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ALMOST GLOBAL EXISTENCE FOR THE NEUMANN
PROBLEM OF QUASILINEAR WAVE EQUATIONS OUTSIDE

STAR-SHAPED DOMAINS IN 3D

LULU REN, JIE XIN

Communicated by Goong Chen

Abstract. In this article, we prove the almost global existence of solutions

for quasilinear wave equations in the complement of star-shaped domains in

three dimensions, with a Neumann boundary condition.

1. Introduction

Assume the obstacle K ⊂ R3 be a smooth, closed and strictly star-shaped domain
with respect to the origin. Then consider the Neumann problem for the quasilinear
wave equation

�cu = F (du, d2u), (t, x) ∈ R+ × R3\K,
∂νu

∣∣
∂K = 0,

u(0, x) = f(x), ∂tu(0, x) = g(x).

(1.1)

Here �c = (�c1 ,�c2 , · · ·,�cN ) is a vector-value multiple-speed D’Alembertian with
�cI = ∂2

t − c2I∆, and we suppose that all cI ’s are positive but not necessarily
distinct.

∂νu = ~n · ∇xu =
3∑
j=1

∂u

∂xj
nj

denotes differentiation with respect to the outward normal to K. If we set ∂t = ∂0,
then

F I(du, d2u) =
3∑

0≤j,k,l≤3, 0≤J,K≤N

CIJ,jkK,l ∂lu
K∂j∂ku

J , 1 ≤ I ≤ N,

where CIJ,jkK,l are real constants satisfying the symmetry conditions

CIJ,jkK,l = CJI,jkK,l = CIJ,kjK,l .

Let ∂ = (∂t, ∂1, ∂2, ∂3) = (∂0,∇) Denote the time-space gradient, and ∂u = u′.
We write Ω = {Ωij}, where Ωij = xi∂j − xj∂i, 1 ≤ i ≤ j ≤ 3, are the Euclidean
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R3 rotation operators. Set Z = {∂t, ∂j ,Ωij}, S = t∂t + x · ∇x = t∂t + r∂r, 〈x〉 =
(1 + |x|2)1/2.

To simplify the notation, we let

� = ∂2
t −∆

be the scale unit-speed D’Alembertian. Since the estimates for � yield ones for �c,
we will state most of our estimates in terms of � instead of �c.

We suppose that the Cauchy data satisfies the relevant compatibility conditions.
Let Jku = {∂αx u : 0 ≤ |α| ≤ k}. If m is fixed and u is a formal Hm solution of (1.1),
then we write ∂kt u(0, ·) = ψk(Jkf, Jk−1g)(0 ≤ k ≤ m). The compatibility condition
for (1.1) with (f, g) ∈ Hm ×Hm−1 is just the requirement that ψk vanish on ∂K
for 0 ≤ k ≤ m. Furthermore, (f, g) ∈ C∞ satisfies the compatibility conditions to
infinite order if these conditions hold for all m.

There have been many results on the almost global existence of wave equations,
mostly with Dirichlet boundary condition. The almost global existence for non-
linear wave equations was proved in [1] on Minkowski space by using the Lorentz
invariance of the wave operator. In [3], the authors gave the same result without
relying on Lorentz invariance. The exterior problem of nonlinear wave equation was
considered in [2]. Mitsuru Ikawa [4] studied some mixed problems for hyperbolic
system of second order. The almost global existence for the Dirichlet problem of
quasilinear, semilinear wave equations in three space dimensions were proved in
[5, 8] and [7], respectively. Also [12, 13, 14] give the global existence for Dirich-
let problem of nonlinear wave equations in exterior domains. The nonexistence of
global solutions for exterior problem to critical semilinear wave equations in high
dimensions was obtained in [9].

There are also some results on the almost existence to Neumann problem for wave
equations. The Neumann problem for the wave equation in wedge was considered
in [15]. [16] considered the Neumann exterior problem for wave equation in 2D and
studied the asymptotic behavior of the solutions for large times. Katayama et al
[10] proved the almost global existence of solutions to exterior problem for semilin-
ear wave equations with Neumann condition. Metcalfe et al [11] gave the almost
global existence for quasilinear Neumann wave equations on infinite homogeneous
waveguides.

To our acknowledge there are very few results on the almost global existence
or lifespan estimate of exterior Neumann problem for quasilinear wave equations
in 3D. In this paper, we study the almost global existence of solutions to the
exterior problem for quasilinear wave equations with Neumann condition by using
the estimates similar to Dirichlet problem in [5]. Compared with the Dirichlet
problem, u = 0 changes into ∂νu = 0 on ∂Ω. So the estimates on the boundary, we
decompose the estimated terms into the terms which contain ∂νu. The key steps
in this paper are the piontwise estimates and weighted L2 estimates. At last, we
proof the almost global existence to this problem and give a lower bound for the
lifespan of the solutions. To study this problem conveniently, we need some known
lemmas (see [5]).

Lemma 1.1. Suppose that u ∈ C5 solves the Cauchy problem

�u = F (s, x), (s, x) ∈ [0, t]× R3

u(0, x) = ∂tu(0, x) = 0.
(1.2)
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Then

(1 + t)|u(t, x)| ≤ C
∫ t

0

∫
R3

∑
|α|+j≤3,j≤1

|SjZαF (s, y)| 1
|y|

dy ds. (1.3)

Lemma 1.2. Let u ∈ C5 solve (1.2), and fix x ∈ R3 with |x| = r. Then

|x| |u(t, x)| ≤ 1
2

∫ t

0

∫ r+t−s

|r−(t−s)|
sup
|θ|=1

|F (s, ρθ)|ρdρds. (1.4)

Lemma 1.3. Suppose that u solves the Cauchy problem

�u = F,

u(0, x) = f, ∂tu(0, x) = g.
(1.5)

Then

(ln(2 + t))−1/2‖〈x〉−1/2u′‖L2(R3)

≤ C‖u′(0, x)‖L2(R3)ds+ C

∫ t

0

‖F (s, ·)‖L2(R3)ds,
(1.6)

‖u′‖L2([0,t]×{|x|<1} ≤ C‖u′(0, x)‖L2(R3)ds+ C

∫ t

0

‖F (s, ·)‖L2(R3)ds. (1.7)

Lemma 1.4. Suppose that h ∈ C∞(R3). Then for R > 1,

‖h‖L∞(R/2<|x|<R) ≤ CR−1
∑

|α|+|γ|≤2

‖Ωα∂γxh‖L2(R/4<|x|<2R).

2. Pointwise estimates outside of obstacles

In this section, we shall consider the exterior problem of Neumann wave equations

�u = F (t, x), (t, x) ∈ R+ × R3\K,
∂νu(t, x) = 0, x ∈ ∂K,
u(t, x) = 0, t ≤ 0.

(2.1)

Any of the following estimates for � extend to estimates for �c after applying
straightforward scaling argument. We will prove the following pointwise estimate.

Theorem 2.1. Suppose that u = u(t, x) ∈ C∞ is the solution of (2.1). Then for
each |α| = N > 1,

t|Zαu(t, x)| ≤ C
∫ t

0

∑
|γ|+j≤N+3, j≤1

‖Sj∂γF (s, ·)‖L2(R3\K)ds

+ C

∫ t

0

∫
R3\K

∑
|β|+j≤N+6 j≤1

|SjZβF (s, y)| 1
|y|

dy ds.

(2.2)

We assume, without loss of generality, that K ⊂ {x ∈ R3 : |x| < 1}. As a first
step, we prove the following lemma.
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Lemma 2.2. Suppose that u = u(t, x) ∈ C∞ is the solution of (2.1). Then for
each |α| = N > 1,

t|Zαu(t, x)| ≤ C
∫ t

0

∫
R3\K

∑
|γ|+j≤3,j≤1

|SjZα+γF (s, y)| 1
|y|

dy ds

+ C sup
|y|≤2,0≤s≤t

(1 + s)(|Zαu′(s, y)|+ |Zαu(s, y)|).
(2.3)

Proof. Inequality (2.3) obviously holds for |x| < 2. Let ρ ∈ C∞(R) be a cut function
satisfying

ρ(r) =

{
1, r ≥ 2,
0, r ≤ 1.

Then ω(t, x) = ρ(|x|)∂αu(t, x), solves the following problem in R3,

�ω = ρ∂αF +G,

ω(t, x) = 0, t ≤ 0,

where
G = −2∇ρ(|x|) · ∇∂αu− (∆ρ(|x|))u.

Split ω = ω1 + ω2, where ω1 and ω2 solve the following problems:

�ω1 = ρ∂αF,

ω1(t, x) = 0, t ≤ 0,

and

�ω2 = G,

ω2(t, x) = 0, t ≤ 0,

respectively. Applying Lemma 1.1, we conclude that

t|ω1(t, x)| ≤ C
∫ t

0

∫
R3\K

∑
|γ|+j≤3,j≤1

|SjZγ∂αF (s, y)| 1
|y|

dy ds.

By Lemma 1.2,

|ω2(t, x)| ≤ C 1
|x|

∫ t

0

∫ |x|+t−s
||x|−(t−s)|

sup
|θ|=1

|G(s, rθ)|r dr ds. (2.4)

For |x| ≤ 1 and |x| ≥ 2, G(t, x) = 0. Hence the right-hand side of (2.4) is nonzero
only when

−2 ≤ |x| − (t− s) ≤ 2,

namely,
(t− |x|)− 2 ≤ s ≤ (t− |x|) + 2.

We conclude that
|ω2(t, x)|

≤ C 1
|x|

1
1 + |t− |x||

sup
(t−|x|)−2≤s≤(t−|x|)+2,

|y|≤2

(1 + s)(|Zαu′(s, y)|+ |Zαu(s, y)|). (2.5)

This implies that (2.3) still holds for |x| ≥ 2. �
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Lemma 2.3. Suppose that u ∈ C∞ solves (2.1) and F (t, x) = 0 for |x| > 4. Then
there exists a constant c > 0 such that

‖u′(t, ·)‖L2(R3\K:|x|<4) ≤ C
∫ t

0

e−c(t−s)‖F (s, ·)‖L2(R3\K)ds. (2.6)

Consequently, for any fixed nonnegative integer M , we have∑
|α|+j≤M, j≤1

‖(t∂t)j∂αu′(t, ·)‖L2(R3\K:|x|<4)

≤ C
∑

|α|+j≤M−1, j≤1

‖(t∂t)j∂αF (t, ·)‖L2(R3\K)

+ C

∫ t

0

e−
c
2 (t−s)

∑
|α|+j≤M, j≤1

‖(s∂s)j∂αF (s, ·)‖L2(R3\K)ds,

(2.7)

∑
|α|+j≤M, j≤1

‖(t∂t)j∂αu′(t, ·)‖L2(R3\K:|x|<4)

≤ C
∑

|α|+j≤M−1, j≤1

‖Sj∂αf(t, ·)‖L2(R3\K)

+ C

∫ t

0

e−
c
2 (t−s)

∑
|α|+j≤M, j≤1

‖Sj∂αF (s, ·)‖L2(R3\K)ds.

(2.8)

Proof. First, we provide the exponential energy decay [17, Theorem III, p. 480]
and [18, (iii), p. 230]: Suppose that ω is the solution to the problem

�ω = 0,
∂νω = 0, x ∈ ∂K. (2.9)

Let
E(ω,D, t) =

1
2

∫
D

(
|∂tω|2 + |∇ω|2

)
dx.

Then there exist positive constants C, c, such that

E(ω,D, t) ≤ Ce−ctE(ω,D, 0).

Next, homogenizing (2.1), we have
�ω = 0,

∂νω
∣∣
∂K = 0,

ω|t=s = 0, ∂tω|t=s = F (s, x).
(2.10)

Suppose that ω solves problem (2.10), then u =
∫ t
0
ω(x, t, s)ds solves (2.1). Thus

we derive

‖u′‖2L2(R3\K:|x|<4) ≤
∫ t

0

‖ω′(x, t, s)‖2L2(R3\K:|x|<4)ds

≤ C
∫ t

0

E(ω, (R3\K : |x| < 4), t− s)ds

≤ C
∫ t

0

e−c(t−s)E(ω, (R3\K : |x| < 4), s)ds

≤ C
∫ t

0

e−c(t−s)‖F (s, ·)‖2L2(R3\K:|x|<4)ds,
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which implies

‖u′‖L2(R3\K:|x|<4) ≤ C
∫ t

0

e−c(t−s)‖F (s, ·)‖L2(R3\K)ds.

Therefore, estimate (2.6) holds.
Estimate (2.8) follows from (2.7). Using induction and elliptic regularity we can

prove the estimate (2.7). �

Proof of Theorem 2.1. By Lemma 2.2, we need only to proof that the last term
on the right-hand side of (2.3) can be dominated by the right-hand side of (2.2),
namely prove

t sup
|x|<2

|∂αu(t, x)| ≤ right-hand side of (2.3),

holds for each |α| = N . We have

|t∂αu(t, x)| ≤
∫ t

0

∑
j≤1

|(s∂s)j∂αu(s, x)|ds. (2.11)

First we discuss the case: F (s, y) ≡ 0 when |y| > 4.
By Sobolev Lemma, from (2.8), we obtain that for |α| = N ,

t sup
|x|<2

|∂αu(t, x)|

≤ C
∫ t

0

∑
|γ|+j≤N+2, j≤1

‖Sj∂γF (s, ·)‖L2(R3\K:|x|≤4)ds

+ C

∫ t

0

∫ s

0

e−
c
2 (s−τ)

∑
|γ|+j≤N+2, j≤1

‖Sj∂γF (τ, ·)‖L2(R3\K:|x|≤4)dτds.

(2.12)

Therefore,

t sup
|x|<2

|∂αu(t, x)| ≤ first term on the right-hand side of (2.3).

Now we deal with the second case: F (s, y) ≡ 0 when |y| < 3. Suppose that u0

solves the Cauchy problem

�u0 = F (t, x), (t, x) ∈ R+ × R3,

u0(t, x) = 0, t ≤ 0.
(2.13)

Let η ∈ C∞0 (R3) be a cut function satisfying

η(x) =

{
1, |x| < 2,
0, |x| ≥ 3.

If we set ũ = (η − 1)u0 + u, then ũ solves the problem

�ũ = G(t, x), (t, x) ∈ R+ × R3\K,
∂ν ũ

∣∣
∂K = 0,

ũ(t, x) = 0, t ≤ 0,

(2.14)

where
G = −2∇η · ∇u0 − (∆η)u0
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vanishes unless 2 ≤ |x| ≤ 4. Hence by the first case,
t sup
|x|<2

|∂αu(t, x)| = t sup
|x|<2

|∂αũ(t, x)|

≤ C
∫ t

0

∑
|γ|≤N+2, j≤1

‖Sj∂γG(s, ·)‖L2(R3\K)ds

≤ C
∫ t

0

∑
|γ|≤N+3, j≤1

‖Sj∂γu0(s, ·)‖L∞(R3\K:2≤|x|≤4)ds.

(2.15)

Set ω = Sj∂γu0 with j = 0, 1. By (1.4), we obtain

‖Sj∂γu0(s, ·)‖L∞(2≤|x|≤4)

≤ C
∫ s

0

∫
|s−τ−ρ|≤4

sup
|θ|=1

|Sj∂γF (τ, ρθ)|ρdρdτ

≤ C
∑
|µ|≤2

∫ s

0

∫
|s−τ−ρ|≤4

|Sj∂γΩµF (τ, ρθ)|ρdρdθdτ

= C
∑
|µ|≤2

∫ s

0

∫
|s−τ−|y||≤4

|Sj∂γΩµF (τ, y)|dydτ
|y|

.

(2.16)

Set Λs = {(τ, y) : 0 ≤ τ ≤ s, |s− τ −|y|| ≤ 4} satisfying Λs∩Λs′ = ∅ if |s−s′| > 20.
Therefore, by (2.15) and (2.16), we conclude that

t sup
|x|<2

|∂αu(t, x)| ≤ C
∑

γ≤N+3, |µ|≤2,j≤1

∫ t

0

∫
R3\K

|SjΩµ∂γF (τ, y)|dydτ
|y|

.

The proof is complete. �

3. Weighted L2
t,x estimates for D’Alembertian outside of star-shaped

obstacles

In this section, we prove the following theorem.

Theorem 3.1. Suppose that u = u(t, x) solves problem (2.1). Then if N is fixed,
we have

(ln(2 + t))−1/2
∑
|α|≤N

‖〈x〉−1/2∂αu′‖L2([0,t]×R3\K)

≤ C
∫ t

0

∑
|α|≤N

‖�∂αu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|≤N−1

‖�∂αu‖L2([0,t]×R3\K), ∀t ≥ 0.

(3.1)

Additionally,

(ln(2 + t))−1/2
∑

|α|+m≤N,m≤1

‖〈x〉−1/2Sm∂αu′‖L2([0,t]×R3\K)

≤ C
∫ t

0

∑
|α|+m≤N,m≤1

‖�Sm∂αu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+m≤N−1,m≤1

‖�Sm∂αu‖L2([0,t]×R3\K), ∀t ≥ 0,

(3.2)
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and
(ln(2 + t))−1/2

∑
|α|+m≤N,m≤1

‖〈x〉−1/2SmZαu′‖L2([0,t]×R3\K)

≤ C
∫ t

0

∑
|α|+m≤N,m≤1

‖�SmZαu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+m≤N−1,m≤1

‖�SmZαu‖L2([0,t]×R3\K), ∀t ≥ 0.

(3.3)

Proposition 3.2. Suppose that u solves problem (2.1). Then we have

‖u′‖L2([0,t]×R3\K:|x|<2) ≤ C
∫ t

0

‖�u(s, ·)‖L2(R3\K)ds, ∀t ≥ 0 (3.4)

and for any given positive integer N ,∑
|α≤N

‖∂αu′‖L2([0,t]×R3\K:|x|<2)

≤ C
∫ t

0

∑
|m≤N

‖�∂ms u(s, ·)‖L2(R3\K)ds+ C
∑

|α≤N−1

‖�∂αu‖L2([0,t]×R3\K),

∀t ≥ 0.

(3.5)

Proof. Using the elliptic regularity argument, we know that (3.5) is a consequence
of (3.4). To prove (3.4), we discuss the first case: F (s, y) ≡ 0 for |y| > 6.

By (2.6) and the Schwarz inequality, we have

‖u′(τ, ·)‖2L2(R3\K:|x|<2)

≤ C
∫ τ

0

e−c(τ−s)‖F (s, ·)‖L2(R3\K)ds

∫ τ

0

‖F (s, ·)‖L2(R3\K)ds,

for all τ ≥ 0. Integrating τ from 0 to t on the above inequality,∫ t

0

‖u′(τ, ·)‖2L2(R3\K:|x|<2)dτ

≤ C
∫ t

0

∫ τ

0

e−c(τ−s)‖F (s, ·)‖L2(R3\K)ds

∫ τ

0

‖F (s, ·)‖L2(R3\K)dsdτ

≤ C
∫ t

0

∫ τ

0

e−c(τ−s)‖F (s, ·)‖L2(R3\K)dsdτ

∫ t

0

‖F (s, ·)‖L2(R3\K)ds

= C

∫ t

0

∫ t

s

e−c(τ−s)‖F (s, ·)‖L2(R3\K)dτds

∫ t

0

‖F (s, ·)‖L2(R3\K)ds

≤C
(∫ t

0

‖F (s, ·)‖L2(R3\K)ds
)2

, ∀t ≥ 0

therefore, (3.4) holds.
Now we consider the second case: F (s, y) ≡ 0 for |y| < 4. By (3.4), we have

‖u′‖L2([0,t]×R3\K:|x|<2) ≤ C‖F‖L2([0,t]×R3\K:|x|<2), if F (s, y) ≡ 0, |y| > 4. (3.6)

Let η ∈ C∞(R3) be a cut function satisfying

η(x) =

{
1, |x| ≤ 2,
0, |x| ≥ 4.
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Suppose that u0 solves the Cauchy problem (2.13). Set ũ = (η − 1)u0 + u, then ũ
solves the following problem

�ũ = F̃ ,

∂ν ũ
∣∣
∂K = 0,

ũ(0, x) = 0, t ≤ 0,

where
F̃ = −2∇η · ∇u0 − (∆η)u0.

Note that ũ = u for |x| < 2, and F̃ (s, y) = 0 for |y| > 4. Then by (3.6) and (1.7),
we obtain

‖u′‖L2([0,t]×R3\K:|x|<2) ≤ C‖u′0‖L2([0,t]×R3\K:|x|<4) + C‖u0‖L2([0,t]×R3\K:|x|<4)

≤ C
∫ t

0

‖�u‖L2(R3\K)ds, ∀t ≥ 0.

�

Repeating the proof of Proposition 3.2 and using (2.8), we have the following
proposition.

Proposition 3.3. Suppose that u solves problem (2.1). Then∑
|α|+m≤N,m≤1

‖Sm∂αu′‖L2([0,t]×R3\K:|x|<2)

≤ C
∫ t

0

∑
|α|+m≤N,m≤1

‖�Sm∂mu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+m≤N−1,m≤1

‖�Sm∂αu‖L2([0,t]×R3\K), ∀t ≥ 0.

(3.7)

Additionally, ∑
|α|+|γ|+m≤N,m≤1

‖SmΩγ∂αu′‖L2([0,t]×R3\K:|x|<2)

≤ C
∫ t

0

∑
|α|+|γ|+m≤N,m≤1

‖�SmΩγ∂mu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+|γ|+m≤N−1,m≤1

‖�SmΩγ∂αu‖L2([0,t]×R3\K), ∀t ≥ 0.

(3.8)

Proof of Theorem 3.1. Let us first proof estimate (3.1). By Proposition 3.2 it suf-
fices to prove that

(ln(2 + t))−1/2
∑
|α|≤N

‖〈x〉−1/2∂αu′‖L2([0,t]×R3\K:|x|>2)

≤ C
∫ t

0

∑
|α|≤N

‖�∂αu(s, ·)‖L2(R3\K)ds+ C
∑

|α|≤N−1

‖�∂αu‖L2([0,t]×R3\K).
(3.9)

Let β ∈ C∞(R3) be a cut function satisfying

β(x) =

{
1, |x| ≥ 2,
0, |x| ≤ 1.
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Then ω = βu solves the Cauchy problem

�ω = β�u− 2∇β · ∇u− (∆β)u,

ω(t, x) = 0, t ≤ 0,

We split ω = ω1 +ω2, where �ω1 = β�u and �ω2 = −2∇β ·∇u− (∆β)u. By (1.6),
we have

(ln(2 + t))−1/2
∑
|α|≤N

‖〈x〉−1/2∂αω′1‖L2([0,t]×R3\K:|x|>2)

≤ C
∑
|α|≤N

∫ t

0

‖∂α(β�u)‖L2(R3\K)ds ≤ C
∑
|α|≤N

∫ t

0

‖�∂αu‖L2(R3\K)ds

To bound the left of (3.9) it suffices to proof

(ln(2 + t))−1/2
∑
|α|≤N

‖〈x〉−1/2∂αω′2‖L2([0,t]×R3\K:|x|>2)

≤ C
∫ t

0

∑
|α|≤N

‖�∂αu(s, ·)‖L2(R3\K)ds+ C
∑

|α|≤N−1

‖�∂αu‖L2([0,t]×R3\K).
(3.10)

Note that G = −2∇β · ∇u − (∆β)u = �ω2 vanishes unless 1 < |x| < 2. To use
this, let χ ∈ C∞0 (R) satisfying χ(s) = 0, |s| > 2, and

∑
j χ(s − j) = 1. Then we

split G =
∑
j Gj , where Gj(s, x) = χ(s− j)G(s, x), and let ω2,j solves ω2,j = Gj on

Minkowski space with zero initial data. By the sharp Huygens principle, we have
|∂αω2(t, x)|2 ≤ C

∑
j |∂αω2,j(t, x)|2. Therefore, by (1.6) it follows that(

(ln(2 + t))−1/2
∑
|α|≤N

‖〈x〉−1/2∂αω′2‖L2([0,t]×R3\K:|x|>2)

)2

≤
∑
|α|≤N

∑
j

(∫ t

0

‖∂αGj(s, ·)‖L2(R3)ds
)2

≤ C
∑
|α|≤N

‖∂αG‖2L2([0,t]×R3)

≤ C
∑
|α|≤N

‖∂αu′‖2L2([0,t]×{1<|x|<2}) + C
∑
|α|≤N

‖∂αu‖2L2([0,t]×{1<|x|<2})

≤ C
∑
|α|≤N

‖∂αu′‖2L2([0,t]×{|x|<2})

≤ C
(∫ t

0

∑
|α|≤N

‖�∂αu(s, ·)‖L2(R3\K)ds+ C
∑

|α|≤N−1

‖�∂αu‖L2([0,t]×R3\K)

)2

,

which completes the proof of (3.1). Estimates (3.2) and (3.3) follow by a similar
argument. �

4. L2
x estimates outside of obstacles

Suppose that v is a sufficiently smooth function such that

‖∇v‖L∞([0,T ]×R3\K) ≤ δ, (4.1)

‖∂∇v‖L1
tL

∞
x ([0,T ]×R3\K) ≤ C0, (4.2)
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where δ > 0 is a sufficiently small constant, C0 is a positive constant. Let �γ

denote a second order operator given by

�γ = �c −
∑
l,m

Clm(∇v)∂l∂m. (4.3)

Consider the Neumann wave equations

�γω = G, (t, x) ∈ R+ × R3\K,
∂νω

∣∣
∂K = 0,

ω(t, x) = 0, t ≤ 0.

(4.4)

Let

E0 = |∂0ω|2 + c2I |∇ω|2 +
3∑

l,m=1

(∂lω)TClm(∇v)∂mω,

Ej = −2c2I(∂0ω)T (∂jω)− 2
3∑
k=1

(∂0ω)TCjk(∇v)∂kω, j = 1, 2, 3,

e =
3∑

l,m=1

(
(∂lω)T∂0C

lm(∇v)∂mω − 2(∂lω)T∂lClm(∇v)∂mω
)
.

Noting the symmetry condition of Clm(∇v), we have

∂0E0 +
3∑
j=1

∂jEj = 2(∂0ω)T�γω + e. (4.5)

By (4.1), there exist positive constants λ, µ depending only on c1, c2, δ, such that

λ|ω′|2 ≤ E0 ≤ µ|ω′|2. (4.6)

Integrating (4.6) over [0, t]× R3\K, we obtain∫
R3\K

E0(t, x)dx−
∫

R3\K
E0(0, x)dx−

∫
[0,t]×∂K

3∑
j=1

Ejnjdσ ds

= 2
∫

[0,t]×R3\K
(∂0ω)T�γω ds dx+

∫
[0,t]×R3\K

e ds dx.

(4.7)

Noticing the Neumann condition ∂νω =
∑3
j=1 ∂jωnj = 0 when ω ∈ ∂K, we have∑3

j=1Ejnj = 0 on ∂K, and E0(0, x) = 0. Therefore,∫
R3\K

E0(t, x)dx = 2
∫

[0,t]×R3K
(∂0ω)T�γω ds dx+

∫
[0,t]×R3K

e ds dx. (4.8)

Using (4.6) and (4.8), we have

‖ω′‖2L2(R3\K) ≤C
∫ t

0

‖ω′‖L2(R3\K)‖G‖L2(R3\K)ds

+ C

∫ t

0

∑
l,m

‖∂Clm(∇v)‖L∞x (R3\K)‖ω′‖2L2(R3\K)ds.
(4.9)
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From assumption (4.2) and applying Gronwall inequality, we obtain

‖ω′‖2L2(R3\K) ≤ C
∫ t

0

‖ω′‖L2(R3\K)‖G‖L2(R3\K)ds

≤ C
(

sup
0≤s≤t

‖ω′‖L2(R3\K)

)∫ t

0

‖G‖L2(R3\K)ds.

Therefore,

‖ω′‖L2(R3\K) ≤ C
∫ t

0

‖G‖L2(R3\K)ds, 0 ≤ t ≤ T. (4.10)

In general, we have the following theorem.

Theorem 4.1. Assume that (4.1) and (4.2) hold, and ω = ω(t, x) ∈ C∞ solves
problem (4.4). Then for any nonnegative integer N , there is a positive constant C,
such that ∑

|α|≤N

‖∂αω′(t, ·)‖L2(R3\K)

≤ C
∫ t

0

∑
|α|≤N

‖�γ∂
m
s ω(s, ·)‖L2(R3\K)ds

+ C
∑

|α|≤N−1

‖�c∂
αω(t, ·)‖L2(R3\K), 0 ≤ t ≤ T.

(4.11)

The second term on the right-hand side of (4.11) vanishes when N = 0.

Proof. Proof by induction. When N = 0, (4.10) shows that (4.11) holds.
We suppose that (4.11) is valid if N is replaced by N−1, then we proof it is valid

for N . We first notice that ∂tω satisfies (4.4), then by the assumption of induction,∑
|α|≤N−1

‖∂α(∂tω)′(t, ·)‖L2(R3\K) ≤ right-hand side of (4.11).

Hence it suffices to show that, for N ≥ 1∑
|α|≤N

‖∂αx∇xω(t, ·)‖L2(R3\K) ≤ the right side of (4.11).

However,∑
|α|≤N−1

‖∆∂αxω(t, ·)‖L2(R3\K)

≤ C
∑

|α|≤N−1

‖∂αx ∂2
t ω(t, ·)‖L2(R3\K) + C

∑
|α|≤N−1

‖�c∂
α
xω(t, ·)‖L2(R3\K),

(4.12)

where C depends only on the wave speeds cI .
The first term on the right-hand side of (4.12) is bounded by the right-hand

side of (4.11), thus the right-hand side of (4.12) is similarly bounded. By elliptic
regularity, so is

∑
|α|=N ‖∂αx∇xω(t, ·)‖L2(R3\K), which completes the proof. �
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5. L2
x estimates involving operators SjZα outside of obstacles

We suppose that ω solves problem (4.4). Let P = P (t, x,D) be differential
operator and ∂νPω not necessarily vanishes on ∂K. We will give some rough L2

estimates for Pω. In this section, we assume that v satisfies (4.1) and (4.2).

Proposition 5.1. Suppose that Pω(0, ·) = ∂tPω(0, ·) = 0 and there exist an integer
M and a constant C0 such that

|(Pω)′(t, x)| ≤ C0t
∑

|α|≤M−1

|∂t∂αω′(t, x)|+ C0

∑
|α|≤M

|∂αω′(t, x)|, x ∈ ∂K. (5.1)

Then,

‖(Pω)′(t, ·)‖L2(R3\K) ≤ C
∫ t

0

‖�γPω(s, ·)‖L2(R3\K)ds

+ C

∫ t

0

∑
|α|+j≤M+1, j≤1

‖�cS
j∂αω(s, ·)‖L2(R3\K)ds

+
∑

|α|+j≤M, j≤1

‖�cS
j∂αω(s, ·)‖L2([0,t]×R3\K).

(5.2)

Proof. We will use the analogue of (4.7) where ω is replaced by Pω. Then we
obtain ∫

R3\K
E0(t, x)dx−

∫
R3\K

E0(0, x)dx−
∫

[0,t]×∂K

3∑
j=1

Ejnjdσds

= 2
∫

[0,t]×R3\K
(∂0Pω)T�γPω ds dx+

∫
[0,t]×R3\K

e ds dx,

(5.3)

where

E0 = |∂0Pω|2 + c2I |∇Pω|2 +
3∑

l,m=1

(∂lPω)TClm(∇v)∂mPω,

Ej = −2c2I(∂0Pω)T (∂jPω)− 2
3∑
k=1

(∂0Pω)TCjk(∇v)∂kPω, j = 1, 2, 3,

e =
3∑

l,m=1

(
(∂lPω)T∂0C

lm(∇v)∂mPω − 2(∂lPω)T∂lClm(∇v)∂mPω
)
.

It is obvious that E0(0, x) = 0. Use (4.1) and (4.2) and apply Gronwall’s inequality,
we obtain that if δ > 0 is small enough, then

‖(Pω)′(t, ·)‖L2(R3\K)

≤ C
∫ t

0

‖�γPω(s, ·)‖L2(R3\K)ds

+ C
(∫

[0,t]×∂K
(|∂tPω(s, x)|2 + |∇xPω(s, x)|2)dσ

)1/2

.

(5.4)
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Recall that K ⊂ {|x| < 1}. By (5.1) and trace inequality, we have∫
[0,t]×∂K

(|∂tPω(s, x)|2 + |∇xPω(s, x)|2)dσ

≤ C
∫

[0,t]×∂K

∑
|α|+j≤M, j≤1

|Sj∂αω′|2dσ

≤ C
∑

|α|+j≤M+1, j≤1

‖Sj∂αω′‖2L2([0,t]×∂K:|x|<2), ∀t ≥ 0.

(5.5)

Therefore, by (5.4), (5.5) and (3.7), we obtain

‖(Pω)′(t, ·)‖L2(R3\K)

≤ C
∫ t

0

‖�γPω(s, ·)‖L2(R3\K)ds+ C
∑

|α|+j≤M+1, j≤1

‖Sj∂αω′‖L2([0,t]×∂K:|x|<2)

≤ C
∫ t

0

‖�γPω(s, ·)‖L2(R3\K)ds+ C

∫ t

0

∑
|α|+j≤M+1, j≤1

‖�cS
j∂αω(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+j≤M, j≤1

‖�cS
j∂αω‖L2([0,t]×R3\K), ∀t ≥ 0.

�

Obviously, P = SjZα(j ≤ 1) satisfies (5.1), then we have the following theorem.

Theorem 5.2. Suppose that ω = ω(t, x) ∈ C∞ solves (4.4). If M = 1, 2, . . ., we
have ∑

|α|+j≤M, j≤1

‖(SjZαω)′(t, ·)‖L2(R3\K)

≤ C
∫ t

0

∑
|α|+j≤M, j≤1

‖�γS
jZαω(s, ·)‖L2(R3\K)ds

+ C

∫ t

0

∑
|α|+j≤M+1, j≤1

‖�cS
j∂αω(s, ·)‖L2(R3\K)ds

+
∑

|α|+j≤M, j≤1

‖�cS
j∂αω(s, ·)‖L2([0,t]×R3\K).

(5.6)

6. L2
x estimates involving Sm∂α outside of star-shaped obstacles

In this section, we shall assume furthermore that

‖∇v‖L∞(R3\K) ≤
δ

1 + t
, (6.1)

with δ small enough. Assume that ω solves problem (4.4). Using that K is a
star-shaped obstacle, we will obtain a better estimate for Sω.
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Proposition 6.1. Suppose that (6.1) holds and ω = ω(t, x) ∈ C∞ solves problem
(4.4), then

‖(Sω)′(t, ·)‖L2(R3\K) ≤ C
∫ t

0

‖�γSω(s, ·)‖L2(R3\K)ds

+ C

∫ t

0

∑
|α|≤2

‖�c∂
αω(s, ·)‖L2(R3\K)ds

+ C
∑
|α|≤1

‖�c∂
αω‖L2([0,t]×R3\K).

(6.2)

Proof. Using the analogue of (4.7) where ω is replaced by Sω, we have∫
R3\K

E0(t, x)dx−
∫

R3\K
E0(0, x)dx−

∫
[0,t]×∂K

3∑
j=1

Ejnjdσds

= 2
∫

[0,t]×R3\K
(∂0Sω)T�γSω ds dx+

∫
[0,t]×R3\K

e ds dx,

(6.3)

where

E0 = |∂0Sω|2 + c2I |∇Sω|2 +
3∑

l,m=1

(∂lSω)TClm(∇v)∂mSω,

Ej = −2c2I(∂0Sω)T (∂jSω)− 2
3∑
k=1

(∂0Sω)TCjk(∇v)∂kSω, j = 1, 2, 3,

e =
3∑

l,m=1

(
(∂lSω)T∂0C

lm(∇v)∂mSω − 2(∂lSω)T∂lClm(∇v)∂mSω
)
.

First we consider the right most term on the left-hand side of (6.3). When (s, x) ∈
R+ × ∂K, the Neumann condition ∂νω = 〈~n,∇x〉ω = 0 gives us

∂sSω = s∂2
sω + ∂sω + ∂s〈x,∇x〉ω = s∂2

sω + ∂sω + 〈x, ~n〉∂s∂νω = s∂2
sω + ∂sω.

Similarly,
3∑
j=1

nj∂jSω =
3∑
j=1

snj∂j∂sω +
3∑
j=1

nj∂j〈x,∇x〉ω = s∂ν∂sω + ∂ν〈x,∇x〉ω = 0

on R+ × ∂K. Noticing the assumption (6.1), we have

−
3∑
j=1

Ejnj = 2(s∂2
sω + ∂sω)T

3∑
j,k=1

Cjk(∇v)(s∂k∂sω + ∂k(〈x,∇〉ω))nj

≤ C
∑

1≤|α|≤2

|∂αω|2.

Hence, identity (6.3) yields∫
R3\K

E0(t, x)dx ≤ 2
∫

[0,t]×R3K
(∂0Sω)T�γSω ds dx

+
∫

[0,t]×R3K
e ds dx+ C

∫
[0,t]×∂K

∑
1≤|α|≤2

|∂αω|2dσ.
(6.4)
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Applying Gronwall’s inequality, we obtain

‖(Sω)′(t, ·)‖R3\K

≤
∫ t

0

‖�γSω(t, ·)‖R3\Kds+ C
(∫

[0,t]×∂K

∑
1≤|α|≤2

|∂αω|2dσ
)1/2

.
(6.5)

By the trace inequality and (3.5), we obtain

(∫
[0,t]×∂K

∑
1≤|α|≤2

|∂αω|2dσ
)1/2

≤
∑
|α|≤2

‖∂αω′(s, ·)‖L2([0,t]×R3\K:|x|<2)

≤ C
∫ t

0

∑
|α|≤2

‖�c∂
αω(s, ·)‖L2(R3\K)ds+ C

∑
|α|≤1

‖�c∂
αω‖L2([0,t]×R3\K).

(6.6)

Inequalities (6.5) and (6.6) complete the proof of (6.2). �

Applying Proposition 6.1 and repeating the procedure of Theorem 4.1, we have
the following theorem.

Theorem 6.2. Suppose that (6.1) holds and ω = ω(t, x) ∈ C∞ solves problem
(4.4). Then for any nonnegative integer N ,

∑
|α|+m≤N,m≤1

‖Sm∂αω′(t, ·)‖L2(R3\K)

≤ C
∫ t

0

∑
|α|+m≤N,m≤1

‖�γS
m∂αω(s, ·)‖L2(R3\K)ds

+
∑

|α|+m≤N−1,m≤1

‖�cS
m∂αω(s, ·)‖L2(R3\K)

+ C

∫ t

0

∑
|α|≤N+1

‖�c∂
αω(s, ·)‖L2(R3\K)ds

+ C
∑
|α|≤N

‖�c∂
αω‖L2([0,t]×R3\K), ∀t ≥ 0 .

(6.7)

7. Main L2 estimates outside of star-shaped obstacles

We assume that v satisfies (4.2) and (6.1), then we have the following result.



EJDE-2018/312 ALMOST GLOBAL EXISTENCE 17

Proposition 7.1. Suppose that ω = ω(t, x) ∈ C∞ solves problem (4.4). Then for
any fixed nonnegative integer N , we have∑

|α|≤N+4

‖∂αω′(t, ·)‖L2(R3\K) +
∑

|α|+m≤N+2,m≤1

‖Sm∂αω′(t, ·)‖L2(R3\K)

+
∑

|α|+m≤N,m≤1

‖SmZαω′(t, ·)‖L2(R3\K)

≤ C
∫ t

0

( ∑
|α|≤N+4

‖�γ∂
αω(s, ·)‖L2(R3\K)

+
∑

|α|+m≤N+2,m≤1

‖�γS
m∂αω(s, ·)‖L2(R3\K)

+
∑

|α|+m≤N,m≤1

‖�γS
mZαω(s, ·)‖L2(R3\K)

)
ds

+ C
∑

|α|≤N+3

‖�γ∂
αω(t, ·)‖L2(R3\K)

+ C
∑

|α|+m≤N+1,m≤1

‖�γS
m∂αω(t, ·)‖L2(R3\K)

+ C
∑

|α|≤N+2

‖�c∂
αω‖L2([0,t]×R3\K)

+ C
∑

|α|+m≤N,m≤1

‖�cS
m∂αω‖L2([0,t]×R3\K).

(7.1)

Proof. We denote the left side of (7.1) by I + II + III, and the right-hand side
side of (7.1) by RHS. Noticing that �c = �γ +

∑3
l,m=1 C

lm(∇v)∂l∂m, then by
Theorem 4.1, we have

I ≤ RHS + C

3∑
l,m=1

∑
|α|≤N+3

‖Clm(∇v)∂l∂m∂αω(t, ·)‖L2(R3\K). (7.2)

Similarly, by Theorem 6.2, we obtain

II ≤ RHS + C

∫ t

0

3∑
l,m=1

∑
|α|≤N+3

‖Clm(∇v)∂l∂m∂αω(s, ·)‖L2(R3\K)ds

+ C

3∑
j,k=1

∑
|α|+m≤N+1,m≤1

‖Cjk(∇v)∂j∂kSm∂αω(t, ·)‖L2(R3\K).

(7.3)

Similarly, by Theorem 5.2, we obtain

III ≤ RHS + C

∫ t

0

3∑
j,k=1

∑
|α|+m≤N+1,m≤1

‖Cjk(∇v)∂j∂kSm∂αω(s, ·)‖L2(R3\K)ds.

Applying assumption (6.1), the last term on the right-hand side of (7.2) is domi-
nated by

C
(

sup
x∈R3, l,m

|Clm(∇v)|
) ∑
|α|≤N+4

‖∂αω′(t, ·)‖L2(R3\K) ≤ CδI.
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It can be counteracted by the left-hand side of (7.2), if δ is small enough. Similarly,
the last term on the right-hand side of (7.3) can be counteracted by the left side of
(7.3). Hence, we have

I + II + III

≤ RHS + C

∫ t

0

(
sup

x∈R3, l,m

|Clm(∇v)|
) ∑
|α|≤N+4

‖∂αω′(t, ·)‖L2(R3\K)ds

+ C

∫ t

0

(
sup

x∈R3, l,m

|Clm(∇v)|
) ∑
|α|+m≤N+2,m≤1

‖Sm∂αω′(t, ·)‖L2(R3\K)ds

≤ RHS + C

∫ t

0

(
sup

x∈R3, l,m

|Clm(∇v)|
)

(I + II)ds.

Applying Gronwall’s inequality and assumption (6.1), we conclude that I + II +
III ≤ RHS. �

Using Theorem 3.1 and repeating above proof yields the following theorem.

Theorem 7.2. Suppose that ω = ω(t, x) ∈ C∞ solves problem (4.4). Then for any
fixed nonnegative integer N ,∑

|α|≤N+4

‖∂αω′(t, ·)‖L2(R3\K) +
∑

|α|+m≤N+2,m≤1

‖Sm∂αω′(t, ·)‖L2(R3\K)

+
∑

|α|+m≤N,m≤1

‖SmZαω′(t, ·)‖L2(R3\K)

+ (ln(2 + t))−1/2
( ∑
|α|≤N+3

‖〈x〉−1/2∂αω′‖L2([0,t]×R3\K)

+
∑

|α|+m≤N+1,m≤1

‖〈x〉−1/2Sm∂αω′‖L2([0,t]×R3\K)

+
∑

|α|+m≤N−1,m≤1

‖〈x〉−1/2SmZαω′‖L2([0,t]×R3\K)

)
≤ C

∫ t

0

( ∑
|α|≤N+4

‖�γ∂
αω(s, ·)‖L2(R3\K)

+
∑

|α|+m≤N+2,m≤1

‖�γS
m∂αω(s, ·)‖L2(R3\K)

+
∑

|α|+m≤N,m≤1

‖�γS
mZαω(s, ·)‖L2(R3\K)

)
ds

+ C
∑

|α|≤N+3

‖�γ∂
αω(t, ·)‖L2(R3\K)

+ C
∑

|α|+m≤N+1,m≤1

‖�γS
m∂αω(t, ·)‖L2(R3\K)

+ C
∑

|α|≤N+2

‖�c∂
αω‖L2([0,t]×R3\K)
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+ C
∑

|α|+m≤N,m≤1

‖�cS
m∂αω(s, ·)‖L2([0,t]×R3\K)

+ C
∑

|α|+m≤N−2,m≤1

‖�cS
mZαω(s, ·)‖L2([0,t]×R3\K). (7.4)

8. Almost global existence for quasilinear wave equations outside
of star-sharped obstacles

In this section, we shall use above estimates to give the main result of this article,
namely the following theorem.

Theorem 8.1. Suppose that f, g ∈ C∞(R3\K) satisfies the compatibility conditions
of infinite order. Then there exist constants κ, ε0 > 0, and a positive integer N ,
such that for all ε ≤ ε0, if∑

|α|≤N

‖〈x〉|α|∂αx f‖L2(R3\K) +
∑

|α|≤N−1

‖〈x〉|α|+1∂αx g‖L2(R3\K) ≤ ε, (8.1)

then (1.1) has a unique solution u ∈ C∞([0, Tε]× R3\K), with

Tε = exp(
κ

ε
). (8.2)

Proof. Suppose that the integer N > 14 and we will take N = 14 in the following
proof. By local existence we know that if ε is small enough, problem (1.1) has a
local solution u in 0 < t < 1 satisfying the estimate

sup
0≤t≤1

( ∑
|α|≤14

‖∂αu′(t, ·)‖L2(R3\K) +
∑

|α|+m≤12,m≤1

‖Sm∂αu′(t, ·)‖L2(R3\K)

+
∑

|α|+m≤10,m≤1

‖SmZαu′(t, ·)‖L2(R3\K)

)
+
∑
|α|≤13

‖〈x〉−1/2∂αu′(t, ·)‖L2([0,1]×R3\K)

+
∑

|α|+m≤11,m≤1

‖〈x〉−1/2Sm∂αu′(t, ·)‖L2([0,1]×R3\K)

+
∑

|α|+m≤9,m≤1

‖〈x〉−1/2SmZαu′(t, ·)‖L2([0,1]×R3\K)

≤ Cε.

(8.3)

Let η ∈ C∞(R) be a cut function satisfying

η(t) =

{
1, t ≤ 1

2 ,

0, t ≥ 1.

Set u0 = ηu, ω = u − u0 = (1 − η)u, where u is the local solution. Since ω = 0
for t ≤ 1

2 , we shall prove the almost global existence of ω by iteration instead of u.
Also,

�cu0 = ηF (∇u,∇2u) + [�c, η]u.
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Thus u solves problem (1.1) for 0 < t < Tε if and only if ω solves

�cω = (1− η)F (∇u0 + ω),∇2(u0 + ω)− [�c, η](u0 + ω),

∂νω
∣∣
∂K = 0,

ω(t, x) = 0, t ≤ 0,

(8.4)

for 0 < t < Tε.
Set ω0 = 0, and define ωk recursively for k = 1, 2, . . . by requiring that

�cωk = (1− η)F (∇u0 + ωk−1),∇2(u0 + ωk)− [�c, η](u0 + ωk),

∂νωk
∣∣
∂K = 0,

ωk(t, x) = 0, t ≤ 0.

(8.5)

Let

Mk(T )

= sup
0≤t≤T

( ∑
|α|≤14

‖∂αω′k(t, ·)‖L2(R3\K) +
∑

|α|+m≤12,m≤1

‖Sm∂αω′k(t, ·)‖L2(R3\K)

+
∑

|α|+m≤10,m≤1

‖SmZαω′k(t, ·)‖L2(R3\K) + (1 + t)
∑
|α|≤2

‖Zαω′k(t, ·)‖L∞(R3\K)

)
+
(

ln(2 + T )
)− 1

2
( ∑
|α|≤13

‖〈x〉− 1
2 ∂αω′k‖L2([0,T ]×R3\K)

+
∑

|α|+m≤11,m≤1

‖〈x〉− 1
2Sm∂αω′k‖L2([0,T ]×R3\K)

+
∑

|α|+m≤9,m≤1

‖〈x〉− 1
2SmZαω′k‖L2([0,T ]×R3\K)

)
= A1 +A2 +A3 +A4 +A5 +A6 +A7.

Now we prove that there exists a constant C1, such that

Mk(Tε) ≤ C1ε, k = 0, 1, 2, . . . (8.6)

if ε > 0 and constant κ in Tε = exp
κ
ε are sufficiently small. It is obviously that

M0(Tε) ≤ C1ε. Providing Mk−1(Tε) ≤ C1ε, we shall proof Mk(Tε) ≤ C1ε. To do
this, we first prove

Mk(Tε) ≤ Cε+ CC1κ
(
Mk−1(Tε) +Mk(Tε)

)
. (8.7)

The bound (8.6) follows from (8.7). By Theorem 2.1 and (8.3), we know that A4

can be controlled by the right-hand side of (8.7). The other terms of Mk(Tε) can
be controlled by the right-hand side of (7.4), where N = 10, ω = ωk. Denote the
right-hand side of (7.4) by

B1 +B2 +B3 +B4 +B5 +B6 +B7 +B8.

B1 +B2 +B3 can be controlled by the right-hand side of (8.7) using the argument
in [5]. It is easy to prove that B4 +B5 is estimated by the right-hand side of (8.7).

Now we deal with B6. For t > 1, we have∑
|α|≤12

|S∂αωk| ≤ C
∑

|α|≤13,|β|≤6

(
|∂αω′k||∂βω′k−1|+ |∂αω′k−1||∂βω′k|

)
,
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therefore, ∑
|α|≤12

‖S∂αωk‖L2([1,Tε]×R3\K)

≤ C
∑

|α|≤13,|β|≤6

(
‖∂αω′k∂βω′k−1‖L2([1,Tε]×R3\K)

+ ‖∂αω′k−1∂
βω′k‖L2([1,Tε]×R3\K)

)
.

(8.8)

Consider the first term on the right-hand side of (8.8). Applying Lemma 1.4, we
have ∑

|α|≤13,|β|≤6

‖∂αω′k∂βω′k−1‖L2([1,Tε]×R3\K)

≤ C
∑
|β|≤8

‖〈x〉−1zβω′k−1‖L2([1,Tε]×R3\K) sup
1<t<Tε

∑
|α|≤13

‖∂αω′k‖L2(R3\K)

≤ CC1ε ln(Tε)1/2Mk(Tε)

≤ CC1κMk(Tε).

In a similar way, we can prove the second term on right-hand side of (8.8) can be
controlled by the right-hand side of (8.7). For t < 1, noticing the estimate of local
solution and the assumption of induction, we can get that B6 is bounded by the
right-hand side of (8.7). Similarly, we obtain that B7 +B8 is also estimated by the
right-hand side of (8.7). Hence, we complete the proof of (8.7).

Next, using the energy inequality, we can show that {ωk(t, x)} converges in the
energy norm. Suppose that its limit is ω(t, x), then u = u0 +ω solves problem (1.1).
If (f, g) ∈ C∞(R3\K) satisfying the compatibility conditions to infinite order, then
u ∈ C∞([0, Tε)× R3\K). �
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