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OSCILLATION OF SOLUTIONS FOR SYSTEMS OF
HYPERBOLIC EQUATIONS OF NEUTRAL TYPE

PEIGUANG WANG, YONGHONG WU

Abstract. In this paper, we obtain sufficient conditions for the oscillation of
solutions to systems of hyperbolic differential equations of neutral type. We
consider such systems subject to two kinds of boundary conditions.

1. Introduction

We consider the following system of hyperbolic differential equations of neutral
type

∂2

∂t2

[
ui(x, t)−

m∑
j=1

cijuj(x, t− τ)
]

= ai(t)∆ui(x, t) + bi(t)∆ui(x, t− ρ)− pi(x, t)ui(x, t)

−
m∑

k=1

∫ b

a

qik(x, t, ξ)uk[x, g(t, ξ)]dµ(ξ), (x, t) ∈ Ω× R+ ≡ G,

(1.1)

subject to either of the following boundary conditions
∂ui

∂n
+ νi(x, t)ui = 0, (x, t) ∈ ∂Ω× R+ (1.2)

ui(x, t) = 0, (x, t) ∈ ∂Ω× R+, (1.3)

where Ω is a bounded domain in Rn with a piecewise smooth boundary ∂Ω, R+ =
[0,∞), ∆ is the Laplacian operator in Rn, cij , τ > 0 and ρ > 0 are constants, n is
the unit outward normal vector of ∂Ω.

There has been considerable interest in obtaining sufficient conditions for oscilla-
tory solutions of partial functional differential equations, as this type of equations
arise frequently in many application fields (see for example the monograph [7]).
Recently, several papers concerning systems of hyperbolic functional differential
equations have appeared in literatures [1, 2, 3]. It is noted that previous work
focused only on the cases where the neutral coefficient number lies between −1 and
0, that is −1 ≤ c(t) ≤ 0. To the best of our knowledge, very little work has been
done for other cases.
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The aim of this paper is to study the oscillation problem for the above system of
hyperbolic differential equations of neutral type, and give some oscillatory criteria
for such systems. Throughout the paper, we assume that the following conditions
hold:

(H1) ai(t), bi(t) ∈ C(R+, R+);
(H2) pi(x, t) ∈ C(G, R+), qik(x, t, ξ) ∈ C(G× [a, b], R);
(H3) νi(x, t) ∈ C(∂Ω× R+, R+);
(H4) g(t, ξ) ∈ C(R+ × [a, b], R), g(t, ξ) ≤ t for ξ ∈ [a, b], and

lim inft→∞,ξ∈[a,b]{g(t, ξ)} = ∞;
(H5) µ(ξ) ∈ ([a, b], R) is nondecreasing, and the integral in (1.1) is a Stieltjes

integral.
Definition. A vector function u(x, t) = {u1(x, t), . . . , un(x, t)}T is said to be a
solution of (1.1) and (1.2) or (1.1) and (1.3) if it satisfies equation (1.1) in G ≡
Ω× R+ and the associated boundary condition on the boundary of G.
Definition. A vector solution u(x, t) of the boundary value problem is said to be
oscillatory in the domain G if at least one of its nontrivial components is oscillatory.
Otherwise, the vector solution u(x, t) is said to be nonoscillatory.

For the following neutral differential inequality

d2

dt2
[y(t)− λ(t)y(t− τ)] + p(t)y(t) +

∫ b

a

q(t, ξ)y[g(t, ξ)]dµ(ξ) ≤ 0, t ≥ 0, (1.4)

where λ(t) ∈ C ′(R+, R+), p(t) ∈ C(R+, R+), q(t, ξ) ∈ C(R+ × [a, b], R+), we as-
sume that the following conditions hold.

(A1) There exists a function h(t, ξ) ∈ C(R+ × [a, b], R+), such that h(h(t, ξ), ξ) =
g(t, ξ), and h(t, ξ) is nondecreasing with respect to t and ξ, and also t ≥
h(t, ξ) ≥ g(t, ξ);

(A2) lim inft→∞
∫ t

g(t,b)

∫ b

a
q(s, ξ)dµ(ξ)ds > 1/e;

(A3) lim inft→∞
∫ t

h(t,b)

∫ b

a
q(s, ξ)dµ(ξ)ds > 0.

We remark here that the existence of the function h(t, ξ) has been proved in [4].
The following two Lemmas are derived from the known literatures and are useful
to the proof of the main results of this paper.

Lemma 1.1 ([4]). Under assumptions (A1)–(A3), the first-order differential in-
equality

x′(t) +
∫ b

a

q(t, ξ)x[g(t, ξ)]dµ(ξ) ≤ 0 (1.5)

has no eventually positive solution.

Lemma 1.2 ([6]). Assume that λ(t) ≤ 1, and (A1) holds. If for some 0 ≤ ε0 ≤ 1
and ξ0 ∈ [a, b],

lim inf
t→∞

∫ t

h(t,b)

∫ b

a

ε0q(s, ξ)g(s, ξ)dµ(ξ)ds > 0, (1.6)

lim inf
t→∞

∫ t

g(t,ξ0)

∫ b

a

ε0q(s, ξ)g(s, ξ)dµ(ξ)ds >
1
e

exp
[
− lim inf

t→∞

∫ t

g(t,ξ0)

ε0sp(s)ds
]
,

(1.7)

then inequality (1.4) has no eventually unbounded positive solution.
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2. Main Results

We introduce the following notation:

pi(t) = min
x∈Ω

{pi(x, t)}, P (t) = min
1≤i≤n

pi(t);

Qii(t, ξ) = min
x∈Ω

{qii(x, t, ξ)}, Q∗ik(t, ξ) = max
x∈Ω

{qik(x, t, ξ)}.
(2.1)

Theorem 2.1. Suppose that 0 ≤ C ≤ 1 and (A1) holds. If for some constants
0 ≤ ε0 ≤ 1 and ξ0 ∈ [a, b],

lim inf
t→∞

∫ t

h(t,b)

∫ b

a

ε0Q(s, ξ)g(s, ξ)dµ(ξ)ds > 0, (2.2)

lim inf
t→∞

∫ t

g(t,ξ0)

∫ b

a

ε0Q(s, ξ)g(s, ξ)dµ(ξ)ds >
1
e

exp
[
−lim inf

t→∞

∫ t

g(t,ξ0)

ε0sP (s)ds
]
,

(2.3)
then each unbounded solution u(x, t) of (1.1)–(1.2) is oscillatory in the domain G,
where

C = max
1≤i≤n

{
cii +

m∑
j=1,j 6=i

|cji|
}

, Q(t, ξ) = min
i≤i≤n

{
Qii(t, ξ)−

m∑
j=1,j 6=i

Q∗ji(t, ξ)
}

.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) =
(u1(x, t), . . . , un(x, t))T of the problem (1.1) and (1.2), and that |ui(x, t)| > 0 for
t ≥ 0, i = 1, 2, . . . , n. From (H4), there exists a t1 ≥ 0, for j = 1, 2, . . . ,m,
k = 1, 2, . . . ,m, such that

|uj(x, t− τ)| > 0, |ui(x, t− ρ)| > 0, |uk[x, g(t, ξ)]| > 0, t ≥ t1, ξ ∈ [a, b].

Let

δi = sgnui(x, t), δk = sgnuk[x, g(t, ξ)];

Yi(x, t) = δiui(x, t), Yk[x, g(t, ξ)] = δkuk[x, g(t, ξ)],
(2.4)

then Yi(x, t) > 0, Yj(x, t− τ) > 0, Yi(x, t− ρ) > 0 and Yk[x, g(t, ξ)] > 0 for t ≥ t1,
ξ ∈ [a, b], i = 1, 2, . . . , n, j = 1, 2, . . . ,m and k = 1, 2, . . . ,m.

Integrating equation (1.1) with respect to x over the domain Ω, for t ≥ t1, we
obtain

d2

dt2

[ ∫
Ω

ui(x, t)dx−
m∑

j=1

∫
Ω

cijuj(x, t− τ)dx
]

+
∫

Ω

pi(x, t)ui(x, t)dx +
m∑

k=1

∫
Ω

∫ b

a

qik(x, t, ξ)uk[x, g(t, ξ)]dµ(ξ)dx

= ai(t)
∫

Ω

∆ui(x, t)dx + bi(t)
∫

Ω

∆ui(x, t− ρ)dx.

(2.5)
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Furthermore, it follows from (2.4) that

d2

dt2

[ ∫
Ω

Yi(x, t)dx−
m∑

j=1

∫
Ω

cij
δi

δj
Yj(x, t− τ)dx

]
+

∫
Ω

pi(x, t)Yi(x, t)dx +
m∑

k=1

∫
Ω

δi

δk

∫ b

a

qik(x, t, ξ)Yk[x, g(t, ξ)]dµ(ξ)dx

= ai(t)
∫

Ω

∆Yi(x, t)dx + bi(t)
∫

Ω

∆Yi(x, t− ρ)dx .

(2.6)

It is clear that∫
Ω

∫ b

a

qik(x, t, ξ)Yk[x, g(t, ξ)]dµ(ξ)dx =
∫ b

a

∫
Ω

qik(x, t, ξ)Yk[x, g(t, ξ)]dxdµ(ξ).

(2.7)
From the Green’s formula and the boundary condition, we have∫

Ω

∆Yi(x, t)dx =
∫

∂Ω

∂Yi(x, t)
∂n

dω = −
∫

∂Ω

νi(x, t)Yi(x, t)dω ≤ 0, (2.8)∫
Ω

∆Yi(x, t− ρ)dx = −
∫

∂Ω

νi(x, t− ρ)Yi(x, t− ρ)dω ≤ 0, (2.9)

where dω is the surface integral element on ∂Ω. Moreover, it follows from (2.1)
that ∫

Ω

pi(x, t)Yi(x, t)dx ≥ pi(t)
∫

Ω

Yi(x, t)dx. (2.10)

Combining (2.7)–(2.10) and noting (2.1), we obtain

d2

dt2

[ ∫
Ω

Yi(x, t)dx−
m∑

j=1

∫
Ω

cij
δi

δj
Yj(x, t− τ)dx

]
+ pi(t)

∫
Ω

Yi(x, t)dx +
∫ b

a

Qii(t, ξ)
[ ∫

Ω

Yi[x, g(t, ξ)]dx
]
dµ(ξ)

−
m∑

k=1,k 6=i

∫ b

a

Q∗ik(t, ξ)
[ ∫

Ω

Yk[x, g(t, ξ)]dx
]
dµ(ξ) ≤ 0.

(2.11)

Let

Vi(t) =
∫

Ω

Yi(x, t)dx, i = 1, 2 . . . , n, (2.12)

then Vi(t) > 0, and it follows from (2.11) that

d2

dt2

[
Vi(t)−

m∑
j=1

cij
δi

δj
Vj(t− τ)

]
+ pi(t)Vi(t)

+
∫ b

a

Qii(t, ξ)Vi[g(t, ξ)]dµ(ξ)−
m∑

k=1,k 6=i

∫ b

a

Q∗ik(t, ξ)Vk[g(t, ξ)]dµ(ξ) ≤ 0 .

(2.13)
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Furthermore, let V (t) =
∑m

i=1 Vi(t), then V (t) > 0, and it follows from (2.1) that

d2

dt2

{ m∑
i=1

[
Vi(t)dx−

m∑
j=1

cij
δi

δj
Vj(t− τ)

]}
+ P (t)V (t)

+
∫ b

a

m∑
i=1

{
Qii(t, ξ)Vi[g(t, ξ)]−

m∑
k=1,k 6=i

Q∗ik(t, ξ)Vk[g(t, ξ)]
}

dµ(ξ) ≤ 0.

(2.14)

Noting that
m∑

i=1

[
Vi(t)−

m∑
j=1

cij
δi

δj
Vj(t− τ)

]
=

m∑
i=1

[
Vi(t)− ciiVi(t− τ)−

m∑
j=1,j 6=i

cij
δj

δi
Vj(t− τ)

]
≥

m∑
i=1

[
Vi(t)− ciiVi(t− τ)−

m∑
j=1,j 6=i

|cij |Vj(t− τ)
]

=
[
V1(t)− c11V1(t− τ)−

m∑
j=1,j 6=1

|c1j |Vj(t− τ)
]

+ · · ·+
[
Vn(t)− cnnVn(t− τ)−

m∑
j=1,j 6=n

|cnj |Vj(t− τ)
]

=
m∑

i=1

Vi(t)−
(
c11 +

m∑
j=1,j 6=1

|cj1|
)
V1(t− τ)

− · · · −
(
cnn +

m∑
j=1,j 6=n

|cjn|
)
Vn(t− τ)

≥
m∑

i=1

Vi(t)− max
1≤i≤n

{
cii +

m∑
j=1,j 6=i

|cji|
} m∑

i=1

Vi(t− τ)

= V (t)− CV (t− τ),

and
m∑

i=1

{
Qii(t, ξ)Vi[g(t, ξ)]−

m∑
j=1,j 6=i

Q∗ij(t, ξ)Vj [g(t, ξ)]
}

=
[
Q11(t, ξ)V1[g(t, ξ)]−

m∑
j=1,j 6=1

Q∗1j(t, ξ)Vj [g(t, ξ)]
]

+ · · ·+
[
Qnn(t, ξ)Vn[g(t, ξ)]−

m∑
j=1,j 6=n

Q∗nj(t, ξ)Vj [g(t, ξ)]
]

=
[
Q11(t, ξ)−

m∑
j=1,j 6=1

Q∗j1(t, ξ)
]
V1[g(t, ξ)]

+ · · ·+
[
Qnn(t, ξ)−

m∑
j=1,j 6=n

Q∗jn(t, ξ)
]
Vn[g(t, ξ)]
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≥ min
1≤i≤n

{
Qii(t, ξ)−

m∑
j=1,j 6=i

Q∗ji(t, ξ)
} m∑

i=1

Vi[g(t, ξ)]

= Q(t, ξ)V [g(t, ξ)],

we have from (2.14) that

d2

dt2
[V (t)− CV (t− τ)] + P (t)V (t) +

∫ b

a

Q(t, ξ)V [g(t, ξ)]dµ(ξ) ≤ 0. (2.15)

From Lemma 1.2, inequality (2.15) has no eventually positive solutions, which is in
contradiction with V (t) > 0. This completes the proof of Theorem 2.1. �

To investigate the boundary-value problem (1.1), (1.3), we consider the following
Dirichlet problem

∆u + αu = 0, (x, t) ∈ Ω× R+

u = 0, (x, t) ∈ ∂Ω× R+,
(2.16)

where α is a constant. It is well-known [5] that the least eigenvalue α0 of problem
(23) is positive and the corresponding eigenfunction ϕ(x) is positive for x ∈ Ω.

We further introduce the following notation

A(t) = min
1≤i≤n

{ai(t)}, B(t) = min
1≤i≤n

{bi(t)} (2.17)

Theorem 2.2. Suppose that 0 ≤ C ≤ 1, (A1) and (2.2) hold. If for some constants
0 ≤ ε0 ≤ 1 and ξ0 ∈ [a, b],

lim inf
t→∞

∫ t

g(t,ξ0)

∫ b

a

ε0Q(s, ξ)g(s, ξ)dµ(ξ)ds

>
1
e

exp
[
− lim inf

t→∞

∫ t

g(t,ξ0)

ε0s[α0A(s) + P (s)]ds
]
,

(2.18)

then each unbounded solution u(x, t) of the boundary-value problem (1.1) and (1.3)
is oscillatory in the domain G.

Proof. Suppose to the contrary that there is a non-oscillatory solution u(x, t) =
(u1(x, t), . . . , un(x, t))T of the problem (1.1) and (1.3), and |ui(x, t)| > 0 for t ≥ 0,
i = 1, 2, . . . , n. Proceeding as the proof of Theorem 2.1, there exists a t1 ≥ 0 such
that Yi(x, t) > 0, Yj(x, t− τ) > 0, Yi(x, t− ρ) > 0 and Yk[x, g(t, ξ)] > 0 for t ≥ t1,
ξ ∈ [a, b] and j = 1, 2, . . . ,m, k = 1, 2, . . . ,m.

Multiplying both sides of equation (1.1) by the eigenfunction ϕ(x) and then
integrating the equation with respect to x over the domain Ω, for t ≥ t1, we obtain

d2

dt2

[ ∫
Ω

ui(x, t)ϕ(x)dx−
m∑

j=1

∫
Ω

cijuj(x, t− τ)ϕ(x)dx
]

+
∫

Ω

pi(x, t)ui(x, t)ϕ(x)dx +
m∑

k=1

∫
Ω

∫ b

a

qik(x, t, ξ)uk[x, g(t, ξ)]ϕ(x)dµ(ξ)dx

= ai(t)
∫

Ω

∆ui(x, t)ϕ(x)dx + bi(t)
∫

Ω

∆ui(x, t− ρ)ϕ(x)dx.

(2.19)
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Furthermore, we obtain

d2

dt2

[ ∫
Ω

Yi(x, t)ϕ(x)dx−
m∑

j=1

∫
Ω

cij
δi

δj
Yj(x, t− τ)ϕ(x)dx

]
+

∫
Ω

pi(x, t)Yi(x, t)ϕ(x)dx +
m∑

k=1

∫
Ω

δi

δk

∫ b

a

qik(x, t, ξ)Yk[x, g(t, ξ)]ϕ(x)dµ(ξ)dx

= ai(t)
∫

Ω

∆Yi(x, t)ϕ(x)dx + bi(t)
∫

Ω

∆Yi(x, t− ρ)ϕ(x)dx.

(2.20)
From the Green’s formula and the boundary condition (1.3), we have∫

Ω

∆Yi(x, t)ϕ(x)dx =
∫

Ω

Yi(x, t)∆ϕ(x)dx = −α0

∫
Ω

Yi(x, t)ϕ(x)dx, (2.21)∫
Ω

∆Yi(x, t− τ)ϕ(x)dx = −α0

∫
Ω

Yi(x, t− τ)ϕ(x)dx. (2.22)

Combining (2.20)–(2.22), we obtain

d2

dt2

[ ∫
Ω

Yi(x, t)ϕ(x)dx−
m∑

j=1

∫
Ω

cij
δi

δj
Yj(x, t− τ)ϕ(x)dx

]
+ pi(t)

∫
Ω

Yi(x, t)ϕ(x)dx +
∫ b

a

Qii(t, ξ)
∫

Ω

Yi[x, g(t, ξ)]ϕ(x)dxdµ(ξ)

−
m∑

k=1,k 6=i

∫ b

a

Q∗ik(t, ξ)
∫

Ω

Yk[x, g(t, ξ)]ϕ(x)dxdµ(ξ)

= −α0ai(t)
∫

Ω

Yi(x, t)ϕ(x)dx− α0bi(t)
∫

Ω

Yi(x, t− τ)ϕ(x)dx .

Let

Ui(t) =
∫

Ω

Yi(x, t)ϕ(x)dx, i = 1, 2 . . . , n, (2.23)

then the remainder of the proof is the same as that for Theorem 2.1 and thus is
omitted here. This completes the proof. �
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