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Abstract. Problems with three-dimensional models lie very often in their

large complexity leading to impossibility to find an analytical solution. Nu-

merical solutions are sometimes an option, but they can be unduly complicated
in the case of three-dimensional models. Frequently, researchers investigate

models where one or even two dimensions are almost negligible and nothing

important is occurring in them. These models can be simplified and turned
into one- or two-dimensional models, which is very helpful, because their solu-

tions are easier than solutions of the original three-dimensional models. Since

nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids
in a three-dimensional domain belongs to the class of models which need a

simplification, when possible, to be effectively solved, we performed a dimen-
sion reduction for this model. We studied the dynamics of a compressible

fluid in thin domains where only one dimension is dominant. We present

a rigorous derivation of a one-dimensional model from the three-dimensional
Navier-Stokes equations.

1. Introduction

Three-dimensional mathematical models (e. g. partial differential equations) are
often used to express real-life problems. Naturally, we focus on finding solutions of
mathematical models. However, analytical solutions are frequently not possible to
find and numerical solutions can be both theoretically and computationally com-
plicated due to complexity of three-dimensional models. Frequently, researchers
investigate models in thin domains where one or two dimensions are dominant.
Hence, it is appropriate to derive lower-dimensional models from original three-
dimensional models.

The existence of weak solutions for three-dimensional models of fluid dynam-
ics has already been studied. Pierre-Louis Lions proved the global solvability of
Navier-Stokes equations for compressible linearly viscous fluids [15]. Further, Ed-
uard Feireisl extensively studied global existence theory for the full Navier-Stokes-
Fourier system [9]. An extensive overview on results achieved in the case of Newto-
nian compressible fluids is given in [20]. Concerning non-Newtonian fluids, [16, 17]
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proved the existence of a global weak solution for compressible Navier-Stokes equa-
tions.

An asymptotic analysis was performed in linear elasticity for rods and beams
[11, 12, 22], and for plates and shells [3, 5, 6], at first. Subsequently, rigorous
derivation of lower-dimensional models was done also for fluids. An asymptotic
analysis of three-dimensional steady Navier-Stokes equations based on the asymp-
totic expansion was presented in [19]. For comparison, the same result was achieved
directly in [25] without the need to apply any asymptotic expansion. Regarding
nonsteady Navier-Stokes equations for incompressible fluids, they were simplified
into a lower-dimensional model in [10]. Further, a three-dimensional system for
barotropic Navier-Stokes equations was asymptotically analyzed and the result-
ing one-dimensional and two-dimensional models were presented in [24] and [18],
respectively. It was also shown that weak solutions of both three-dimensional
Navier-Stokes equations for barotropic flows and three-dimensional full Navier-
Stokes-Fourier equations tend to strong solutions of the respective one-dimensional
system as the three-dimensional model tends to the one-dimensional model [2, 4].

New difficulties arise by considering non-Newtonian fluids (nonlinear viscous
stress tensor). This problem was tackled for the first time in [23], where a two-
dimensional model was derived by a suitable scaling from nonsteady Navier-Stokes
equations for compressible fluids. Recently, the current framework was extended
in [1] by dealing with the same equations in a deformed three-dimensional domain.
Our aim is to follow up on this research and perform a rigorous derivation of a
one-dimensional model from nonsteady Navier-Stokes equations for compressible
non-Newtonian fluids.

We studied the dynamics of a compressible fluid in a thin pipe Ωε ⊂ R3 which
can be transformed to a referential domain Ω ⊂ R3 (see section 3). The motion
of a compressible fluid is described by its velocity ūε and density ρ̄ε. The time
evolution of ūε and ρ̄ε is governed by the continuity and momentum equations

∂tρ̄ε + d̄iv (ρ̄εūε) = 0, (1.1)

∂t (ρ̄εūε) + d̄iv (ρ̄εūε ⊗ ūε) + ∇̄p̄ε = d̄iv S̄ε + ρ̄εf̄ε in Ωε × (0, T ), (1.2)

where T > 0, p̄ε is the pressure, S̄ε stands for the viscous stress tensor and f̄ε
represents the external forces (see [16]). The connection of a function to Ωε is
emphasized by symbol “ ¯ ” and subscript ε (see section 3).

We focus on derivation of a one-dimensional model from equations (1.1)-(1.2)
under Navier boundary conditions. First, we introduce Orlicz spaces and Young
functions with an exponential growth in sections 2.2 and 2.3, because this knowledge
is necessary to proof our main result. The problem in question is described in detail
in section 3. Subsequently, the transformation of governing equations and energy
equality is performed in section 4. Finally, section 5 contains the proof of our main
result.

2. Preliminaries

The basic notation is summarized in this section. We also pay our attention to
Young functions and Orlicz spaces. In particular, we focus on the theory concerning
Young functions with an exponential growth, their complementary functions and
respective Orlicz spaces, because they are needed in the subsequent sections.
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2.1. Basic notation. We adopt the notation “·” and “:” for the scalar product of
vectors and tensors, respectively, and “⊗” for the tensor product. The Cartesian
product of two sets is denoted by “×” as well as the cross product of two vectors
without danger of confusion. Symbol |·| stands for either the Lebesgue measure of a
measurable set or the Euclidean norm defined as |Z| =

√
ZijZij , where Z ∈ Rm,n,

m, n ∈ N. We use Einstein summation convention for notational brevity. Symbols
C and Cn, n ∈ N, stand for unspecified positive constants.

We emphasize the connection of a function to Ωε by symbol “ ¯ ” and subscript
ε. On the other hand, objects without symbol “ ¯ ” are connected to the referential
domain Ω (see section 3). Symbols D̄ and D represent the symmetric part of the
gradient, i. e. D̄ijūε = 1

2 (∂̄iūj + ∂̄j ūi) and Diju = 1
2 (∂iuj + ∂jui).

Let Q ⊂ Rn, n ∈ N, be a bounded domain. We denote by ∂Q the boundary of Q.
Bounded domain Q is called a Lipschitz domain if its boundary can be expressed
by Lipschitz continuous functions (see [14] for the precise definition). We write
∂Q ∈ C0,1. All vectors x ∈ R3 in the text are column vectors.

We employ the standard notation of the following function spaces and their
norms:

Spaces of continuously differentiable
functions up to order m – Cm(Q̄), ‖ · ‖Cm(Q̄)

Lebesgue spaces – Lp(Q), ‖ · ‖p
Sobolev spaces – W 1,p(Q), ‖ · ‖1,p
Duals of W 1,p(Q) – [W 1,p(Q)]∗, ‖ · ‖[W 1,p(Q)]∗

Orlicz spaces – LΦ(Q), ‖ · ‖LΦ(Q)

Sobolev-Orlicz spaces – W 1LΦ(Q), ‖ · ‖W 1LΦ(Q)

Duals of W 1LΦ(Q) – [W 1LΦ(Q)]∗, ‖ · ‖[W 1LΦ(Q)]∗

Bochner spaces – Lp(0, T ;X), ‖ · ‖Lp(0,T ;X),
Cm(〈0, T 〉;X), ‖ · ‖Cm(〈0,T 〉;X)

where Q ⊂ Rn, n ∈ N, is a bounded domain, p ∈ 〈1,+∞) ∪ {+∞}, m ∈ N ∪ {0}
and X is a Banach space. In addition, Cm0 (Q̄) denotes spaces of continuously differ-
entiable functions up to order m, m ∈ N ∪ {0}, with compact support. Naturally,
C0(Q̄) = C(Q̄) is the space of continuous functions. Next, we denote the space
of smooth and compactly supported functions endowed with the inductive limit
topology by D(Q). Its dual space is denoted by D′(Q).

2.2. Orlicz spaces. We pay attention only to the necessary definitions and prop-
erties which are used in the subsequent sections. We refer to [13] and [14] for a
detailed introduction to the theory of Young functions and Orlicz spaces.

Two special types of ordering can be introduced for Young functions. The first
ordering concerns the equivalence property of Young functions and the second or-
dering is useful for the embedding theorem of Orlicz spaces.

Definition 2.1. Let Φ1 and Φ2 be two Young functions. If there exist C > 0 and
z0 > 0 such that

Φ1(z) ≤ Φ2(Cz), ∀z ≥ z0,

then we write Φ1 ≺ Φ2. In addition, if Φ1 ≺ Φ2 and Φ2 ≺ Φ1, we say that Φ1 and
Φ2 are equivalent. If

lim
z→+∞

Φ1(z)
Φ2(λz)

= 0,

for any λ > 0, then we write Φ1 ≺≺ Φ2.
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Remark 2.2. Let Φ1 and Φ2 be two Young functions, Ψ1 and Ψ2 be the respective
complementary functions. If Φ1 ≺≺ Φ2, then Ψ1 �� Ψ2.

Prior to the definition of Orlicz spaces, we define Orlicz classes.

Definition 2.3. Let Φ be a Young function and Q ⊂ Rn, n ∈ N, is an open subset.
We say that u ∈ L̃Φ(Q), if ∫

Q

Φ(|u(x)|) dx < +∞.

The set L̃Φ(Q) is called an Orlicz class.

An Orlicz class is only a convex subset of L1(Q) (see [14, page 130]), in general.
Therefore, we define Orlicz spaces LΦ(Q) and also spaces EΦ(Q).

Definition 2.4. Let u : Q → R, Q ⊂ Rn, n ∈ N, be a measurable function and
let Φ, Ψ be a pair of complementary Young functions. The set LΦ(Q) of all u such
that ‖u‖LΦ(Q) < +∞ is called the Orlicz space. Its norm ‖u‖LΦ(Q) is defined as

‖u‖LΦ(Q) = sup
v

∫
Q

|u(x)v(x)|dx,

where the supremum is taken over all functions v ∈ L̃Ψ(Q) satisfying condition∫
Q

Ψ(|v(x)|) dx ≤ 1.

Definition 2.5. Let Φ be a Young function. The space EΦ(Q) is defined as the
closure of the set of all bounded measurable functions defined on Q with respect to
the norm ‖ · ‖LΦ(Q).

Definition 2.6. A Young function Φ satisfies the ∆2-condition, if there exists
C > 0 and z0 ≥ 0 such that Φ(2z) ≤ CΦ(z), for all z ≥ z0.

Remark 2.7. Let Φ and Ψ be a pair of complementary Young functions. In general,
it holds that LΨ(Q) = [EΦ(Q)]∗ and EΦ(Q) ⊆ L̃Φ(Q) ⊆ LΦ(Q). Furthermore, Φ
satisfies the ∆2-condition if and only if EΦ(Q) = L̃Φ(Q) = LΦ(Q).

Besides the strong convergence in the Orlicz space LΦ(Q) given in terms of the
norm ‖ · ‖LΦ(Q), we can also define the EΨ-weak convergence.

Definition 2.8. A sequence {un}+∞n=1 ⊂ LΦ(Q) converges EΨ-weakly to u ∈ LΦ(Q),
if

lim
n→+∞

∫
Q

(un(x)− u(x))v(x) dx = 0, ∀v ∈ EΨ(Q).

We write un
Ψ
⇀ u.

Remark 2.9. The weak-* convergence in LΦ(Q) is equivalent to the EΨ-weak
convergence. Therefore, the boundedness of {un}+∞n=1 in LΦ(Q) implies the existence
of EΨ-weakly convergent subsequence of {un}+∞n=1.

Let us suppose that Φ1 and Φ2 are Young functions. Orlicz spaces have the
following properties:

• LΦ1(Q) ↪→ LΦ2(Q) if and only if Φ1 � Φ2,
• inclusion LΦ1(Q) ⊂ LΦ2(Q) is equivalent to the embedding LΦ1(Q) ↪→
LΦ2(Q) in case of Orlicz spaces,

• Φ1 and Φ2 are equivalent if and only if LΦ1(Q) = LΦ2(Q),
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• if Φ1 �� Φ2, then LΦ1(Q) ↪→ EΦ2(Q).

The definition of Sobolev-Orlicz spaces W 1LΦ(Q) and spaces W 1EΦ(Q) is sim-
ilar to the definition of Sobolev spaces. Finally, we present inequalities which are
necessary for deriving estimates in the following text.

Theorem 2.10 (Hölder’s inequality). Let u ∈ LΦ(Q) and v ∈ LΨ(Q), where Φ, Ψ
is a pair of complementary Young functions. Then uv ∈ L1(Q) and∫

Q

|u(x)v(x)|dx ≤ ‖u‖LΦ(Q)‖v‖LΨ(Q). (2.1)

Theorem 2.11 (Young’s inequality). Let a, b ∈ 〈0,+∞) and Φ, Ψ be a comple-
mentary Young functions. It holds that

ab ≤ Φ(a) + Ψ(b). (2.2)

Theorem 2.12 (Jensen’s inequality). Let us assume that Φ : R → R is a convex
function and α(x) is positive almost everywhere in Q ⊂ Rn, n ∈ N. Then

Φ
(∫

Q
α(x)u(x) dx∫
Q
α(x) dx

)
≤
∫
Q
α(x)Φ(u(x)) dx∫
Q
α(x) dx

(2.3)

for any non-negative function u : Q → R supposing that all the integrals in (2.3)
are meaningful.

2.3. Special Young functions. We focus on Young functions with an exponential
growth which are used in the following sections to analyze the asymptotic behavior
of equations (1.1)-(1.2).

Definition 2.13. Let us define Young functions Φγ(z) = (1 + z) lnγ (1 + z), γ > 1,
and Φ1(z) = z ln (z + 1). Functions Ψγ , γ ≥ 1, denote the complementary functions
to Φγ , γ ≥ 1. Subsequently, we define M(z) = ez − z − 1 and its complementary
function N(z) = (1 + z) ln(1 + z) − z. Further, we denote Φ1/α, α ∈ (1,+∞),
the Young functions with growth z ln1/α z, z ≥ z0 > 0, and their complementary
functions Ψ1/α.

It is apparent that:

• Φγ(z) = O(z lnγ z), γ > 0, and M(z) = O(ez),
• Ψγ(z) = O(ez

1/γ
), γ > 0, and N(z) = O(z ln z),

• LΦ1(Q) = LN (Q) and also LΨ1(Q) = LM (Q),
• Young functions Φγ , γ ≥ 1, satisfy the global ∆2-condition,
• if γ2 > γ1 ≥ 1, then Φγ2 �� Φγ1 and also Ψγ2 ≺≺ Ψγ1 ,
• if u ∈ LΦγ (Q), γ ≥ 1, then

∫
Q

Φγ(|u(x)|) dx < +∞,
• if u ∈ LΨγ (Q), γ ≥ 1, then

∫
Q

Ψγ′(|u(x)|) dx < +∞, ∀γ′ > γ.

3. Statement of the problem

We focus on the motion of a compressible fluid in a thin pipe. The dynamics of a
compressible fluid is governed by equations (1.1)-(1.2). Let us suppose that the fluid
is isothermal and non-Newtonian. It means that (without the loss of generality)

S̄ε = P (|D̄ūε|)D̄ūε, p̄ε = ρ̄ε.
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Domain Ωε ⊂ R3 is defined by the use of a referential domain Ω = (0, 1) × S
with S ⊂ R2 and ∂S ∈ C0,1, and mapping Rε : Ω→ Ωε so that

Rε : (x1, x2, x3) 7→ (x1, εx2, εx3).

It means that Ωε = (0, 1)× εS. As well as in [20], section 4.17.2.4, we suppose that
Ω is not axially symmetric.

Symbols n and n̄ε stand for unit outward normals to Ω and Ωε, respectively.
Similarly, t and t̄ε are vectors from the corresponding tangent planes. We employ
the following notation for the borders of domains Ω and Ωε:

Γ1 = (0, 1)× ∂S, Γ2 = {0, 1} × S,
Γ1,ε = Rε (Γ1) , Γ2,ε = Rε (Γ2) .

To ensure the well-posedness of our problem (see [23]), we prescribe Navier
boundary conditions

t̄ε ·
(
P (|D̄ūε|)D̄ūεn̄ε

)
+ h(ε)ūε · t̄ε = 0 on Γ1,ε × (0, T ), (3.1)

t̄ε ·
(
P (|D̄ūε|)D̄ūεn̄ε

)
+ qūε · t̄ε = 0 on Γ2,ε × (0, T ), (3.2)

ūε · n̄ε = 0 on ∂Ωε × (0, T ). (3.3)

We suppose that h(ε) > 0 behaves like O(ε) and q > 0. The asymptotic behavior
of h(ε) will be discussed during derivation of weak convergences of density and
velocity field (section 5.2).

We consider the initial conditions for the density and the momentum

ρ̄ε(x̄, 0) = ρ̄0,ε(x̄) ≥ 0, ∀x̄ ∈ Ωε
(ρ̄εūε) (x̄, 0) = (ρ̄εūε)0 (x̄, 0), ∀x̄ ∈ Ωε.

The variational formulation of our problem is∫ T

0

∫
Ωε

(
ρ̄ε∂tϕ̄+ ρ̄εūε · ∇̄ϕ̄

)
dx̄dt = 0, (3.4)

∫ T

0

∫
Ωε

(
ρ̄εūε · ∂tψ̄ + ρ̄εūε ⊗ ūε : D̄ψ̄ + ρ̄εd̄ivψ̄

)
dx̄dt

=
∫ T

0

∫
Ωε

(
P (|D̄ūε|)D̄ūε : D̄ψ̄ − ρ̄εf̄ε · ψ̄

)
dxdt

+ h(ε)
∫ T

0

∫
Γ1,ε

ūε · ψ̄ dΓ̄ dt+ q

∫ T

0

∫
Γ2,ε

ūε · ψ̄ dΓ̄ dt,

(3.5)

for any ϕ̄ ∈ D
(
R3 × (0, T )

)
and ψ̄ ∈ C∞0 (0, T ;C∞(Ω̄ε)3) satisfying condition ψ̄ ·

n̄ε|∂Ωε×(0,T ) = 0.
Similarly as in [23], we assume that the function P satisfies, for any Ū , V̄ ∈

[L̃M (Ωε)]9, the following five conditions∫
Ωε

P (|Ū |)|Ū |2 dx̄ ≥
∫

Ωε

M(|Ū |) dx̄, (3.6)∫
Ωε

(
P (|Ū |)Ū − P (|V̄ |)V̄

)
: (Ū − V̄ ) dx̄ ≥ 0, (3.7)

P (z)|z|2 is a convex function for z ≥ 0, (3.8)
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N(P (|Ū |)|Ū |) dx̄ ≤ c
(

1 +
∫

Ωε

M(|Ū |)
)

dx̄, (3.9)

P (|Ū − λV̄ |)(Ū − λV̄ ) M
⇀ P (|Ū |)Ū , for λ→ 0. (3.10)

For example, the function

P (z) =

{
M(z)
z , for z 6= 0,

0, for z = 0

satisfies all conditions (3.6)-(3.10).

4. Transformation and related results

We transform the governing equations and the energy equality to the referential
domain. First, we denote

uε : Ω× 〈0, T 〉 → R3, ρε : Ω× 〈0, T 〉 → R,
where uε(x, t) = ūε(Rε(x), t) and ρε(x, t) = ρ̄ε(Rε(x), t), for all x ∈ Ω. Since
x̄ = Rε(x), x̄ ∈ Ωε, we can write uε(x, t) = ūε(x̄, t) and ρε(x, t) = ρ̄ε(x̄, t).

We express the spatial gradient of a scalar function ϕ̄ according to the chain rule
as

∇̄ϕ̄(x̄, t) = ∇̄ϕ(R−1
ε (x), t) = ∇εϕ,

where ∇ε = (∂1, ε
−1∂2, ε

−1∂3). Similarly, we transform the symmetric part of
the gradient of a vector function ūε and arrive at D̄ūε(x̄, t) = D̄ūε(R−1

ε (x), t) =
ωε(uε(x, t)), where

ωε(uε) =

∂1u1,ε
1
2 (∂1u2,ε + ε−1∂2u1,ε) 1

2 (∂1u3,ε + ε−1∂3u1,ε)
· ε−1∂2u2,ε

1
2ε
−1(∂2u3,ε + ∂3u2,ε)

sym · ε−1∂3u3,ε

 . (4.1)

4.1. Transformation of the governing equations. According to [6], we use the
following equalities

dx̄ = ε2 dx,

dΓ̄ = εdΓ on Γ1,

dΓ̄ = ε2 dΓ on Γ2

to arrive at the transformed equations of the variational formulation (3.4)–(3.5).
Now, we can divide both equations by ε2 and arrive at transformed governing

equations ∫ T

0

∫
Ω

(ρε∂tϕ+ ρεuε · ∇εϕ) dxdt = 0, (4.2)∫ T

0

∫
Ω

[ρεuε · ∂tψ + ρεuε ⊗ uε : ωε(ψ) + ρε divε ψ] dx dt

=
∫ T

0

∫
Ω

[P (|ωε(uε)|)ωε(uε) : ωε(ψ)− ρεfε · ψ] dx dt

+
h(ε)
ε

∫ T

0

∫
Γ1

uε · ψ dΓ dt+ q

∫ T

0

∫
Γ2

uε · ψ dΓ dt,

(4.3)

for any ϕ ∈ D
(
R3 × (0, T )

)
and ψ ∈ C∞0 (0, T ; [C∞(Ω̄)]3), ψ ·n|∂Ω×(0,T ) = 0, where

divε ψ = ∂1ψ + ε−1∂2ψ + ε−1∂3ψ.
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Imposing the same transformation to the renormalized continuity equation (see
[15] or [17] for its original form) leads to∫ T

0

∫
Ω

b(ρε)∂tϕ+ b(ρε)uε · ∇εϕ+ [(b(ρε)− ρεb′(ρε)) divε uε]ϕdxdt = 0, (4.4)

for any ϕ ∈ D
(
R3 × (0, T )

)
.

4.2. Energy equality and its transformation. For any t ∈ 〈0, T 〉, we have the
energy equality expressed by the following formula (see [17])∫

Ωε

(
ρ̄ε(t)

|ūε(t)|2

2
+ ρ̄ε(t) ln(ρ̄ε(t))

)
dx̄

+
∫ t

0

∫
Ωε

P (|D̄ūε|)D̄ūε : D̄ūε dx̄ ds+ h(ε)
∫ t

0

∫
Γ1,ε

|ūε|2 dΓ̄ ds

+ q

∫ t

0

∫
Γ2,ε

|ūε|2 dΓ̄ ds

=
∫ t

0

∫
Ωε

ρ̄εf̄ε · ūε dx̄ds+
∫

Ωε

( |(ρ̄εūε)0|2

2ρ̄0,ε
+ ρ̄0,ε ln(ρ̄0,ε)

)
dx̄.

(4.5)

By transforming (4.5), we obtain∫
Ω

(
ρε(t)

|uε(t)|2

2
+ ρε(t) ln(ρε(t))

)
dx

+
∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2 dxds

+
h(ε)
ε

∫ t

0

∫
Γ1

|uε|2 dΓ ds+ q

∫ t

0

∫
Γ2

|uε|2 dΓ ds

=
∫ t

0

∫
Ω

ρεgε · vε dxds+
∫

Ω

( |(ρεuε)0|2

2ρ0,ε
+ ρ0,ε ln(ρ0,ε)

)
dx.

(4.6)

for any t ∈ 〈0, T 〉, where

gε = (f1,ε, ε
−1f2,ε, ε

−1f3,ε), vε = (u1,ε, εu2,ε, εu3,ε),

It is obvious that gε · vε = fε · uε, but we need to use this notation for making a
priori estimates (see inequality 5.4), because a variant of Korn’s inequality holds
for vε (see Lemma 5.1).

4.3. Related results. It is necessary to mention that equations (4.2)-(4.3) with
non-slip boundary conditions have a weak solution in a sufficiently regular domain
for any ε ∈ (0, 1). Moreover, any weak solution satisfies the energy equality (4.6)
and it can be constructed as a limit of Rothe approximations (see [17, Theorem
3.5]). The non-slip boundary conditions mean that surface integrals in (4.3) and
(4.6) disappears. We remark that γ > 7/2 in [17], while our result was achieved for
a slightly more general γ > 3.

According to [23], we can treat the case of slip boundary conditions similarly as
the barotropic case [20]. In our case, we use the Navier boundary conditions (3.1)-
(3.3), because the slip boundary conditions are their special case (h(ε) = q = 0)
and the generalization poses no additional technical problems to the existence proof.
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The case of non-slip boundary conditions would lead to the zero velocity in the limit.
Thus, it was not an interesting choice of boundary conditions for us.

Since we are dealing with a domain which has a shape similar to a cylinder, the
assumption on the regularity of the boundary of Ω can be relaxed by simplifying
and slightly modifying the approach presented in [8].

5. Derivation of the limiting 1D equations

The first step of the proof concerns a variant of the first Korn’s inequality. We
need this inequality to perform a priori estimates in section 5.1 and subsequently
show boundedness of {ρε}ε∈(0,1) and {vε}ε∈(0,1), and perform weak limits. Subse-
quently, we pass to limits in equations (4.2)-(4.3) in section 5.2. As the last step,
we perform the limit passage also for the energy equality (4.6).

From [7], we know that for any w ∈ [W 1,p(Ω)]3, p ≥ 2, the following estimate
holds

‖w‖1,p ≤ C1 (‖Dw‖p + ‖w‖p) . (5.1)
As a consequence, there exists constant C2 > 0 such that

‖w‖1,p ≤ C2 (‖Dw‖p + ‖w‖2,Γ) . (5.2)

From inequality (5.2), we can easily deduce the following corollary. Without the
loss of generality, we denote uε = uε(t). Variable t ∈ 〈0, T 〉 is arbitrary but fixed.

Corollary 5.1. Let uε ∈ [W 1,p(Ω)]3, p > 3, be such that uε ·n = 0 on Γ = {0}×S.
We define vε = (u1,ε, εu2,ε, εu3,ε) ∈ [W 1,p(Ω)]3. Then, there exists C = C(Ω, p) >
0, such that

‖vε‖1,p ≤ C (‖ωε(uε)‖p + ‖uε‖2,Γ) , ∀ε > 0, (5.3)
where ωε(uε) is defined by (4.1).

5.1. Boundedness and weak limits. Now, we make a priori estimates. Equation
(4.2) implies the conservation of mass which can be expressed as∫

Ω

ρε(t) dx =
∫

Ω

ρ0,ε dx, ∀t ∈ (0, T ).

Therefore, the first integral on the right-hand side of the energy equality (4.6) can
be estimated as follows∣∣∣ ∫ t

0

∫
Ω

ρεgε · vε dx ds
∣∣∣ ≤ ∫ t

0

‖vε(s)‖∞‖gε(s)‖∞
∫

Ω

ρε(s) dxds

≤ C(ρ0,ε,gε)
∫ t

0

‖vε(s)‖1,p ds, p > 3.

In the view of inequalities (3.6) and (5.3), and Young’s inequality, we arrive at∣∣∣ ∫ t

0

∫
Ω

ρεgε · vε dxds
∣∣∣ ≤ C(C1

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2 dxds

+ C1

∫ t

0

∫
{0}×S

|uε|2 dS ds+ C2(C1)
)
,

(5.4)

where C1 > 0 can be made arbitrarily small.
By (3.6) and (5.4), we obtain from (4.6) boundedness

{√ρε |uε|}ε∈(0,1) in L∞
(
0, T ;L2(Ω)

)
, (5.5)

{ρε}ε∈(0,1) in L∞ (0, T ;LΦ1(Ω)) , (5.6)
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{ωε(uε)}ε∈(0,1) in [L̃M (Ω× (0, T ))]9, (5.7)

{vε}ε∈(0,1) in Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3) (5.8)

for any p > 3. From (5.8), we obtain immediately the boundedness

{u1,ε}ε∈(0,1) in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
. (5.9)

Boundedness (5.7) gives us the following convergences

∂2u3,ε + ∂3u2,ε → 0, ∂αuα,ε → 0, in LM (Ω× (0, T )), α = 2, 3.

Now, we can prove even the boundedness of {ε−1uα,ε}ε∈(0,1), α = 2, 3, in LM (Ω×
(0, T )). Let us denote wε = (ε−1u2,ε, ε

−1u3,ε). We begin with the Korn’s inequality
in a two-dimensional space (see [7]):

‖wε‖W 1,p(S) ≤ C1

(
‖Dwε‖Lp(S) + ‖wε‖Lp(S)

)
, p > 2, (5.10)

where x1 ∈ (0, 1) and t ∈ (0, T ) are arbitrary but fixed. From (5.10) and axial
non-symmetry of Ω, via the standard compactness argument (as in [20] for proving
inequality (4.17.19)), we deduce

‖wε‖Lp(S) ≤ C2‖Dwε‖Lp(S). (5.11)

From the compact embedding of W 1,p(S) in L∞(S) and inequality (5.11), we
can deduce from (5.10) the inequality

‖Cpwε‖pL∞(S) ≤ ‖Dwε‖pLp(S), p > 2,

where Cp = Cp(Ω, p) > 0. Applying Young function Ψp and Jensen’s inequality
gives us ∫

S

Ψp(|Cpwε|p) dx2 dx3 ≤ C
∫
S

Ψp(|Dwε|p) dx2 dx3, p > 2.

Since Ψp(zp) behaves like M(z), we arrive at∫
S

M(|Cpwε|) dx2 dx3 ≤ C
(∫

S

M(|Dwε|) dx2 dx3 + 1
)
.

After integrating over x1 ∈ (0, 1) and t ∈ (0, T ), we obtain∫ T

0

∫
Ω

M(|Cpwε|) dxdt ≤ C
(∫ T

0

∫
Ω

M(|Dwε|) dx dt+ T
)
. (5.12)

Let us remark that (see [14, page 145])

Cp‖wε‖LM (Ω×(0,T ) ≤
∫ T

0

∫
Ω

M(|Cpwε|) dx dt+ 1. (5.13)

Inequalities (5.12) and (5.13) give us

Cp‖wε‖LM (Ω×(0,T ) ≤ C
(∫ T

0

∫
Ω

M(|Dwε|) dxdt+ T
)

+ 1. (5.14)

The right-hand side of inequality (5.14) is bounded for any ε ∈ (0, 1) due to
(5.7). Thus, it ensures the boundedness

{ε−1uα,ε}ε∈(0,1) in LM (Ω× (0, T )), α = 2, 3. (5.15)

Boundedness of {ρε}ε∈(0,1) in L∞(0, T ;LΦ1(Ω)) can be extended to the space
L∞(0, T ;LΦγ (Ω)). We remind that γ > 3 (see Theorem 6.1). We proceed in the
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following way. First, we test the equation (4.4) by function ϕ = ϕ(t) ∈ C∞0 (0, T )
with b(z) = Φγ(z). We obtain∫ T

0

∫
Ω

Φγ(ρε)ϕ′(t) +
[(

Φγ(ρε)− ρεΦ′γ(ρε)
)

divε uε
]
ϕ(t) dx dt = 0, (5.16)

Function Φγ(z)− zΦ′γ(z) behaves asymptotically like Φγ−1(z). Furthermore, there
exists C1 > 0 such that Φ1 (Φγ−1(z)) ≤ C1 (Φγ(z) + 1) for z ≥ 0 [23]. Due to
equivalence of Young functions M and Ψ1, relations (3.6), (5.7) and the Young’s
inequality, we deduce the estimate∣∣∣ ∫ T

0

∫
Ω

(
Φγ(ρε)− ρεΦ′γ(ρε)

)
divε uε dxdt

∣∣∣
≤ C(T )

(∫ T

0

∫
Ω

(
Φγ(ρε) + P (|ωε(uε)|) |ωε(uε)|2

)
dxdt+ 1

)
,

(5.17)

where C(T ) > 0. With respect to (5.16), (5.17), (6.5) and the Gronwall’s lemma,
we obtain the boundedness of

{ρε}ε∈(0,1) in L∞(0, T ;LΦγ (Ω)). (5.18)

In the following step, we focus on boundedness of {∂tρε}ε∈(0,1). Let us test
equation (4.2) by function ϕ(x, t) = ϕ1(t)ψ(x), where ϕ1 ∈ Lp

′
(0, T ), 1/p+1/p′ = 1,

p > 3, and ψ ∈ [W 1LΨγ−1(Ω)]3, γ > 3. We can write∣∣∣ ∫ T

0

ϕ′1

∫
Ω

ρεψ dxdt
∣∣∣

=
∣∣∣ ∫ T

0

ϕ1

∫
Ω

ρεuε · ∇εψ dxdt
∣∣∣

=
∣∣∣ ∫ T

0

ϕ1

∫
Ω

ρε(u1,ε∂1ψ + ε−1u2,ε∂2ψ + ε−1u3,ε∂3ψ) dx dt
∣∣∣.

(5.19)

From (5.15) and (5.19), we obtain the boundedness of

{∂tρε}ε∈(0,1) in Lp
(
0, T ; [W 1LΨγ−1(Ω)]∗

)
. (5.20)

By using (5.6)-(5.8), (5.18), (5.20), compact embedding of W 1,p(Ω) in EΨ1(Ω),
continuous embedding of [W 1,p(Ω)]∗ in [W 1LΨγ (Ω)]∗ and theorem on compact em-
bedding (see [21, Lemma 9]), we obtain (passing to subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
, (5.21)

ρε → ρ in C(〈0, T 〉; [W 1,p(Ω)]∗), (5.22)

ωε(uε)
N
⇀ ζ (5.23)

u1,ε ⇀ u1 in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
. (5.24)

Let us recall that we already have (from (5.15))

uα,ε → uα = 0 in LM (Ω× (0, T )), α = 2, 3. (5.25)

Recalling the fact that Ω is not axially symmetric and that uε · n|∂Ω×(0,T ) = 0, we
arrive at (see [20, section 4.17.2.4]) u2 = u3 = 0 almost everywhere in Ω× (0, T ).

We prove that the limiting function u does not depend on the second and the
third spatial variables. Boundedness (5.7) implies the following convergences

ε∂1uα,ε + ∂αu1,ε → 0, in LM (Ω× (0, T )), α = 2, 3.
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With respect to (5.25), we arrive at ∂αu1 = 0 almost everywhere in Ω × (0, T ),
α = 2, 3. Hence, we obtain u1 = u1(x1, t) ∈ Lp

(
0, T ;W 1,p(0, 1)

)
with u1(0, t) =

u1(1, t) = 0, t ∈ (0, T ).
Now, we pay attention to convergences of nonlinear terms in equation (4.3).

Convergences (passing to subsequences if necessary)

ρεu1,ε ⇀ ρu1 in Lp(0, T ;LΦγ (Ω)) (5.26)

ρεuα,ε → ρuα = 0 in LΦγ−1(Ω× (0, T )), α = 2, 3, (5.27)

where γ > 3 (see Theorem 6.1), are immediate consequences of (5.22), (5.24), (5.25)
and theorem concerning compact embedding (see [21, Lemma 9]). For instance, we
prove convergences (5.27). According to the Hölder’s inequality, it holds that

‖ρεuα,ε‖LΦγ−1 (Ω×(0,T )) = sup
ϕ

∫ T

0

∫
Ω

|ρεuα,εϕ|dx dt

≤ C‖uα,ε‖LM (Ω×(0,T )) sup
ϕ
‖ρεϕ‖LN (Ω×(0,T ))

where the supremum is taken over all functions ϕ ∈ L̃Ψγ−1(Ω× (0, T )) such that∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt ≤ 1.

From (5.25), we already know that ‖uα,ε‖LM (Ω×(0,T )) → 0. Therefore, it is sufficient
to show the boundedness of ‖ρεϕ‖LN (Ω×(0,T )) for proving (5.27). The equivalence
of Orlicz spaces LN and LΦ1 , and the Young’s inequality give us

‖ρεϕ‖LN (Ω×(0,T )) ≤
∫ T

0

∫
Ω

Φ1(ρε|ϕ|) dxdt+ C

≤
∫ T

0

∫
Ω

ρεΦ1(|ϕ|) dxdt+
∫ T

0

∫
Ω

|ϕ|Φ1(ρε) dxdt+ C.

(5.28)

The second integral on the right-hand side of (5.28) is “the worst” and it is less or
equal than ∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt+
∫ T

0

∫
Ω

Φγ−1(Φ1(ρε)) dxdt

≤
∫ T

0

∫
Ω

Ψγ−1(|ϕ|) dxdt+ C

∫ T

0

∫
Ω

Φγ(ρε) dx dt.

Hence, we conclude that convergences (5.27) hold.
To overcome the second term on the left-hand side in equation (4.3), we consider

“the worst integrals” in (4.3) and prove their boundedness for any ε ∈ (0, 1). First,
we show that (5.9), (5.18) and (5.25) lead to boundedness of∫ T

0

∫
Ω

ρεuε ⊗ uε : ωε(ψ) dxdt (5.29)

for any ε ∈ (0, 1) and ψ such that [ωε(ψ(x, t))]αβ = ε−1ϕ(t)ψ̄(x) with ϕ ∈ Lq(0, T )
and ψ̄ ∈ [EΨγ (Ω)]9, where ψ ·n|∂Ω×(0,T ) = 0, 2/p+1/q = 1 and γ > 3 (see Theorem
6.1).
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There are three types of terms in (5.29), but we analyze only “the worst one”:
ρεuα,εuβ,ε[ωε(ψ)]αβ , α, β = 2, 3. By using Hölder’s inequality, we obtain∣∣∣ ∫ T

0

∫
Ω

ρεuα,εuβ,εε
−1ϕψ̄ dxdt

∣∣∣
≤ ‖ε−1uα,εuβ,ε‖LΨ2 (Ω×(0,T ))‖ρεϕψ̄‖LΦ2 (Ω×(0,T ))

(5.30)

Both norms on the right-hand side of inequality (5.30) are bounded. Regarding
‖ε−1uα,εuβ,ε‖LΨ2 (Ω×(0,T )), it holds that

‖ε−1uα,εuβ,ε‖LΨ2 (Ω×(0,T )) ≤ sup
ϕ1

∫ T

0

∫
Ω

|ε−1uα,εuβ,εϕ1|dx dt

≤ ‖uα,ε‖LM (Ω×(0,T )) sup
ϕ1

‖ε−1uβ,εϕ1‖LN (Ω×(0,T )),

where ϕ1 ∈ L̃Φ2(Ω × (0, T )) such that
∫ T

0

∫
Ω

Φ2(|ϕ1|) dxdt ≤ 1. From (5.25), we
know that ‖uα,ε‖LM (Ω×(0,T )) → 0. Further, we can write

‖ε−1uβ,εϕ1‖LN (Ω×(0,T )) = sup
ϕ2

∫ T

0

∫
Ω

|ε−1uβ,εϕ1ϕ2|dxdt

≤ ‖ε−1uβ,ε‖LM (Ω×(0,T )) sup
ϕ2

‖ϕ1ϕ2‖LN (Ω×(0,T )),

where the first norm is bounded (see 5.15) and ϕ2 ∈ L̃M (Ω × (0, T )) such that∫ T
0

∫
Ω
M(|ϕ2|) dx dt ≤ 1. Finally,

‖ϕ1ϕ2‖LN (Ω×(0,T )) ≤ C1

∫ T

0

∫
Ω

Φ1(|ϕ1ϕ2|) dxdt+ 1,

where the integral on the right-hand side is less than or equal to

C2

(∫ T

0

∫
Ω

|ϕ2|Φ1(|ϕ1|) + |ϕ1|Φ1(|ϕ2|) dxdt
)

≤ C3

(∫ T

0

∫
Ω

M(|ϕ2|) dxdt+
∫ T

0

∫
Ω

Φ2(|ϕ1|) dx dt
)
≤ 2C3

Concerning the second norm on the right-hand side of inequality (5.30), we justify
its boundedness in the following way

‖ρεϕψ̄‖LΦ2 (Ω×(0,T )) ≤
∫ T

0

∫
Ω

Φ2(ρε|ϕ||ψ̄|) dxdt+ C1

≤
∫ T

0

∫
Ω

|ϕ||ψ̄|Φ2(ρε) dxdt+
∫ T

0

∫
Ω

ρεΦ2(|ϕ||ψ̄|) dxdt

+ 2
∫ T

0

∫
Ω

Φ1(ρε)Φ1(|ϕ||ψ̄|) dxdt+ C2,

where “the worst term” can be estimated as∫ T

0

∫
Ω

|ϕ||ψ̄|Φ2(ρε) dxdt

≤ C‖ϕ‖L1(0,T )

(∥∥∫
Ω

Φγ(ρε) dx
∥∥
L∞(0,T )

+
∫

Ω

Ψγ−2(|ψ̄|) dx
)
.
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We conclude that integral (5.29) is bounded for any ε ∈ (0, 1) and test function
ψ such that ϕ ∈ Lq(0, T ) and ψ̄ ∈ [EΨγ (Ω)]9. Subsequently, we show that also∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ωε(ψ) dx dt (5.31)

is bounded for any ε ∈ (0, 1) and ψ(x, t) = ϕ(t)ψ̄(x), where ϕ ∈ EΨ1/α(0, T ), α > 2,
and ψ̄ ∈ [W 1EΨ1/2(Ω)]3, ∂2ψ̄ = ∂3ψ̄ = 0. We remark that

ωε(ψ̄) = ω(ψ̄) =

∂1ψ̄1
1
2∂1ψ̄2

1
2∂1ψ̄3

· 0 0
sym · 0

 ,

which is not longer dependent on ε. By Young’s inequality, it holds that∣∣∣ ∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ω(ψ̄)ϕdxdt
∣∣∣

≤
(
|Ω|
∫ T

0

Ψ1/α(|ϕ|) dt+
∫ T

0

∫
Ω

Φ1/α

(
P (|ωε(uε)|)|ωε(uε)||ω(ψ̄)|

)
dxdt

)
,

(5.32)

where α > 2. For brevity, let us denote wε = P (|ωε(uε)|)|ωε(uε)|. Since wε ∈
LΦ1(Ω×(0, T )) implies wε ∈ LΦ(α−1)/α(0, T ;LΦ1/α(Ω)), which follows from Jensen’s
inequality and estimate

Φ(α−1)/α(Φ1/α(z)) ≤ 2Φ1(z) + C, z ≥ 0,

the second term on the right-hand side of (5.32) is less than or equal to∫ T

0

∫
Ω

|ω(ψ̄)|Φ1/α(wε) + wεΦ1/α(|ω(ψ̄)|) dx dt

≤
∫ T

0

∫
Ω

Φ(α−1)/α(Φ1/α(wε)) + Ψ(α−1)/α(|ω(ψ̄)|) dxdt

+
∫ T

0

∫
Ω

Φ1(wε) + Ψ1(Φ1/α(|ω(ψ̄)|)) dxdt

≤ 3
∫ T

0

∫
Ω

Φ1 (P (|ωε(uε)|)|ωε(uε)|) dxdt

+
∫ T

0

∫
Ω

Ψ(α−1)/α

(
|ω(ψ̄)|

)
dx dt+

∫ T

0

∫
Ω

Ψ1/2

(
|ω(ψ̄)|

)
dx dt+ C,

where α > 2. By property (3.9), we conclude integral (5.31) is bounded.
Terms (5.29) and (5.31) represent “the worst integrals” in (4.3). Thus, we omit

the estimates of the others and take ψ(x, t) = ϕ(t)ψ̄(x), where ϕ ∈ EΨ1/α(0, T )
with α > 2, and ψ̄ ∈ [W 1EΨ1/2(Ω)]3 such that ψ̄ = (ψ̄1(x1), 0, 0) and complies
with ψ̄1(0) = ψ̄1(1) = 0, as a test function. By using estimates (5.29) and (5.31),
we demonstrate how to perform a limit passage in the second term on the left-
hand side of equation (4.3). Let us test the equation (4.3) by function ψ(x, t) =
ϕ(t)ψ̄(x), where ϕ ∈ C∞0 (0, T ) and ψ̄ ∈ [W 1EΨ1/2(Ω)]3, ψ̄ = (ψ̄1(x1), 0, 0) and
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ψ̄1(0) = ψ̄1(1) = 0. We obtain∣∣∣ ∫ T

0

ϕ′
∫

Ω

ρεuε · ψ̄ dxdt
∣∣∣

≤
∫ T

0

|ϕ|
∫

Ω

(
|ρεuε ⊗ uε : ω(ψ̄)|+ |ρε∂1ψ̄|

+ |P (|ωε(uε)|)ωε(uε) : ω(ψ̄)|+ |ρεfε · ψ̄|
)

dxdt

+
h(ε)
ε

∫ T

0

|ϕ|
∫

Γ1

|uε · ψ̄|dΓ dt+ q

∫ T

0

|ϕ|
∫

Γ2

|uε · ψ̄|dΓ dt,

(5.33)

Using the denseness of C∞0 (0, T ) in EΨ1/2(0, T ), the embedding LΨ1/α(0, T ) ↪→
EΨ1/2(0, T ) ⊂ L̃Ψ1/2(0, T ), α > 2, and the boundedness of all terms on the right-
hand side of inequality (5.33) –see (5.29) and (5.31), we deduce the boundedness

{∂t
∫
S

ρεuε dx2x3}ε∈(0,1) in LΦ1/α(0, T ; ([W 1LΨ1/2(0, 1)]∗)3). (5.34)

By using (5.26), (5.34), compact embedding of W 1,p(0, 1) in EΨ1(0, 1), continu-
ous embedding of [W 1,p(0, 1)]∗ in [W 1LΨ1(0, 1)]∗ and theorem concerning compact
embedding (see [21, Lemma 9]), we obtain (passing to subsequences if necessary)∫

S

ρεuε dx2 dx3 →
∫
S

ρu dx2 dx3 in C(〈0, T 〉; ([W 1,p(0, 1)]∗)3). (5.35)

To perform a limit passage in the second term on the left-hand side of equation
(4.3), we need the following lemma which can be proven in a similar way as [24,
Proposition 3.2] and [1, Lemma 6.2].

Lemma 5.2. Assume that {uε}ε∈(0,1) satisfies condition (5.7) and {vε}ε∈(0,1),
where vε = (u1,ε, εu2,ε, εu3,ε), satisfies condition (5.8). Then for any p > 3 (passing
to a subsequence if necessary), it holds that

‖u1,ε −
1
|S|

∫
S

u1,ε dx2 dx3‖Lp(0,T ;L∞(Ω)) → 0, for ε→ 0. (5.36)

This lemma can be applied the following way. It holds that∫ T

0

∫ 1

0

∫
S

ρεu1,εu1,εψ dx2 dx3 dx1 dt

=
∫ T

0

∫ 1

0

∫
S

ρεu1,ε(u1,ε −
1
|S|

∫
S

u1,ε dx2 dx3)ψ dx2 dx3 dx1 dt

+
∫ T

0

∫ 1

0

(∫
S

ρεu1,ε dx2 dx3

)( 1
|S|

∫
S

u1,ε dx2 dx3

)
ψ dx1 dt,

where ψ ∈ C∞0 (0, T ; C∞(Ω̄)), ∂2ψ = ∂3ψ = 0. The first integral on the right-hand
side tends to zero for ε→ 0 due to Lemma 5.2. Concerning the second integral, we
apply strong convergence (5.35) and weak convergence∫

S

u1,ε dx2 dx3 ⇀

∫
S

u1 dx2 dx3 in Lp(0, T ;W 1,p(0, 1)),

which follows from (5.24). In addition, it holds that∫
S

ρu1 dx2 dx3 = ρ̂u1,

∫
S

u1 dx2 dx3 = u1,
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where ρ̂ =
∫
S
ρdx2 dx3, because u is independent of x2 and x3. Hence, the conver-

gence ∫ T

0

∫
Ω

ρεu1,εu1,εψ dx dt→
∫ T

0

∫ 1

0

ρ̂u1u1ψ dx1 dt (5.37)

is an immediate consequence of (5.24), (5.35) and (5.36). Convergence (5.37) is
applied in the next section to overcome the nonlinearity in the second term on the
left-hand side of (4.3)

5.2. Limit of the governing equations. Now, we can perform limit passages in
(4.2) and (4.3). Throughout this section, we denote an integral of a function in the
second and third spatial variable over set S by symbol “ ˆ ” over the function. Ob-
viously, these integrals depend only on x1. For example, we write ρ̂ =

∫
S
ρdx2 dx3.

We remark that prescribed behavior (6.5) enables us to use the Gronwall’s lemma
in the proof of boundedness (5.18). Further, we assume that h(ε) > 0 in (4.3)
satisfies the condition h(ε) ∼ O(ε) to ensure the convergence of h(ε)

ε to a real
positive number.

First, we test the equation (4.2) by function ϕ ∈ D(R× 〈0, T 〉). We arrive at∫ T

0

∫
Ω

ρε∂tϕ+ ρεu1,ε∂1ϕdx dt = 0.

Subsequently, we perform the limit passage for ε → 0, apply convergences (5.22)
and (5.26), and get ∫ T

0

∫ 1

0

ρ̂∂tϕ+ ρ̂u1∂1ϕdx1 dt = 0, (5.38)

for any ϕ ∈ D (R× 〈0, T 〉).
Second, we test the equation (4.3) by function ψ = (ψ1(x1, t), 0, 0), where ψ1 ∈

C∞0 (0, T ; C∞(〈0, 1〉)) complies with ψ1(0, t) = ψ1(1, t) = 0, for all t ∈ (0, T ). We
will show the limit passage for each term in (4.3) separately.
(a) ρεuε · ∂tψ. Since convergence (5.26) holds, we obtain∫ T

0

∫
Ω

ρεuε · ∂tψ dx dt→
∫ T

0

∫ 1

0

ρ̂u1∂tψ1 dx1 dt,

as ε→ 0.
(b) ρεuε ⊗ uε : ωε(ψ). From the definition of the test function ψ, we know that

ωε(ψ) = ω(ψ) =

∂1ψ1 0 0
· 0 0

sym · 0

 . (5.39)

After applying convergence (5.37), we conclude that∫ T

0

∫
Ω

ρεuε ⊗ uε : ωε(ψ) dx dt→
∫ T

0

∫ 1

0

ρ̂u1u1∂1ψ1 dx1 dt,

as ε→ 0.
(c) ρε divε ψ. Since divε ψ = ∂1ψ1, we have (see convergence (5.22))∫ T

0

∫
Ω

ρε divε ψ dxdt→
∫ T

0

∫ 1

0

ρ̂∂1ψ1 dx1 dt,

as ε→ 0.
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(d) P (|ωε(uε)|)ωε(uε) : ωε(ψ). It holds that∫ T

0

∫
Ω

P (|ωε(uε)|)ωε(uε) : ωε(ψ) dx dt→
∫ T

0

∫
Ω

P (|ζ|)ζ : ω(ψ) dxdt,

as ε→ 0, where ω(ψ) is defined by (5.39) and

ζ =

∂1u1 ζ12 ζ13

· ζ22 ζ23

sym · ζ33

 . (5.40)

Later, we will show that∫ t

0

∫
Ω

P (|ζ|)ζ : ω(ψ) dxds = |S|
∫ t

0

∫ 1

0

P (|∂1u1|)∂1u1∂1ψ1 dx1 ds,

for any t ∈ (0, T ).
(e) ρεfε · ψ. Since fε · ψ = f1,εψ1, we obtain∫ T

0

∫
Ω

ρεfε · ψ dxdt→
∫ T

0

∫ 1

0

ρ̂f1ψ1 dx1 dt,

as ε→ 0, where f1 denotes the limit of f1,ε.

(f) h(ε)
ε uε · ψ. According to the supposed behavior of h(ε), i. e. h(ε) ∼ O(ε), we

can use convergence (5.24) to derive

ε−1

∫ T

0

∫
Γ1

h(ε)uε · ψ dΓ dt→ |∂S|h
∫ T

0

∫ 1

0

u1ψ1 dx1 dt

as ε→ 0, where h is a positive constant.
(g) uε · ψ. Using (5.24), we arrive at∫ T

0

∫
Γ2

uε · ψ dΓ dt =
∫ T

0

∫
Γ2

u1,εψ1 dΓ dt→ 0,

as ε tends to zero, because u1(0, t) = u(1, t) = 0, for all t ∈ (0, T ).
Finally, we arrive at∫ T

0

∫ 1

0

ρ̂u1∂tψ1 + ρ̂u2
1∂1ψ1 + ρ̂∂1ψ1 dx1 dt

=
∫ T

0

∫
Ω

P (|ζ|)ζ : ω(ψ) dxdt−
∫ T

0

∫ 1

0

ρ̂f1ψ1 dx1 dt

+ |∂S|h
∫ T

0

∫ 1

0

u1ψ1 dx1 dt.

(5.41)

5.3. Limit of the energy equality. Applying similar approach as in section 5.2,
we perform the limit passage for ε→ 0 also in the energy equality (4.6). We arrive
at the inequality∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx1 +

∫ t

0

∫
Ω

P (|ζ|) |ζ|2 dx ds

+ |∂S|h
∫ t

0

∫ 1

0

|u1|2 dx1 ds

≤
∫ t

0

∫ 1

0

ρ̂f1u1 dx1 ds+
∫ 1

0

|(ρu)0|2

2ρ0
dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1.

(5.42)
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By using a similar procedure as in [17, Lemmas 3.2 and 3.3], based on the
renormalized continuity equation and the Steklov function, we derive the energy
equality ∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx1 +

∫ t

0

∫
Ω

P (|ζ|) ζ : ω(u) dx1 ds

+ |∂S|h
∫ t

0

∫ 1

0

|u1|2 dx1 ds

=
∫ t

0

∫ 1

0

ρ̂f1u1 dx1 ds+
∫ 1

0

|(ρu)0|2

2ρ0
dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1.

(5.43)

from (5.38) and (5.41), where ω(u) is defined in the same way as ω(ψ) in relation
(5.39). It means that its only nonzero term is [ω(u)]11 = ∂1u1.

Since the function P (|z|)z is monotone, we obtain

0 ≤ lim
ε→0

∫ t

0

∫
Ω

(P (|ωε(uε)|)ωε(uε)− P (|T |)T ) : (ωε(uε)− T ) dxds

= lim
ε→0

∫ t

0

∫
Ω

P (|ωε(uε)|)|ωε(uε)|2 dx ds

−
∫ t

0

∫
Ω

P (|ζ|)ζ : T + P (|T |)T : ζ + P (|T |)|T |2 dx ds

(5.44)

for any symmetric T ∈ [L̃M (Ω × (0, T ))]9. As a consequence of (4.6), (5.43),
convexity and Jensen’s inequality, we arrive at

lim
ε→0

∫ t

0

∫
Ω

P (|ωε(uε)|) |ωε(uε)|2 dxds

= lim
ε→0

(
−
∫

Ω

ρε
|uε|2

2
+ ρε ln(ρε) dx

− h(ε)
ε

∫ t

0

∫
Γ1

|uε|2 dΓ ds− q
∫ t

0

∫
Γ2

|uε|2 dΓ ds

+
∫ t

0

∫
Ω

ρεfε · uε dxds+
∫

Ω

|(ρεuε)0|2

2ρ0,ε
dx+

∫
Ω

ρ0,ε ln(ρ0,ε) dx
)

≤ −
∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx̂− |∂S|h

∫ t

0

∫ 1

0

|u1|2 dx1 ds

+
∫ t

0

∫ 1

0

ρ̂f1u1 dx1 ds+
∫ 1

0

|(ρu)0|2

2ρ0
dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1

=
∫ t

0

∫
Ω

P (|ζ|) ζ : ω(u) dxds

(5.45)

Hence, from (5.44), we obtain

0 ≤
∫ t

0

∫
Ω

(
P (|ζ|)ζ − P (|T |)T

)
: (ω(u)− T ) dxds.

Taking T = ζ + λω(ψ) and T = ζ − λω(ψ), for λ > 0, ψ = (ψ1, 0, 0), where
ψ1 ∈ C∞0 (0, T ; C∞(Ω̄)) is such that ∂2ψ1 = ∂3ψ1 = 0 and ψ1(0, t) = ψ1(1, t) = 0,
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for all t ∈ (0, T ), we conclude that∫ t

0

∫
Ω

P (|ζ|)ζ : ω(ψ) dxds = |S|
∫ t

0

∫ 1

0

P (|ω(u)|)ω(u) : ω(ψ) dx1 ds

= |S|
∫ t

0

∫ 1

0

P (|∂1u1|)∂1u1∂1ψ1 dx1 ds.
(5.46)

6. Conclusions

To sum it up, the limit equations together with the energy equality are given by
the following formulas ∫ T

0

∫ 1

0

ρ̂∂tϕ+ ρ̂u1∂1ϕdx1 dt = 0, (6.1)

for any ϕ ∈ D (R× 〈0, T 〉);∫ T

0

∫ 1

0

ρ̂u1∂tψ1 + ρ̂u2
1∂1ψ1 + ρ̂∂1ψ1 dx1 dt

= |S|
∫ T

0

∫ 1

0

P (|∂1u1|)∂1u1∂1ψ1 dx1 dt−
∫ T

0

∫ 1

0

ρ̂f1ψ1 dx1 dt

+ |∂S|h
∫ T

0

∫ 1

0

u1ψ1 dx1 dt,

(6.2)

for any ψ = (ψ1(x1), 0, 0), where ψ1 ∈ C∞0 (0, T ; C∞(〈0, 1〉)) complies with ψ1(0, t) =
ψ1(1, t) = 0, for all t ∈ (0, T ),∫ 1

0

ρ̂
|u1|2

2
+ ρ̂ ln(ρ̂) dx1 + |S|

∫ t

0

∫
Ω

P (|∂1u1|) |∂1u1|2 dx1 ds

+ |∂S|h
∫ t

0

∫ 1

0

|u1|2 dx1 ds

=
∫ t

0

∫ 1

0

ρ̂f1u1 dx1 ds+
∫ 1

0

|(ρu)0|2

2ρ0
dx1 +

∫ 1

0

ρ0 ln(ρ0) dx1.

(6.3)

Finally, we summarize our main result in the following theorem.

Theorem 6.1. Let us assume that couples (ρε,uε), ε ∈ (0, 1), satisfying

ρε ∈ L∞(0, T ;LΦγ (Ω)),

vε ∈ Lp(0, T ; [W 1,p(Ω)]3) ∩ L2(0, T ; [L2(∂Ω)]3),

with vε = (u1,ε, εu2,ε, εu3,ε) and Ω being not axially symmetric, ∂Ω ∈ C0,1, are
weak solutions to equations (4.2)-(4.3) and (4.6) with initial states ρ0,ε ∈ LΦγ (Ω)

and |(ρεuε)0|2
2ρ0,ε

∈ L1(Ω) satisfying∫
S

ρ0,ε ln(ρ0,ε) dx2 dx3 → ρ0 ln(ρ0) in L1(0, 1), (6.4)∫
S

Φγ(ρ0,ε) dx2 dx3 → Φγ(ρ0) in L1(0, 1), (6.5)∫
S

|(ρεuε)0|2

2ρ0,ε
dx2 dx3 →

|(ρu)0|2

2ρ0
in L1(0, 1), (6.6)
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for arbitrary but fixed γ > 3 and p > 3. In addition, we assume that Navier
boundary conditions (3.1)-(3.3) hold and ωε(uε) ∈ [L̃M (Ω× (0, T ))]9.

Further, we suppose that function P complies with conditions (3.6)-(3.10), fε → f
in [L∞(Ω × (0, T ))]3, h(ε) > 0 behaves like O(ε), see (3.1), and q > 0, see (3.2).
Then (passing to subsequences if necessary)

ρε
∗
⇀ ρ in L∞

(
0, T ;LΦγ (Ω)

)
,

ρε → ρ in C
(
〈0, T 〉; [W 1,p(Ω)]∗

)
,

ωε(uε)
N
⇀ ω(u)

u1,ε ⇀ u1 in Lp
(
0, T ;W 1,p(Ω)

)
∩ L2

(
0, T ;L2(∂Ω)

)
,

uα,ε → 0 in LM (Ω× (0, T )), α = 2, 3.

In addition, the couple (ρ̂, u1), where u1 = u1(x1) and ρ̂ =
∫
S
ρdx2 dx3, is a weak

solution to the equations (6.1)-(6.2) and complies with the energy equality (6.3).
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