm wﬁd““m”LM%auﬂx

|Vhp|?
a(z)

1 o0
dx — 0, as 0 — 0, there is a sequence {0,,}>°_ 1, o — 0,

2 .
Omt1 < Om, and oo, Wa}(lf)l ds < C(ginﬂ)’ as m — 0o, then

Because [, \ T

n-Vhp(f - f;) IVF | \1/2
o = et t <cte( [, R~

as o,, — 0. Now we have
/ a_l(VhDVf—l—th)dm:ZQﬂdjfj —/ hpfdx —o(1),
o\a°™ = Qom

i.e.

/ a_1VhD~Vfdx+/ thdac:Z%rdjfj—o(l).
Qa7 Q

Jj=1
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If 0 € (Osms1,0m),

/ a_1VhD-Vfdw+/thdx
o\Q’ Q

:/ a*1VhD-Vfdx+/thdx+/ a 'Vhp - Vfdz.
Q™ Q Qom\Q7

As o — 0, meas{Q7" \ Q" } — 0, fmm\ﬁa a"'Vhp - Vfdzx — 0, then

/7 a_1VhD-Vfdx+/thd:v—>Z27rdjfj, as o — 0.
Q\Q7 Q

j=1

Hence the weak form of hp becomes

/ a’1Vh~Vfdx+/hfdx:Z27rdjfj,
A\ Q =1

Vi(x) e CHQ)NVNHIQ) and h—h, €V N HQ).

By Lemma CHQ)NV N HL(Q) is dense in V N H (), thus the above equation
is true for Vf(z) € VN H} (), i.e. we get .

Now to prove the solution of is unique. Assume that hy and hs are solutions,
then h=hy —hy € VN HLQ). Apply h as a test function to the corresponding
equations about h; and ho respectively, then take their difference,

/ a’1|Vh|2dx+/h2dx:O,
O\Qn Q

whence hy —ho =01in V. [l
Lemma 3.4. For fized h, € R and D € Z", there is a unique solution for (3.3)).

Proof. Existence: For the given h, and D € Z™, by Lemma [3.1, we can find
(¥p,Ap) as the minimizer(i.e. a minimizer) of Jy in HiD x H(£;R?) under

gauge (|1.8)), apply Theorem we know hpeg = curl Ap satisfying eq (3.3)).
Uniqueness is exactly the last part of Theorem O

Note that for any h. € H'(Q), Lemma [3.4] holds.

Theorem 3.5. For any fized he and D = (dy,...,d,) € Z™, Jo has a unique
minimizer in the space H) , x H'(Q;R?) C H} x H'(Q;R?) in the sense of gauge
equivalence; moreover, for any two such minimizers, say (v, A) and (¢', A’), under
gauge @, then A = A’ and ¢ = ¢'e*® for some c € R.

Proof. The existence follows from Lemma Uniqueness: By and , we
only need to consider the situation under gauge . Without loss of generality,
we assume the two minimizers (¢, A) and (¢', A') in H} ;, x H'(€;R?) are under
gauge (L.8), so that divA = div4A’ = 0 and A-n = A’ - n = 0, according to
Poincaré’s lemma, we have A — A’ = (,%’ %) for some ¢ € H'(Q), where (z,y)
are the coordinates in 2—dim. we can also derive that ¢ is constant on 92 from
(A—A") -n = 0. Through Theorem we get curl A = curl A, which implies
A¢ =0 in €, thus ¢ is constant on €, i.e. A= A’. Then by (3.2)), we have jo = jj,
s0 VO = V6 in Q\ Qp, ie. e = ¢ for some ¢ € R, hence ¢ = /e, and We
have proved the later part of the theorem. If take ¢ = ¢ = constant, we then have
(', A"y = Gy(1h, A), i.e. they are gauge equivalent. O
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We need to mention that Theorem [3.5] is a generalization of the Theorem 3.2
in [4] under our setting.

Now suppose (¢p, Ap) is a critical point of Jy, i.e. a solution of and
, then from the first part of Theorem hp in curl Ap = hpes is the unique
solution of , hence (¢¥p, Ap) is a local minimizer of Jy in M. On the other
hand, by Lemma every local minimizer (¢, A) belongs to H, p, x H"(;R?) for
some D € Z", hence it satisfies and 7 and by Theorem it is gauge
equivalent to the minimizer in H ;, p x HY(Q;R?*). Thus we have the following
statement.

Corollary 3.6. All critical points of Jo are local minimizers in H x H(;R?).

As is easy to see that if we obtain the solution hp of (3.3]), then we can recover
Ap with the condition div Ap = 0 in Q, and recover ¢p from (3.2)), so that (3.3)
describes the limit system completely.

4. PROPERTIES OF THE SOLUTIONS OF THE LIMIT EQUATION

Consider the n + 1 functions in V N H (), {no, n1, ... 7.} satisfying

/ a_1V770-Vfdx+/nofdx:0,
N\ Q

Vf(z) € VN HI(Q) and 79 =1 on 0N

(4.1)

and
/ a_1V77j -Vfdx—l—/ n; fdx = 2w f;,
Q\Qn Q

Vi(x) e VNHH(Q) and 7, =00n0dQ, j=1,...,n.

The existence and uniqueness of solutions in V for both (4.1]) and (4.2)) follows the
result in Lemma We can use them to represent the solution of (3.3))

(4.2)

Theorem 4.1. Fiz h, € R, D € Z". If hp solves (3.3)), then hp € C(Q) and

hp =) djn; + heno. (4.3)

j=1
Moreover, if ar > 1,k =1,2,...,n, then hp € C1(Q), where ay, is from (1.4).

The proof of Theorem is a consequence of properties of 79 and n;,j =
1,2,...,n. We will postpone it to the end of this section. We first discuss some

properties of {n1,...n,}.

Property(i) 7; >0in Q, 1 < j <n.

Property(ii) 71, . ..,n, are linear independent in V N H{ (), i.e., Z;Zl w;n; =0
forw; e R,1 <j<n,ifand only if w; =0,1<j < n.

Proof. To prove this property (i), we use the test function f = min{n;,0} in (4.2)

and obtain
/ a”! |Vf|2dx+/ |f|?dz < 0.
O\Qu Q

So that f =0, i.e,n; >0in Q for 1 < j < n, and (4) is proved.
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Assume g = >, wyn; = 0 for some w; € R,1 < j < n. From (4.2), g satisfies
the equation

/ a*IVg.Vfder/gfdx:QWijijO,
A0 Q =

Vf(x) e VA HLQ), and g=0 onof.

Fix k € {1,...,n}. Choose o,m such that Q7 N Qyg = Q and m > 2/0. Set
X7 as the characteristic function of Q7, Q7 = {z € Q|dist{z, Qx} < o}. Let
f* = X7 * pm(x), where pp,(z) = m?p(mz), p(z) is defined as in (6.4). Then
fFeVNHIQ), ff=1and ff =0if k # j, for 1 <j <n. Apply f* as a test
function for , we have wyg = 0, for k = 1,2,...,n. Thus n,...,n, are linear
independent in V N H{ (), we have (ii). O

(4.4)

Property (iii) Assume 77;? is the value of n; on 2, then 775 = esssupqn; <
27/ meas{Q); } and 775 >l for k#j,1<k,j<n.

Proof. Using f = n; as a test function for (4.2]), then

27rn; = /Q\ a™! |V77j|2dx+/g|77j|2 dx > 0.

H

On the other hand, Using f = (n; — n§)+ as a test function for (4.2]), then
2 :
/ _at ‘V(m - n§)+‘ dx +/ nj(nj —n})+dx =0,
Q\Qu Q

so that (n; — n§)+ =0 a.e., i.e. ng = esssup on;. By using test functions from
CH(\ Qg) in (4.2), we see that

~V-a 'V +n;=0 in Q\Qp, (4.5)
7;, =0 ondQ, for1 <j<n. '

Since n; is nonconstant, by the maximum principle in , there is no local maxima
for n; in Q\ Qp. If 77;? = 775 for some k # j, fix o such that Qf N Qp = Q. Let
Cl = ESSSUP )0 o /21]; then ¢ < 1} = ess,sup a7;.

Using f = x7(n; — cx)+ # 0 as a test function in , we have

0:/ a_1|Vf|2das+/ fnjdx > 0,
QI\Qy Qg

a contradiction, so that 77; > nf for k # j, 1 < k,j <n. Using n; as a test function
in (4.2), we have (77?)2 meas{Q;} < 27rn§, so that 775 < 2w/ meas{€};}. Therefore,
(i) is proved. O

Property (iv) n, € C°(Q)NV,ji=1,2,...,n.

Proof. By and a=! € CY(Q\ Qp), we apply the standard estimate for the
weak solution of an elliptic equation (say [16] theorem 8.8 at page 183 and theorem
8.12 at page 186), n;(x) in H2(Q), for any Q' CC Q\ Qp, by Sobolev embedding,
nj(z) € CO(Q\ Q). Since n;(z) is a bounded constant in Q4,1 < k < n, with
n; € ]:Il(ﬁ)7 i.e.,

n;(z) € HY(Q)NC*(Q\ Qp). (4.6)
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We show n;(z) is C° on the boundary of Q. Since Q is Lipschitz, k = 1,2,...,n,
there is a constant o, < 71, for any zo € Q\Qy with d = dist{zo, Qx} < ok, we can
find a rectangle with sides parallel to the local coordinate axes, its top Tox1, above
the boundary graph and its bottom gogy7, below the graph, dist{xo, 21} = ditar/3,
dist{xo, 11} = crd, where ¢ is a constant depending on Qy, ToZ1 represents the
line segment starting at z¢ and ending at x1, Yoy1 is the line segment starting at
1o and ending at y;. Note the rectangle is not unique, but it does not matter.
Claim: For all f € C°(Q\ Qu)NV,

Z1
d-imenl? / |F(@s) = il dH' < bed™ (@) f|lv,

0

where the integral is in ZTgZ1, and zs = (1 — s)zg + sx1, and s € [0, 1].
Proof of the Claim: Assume f € C'(Q) NV, then f(y) = fx in Zoy1 and

/I1 f(zs) — frl dH" = /I1 f(zs) — f(ys)| dH" :/

Zo Zo Zo

Z1

Ys
/ Vf-n,,, dd'dH",

where n,_,_ is the unit vector from x4 to ys. So that

/ Fee) — ol dE* < / / V1| ds

T1 [Ys 1/2 T Ys 1/2
< </ / a VP d:r) . </ / a(:r)dx)
0 szl Ny 1/2 0 s
< |fllv </ / cldakdx>
xo Ts

< bed 23

here b = Cic. From the above inequality,

a7l [\ ) = gt < v g

zo
Because C1(Q) NV is dense in CY(2) NV, we have proved the claim.

Now we continue the proof of Property (iv). Since n;(z) € CO(Q7* \ ), for
every o € Q7% \ Q, we have

[nj(x0) — 1|

T 1
:S d—l—ak/3/ ’n](xs) _ nf’dHl +d—l—(1k/3/ |,,7J(xs) _ 77](1'0)|dH1
x

o Zo

T
< bed™* 3 |In;llv + d_l_ak/g/ n;(2s) —nj(x0)| dH',

Zo

To estimate d~1=2*/3 [*' |p,(z,) — n;(zo)| dH", consider (£.5) in the ball B,/s(zo).

Zo

Scaling Bg/s(7o) to a unit ball, (4.5) becomes
—4d*V, -a ' (yd/2 + 20)Vyn; = —n; in B1(0).

Apply Holder estimate [16] theorem 8.22 page 200] in the ball Byja,/s(0) for
the dilated equation, we have oscn; < Cd%**/3||n;||L~, where C' depends on
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B8, and ax, 8 € (0,1). By Property (iii), ||nj|lre < 1/meas{Q;}, so that
n;(zs) = 1j(x0)| < C(Qp, )d?+/3, ie.,

nj(x0) — n¥| < bed™3||n;llv + C (e, i )d? /3 < byd® 31+ ||nyllv),  (4.7)

for all 2o € Q7% \ Q. Since d(z) — 0 as x — I, n;(z) — nf at O, ie., n;(z) is
continuous at 0€2;. Combining this with | , we have n; € C°(Q), and Property
(iv) is proved. O

Property (v) n; >0 a.e. inQ, j=1,2,...,n. Hence 775—€ >0,1<k,j<n.

Proof. We prove that meas{z € Q|n;(z) = 0} = 0 for j =1,2,...,n. By (iv), it
m_akes sense to talk about the level set of nj(m). Let I ={z € §|77j(ac) = 0},
Efs = {x € Qln;(z) < 5}, then T} C T}, meas{I'’} \T'}} — 0 as 1 —>E. By 775 > 0,
Q; NI =0 for § < nj. In the proof, we always assume § < 77, i.e., Q; NT5 = 0.

Denote xp.; as the characteristic function of the set Fg, 0> 0. Set
s

o, v<4/2 _Jv/2, v<20/3
95(”)_{(5—v)+7 o> s2 M hé(”)_{(é—v)+, v>20/3.

Using f5 = Xr hs(n;) € HY(Q) NV as a test function in ([4.2]), we have
/. a7 h(ny) |V77j|2d33+/_ nj fsda = 0.
MI\Qm ri

By the sign of hj in Fg,

Lo atwnlPao=v2 [ ol [ wdds
IS AN(23:{0) W) TYs,3\0n Iy
§1/2/, B a_1|V77j|2dx+/v n;1? da .
F§5/3\QH Ffs
Do the same thing in I‘g/gé, Fé2/325, Fég/gg,é, ..., to get
o0
[ atmmltasyrt [l
Fg\(QHUFJ%/s) k=0 ;k(g/[;k
<ot [ mltae=z [ .
k=0 rs r;
Similarly,
/v B v a_l\an|2d:E<2/‘ \77]-|2dx.
Fzz&/s\(QHUFi&/g) F;a/?,

Summing the above two equations, we have

/. o G_I\an|2d$<4/_ ;| da .
D\ (@yUr r

45/9)

Use the test function Xr gs(n;) in (4.2)), get

/_ _ a_1|Vr]j|2dm:/
F‘Zg\(ﬁHUF]

— 2
- a |Vl dx+/_77j96(77j)d337
5/2) FZS/Q\QH Ffs
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ie.,
-1 2 -1 2
/v B a” |V, d:r>/_ ~a | Vn,|Tdx.
TI\(QrUTS ) T5,5\Qn

So that

/} a”! |V77j|2da: < 2/_ A a”! |V77j|2dx

5/2
§2/ a_1|an|2dx§8/ |77j|2dx.
I\ (Qpurd rs

45/9)

Consider the function g(x) = Xrs (6 — ;)4 € HY(Q), then Vg = Vn; ae. in I
By g =0 on ;, and meas{Q;} > 0, we can apply Sobolev inequality to g(x), then

/, g% da gc(Q)/_ \vg|2dx=c(m/_ Vi, |2 dee
vy rs rs

< c(a,Q)/ a V|V da < c(a,Q)/ n;|? da .
DI\Qx r]
Therefore,
62 meas{T)} < / > dz < c(a, Q) / 0,17 de < c(a, Q)8 meas{T} \ T},
s s

i.e., meas{I'}} < c(a, ) meas{I‘g \TJ} — 0, as § — 0, thus meas{T)} =0, 7; >0

i (x)dx
Jo, e,

a.e.. Since meas{%} > 0, for 1 <k <n, and 7; > 0 ae., n} = s (T

that Property (v) is proved.

Property (vi) For every domain Gy with Gj. N Qg = Oy, n;? < supg, 7j, where
ki, kj=1,2...n

Proof. If n; is constant on any subdomain of Q\ Qp, then Vn; is zero, from ,
n; is also zero, which contradict with (v). So that, n; is not a constant on any
subdomain of Q \ Q. We use contradiction to prove Property (vi). Assume
1y = supg, 1, for some Gy, as in (vi). Set

o < dist{0Gk, Q}, cx = esssup 7,

o\ °/2
Q7\g

use f = xas (7 — ck)+ as a test function in (4.2), for k # j,

/ a71|Vf|2da:—|—/ fnjdx =0
QI\Qy Qg

ie, f=0, 1754C = ¢ > 0. So that n; achieves its nonzero local maximum in €] \52/2,
which contradicts with the maximum principle applicable to (4.5)), hence Property
(vi) holds. O

Property (vii) If ay > 1, k =1,2,...,n, then n; € C1(Q), j = 1,2,...,n, where

ay, is from (|1.4).
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Proof. Without loss of generality, we write 7; as 1 in the proof. The C' continuity
of nin Q\ Qp is from the standard elliptic argument (See [16], theorem 8.33 on
page 210). We focus on the proof of the C! continuity of 7 close to Qfr, and show
that |Vn| is forced to 0 as x close Qy. For T < 77?, denote Y = {z|n(x) > T},
use the test function (n — T)4 in ([£2)), then

/ a ' |vy? da:—l—/ n(n—T)dx = 271'(77§ -T).
Sr\Qu X7

Apply the co-area formula (see [14]),

/ a |\ Vn|dH (2) —|—/ ndx = 2. (4.8)
{n=TH\Qn T

For any point xg close to Qj with d = dist{xo, Qx} < 71, (4.2) becomes (4.5) in
Bgsa(xo), with a(z) of order dj*(x), where dy(x) = dist{z, Qx}. Scaling By/s(z0)
to the unit ball By(0), write 7(y) = n(dy/2 + xo), then (4.5) can be simplified as
_ dVza _ d
=8y (7 = n(xo)) + 3 - Vy (7 = n(w0)) = —a(§
Apply Holder estimate [16, Theorem 8.32 page 210] in the ball B /5(0) for the above
dilated equation, then 7j € C'%(B;,5(0)), V8 € (0,1), and 3C depending only on
ay, C1, such that

)2, in By (0).

2 CO(Bl(o))>'
Fix . From (1.4), a(xo) is bounded by d**. Pull back to Bg/s(zo), then

< C’( — dak+2> ) 4.9
C%8(Bgsa(zo)) |77 77(:EO)|CO(BGI/2(9UO)) + ( )

_ s d o
Viilcons s, oy < C (1= 0@0)l oo 0y + [ale0)(5)%7

x

’(g)wﬁ
2
Let T = n(zo), M = |Vn(xo)|,we iterate to obtain the bound on Vn(zo). First by
the uniform bound of 5 and (4.9)), \Vn|co,ﬂ(Bd/4($0)) < C1d~ 7P, so that |Vn(z)| >
& for x € By, (x¢), where 71 = (%)Uﬂdl‘”‘l/ﬁ.

By (4.8), f{n:T}th(mO)a*|Vn\dH1(:v) < 27, then 2dLakmeas{{n =T}n

- 141/8 g141/8

Br, (o)} < 2m. If meas{{n = T} N By, (x0)} > 71, then W < 2m,
ie. M < Cydfon/O+8)-1,

If meas{{n = T} N By, (v0)} < 71, by the continuity of  and the intermediate
value theorem, {n = T} N Bj, (x¢) will be a closed curve inside By, (x), we use

(T — 77)+XB;1 (z0) @s the test function in 1) then

/ (—a‘l Vnl* + (T - n)) dx =0,
{(n<T}NBs, (o)

so that
2C dox o nter = {n<T}NB# (z0)
< Cmeas{{n < T} N Bz (x0)},

we have M < Cad®*. Hence |Vn(z)| < Cod=14Px/040) for all € Qf', which
yields

‘77 B n(xo)‘CO(Bd/z(xo)) < éQdﬁak/(1+5) .
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Back to (4.9), then |V77|Co,g(Bd/4(w0)) < Cyd~1=F+Pax/(1+6) - Consider in By, (o),

where 7y = (%)Uﬁdl“/ﬂ_“k/(l"‘m. Using the same way as above, we obtain
3

ML/ B A+1/B—ark/(1+5)
= < 2,
2dek (2C5)1/6
ie., M < Cyd—1+Bar/(A+8)+Bai/(14+5)* Tterate N times,
M < Cynd=1HPen(+8) 7 +01408) 2+t (148) ™) _ G g—1+en(1=(1+8) V1)

Take N =1+ [log, 5 5], then y, = (1 - (1+8) "N Har—1> 0, and |Vn(z)| <
Cynd* for any x with dist{z, Qz} < 71/2. Thus as = approaches Q, |Vn(z)|
approaches 0 with the order of d}*(x). The above argument is held for all z close
to Q,k =1,2,...,n, hence as x approaches Qp, |Vn(z)| approaches 0. |

Similar to Properties (i)—(vii) of nx, k = 1,2, ..., n, we have the following results.

Lemma 4.2. 1y has the following properties:
(i) 0<m <1inQ
(11) o € Co(ﬁ) nv '
(iii) Assume nf is the value of o on Q, then m #1, for1 <k <n.
(iv) 1m0 #0 a.e.. no # 1 a.e.;ice. gy #0 for 1 <k <m.
(v) For any subdomain Gy, with G, N Qg zgk, k< supg, Mo, for 1 <k < n.
(vi) Ifap > 1, k=1,2,...,n, then ny € C1(Q).

Proof. (i) can be proved by using test functions (19 — 1); = max{ny — 1,0} and

f = min{no, 0} for (4.1 respectively.
The proof of (ii) is the same as the proof of Property (iv) above.
Using test functions from C§(Q\ Q) in [(4.1)), we get

~V-a 'V +m =0 inQ\Qpg,

4.10
o =1 on 0. ( )

Fix o such that Q7 NQ gy = Q. If 776“ = 1 for some k, let ¢, = ess SUPG\ /2 110 then
k k

¢k < 1 = esssupg 7o by the maximum principle for (4.10). Use f = x7(no—ck)+ # 0
as a test function in (4.1)),

O:/ a VIV dx + fnodx > 0,
QI\Qy Q7

a contradiction, so that n§ < 1 for 1 < k < n. (iii) is showed.

Applying the maximum principle for , 7o can not achieve the maximum
value in Q \ Qp, combine with (ii7), then g # 1 a.e..

To show 79 # 0 a.e., we use the same idea as in the proof of Property (v) to
show meas{T}} = 0, where T = {z € Q|no(z) = 0}. Let Fg{z € Qno(z) < 4§},
then T C I‘g, and meas{I‘g \I¥} —0asé — 0. By no =1 on dQ, Fg No =10
forall 0 <6 < 1. Use f5 = —XF(,;-((S —no)+ € HF () NV as a test function in (4.1)),
then

/v B a_l|Vf(;|20l33—|—/‘170]”5(1:10207 ie., / B a_1|Vf5|2dx:/ no | fs]dx .
Li\Qn T3 r\Qu vl
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By the Sobolev embedding,

/, |f5]? dz < c(Q)/V IV /5| da
r; r;
< c(a7Q)/v a ' |V fs|* da
rI\Qu

<c@® [ mlfslde.
3
Therefore,

52 meas{I‘%} < / v |f(;|2 dx < c(a,Q)5? meas{I‘g \ I‘%};

5 0
i.e., meas{I?} < c(a,Q)meas{I‘g \TJ} — 0, as § — 0. Therefore, meas{T}} = 0
and (iv) is proved.

The proof of (v) is the same as the proof of Property (vi) above. To prove
(vi), use (T — o)+ as the test function in (4.I). The rest is similar to the proof
of Property (vii) above, use the coarea formula, elliptic estimates and iteration to
obtain the desired result. ]

Proof of Theorem[{.1. The representation of the hp follows from the linearity of
(3.3) and its uniqueness of solution. The regularity of hp follows from the regularity
of npand n;, 5 =1,2,...,n. O

5. CONSEQUENCE OF THE LIMIT PROBLEM

In this section, we follow [4] closely to give a few applications of the limit problem.
Set

Qij :/ a” 'V - Vijdz +/ ningdz, 1 < 1,5 <mn,
N\Qu Q
bj :/ _a 'V Vdz + / (no — )njdxz, 1< j<n,
Q\Qn Q

bo :/ B a_1Vno-Vnod:L‘+/(770— 1)2dx,
O\Qm Q

and apply the same argument as [4 Theorem 3.4] (also see [3| Lemma 2.2]). We
can represent the local minimum energy of Jy as the follows.

Lemma 5.1. Fiz h.. If (¢p, Ap) minimizes Jy in HCIL’D x H'(S;R?), then

Jo($p, Ap) :/ Vval2de + 30N aydid; + 23 bjdihe + boh2. (5.1)
Q =

i=1j=1
For a minimizing sequence of J, in M, we also prove the following result.

Theorem 5.2. Fiz he and a sequence ¢, — 0% as k — oo. Let (1., , Ac, ) minimize
Je, in HY(Q; C)x H'(Q; R?) under gauge (@, then [tbe, | — v/a in C(Q), and there
18 a subsequence (wfke’Aﬁke) — (¢Yp,Ap) in M as £ — oo, where (Yp,Ap) is a
mianimizer of Jo in Mo, and (Yp,Ap) € Hy p x H (;R?) for some D € Z".
Consequently, Je,, (Ve,,, Ae,,) — Jo(¥p, Ap) as £ — oo, moreover, for any 0 <

Ek[
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-0

o <11 and € sufficiently large, |v,,| is uniformly positive outside U, Q

=18, and

the degree of 1/1%2 around Qig isdj,j=1,2,...,n.

Proof. Use the same argument as [4, Theorem 4.2], we can prove the first part of
the theorem; the second part follows from the definition of the degree in (2.3)) and
the fact that (@Z;ekz,A%) — (Yp,Ap) in M as ky — oo. O

From Theorem for sufficiently small €, the vortex set of the minimizers of J.
in M is forced to close the zero set of a(z), by zero set of a(x) corresponds to the
normal impurities in the inhomogeneous superconductor, the vortices of the min-
imizers of J, is pinned near the normal impurities, which verifies the effectiveness
of the pinning mechanism by adding normal impurities to a superconductor.

Proof of Theorem[1.3 By Theorem H, p is both open and closed in H}, we can
always find r > 0 sufficiently small, such that B, N Mo = B, N[H, , x H'(Q;R?)].
Apply the same argument as in [4, Theorem 4.6 ], we derive Theorem (]
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6. APPENDIX
In this part, we list some lengthy proofs omitted in Section II.

Proof of Lemma[2.3. First we can find a sequence of nested C*° domains to ap-
proximate 0y, say they are

Q}; DD 0% DD - 2D Qy  with dist{0Q%,005} — 0, as m — oco.

Then by the proposition of Schoen and Uhlenbeck [23], page 267] (also see [8, Lemma
A.11 page 244] ), there exists a sequence {v™}>°_, such that

V™€ G2\ Qs SH N HL.(Q\ Qg),v™ — v in HE (Q\ Qp), as m — oco. (6.1)

From (2.3), for any G; satisfying (2.1), fq, satisfying (2.2)), the degree of v™ on
0G; will converge to the degree of v = u/\/a on 9G;, i.e. for all m sufficiently
large, we have

d; = deg(v™,0G;) = l/ J(v™ fa,)dx = i (W™)*(v™),ds.  (6.2)
T Jo\a; k 21 Jaq,
Here 7 is the counterclockwise tangent vector field of G, and the most right-
hand side is derived by using integral by part, it is the standard definition of the
degree (winding number) of C! function on dG;. We define a sequence of real
two-dimensional vector fields by

-m

F™(z) == d;jVO; +i(™)*' Vo™, m=12,.., v\ Q. (6.3)
j=1

Note that V6 is a single-valued smooth vector field on Q\Qy, and faa- Vo, -Tds =

2, 1 < j < n, for any G; as in || From (6.2)), fc F™ . 1ds = 0 for any
closed curve C cc Q\ Qy, and all m sufficiently large with C € Q\ Q. Hence
there exists a ¢™ € H'(Q\ Q}), such that V¢™ = F™ in Q\ Qj for all m
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sufficiently large. Use , then v"Vo¢™ = —v™ Z;;l d;V0;+iVu™. As a result,
V(z) = @) L I DI di05() _ il8™ @+ dy0y(x)]

Since v™ — v = u/y/a in HL (Q\ Qu), as m — oo, VO; € C®(Q\ Qp), it
follows that e'®" = ym . ¢ 1 Xi=1d0(@) 4. o712 40 (@) 4y HL (Q\ Qp), as
m — oo, and V™ — — 370 | d;V0;+iv*Vu in L, (Q\Qp), as m — oc. Tt follows

that, after possibly subtracting constants 27k, k, € Z,m = 1,2, L P — P
in H..(Q\ Qg), as m — oo, where ¢ € HL (Q\ Qp), and v = ¢/ ¢F2i=46)

loc

in HL_(Q\ Qp). Setting O(z) = ¢(z) + > d;0;, then u = \Jav = /ae’®®. By
i=1
IVO;| < C(Qn), 1<j<n,

/ A VP =< / Vul? +C / AL

§/7|wﬁ+cmmpﬂy
Q\Qpy

To show ¢ € H{ _(Q\ Qp) is unique (up to an additive constant 27k, k € Z).
Assume ¢ € HL_(Q\ Qp), satistying u = /ae'®T27=14%)  then €9~ = 1 in
HE (Q\ Qp), with ¢ — ¢ € HL (2\ Qp), so ¢ — ¢ = 27k, for some k € Z. O

Proof of Lemma[2.5, Our proof is standard. We first construct a family of functions
in V to approximate a given f € V, then use a mollifier to smooth them, and apply
the diagonal rule to finish the proof. Take o <71, so that Q7 NQF = 0, k+#34,1<
k,7 <n. Let

1, 0<r<ji
afr)=492-2r, $<r<l1
0, r>1.

Then |£a| <2 If x = (F,2q) € Uj \ Q; represented in the local coordinate system
of U, define the shift of z away from Q; in sense of the local coordinate as
; OL(E) —Tay,, - -
mii(e) = o+ oM ZT0 (G o)) ),
it can be verified that |Vm} (z)| < ¢(Qp) a.e. in Ui\ Q;.
For any f € V, o small enough, define
by = [SEL Bl @) forz € 07 C 0P =12,
f(x) for other z,

where {3}, is the partition of unity from [@2.7). Clearly f, € H(Q), we ver-
ity f, € V. For z € Q7% by (2.), )sb?;(a?) fxd\ < gd(x) < 0/2, mbi(z) =
(ﬁfr,dﬁc(i‘)) € 09, so that f,(z) = f; = constant, and Vf, = 0; from (1.4),
a(z) > Co(c/2g)% for x € Q\ Q;/Qg, then f, € V. Moreover, calculate in the

local coordinates, and sum together the difference of f and f, in V—norm, we
obtain,
o= £l <C@u) [ @ VI + o
QU\QH
Since meas{Q° \ Qu} — 0, as o — 0, we have || f, — f|lv — 0, as 0 — 0.
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Choose a mollifier

peCEBOINCEEY, p20, and [ =1 (64)
B1(0)

and set p,, (z) = m?p(mz), where By (0) is the unit ball in R%. Then for m > 6g/0,
pm * fo € C®(Q)NV, and py, * fr = fj in ﬁ?/gg.

From 1) la(z)| > Co(c/39)* > C(Qp,0) >0 in Q \ﬁg/gg, we obtain
”fa — Pm ¥ fa”%/ < C(ﬁHaU)”fa — Pm * fa)‘ﬁ{l .

Hence by p, * fo — fo,m — oo in H', we have p,, * f, — fo,m — oo in V. Apply
the diagonal rule, pick up the p,,, * f, € C*°(Q2) NV, such that
Pmy * fo— finV, as o — 0. U
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