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Abstract. In this article, we study the quasilinear Schrödinger equation with
the critical exponent and singular coefficients,

−∆u+ V (x)u−∆(|u|2)u = λ
|u|q−2u

|x|µ
+
|u|22∗(ν)−2u

|x|ν
in RN ,

where N ≥ 3, 2 < q < 22∗(µ), 2∗(s) =
2(N−s)
N−2

, and λ, µ, ν are parameters

with λ > 0, µ, ν ∈ [0, 2). By applying the Mountain Pass Theorem and the

Concentration Compactness Principle, we establish the existence of the ground
state solutions to the above problem.

1. Introduction

In this article we study the existence of ground state solutions of the quasilinear
Schrödinger equations with singular coefficients,

−∆u+ V (x)u−∆(|u|2)u = λ
|u|q−2u

|x|µ
+
|u|22∗(ν)−2u

|x|ν
in RN , (1.1)

where N ≥ 3, 2 < q < 22∗(µ), 2∗(s) = 2(N−s)
N−2 , and λ, µ, ν are parameters with

λ > 0, µ, ν ∈ [0, 2). The corresponding energy functional for (1.1) is

I(u) =
1
2

∫
RN

(1 + 2u2)|∇u|2dx+
1
2

∫
RN

V |u|2dx

− λ

q

∫
RN

|u|q

|x|µ
dx− 1

22∗(ν)

∫
RN

|u|22∗(ν)

|x|ν
dx.

(1.2)

Throughout this article, we assume that potential satisfies:
(A0) V ∈ C(RN ,R) with inf V (x) = V0 > 0, and for each M > 0, meas{x ∈ RN :

V (x) ≤M} < +∞, where V0 is a constant and meas denotes the Lebesgue
measure in RN .

By the ground state solution of (1.1), we mean that u 6= 0 and its energy is minimal
among the energy of all nontrivial solutions to (1.1).
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The question addressed in this paper is motivated by analogous results for the
ground state solutions of the Schrödinger equation

i∂tφ = −∆φ+W (x)φ− f(|φ|2)φ− k∆h(|φ|2)h′(|φ|2)φ, (1.3)

where φ : R× RN → C, W : RN → R is a given potential, k is a real constant and
f, h : R+ → R are suitable functions. In particular, we consider the model with
h(s) = s,

f(s) =

√
λ
|s|q−2

|x|µ
+
|s|22∗(ν)−2

|x|ν
,

W (x) = V (x) + β. A stationary equation of the desired form is obtained by con-
sidering standing wave solutions, φ(t, x) = exp (−iβt)u(x). Once we substitute the
formula of standing wave solutions into (1.3) with the special choices of h(s), f(s)
and W (x) as pointed above, we can immediately obtain (1.1). According to this
substitution, u is a solution of (1.1) if and only if φ is standing wave solution to
(1.3).

Schrödinger equations of this type have appeared in many physical models. It
can be used to describe different physical phenomena due to the variety of the
nonlinear term h. When h(s) = s, (1.3) was used to discuss the time evolution of
the condensate wave function of super-fluid film equation in plasma physics [14, 16].
When h(s) = (1 + s)1/2, (1.3) models the self-channeling of a high-power ultra
short laser in matter, see [4, 8, 10, 22]. Equation (1.3) also appears in the theory
of Heisenberg ferromagnets and magnons [13] and in condensed matter theory [20].
For further physical backgrounds and applications, we refer readers to [6, 3, 17, 21]
and references therein.

Poppenberg-Schmitt-Wang [21] considered the eigenvalue problem

−∆u+ V (x)u− (∆|u|2)u = λ|u|q−2u, (1.4)

with bounded potential V (x) and q > 2, λ > 0. They showed the existence of
positive ground state solutions for one dimensional case via the constrained vari-
ational method. For the same equation mentioned in (1.4), Liu-Wang-Wang [18]
also proved the existence of positive solution with unbounded/bounded/periodic
potential V (x) when 4 < q < 22∗ and λ > 0 by a change of variables and an Orlicz
space, where 2∗ = 2N

N−2 is the critical Sobolev exponent. In a recent work of do
Ó-Miyagaki-Soares [11], the critical exponent problem is studied for the following
quasilinear equation

−∆u+ V (x)u− (∆|u|2)u = |u|22∗−2u+ |u|q−2u, (1.5)

where 4 < q < 22∗, 2∗ is again the critical Sobolev exponent, N ≥ 3. Applying
a change of variables and the Moutain Pass Theorem, they showed that there is a
positive solution for (1.5) with bounded/periodic potential V (x). Liu-Liu-Wang [15]
extended the method in [11] to investigate the more general Schrödinger equations
with critical growth

−
N∑

i,j=1

Dj(aij(u)Diu) +
1
2

N∑
i,j=1

Dsaij(u)DiuDju+ V (x)u

= |u|22∗−2u+ |u|q−2u,

(1.6)
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where 4 < q < 22∗, N ≥ 3. It is easy to see that (1.6) can be transferred into
(1.5) with aij(u) = (1 + 2u2)δi,j . They also obtained the existence for positive
solution with bounded potential well by the Nehari method. Later on, via classical
variation techniques, Wu-Zhou [25] improved the results of [11] with unbounded
potential V (x), and they relax the restriction q > 4 to q > 2. Moreover, Bae-Choi-
Pahk [2] studied the existence of nodal radial solutions to the elliptic equations:

−∆u = λ
|u|q−2u

|x|µ
+
|u|2∗(ν)−2u

|x|ν
in B1, (1.7)

with µ, ν > −2, λ > 0. The singular terms addressed in our model are similar to
the one in (1.7). Therefore, motivated by [2] and [25], we notice that the existence
of ground state solutions for (1.1) depends not only on the range of q, but also the
parameter λ, for the case when µ 6= 0 and ν 6= 0. The main theorem of our paper
is as follows:

Theorem 1.1. Let q and λ be positive parameters, for every fixed µ, ν ∈ [0, 2), we
have the following statements:

(ii) if 2(N+2−2µ)
N−2 < q < 22∗(µ), there exists a ground state solution of (1.1) for

any λ > 0;
(ii) if 2 < q ≤ 2(N+2−2µ)

N−2 , there exists a constant λ∗ > 0, such that for λ > λ∗,
(1.1) has a ground state solution.

We now briefly mention the main difficulties of this problem. As observed in [19],
for each fixed ν, the number 22∗(ν) behaves like a critical exponent for the embed-
ding X ↪→ L22∗(ν)(RN , |x|−ν), where X = {u ∈ H1(RN ) : u2 ∈ H1(RN ),

√
|V |u ∈

L2(RN )} is the domain of the energy functional corresponding to (1.1). The main
tool of this problem is a variant version of the Mountain Pass Theorem [23], which
introduced a so-called Cerami sequence. We denote it as (C)c sequence for conve-
nience. The action of the (C)c sequence in the modified Mountain Pass Theorem
is similar to the Palais-Smale sequence in the classical Mountain Pass Theorem [1].
Due to lack of compactness of the embedding X ↪→ L22∗(ν)(RN , |x|−ν), it compli-
cates the process of verifying the existence and nonvanishing of the weak limit of a
(C)c sequence. On the other hand, X is not even a vector space, which causes that
the usual variation techniques cannot be applied directly. Therefore, the choice of
a suitable function space is also important for our discussion.

The plan of this paper is as follows: Section 2 states some preliminary results and
establishes the Mountain Pass geometry structure, Section 3 covers the compactness
of (C)c sequence. Section 4 is devoted to the proof of Theorem 1.1.

In what follows, C denotes the universal positive constant unless specified,
Lq(RN ) denotes the usual Lebesgue space with norm ‖u‖q = (

∫
RN |u|

qdx)1/q,
1 ≤ q <∞.

2. Preliminaries

Let
H1(RN ) = {u ∈ L2(RN ) : ∇u ∈ L2(RN )}

be endowed with the inner product

〈u, v〉H =
∫

RN

(
∇u∇v + uv

)
dx,
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and the norm ‖u‖2H = 〈u, u〉H . We define

E = {u ∈ H1(RN ) :
∫

RN
V (x)u2dx <∞}

with the inner product

〈u, v〉 =
∫

RN

[
∇u∇v + V (x)uv

]
dx,

and the associated norm ‖u‖2 = 〈u, u〉. It is easy to see that both H1(RN ) and E
are Hilbert spaces. Fortunately, thanks to [7] and [26], we can obtain the following
lemma.

Lemma 2.1. Let 0 ≤ σ < 2. The embedding E ↪→ Ls(RN , |x|−σ) is continuous
for 2 ≤ s ≤ 2∗(σ) and compact for 2 ≤ s < 2∗(σ) when V (x) satisfies the condition
(A0).

Proof. By [7] and [26], the embedding E ↪→ Lp(RN ) is continuous for 2 ≤ p ≤ 2∗

and compact for 2 ≤ p < 2∗ under the condition (A0).
Let un → 0 in E as n→∞. By the Hölder’s inequality, we have∫

RN

|un|s

|x|σ
dx =

∫
RN

|un|σ

|x|σ
· |un|s−σdx

≤
(∫

RN

u2
n

|x|2
dx
)σ/2(∫

RN
|un|

2(s−σ)
2−σ dx

) 2−σ
2
.

(2.1)

Since 2 ≤ s ≤ 2∗(σ) and 0 ≤ σ < 2, it follows that 2 ≤ 2(s−σ)
2−σ ≤ 2∗. Hence, applying

the Hardy’s and Sobolev inequalities to (2.1), we can obtain
∫

RN
|un|s
|x|σ dx ≤ C‖un‖

s,
which gives that un → 0 in Ls(RN , |x|−σ) for 2 ≤ s ≤ 2∗(σ) as n→∞. Therefore,
the first part of this lemma is proved.

Secondly, let {un} be a bounded sequence in E. It is clear that, up to a subse-
quence, un ⇀ u in E as n→∞. Employing the Hölder’s and Hardy’s inequalities,
we obtain∫

RN

|un − u|s

|x|σ
dx =

∫
RN

|un − u|σ

|x|σ
· |un − u|s−σdx

≤
(∫

RN

|un − u|2

|x|2
dx
)σ/2(∫

RN
|un − u|

2(s−σ)
2−σ dx

) 2−σ
2

≤ ‖un − u‖σ
(∫

RN
|un − u|

2(s−σ)
2−σ dx

) 2−σ
2
.

(2.2)

Since 2 ≤ s < 2∗(σ) and 0 ≤ σ < 2, we have 2 ≤ 2(s−σ)
2−σ < 2∗. It then follows

that un → u in L
2(s−σ)
2−σ (RN ). Therefore, we can obtain un → u in Ls(RN , |x|−σ) for

2 ≤ s < 2∗(σ) from (2.2). Thus E ↪→ Ls(RN , |x|−σ) is compact for 2 ≤ s < 2∗(σ).
We complete our proof. �

The purpose of this section is to establish the variational structure of (1.1). And
the main difficulty arises from the function space where the energy functional (1.2)
is not well defined. To overcome this difficulty, and motivated by [18] and [9], we
define a C∞ function f(t) as below:

f(−t) = −f(t) on (−∞, 0], f ′(t) =
1

(1 + 2f2(t))1/2
on [0,+∞).
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We also need some properties on f .

Proposition 2.2. The function f(t) has the following properties:

(A1) f is a uniquely defined, invertible C∞-function;
(A2) 0 < f ′(t) ≤ 1 for all t ∈ R;
(A3) |f(t)| ≤ |t| for all t ∈ R;
(A4) |f(t)| ≤ 2

1
4 |t|1/2 for all t ∈ R;

(A5) There exists a positive constant C such that

|f(t)| ≥

{
C|t|, |t| ≤ 1,
C|t|1/2, |t| ≥ 1;

(A6) f(t)
2 ≤ tf

′(t) ≤ f(t) for t ≥ 0;
(A7) |f(t)f ′(t)| ≤ 1√

2
for all t ∈ R.

We observe that a direct calculation implies that f(t)
t is decreasing for t > 0 from

(A6). The proof of this proposition may be found in [9], [18, 11, 12].
After using the same change of variables v = f−1(u) as in [18] and [9], and the

definition of f mentioned above, I(u) can be transferred into a new functional J(v):

J(v) =
1
2

∫
RN

[
|∇v|2 + V (x)f2(v)

]
dx− λ

q

∫
RN

|f(v)|q

|x|µ
dx

− 1
22∗(ν)

∫
RN

|f(v)|22∗(ν)

|x|ν
dx,

(2.3)

which is well defined on E. Moreover, a standard argument shows that J ∈ C1(E,R)
and

〈J ′(v), ϕ〉 =
∫

RN

[
∇v∇ϕ+ V (x)f(v)f ′(v)ϕ

− λ |f(v)|q−2

|x|µ
f(v)f ′(v)ϕ− |f(v)|22∗(ν)−2

|x|ν
f(v)f ′(v)ϕ

]
dx

(2.4)

for all v, ϕ ∈ E. Therefore, the nontrivial critical points of the functional J are
also the nontrivial weak solutions of the following equation

−∆v = f(v)f ′(v)
[
λ
|f(v)|q−2

|x|µ
+
|f(v)|22∗(ν)−2

|x|ν
− V (x)

]
in RN . (2.5)

According to this change of variables (see [9, 25]), we notice that if v is a solution
of (2.5), u = f(v) is also a solution of (1.1).

Now show that the functional J exhibits the Mountain Pass geometry structure.
Let

B(ρ) = {v ∈ E :
∫

RN

[
|∇v|2 + V (x)f2(v)

]
dx < ρ2}.

Lemma 2.3. For any fixed µ, ν ∈ [0, 2), the functional J satisfies

(i) there exist positive constants α and ρ0, such that J(v) ≥ α for all v ∈
∂B(ρ0),

(ii) there exists w ∈ E such that J(w) < 0.
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Proof. (i) From (A7), we have∫
RN
|∇f2(v)|2dx =

∫
RN
|2f(v)f ′(v)∇v|2dx

≤ 2
∫

RN
|∇v|2dx

≤ 2
∫

RN

[
|∇v|2 + V (x)f2(v)

]
dx.

(2.6)

For fixed µ ∈ [0, 2), for any ε > 0 and 2 < q < 22∗(µ), there exists a constant

C(ε) > 0 such that |t|
q

|x|µ ≤ ε |t|
2

|x|µ + C(ε) |t|
22∗(µ)

|x|µ . Thus, for any v ∈ ∂B(ρ), by using
Sobolev-Hardy inequality and (2.6), we have∫

RN

|f(v)|22∗(µ)

|x|µ
dx ≤ C

(∫
RN

∣∣∇(f2(v))
∣∣2dx)2∗(µ)/2

≤ C
[ ∫

RN

(
|∇v|2 + V (x)f2(v)

)
dx
]2∗(µ)/2

≤ Cρ2∗(µ) .

(2.7)

Similarly, ∫
RN

|f(v)|22∗(ν)

|x|ν
dx ≤ Cρ2∗(ν). (2.8)

By (2.7), it follows from (A3) and Sobolev-Hardy inequality again that∫
RN

|f(v)|q

|x|µ
dx ≤ ε

∫
RN

|f(v)|2

|x|µ
dx+ C(ε)

∫
RN

|f(v)|22∗(µ)

|x|µ
dx

≤ Cε
∫

RN
|∇v|2dx+ C · C(ε)ρ2∗(µ)

≤ Cερ2 + C · C(ε)ρ2∗(µ).

(2.9)

Thus, from (2.7) and (2.8), we obtain

J(v) =
1
2

∫
RN

[
|∇v|2 + V (x)f2(v)

]
dx− λ

q

∫
RN

|f(v)|q

|x|µ
dx

− 1
22∗(ν)

∫
RN

|f(v)|22∗(ν)

|x|ν
dx

≥ [
1
2
− λ

q
Cε]ρ2 − λ

q
C · C(ε)ρ2∗(µ) − 1

22∗(ν)
Cρ2∗(ν)

≥ 1
4
ρ2 − C · C(ε)ρ2∗(µ) − Cρ2∗(ν),

for ε > 0 sufficiently small. Choose ρ0 > 0 with 1
4ρ

2
0−C ·C(ε)ρ2∗(µ)

0 −C · ρ2∗(ν)
0 =:

α > 0. Then we have J(v) ≥ α for all v ∈ ∂B(ρ0).
(ii) For fixed ν ∈ [0, 2), given ψ ∈ E ∩L22∗(ν)(RN ) with 0 < ψ ≤ 1, we can show

that
J(tψ)→ −∞ as t→∞.

Indeed, since 0 < tψ(x) ≤ t for t > 0, and (A6) in Proposition 2.2, it follows that

f(tψ(x))
tψ(x)

≥ f(t)
t
⇒ f(tψ(x)) ≥ f(t)ψ(x). (2.10)



EJDE-2017/114 GROUND STATE SOLUTIONS 7

Thus, for t ≥ 1, by (2.10), (A3) and (A5), we have

J(tψ) ≤ 1
2

∫
RN

[
|∇(tψ)|2 + V (x)f2(tψ)

]
dx− 1

22∗(ν)

∫
RN

|f(tψ)|22∗(ν)

|x|ν
dx

≤ t2

2

∫
RN

[
|∇ψ|2 + V (x)ψ2

]
dx− 1

22∗(ν)

∫
RN

|f(t)ψ|22∗(ν)

|x|ν
dx

=
t2

2

∫
RN

[
|∇ψ|2 + V (x)ψ2

]
dx− Ct2

∗(ν)

∫
RN

|ψ|22∗(ν)

|x|ν
dx

→ −∞, as t→ +∞,

since 2∗(ν) > 2 for ν ∈ [0, 2). This implies that there exists a t large and positive
such that w = tψ, J(w) < 0. �

It is well known that the minimization problem

S = inf
{∫

RN
|∇v|2dx : v ∈ D1,2(RN ),

∫
RN

|v|2∗(ν)

|x|ν
dx = 1

}
has a solution given by

wε(x) =
[(N − ν)(N − 2)ε]

N−2
4(2−ν)

[ε+ |x|2−ν ]
N−2

2(2−ν)
.

Let 0 < R < 1, and ϕ ∈ C∞0 (RN , [0, 1]) be a smooth cut-off function, such that
ϕ(x) = 1 for |x| ≤ R, 0 < ϕ(x) < 1 for R < |x| < 2R, and ϕ(x) = 0 for |x| ≥ 2R.

For any ε > 0, it is known that −∆(w2
ε ) = w

2(N+2−2ν)
N−2

ε

|x|ν and S can be attained by
w2
ε . Set uε = ϕwε. By a similar computation to that in [2, 5], we have:∫

RN
|∇(u2

ε)|2dx = S
N−ν
2−ν +O

(
ε
N−2
2−ν
)
,∫

RN

|uε|22∗(ν)

|x|ν
dx = S

N−ν
2−ν +O

(
ε
N−ν
2−ν
)
,

(2.11)

∫
RN
|∇uε|2dx ≤ O

(
ε
N−2

2(2−ν) | ln ε|
)
,

∫
RN

u2
εdx = O

(
ε
N−2

2(2−ν)
)
, (2.12)∫

RN

|uε|q

|x|µ
dx = O

(
ε
N−µ
2−ν −

N−2
4(2−ν) q

)
for

2(N − µ)
N − 2

< q <
4(N − µ)
N − 2

. (2.13)

As usual, we define the Mountain Pass level c of J to be

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)), (2.14)

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) 6= 0, J(γ(1)) < 0}. And it is easy to
see that c > 0 by Lemma 2.3.

Since

J(f−1(0)) = I(0) = 0, J(f−1(tuε)) = I(tuε)→ −∞ as t→∞,
it follows that there exists t0 6= 0 such that J(f−1(t0uε)) < 0. Let

γ1(t) = f−1(tt0uε),

we have

γ1(0) = 0, γ1(1) = f−1(t0uε) 6= 0, J(γ1(1)) = J(f−1(t0uε)) < 0.
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Therefore, from the definition of the Mountain Pass level, it follows that

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)) ≤ sup
t∈[0,1]

J(γ1(t))

= sup
t∈[0,1]

J(f−1(tt0uε)) = sup
t≥0

J(f−1(tuε))

= sup
t≥0

I(tuε).

Taking uε as a test function, from the following lemma, we can check that

c <
2− ν

4(N − ν)
S
N−ν
2−ν . (2.15)

Lemma 2.4. Let µ, ν ∈ [0, 2) be fixed, we have

(i) if 2(N+2−2µ)
N−2 < q < 22∗(µ), then (2.15) holds for any λ > 0;

(i) if 2 < q ≤ 2(N+2−2µ)
N−2 , there exists a positive constant λ∗, such that (2.15)

still holds for λ > λ∗.

Proof. (i) Since I(0) = 0, limt→∞ I(tuε) = −∞, there exists tε > 0 such that
I(tεuε) = maxt≥0 I(tuε). We claim that there exist positive constants t1 and t2
such that t1 ≤ tε ≤ t2 for ε ∈ (0, ε0). In fact, by (2.11)-(2.13), there is a small
ε2 > 0 such that

I(tuε) ≤
t2

2

∫
RN

[
|∇uε|2 + V (x)u2

ε

]
dx+

t4

4

∫
RN
|∇u2

ε |2dx

− t22∗(ν)

22∗(ν)

∫
RN

|uε|22∗(ν)

|x|ν
dx

≤ t2

2
+
t4

2
S
N−ν
2−ν − t22∗(ν)

4 · 2∗(ν)
S
N−ν
2−ν

(2.16)

for all ε ∈ (0, ε2). Hence

t
22∗(ν)
ε

2 · 2∗(ν)
S
N−ν
2−ν ≤ t2ε + t4εS

N−ν
2−ν

which implies that there exists a constant t2 > 0 such that tε ≤ t2 for all ε ∈ (0, ε2).
Since 2∗(µ) < 2(N+2−2µ)

N−2 < q < 22∗(µ), it follows from (2.11)-(2.13) that there
exists ε1 ∈ (0, ε2) such that

I(tuε) ≥
t4

4

∫
RN
|∇(u2

ε)|2dx− λ
tq

q

∫
RN

|uε|q

|x|µ
dx− t22∗(ν)

22∗(ν)

∫
RN

|uε|22∗(ν)

|x|ν
dx

≥ 1
8
S
N−ν
2−ν t4 − λCε

N−µ
2−ν −

N−2
4(2−ν) qtq − 1

2∗(ν)
S
N−ν
2−ν t22∗(ν),

for all ε ∈ (0, ε1). Let

χ = max
0≤t≤1

[1
8
t4 − 1

2∗(ν)
t22∗(ν)

]
S
N−ν
2−ν .

Then χ > 0. Since N−µ
2−ν −

N−2
4(2−ν)q > 0, we can find a small ε0 < ε1 with

λCε
N−µ
2−ν −

N−2
4(2−ν) q ≤ χ

2 for all ε ∈ (0, ε0). Thus

I(tεuε) ≥ max
0≤t≤1

{1
8
S
N−ν
2−ν t4 − λCε

N−µ
2−ν −

N−2
4(2−ν) qtq − 1

2∗(ν)
S
N−ν
2−ν t22∗(ν)

}
≥ χ

2
.
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Combining the above inequality with (2.16), we deduce that

χ

2
≤ t2ε

2
+
t4ε
2
S
N−ν
2−ν − t

22∗(ν)
ε

4 · 2∗(ν)
S
N−ν
2−ν ,

which implies that there exists a t1 > 0 such that tε ≥ t1 for all ε ∈ (0, ε0). Hence
we prove our claim.

For ε ∈ (0, ε0), from (2.11)-(2.13), we have

I(tεuε) ≤
t4ε
4

∫
RN
|∇(u2

ε)|2dx−
t
22∗(ν)
ε

22∗(ν)

∫
RN

|uε|22∗(ν)

|x|ν
dx

− λ

q
tq1

∫
RN

|uε|q

|x|µ
dx+

t22
2

∫
RN

[
|∇uε|2 + V (x)u2

ε

]
dx

≤
( t4ε

4
− t

22∗(ν)
ε

22∗(ν)

)
S
N−ν
2−ν +O

(
ε
N−2

2(2−ν) | ln ε|
)
− Cλε

N−µ
2−ν −

N−2
4(2−ν) q

≤ 2− ν
4(N − ν)

S
N−ν
2−ν +O

(
ε
N−2

2(2−ν) | ln ε|
)
− Cλε

N−µ
2−ν −

N−2
4(2−ν) q

<
2− ν

4(N − ν)
S
N−ν
2−ν ,

for ε > 0 small enough and N−µ
2−ν −

N−2
4(2−ν)q <

N−2
2(2−ν) . Therefore we can find a small

ε̄ > 0 such that

sup
t≥0

J(f−1(tuε̄)) = sup
t≥0

I(tuε̄) = I(tε̄uε̄) <
2− ν

4(N − ν)
S
N−ν
2−ν .

Moreover, from (2.16), we conclude that J(f−1(tuε̄)) = I(tuε̄)→ −∞ as t→ +∞,
which shows that there exists a t̄ > 0 such that J(f−1(t̄uε̄)) < 0. By taking
γ̄(t) = f−1(tt̄uε̄), we have γ̄ ∈ Γ and c ≤ maxt∈[0,1] J(γ̄(t)) < 2−ν

4(N−ν)S
N−ν
2−ν for any

λ > 0.
(ii) In the proof of this part, we first rewrite I to be Iλ. Let u0 ∈ C∞0 (RN )

with u0 6= 0 and define tλ > 0 such that Iλ(tλu0) = supt≥0 Iλ(tu0). We claim that
tλ → 0 as λ→ +∞.

We will prove our claim by contradiction. Suppose that the claim is not true.
Then there exists a constant t0 > 0 and a sequence {λn} such that tλn ≥ t0 as
λn → +∞ for all n. Without loss of generality, we may assume that λn ≥ 1 for all
n. Let tn = tλn and I1 = Iλ|λ=1, then 0 ≤ Iλn(tnu0) ≤ I1(tnu0) for all n. Then it
follows that

I1(tnu0) =
t4n
4

∫
RN
|∇u0|2dx+

t2n
2

∫
RN

[
|∇u0|2 + V (x)u2

0

]
dx

− tqn
q

∫
RN

|u0|q

|x|µ
dx− t

22∗(ν)
n

22∗(ν)

∫
RN

|u0|22∗(ν)

|x|ν
dx

≤ t4n
4

∫
RN
|∇u0|2dx+

t2n
2

∫
RN

[
|∇u0|2 + V (x)u2

0

]
dx

− t
22∗(ν)
n

22∗(ν)

∫
RN

|u0|22∗(ν)

|x|ν
dx→ −∞, as tn →∞,
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which gives us a contradiction since 22∗(ν) > 4 > 2. Thus tn is bounded from
above. Moreover, we also have

Iλn(tnu0)

≤ t4n
4

∫
RN
|∇u2

0|2dx+
t2n
2

∫
RN

[
|∇u0|2 + V (x)u2

0

]
dx− λn

tqn
q

∫
RN

|u0|q

|x|µ
dx

≤ C − λn
tq0
q

∫
RN

|u0|q

|x|µ
dx→ −∞

(2.17)

as n→∞, which contradicts Iλn(tnu0) ≥ 0. Hence our claim holds. Since tλ → 0
as λ→ +∞ and Iλ(tλu0) ≤ t4λ

4

∫
RN |∇u

2
0|2dx+ t2λ

2

∫
RN
[
|∇u0|2 +V (x)u2

0

]
dx, we can

obtain that Iλ(tλu0) → 0 as λ → +∞. Therefore, there exists λ∗ > 0 such that
supt≥0 Iλ(tu0) < 2−ν

4(N−ν)S
N−ν
2−ν for any λ > λ∗. This implies that c < 2−ν

4(N−ν)S
N−ν
2−ν

for all λ > λ∗. The proof is complete. �

3. Compactness of the (C)c sequence

Since the compactness of (C)c sequence plays an important role in our process,
we will pay much more attention on the (C)c sequence of J in this section. Recall
that {vn} is a (C)c sequence of J if J(vn)→ c and (1+‖vn‖)J ′(vn)→ 0 as n→∞.

Lemma 3.1. Any (C)c sequence {vn} ⊂ E of J is bounded in H1(RN ).

Proof. Let {vn} ⊂ E be a (C)c sequence of J at level c, that is,

J(vn)→ c and (1 + ‖vn‖)J ′(vn)→ 0 as n→∞.

Choosing ϕn = f(vn)
f ′(vn) , it is easy to see that ϕn ∈ E since vn ∈ E and the definition

of f ′. Then, by (A3) and (A4), we obtain ‖ϕn‖ ≤ 5‖vn‖ and 〈J ′(vn), ϕn〉 → 0 as
n→∞.

By defining two real functions

ψ(t, x) = λ
|t|q−2t

|x|µ
+
|t|22∗(ν)−2t

|x|ν
, Ψ(t, x) =

∫ t

0

ψ(s, x)ds,

choosing σ = max{µ, ν}, we find that there exists a constant τ ∈ (4, 22∗(ν)) such
that

lim
t→0

|x|σ[tψ(t, x)− τΨ(t, x)]
t2

= 0

and

lim
|t|→+∞

|x|σ[tψ(t, x)− τΨ(t, x)]
tτ

= +∞ uniformly for x ∈ RN .

Therefore, there exists r > 0 such that

tψ(t, x)− τΨ(t, x) ≥ 0, for any |t| > r, x ∈ RN . (3.1)

Moreover, for any ε > 0, there exists a positive constant C(ε) such that

|tψ(t, x)− τΨ(t, x)| ≤ ε |t|
2

|x|σ
+ C(ε)

|t|22∗(ν)

|x|σ
, ∀t ∈ R , x ∈ RN . (3.2)
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With ϕn defined before, we can deduce from (3.1) that

c+ o(1) = J(vn)− 1
τ
〈J ′(vn), ϕn〉

=
1
2

∫
RN
|∇vn|2dx−

1
τ

∫
RN

(
1 +

2f2(vn)
1 + 2f2(vn)

)
|∇vn|2dx

+
(1

2
− 1
τ

) ∫
RN

V (x)f2(vn)dx

+
∫

RN

[1
τ
ψ(f(vn), x)f(vn)−Ψ(f(vn), x)

]
dx

≥
(1

2
− 2
τ

) ∫
RN
|∇vn|2dx+

(1
2
− 1
τ

) ∫
RN

V (x)f2(vn)dx

+
∫
B

[1
τ
ψ(f(vn), x)f(vn)−Ψ(f(vn), x)

]
dx,

(3.3)

where B = {x ∈ RN : |f(vn)| ≤ r}. By (3.2), there is a constant M > V0 such that

∣∣1
τ
tψ(t, x)−Ψ(t, x)

∣∣ ≤ (1
4
− 1

2τ
)
M

t2

|x|σ
, for any |t| ≤ r, x ∈ RN , (3.4)

where V0 is given in (A0).
Let A = {x ∈ RN : V (x) ≤M}. By (3.4) and (A0), we obtain

(1
4
− 1

2τ
) ∫

RN
V (x)f2(vn)dx+

∫
B

[1
τ
ψ(f(vn), x)f(vn)−Ψ(f(vn), x)

]
dx

≥
(1

4
− 1

2τ
) ∫

B∩{x∈RN :|x|>1}
V (x)f2(vn)dx−

(1
4
− 1

2τ
)
M

∫
B

|f(vn)|2

|x|σ
dx

=
(1

4
− 1

2τ
) ∫

B∩{x∈RN :|x|>1}
V (x)f2(vn)dx

−
(1

4
− 1

2τ
)
M

∫
B∩{x∈RN :|x|>1}

|f(vn)|2

|x|σ
dx

−
(1

4
− 1

2τ
)
M

∫
B∩{x∈RN :|x|≤1}

|f(vn)|2

|x|σ
dx

≥
(1

4
− 1

2τ
) ∫

B∩{x∈RN :|x|>1}

(
V (x)−M

)
f2(vn)dx

−
(1

4
− 1

2τ
)
M

∫
B∩{x∈RN :|x|≤1}

|f(vn)|2

|x|σ
dx

≥
(1

4
− 1

2τ
) ∫

A∩B∩{x∈RN :|x|>1}

(
V0 −M

)
r2dx

−
(1

4
− 1

2τ
)
M

∫
B∩{x∈RN :|x|≤1}

r2

|x|σ
dx

≥
(1

4
− 1

2τ
)(
V0 −M

)
r2 meas(A ∩B ∩

{
x ∈ RN : |x| > 1

}
)

−
(1

4
− 1

2τ
)
Mr2

∫
{x∈RN :|x|≤1}

1
|x|σ

dx
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≥
(1

4
− 1

2τ
)(
V0 −M

)
r2 meas(A)−

(1
4
− 1

2τ
)
r2M

∫ 1

0

ρN−σ−1dρ

≥
(1

4
− 1

2τ
)(
V0 −M

)
r2 meas(A)−

(1
4
− 1

2τ
)
r2M ,

which implies (1
2
− 2
τ

) ∫
RN
|∇vn|2dx+

(1
4
− 1

2τ
) ∫

RN
V (x)f2(vn)dx

≤
(1

4
− 1

2τ
)
r2
[(
M − V0

)
meas(A) +M

]
+ c+ o(1).

(3.5)

Therefore, ∫
RN

[
|∇vn|2 + V (x)f2(vn)

]
dx ≤ C ,

since meas(A) is finite according to the assumption (A0).
Moreover, by (A5) and using Sobolev inequality again, we have∫

RN
|vn|2dx =

∫
{|vn|≤1}

|vn|2dx+
∫
{|vn|>1}

|vn|2dx

≤ C
∫

RN
V (x)f2(vn)dx+

∫
RN
|vn|2

∗
dx

≤ C
∫

RN
V (x)f2(vn)dx+ C

[ ∫
RN
|∇vn|2dx

]2∗/2
< +∞,

where 2∗ = 2N/(N − 2) is the critical Sobolev exponent. Hence {vn} is bounded
in H1(RN ), which completes our proof. �

Lemma 3.2. Let {vn} ⊂ E be a (C)c sequence of J . If c < 2−ν
4(N−ν)S

N−ν
2−ν , there

exist positive constants R and ξ, and a sequence {yn} ⊂ RN , such that

lim sup
n→∞

∫
BR(yn)

|vn|2dx ≥ ξ.

Proof. Suppose that the conclusion is not true. It then follows from [24, Lemma
1.21] that vn → 0 in Ls(RN ) for all 2 < s < 2∗. By Hölder’s inequality, Hardy’s
inequality and Lemma 3.1, we have∫

RN

|vn|q

|x|µ
dx ≤ C

(∫
RN
|vn|

2(q−µ)
2−µ dx

) 2−µ
2
.

Since 2 < q < 2∗(µ) and 0 ≤ µ < 2, then 2 < 2(q−µ)
2−µ < 2∗, we can obtain vn → 0 in

L
2(q−µ)
2−µ (RN ), hence

vn → 0 in Lq(RN , |x|−µ), for 2 < q < 2∗(µ).

Then by (A4), Lemma 3.1 and the interpolation, we deduce that

f(vn)→ 0 in Lq(RN , |x|−µ), for 2 < q < 22∗(µ). (3.6)

By passing to a subsequence of {vn} and Lemma 3.1 we may assume that∫
RN

(
1 +

2f2(vn)
1 + 2f2(vn)

)
|∇vn|2dx+

∫
RN

V (x)f2(vn)dx→ b,∫
RN

|f(vn)|22∗(ν)

|x|ν
dx→ d.
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On the other hand,

S
(∫

RN

|f(vn)|22∗(ν)

|x|ν
dx
) 2

2∗(ν)

≤
∫

RN
|∇f2(vn)|2dx =

∫
RN

4f2(vn)
1 + 2f2(vn)

|∇vn|2dx

≤
∫

RN

(
1 +

2f2(vn)
1 + 2f2(vn)

)
|∇vn|2dx+

∫
RN

V (x)f2(vn)dx.

By passing to a subsequence of {vn} to the both sides of the above inequality,
we obtain Sd

2
2∗(ν) ≤ b. On the other hand, it can be deduced from (3.6) that

0 = limn→∞〈J ′(vn), wn〉 = b − d, where wn = f(vn)
f ′(vn) . Therefore, b = d ≥ S

N−ν
2−ν .

And, by (3.6) again, we obtain

c = lim
n→∞

J(vn)

= lim
n→∞

[1
2

∫
RN

(
|∇vn|2 + V (x)f2(vn)

)
dx− 1

22∗(ν)

∫
RN

|f(vn)|22∗(ν)

|x|ν
dx
]

≥ lim
n→∞

[1
4

∫
RN

(
1 +

2f2(vn)
1 + 2f2(vn)

)
|∇vn|2dx+

1
4

∫
RN

V (x)f2(vn)dx

− 1
22∗(ν)

∫
RN

|f(vn)|22∗(ν)

|x|ν
dx
]

=
(1

4
− 1

22∗(ν)

)
d

≥ 2− ν
4(N − ν)

S
N−ν
2−ν ,

which gives us a contradiction since c < 2−ν
4(N−ν)S

N−ν
2−ν . The proof is complete. �

4. Proof of the main result

Proof of Theorem 1.1. Let c be the Mountain Pass level given in (2.14). From
Lemma 2.3, Lemma 2.4 and the modified Mountain Pass Theorem [23], J has a
(C)c sequence {vn} ⊂ E. By Lemma 3.1, we may assume that vn ⇀ v in H1(RN )
and f(vn) ⇀ f(v) in E, under the assumption (A0), for any 0 ≤ σ < 2, by
Lemma 2.1 the embedding E ↪→ Lr(RN , |x|−σ) is continuous for 2 ≤ r ≤ 2∗(σ), it
is also compact for 2 ≤ r < 2∗(σ), which implies

f(vn)→ f(v) in Ls(RN , |x|−µ), for 2 ≤ s < 22∗(µ),

f(vn) ⇀ f(v) in L22∗(ν)(RN , |x|−ν),

with µ, ν ∈ [0, 2). Hence, we have 〈J ′(vn), ϕ〉 → 〈J ′(v), ϕ〉 = 0 for any ϕ ∈ C∞0 (RN ),
that is, v is a weak solution of (2.5). We conclude from Lemma 2.4 that for any
µ, ν ∈ [0, 2), c < 2−ν

4(N−ν)S
N−ν
2−ν holds when either of the following statement holds:

(1) 2(N+2−2µ)
N−2 < q < 22∗(µ) and each λ > 0; (2) 2 < q ≤ 2(N+2−2µ)

N−2 and each
λ > λ∗ for some positive constant λ∗. Moreover, by Lemma 3.2, there exists a
constant ξ > 0 such that∫

RN
|v|2dx = lim

n→∞

∫
RN
|vn|2dx ≥ ξ > 0,
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which implies that v is a nontrivial solution of problem (2.5). Hence u = f(v) is a
nontrivial solution of problem (1.1).

Finally, letting e = inf{J(v) : v ∈ E, v 6= 0, J ′(v) = 0}, it is easy to see that e is
attained by the lower semi-continuity. The proof is complete. �
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