
 

CLUSTER ANALYSIS OF HEALTH DATA INVOLVING GENERAL 

DISEASE CLUSTER SHAPES AND MULTIPLE VARIABLES 

 

 

DISSERTATION 

Presented to the Graduate Council of  
Texas State University-San Marcos 

in Partial Fulfillment 
of the Requirements 

 

 

 

for the Degree 

 

Doctor of PHILOSOPHY 

 

by   

Zhijun Yao, M.S. 

 

San Marcos, Texas 

May 2011 

 

 



 

CLUSTER ANALYSIS OF HEALTH DATA INVOLVING GENERAL DISEASE 

CLUSTER SHAPES AND MULTIPLE VARIABLES 

 

 

 

Committee Members Approved: 

 

 

F. Benjamin Zhan, Chair 
 
 
 
Yongmei Lu  
 
 
 
Nate Currit  
 
 
 
Ram Shanmugam 
 

 

 

 

Approved:  
 
 
 

 J. Michael Willoughby 
Dean of the Graduate College 



 

 

 

 

 

 

 

 

COPYRIGHT  

by  

Zhijun Yao 

2011 

 

 

 

 

 

 

 

 

 

 

 



 

 

FAIR USE AND AUTHOR’S PERMISSION STATEMENT 

Fair Use 

This work is protected by the Copyright Laws of the United States (Public Law 94-553, 

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations 

from this material are allowed with proper acknowledgment. Use of this material for 

financial gain without the author’s express written permission is not allowed. 

 

Duplication Permission 

As the copyright holder of this work I, Zhijun Yao, authorize duplication of this work, in 

whole or in part, for educational or scholarly purposes only. 

 

 

 

 

 

 

 

 

 

 



 

v 

ACKNOWLEDGEMENTS 
 My foremost thanks go to my dissertation advisor, Dr. F. Benjamin Zhan. This 

dissertation could not have been possible without his excellent guidance, support and 

patience during my graduate study. He inspired and advised me by questioning my 

assumptions, discussing my hypothesis, improving my methodology, improving and 

polishing my dissertation. Without his excellent guidance and constant support and 

encouragement, this dissertation could not have been finished. I also would like to 

express my sincere gratitude and appreciation to my outstanding committee members, Dr. 

Yongmei Lu, Dr. Nate Currit, and Dr. Ram Shanmugam for their thoughtful advice and 

mentoring.  

 I would like to give my special thanks to the Texas State University-San Marcos 

faculty and staff. Very special thanks to Dr. Lawrence Estaville for being an encouraging 

supporter and showing selfless concern for students during my graduate study.  

 I would like to give my deep gratitude to my family and friends who were always 

supportive for me. Especially, I thank my parents for their endless love and 

encouragement throughout my schooling. I would like to thank my wife, Junmei Tang, 

and my sons, Alex and Brad, who give me such support during my PhD studies. Thank 

all the friends I have at Texas State. Thank everyone who helped me in this dissertation. 

 This Manuscript was submitted on December 12, 2010. 

 

 



 

vi 

TABLE OF CONTENTS 

Page  

ACKNOWLEDGEMENTS................................................................................................ v 

LIST OF TABLES.............................................................................................................. x 

LIST OF FIGURES ........................................................................................................... xi 

ABSTRACT..................................................................................................................... xiii 

INTRODUCTION .............................................................................................................. 0 

1.1. Background.............................................................................................................. 0 

1.2. Study Objectives and Research Questions............................................................... 4 

1.3. Contributions and Significance................................................................................ 6 

1.4. Structure of the Dissertation .................................................................................... 7 

LITERATURE REVIEW ................................................................................................... 9 

2.1. Disease Cluster and Cluster Analysis ...................................................................... 9 

2.2. Cluster Detection in Public Health and Epidemiology.......................................... 10 

2.2.1. Definition of a Disease Cluster ....................................................................... 10 

2.2.2. Early Work in Cluster Exploration of Public Health Data ............................. 12 

Disease Mapping................................................................................................... 12 

Early Practices in Disease Clustering ................................................................... 15 

2.3. Spatial Cluster Analyses and Major Statistical Methods....................................... 15 

2.3.1. Traditional Spatial Statistics ........................................................................... 15 



 

vii 

2.3.2. Categories of Statistical Methods for Cluster Analyses and  
Related Problems ................................................................................................. 17 

 
2.3.3. Global Statistics .............................................................................................. 19 

2.3.4. Focused Statistics............................................................................................ 21 

2.3.5. Local Statistics ................................................................................................ 23 

2.4. Automatic Cluster Detection ................................................................................. 24 

2.4.1. The Geographical Analysis Machine (GAM) and its Development............... 24 

2.4.2. A Detailed Review on Spatial Scan Statistic and its Derivations ................... 31 

Derivations Based on Scan Windows with Fixed Shapes .................................... 33 

Derivations Based on Scan Windows with Arbitrary Shapes............................... 36 

THEORETICAL AND STATISTICAL FRAMEWORK OF SPATIAL SCAN 

STATISTIC....................................................................................................................... 39 

3.1 Choosing a Distribution Model of Data.................................................................. 39 

3.2. Identifying the Most Significant Cluster ............................................................... 42 

3.3. Testing Statistical Significance.............................................................................. 43 

DATA PREPARATION AND PROCESSING................................................................ 45 

4.1. Data to Support Detection of General Disease Cluster Shapes ............................. 45 

4.1.1. Data Preparation.............................................................................................. 45 

4.1.2. Data Processing............................................................................................... 46 

4.2. Data Preparation and Processing to Support Cluster Analysis Involving Multiple 

Variables ....................................................................................................................... 49 

 

 



 

viii 

ARBITRARY SHAPE DISEASE CLUSTER DETECTION USING A NEIGHBOR-

EXPANDING APPROACH............................................................................................. 52 

5.1. Introduction............................................................................................................ 52 

5.2. A New Neighbor-expanding Approach ................................................................. 55 

5.2.1. Maximum-likelihood-first Algorithm............................................................. 57 

5.2.2. Non-greedy Growth Algorithm....................................................................... 61 

5.3. Results and Discussion .......................................................................................... 64 

5.3.1. Performance Test Using Simulated Data and Benchmark Data ..................... 64 

5.3.2. Detection of Cluster with Arbitrary Shapes.................................................... 70 

5.3.3. Spatial Distribution of Cluster and Socioeconomic Factors ........................... 75 

5.4. Conclusion ............................................................................................................. 79 

VISUAL EXPLORATION OF MULTIVARIATE ENVIRONMENTAL HEALTH 

DATA: DETECTION OF LINE CLUSTERS.................................................................. 82 

6.1. Introduction............................................................................................................ 82 

6.2. Methodology.......................................................................................................... 84 

6.2.1. Parallel Coordinate Plots................................................................................. 84 

6.2.2. Representing Line Cluster Characteristics Using the Spatial Scan Statistic... 86 

6.3. Results and Discussion .......................................................................................... 90 

6.3.1. An Initial Bi-variable Analysis ....................................................................... 90 

6.3.2. Parallel Coordinate Plots................................................................................. 92 

6.4. Conclusion ........................................................................................................... 100 

SUMMARY AND FUTURE WORK ............................................................................ 102 

7.1. Research Summary .............................................................................................. 102 



 

ix 

7.2. Limitations ........................................................................................................... 103 

7.3. Future Work......................................................................................................... 105 

REFERENCES ............................................................................................................... 107 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

x 

LIST OF TABLES 
Table 1. The recorded diseases and distances of five closest environmental hazards...... 51 

Table 2. An initial comparison of MLF and NGG............................................................ 64 

Table 3. The comparison between the MLF method, NNG method, SA method, Tango’s 
FlexScan method and Kulldorff’s SaTScan method using the synthesized data...... 67 

Table 4. A comparison of the MLF method, NNG method, Duczmal’s SA method, 
Tango’s FlexScan method, and Kulldorff’s SaTScan method using the benchmark 
data............................................................................................................................ 68 

Table 5. Results of cluster analysis of the Murine Typhus case in south Texas from 1996 
to 2000 at the census block group level .................................................................... 73 

Table 6. Relation between the number of most likely cluster and areas with high 
population density..................................................................................................... 77 

Table 7. Socioeconomic data of the most likely cluster within the Nueces County......... 79 

Table 8. The first five highest LLRs between DWTSOLV and DWTARSOL................ 95 

Table 9. The first three high LLRs for each category....................................................... 96 

 

 

 

 

 

 

 

 

 



 

xi 

LIST OF FIGURES 

Figure 1. The original John Snow’s famous cholera epidemic map  
(Source: Snow 1855)................................................................................................. 13 

Figure 2. Openshaw’s GAM applied to childhood leukaemia in England (Source: 
Openshaw 1987) ....................................................................................................... 25 

Figure 3. A subset of circular scan windows .................................................................... 31 

Figure 4. Study area and census block groups used as study boundary ........................... 46 

Figure 5. Distribution of murine typhus cases at the zip code level in South Texas ........ 47 

Figure 6. Distribution of murine typhus cases at the census tract level in South Texas... 48 

Figure 7. Distribution of murine typhus cases at the census block group level in South 
Texas ......................................................................................................................... 48 

Figure 8. Superfund sites in Texas.................................................................................... 50 

Figure 9. Example of neighbor-expanding. a) an example map showing a chosen region; 
b) the neighbor areas.. ............................................................................................... 56 

Figure 10.  Example of neighbor-expanding. a) region {15, 16}; b) the neighbor areas of 
region {15, 16}.. ....................................................................................................... 57 

Figure 11. A flowchart illustrating the maximum-likelihood-first algorithm................... 59 

Figure 12. A flowchart showing the non-greedy algorithm.............................................. 63 

Figure 13. The simulated six cluster patterns for the performance test. ........................... 65 

Figure 14. The first line shows the most likely and secondary clusters detected by the 
spatial scan statistic and the second line shows the most likely and secondary 
clusters detected by the maximum-likelihood-first method...................................... 66 

Figure 15. The most likely cluster in the benchmark real disease data detected by MLF, 
NGG, SA, FlexScan, and SaTScan........................................................................... 69 

Figure 16. The most likely cluster and the secondary cluster detected by the MLF method    
at the census block group level ................................................................................. 70 



 

xii 

Figure 17. The most likely cluster and the secondary cluster detected by the NGG  
method at the census block group level .................................................................... 71 

Figure 18. The most likely cluster detected by the SA method at the census block group 
level........................................................................................................................... 71 

Figure 19. The most likely cluster and the secondary cluster detected by the FlexScan 
method at the census block group level .................................................................... 72 

Figure 20. The most likely cluster and the secondary cluster detected by the Elliptic 
SaTScan method at the census block group level..................................................... 72 

Figure 21. The most likely cluster and the secondary cluster detected by the Circular 
SaTSCan method at the census block group level .................................................... 73 

Figure 22. The population density at the census block group level.................................. 76 

Figure 23. The most likely cluster detected within the Nueces County ........................... 78 

Figure 24. Conversion of Cartesian coordinate system to a parallel coordinate system 
(Klemz and Dunne 2000).......................................................................................... 85 

Figure 25. Line segments used to represent the non-null variable and null variable........ 86 

Figure 26. Procedures of the proposed method ................................................................ 87 

Figure 27. The scatter matrix diagram showing the bi-variable relationship ................... 91 

Figure 28. The line segment plots..................................................................................... 92 

Figure 29. A subset of randomly selected scan windows ................................................. 94 

Figure 30. The set of scan windows containing significant line clusters.......................... 94 

Figure 31. The LLR trend for each category at increasing distance................................. 97 

Figure 32. The LLR trend for each category at increasing distance starting from  
0.5 miles.................................................................................................................... 98 

 

 

 

 

 



 

xiii 

ABSTRACT 
CLUSTER ANALYSIS OF HEALTH DATA INVOLVING GENERAL DISEASE 

CLUSTER SHAPES AND MULTIPLE VARIABLES 

 

by 

 

Zhijun Yao, B.S., M.S.  

 

Texas State University-San Marcos 

May 2010 

 

SUPERVISING PROFESSOR: F. BENJAMIN ZHAN 

This dissertation research develops new methods to automatically detect clusters 

of general shapes in disease data involving multiple variables. Disease cluster detection is 

important in public health surveillance as well as in disease control and prevention. A 

number of techniques were proposed and developed for identifying compact clusters, yet 

few of them can detect clusters with irregular shapes efficiently. Furthermore, most 

researchers failed to notice the combined influence of multiple variables on human 

disease, focusing only on the impact resulting from a single variable. This dissertation 

research has two primary objectives. The first one is to develop two new methods, a 

maximum-likelihood-first algorithm and a non-greedy algorithm, which can be
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 used to detect disease clusters of arbitrary shapes. These new methods were applied to 

detect clusters of murine typhus disease cases in southern Texas from 1996 to 2006. The 

second objective is to develop a procedure for detecting line segment clusters based on 

visual exploration (parallel coordinates technique) and spatial analysis techniques. 

Similar to, but unlike the parallel coordinates technique, this procedure can be used to 

detect concentrations of the simultaneous occurrence of the instances of two properties 

represented by two variables.  

 Although numerous projects have focused on cluster analysis of disease point 

data, this research is the first systematic investigation on both point and line clusters. This 

dissertation research contributes to the literature of spatial cluster analysis in detecting 

arbitrary-shaped patterns of disease point data. The method and results from the line 

cluster interpretation helps public health officials utilize line cluster techniques in 

identifying the relationship of multiple variables with the help of visualization 

techniques.  
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

In recent years, there has been a dramatic increase in the public awareness of 

environmental hazards and disease events (Yiannakoulias et al. 2007).  More and more 

people are concerned with the report of increasing incidence of a disease taking place in 

their or nearby communities, especially when there is some environment exposure linked 

with the incidence of the disease. Each year, public health departments in the United 

States receive more than one thousand requests from the public for disease cluster 

investigation, though a majority of them are ultimately found to be false alarms 

(Greenberg and Wartenberg 1991; Trumbo 2000).  

Public health officials have to act cautiously in response to these requests. For 

individuals who have a family member or friend suffering from a disease, this is a 

tragedy and they feel it is necessary to find out the disease source. For the general public, 

requesting dismiss without any scientific reason is considered unacceptable even though 

public health professionals are dubious about the existence of disease cluster for public 

(Wartenberg 2001). Based on the experiences from previous studies (Alexander 1999), 

most requests which asked for further fieldwork investigation were not practical and had 

to be declined. Furthermore, given limited resources, it is impossible for public health 

departments to embark on an investigation for every request brought by a concerned 

public or interested media. A better strategy is to discover underlying causes that leads to
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 anomalous disease patterns and to explain them to the public. Sometimes disease clusters 

occur by chance alone, and sometimes they are caused by genetic factors or habits like 

smoking or drinking. However, in many cases, these clusters arise from disease outbreaks 

which can be caused by unknown infectious agents, pollution sources, environment 

hazards, or adverse health risk conditions. For example, evidence of an aggregation of 

disease occurrences around a pollution source may suggest that a further investigation is 

necessary for the elevated risk of developing a particular disease. 

Cluster research has played an important role in modern epidemical research and 

public health practice. It can also play a role as pre-epidemiology (Wartenberg and 

Greenberg 1993). In order to efficiently and effectively deal with the reports of disease 

clusters, CDC (Centers for Disease Control and Prevention) published the “Guidelines for 

investigating clusters of health events” in 1990 (CDC 1990). Most, if not all, researchers 

utilize exploratory tools to help them generate epidemiological hypotheses for cluster 

analysis. A proper specific hypothesis might lead to further studies to acquire the 

etiological and pathological knowledge to identify the causes of diseases. As Rothman 

pointed out that “the payoff from clustering research comes from the specific hypotheses 

that emerge to explain the observed pattern of excess occurrence” (Rothman 1990).  

Detection methods are also critical in disease cluster analyses. Given the wide 

adoption of statistical methods in geographical research since the early 1960s (Burton 

1963), it is not surprising that there has been considerable development of relevant 

statistical techniques in geographical epidemiology. In particular, medical geographers as 

well as statisticians and epidemiologists have developed a large number of statistical tests 

to facilitate disease cluster analysis and investigation. For example, Kulldorff (2006) 
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reported more than 100 tests in the literature. There have also been several reviews of 

frequently used statistic methods (Besag and Newell 1991; Marshall 1991; Moore and 

Carpenter 1999; Bailey 2001; Pickle 2002; Sankoh and Becher 2002; Kulldorff 2006).  

 Among numerous statistical test methods, the scan statistic method, also known 

as moving window analysis, has received increasing attention recently with respect to 

cluster analysis. Scan statistics was first introduced by Naus (1965) aiming at detecting 

anomalous patterns in one-dimension data. The principle idea is to search over a great 

many windows (intervals) superimposed over the data and carry out some statistical test 

based on a specific data distribution for each window. The windows with relatively high 

test statistic are of interest.  

The first application of scan statistics in spatial cluster detection was the GAM 

(namely Geographical Analysis Machine) developed by Openshaw et al. (1987), but the 

spatial scan statistic method proposed by Kulldorff has been most widely used (Kulldorff 

and Nagarwalla 1995; Kulldorff 1997). The Kulldorff's spatial scan statistic is a relatively 

simple but powerful method for the detection of spatial clusters. It searches over a 

number of circles which are centered at each case location or the centroids of each 

component area, using various radii. Then, it calculates a test statistic for each window 

with a pre-specified likelihood function. In the calculation, the scan window which has 

the maximum statistic is selected as the most likely cluster and its statistical significance 

is evaluated by Monte Carlo simulations. More details about the spatial scan statistic will 

be provided in chapter 3.  

Compared to other spatial cluster analysis methods, Kulldorff’s technique has 

several advantages. The first one is its simplicity. It has no parameter needed to be 
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determined in advance, that is, it doesn’t require that users have a prior knowledge with 

respect to any potential clusters. The second one is that it has the capacity to identify the 

most likely cluster and shows its location with an evaluation using the statistical 

significant values at the same time. The last one allows for uneven underlying population 

densities using scan windows in variable sizes, and adjusts for the multiple hypothesis 

testing problem using Monte Carlo simulation. This method is put into practice in the free 

software SatScan which can be downloaded from the website http://www.satscan.org/. 

The method, along with the software, is widely used today in many applications, 

especially in public health surveillance and disease prevention and control. Kulldorff 

(1999) provides a long list of applications of spatial scan statistic across a wide range of 

fields.   

 

1.2. Study Objectives and Research Questions 

The overall objective of this dissertation research is to develop methods that can 

be used in cluster analysis of health data involving general disease cluster shapes and 

multiple variables. Specifically, this work focuses on two tasks. One is to develop new 

statistical methods capable of detecting disease spatial clusters which may be of unknown 

shapes. The other one is to apply the cluster analysis method in detecting the relationship 

of multiple variables, with the help of visualization techniques.   

Technically, this research intends to explore a new cluster detection method and 

to compare its performance with several established methods, aiming to improve the 

capability and accuracy of automated cluster pattern detection techniques. This research 

is guided by the following questions:    
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(1) How do cluster tests detect clusters of general shapes rapidly and 

automatically? For this research, the murine typhus disease has been selected 

as a case study to identify its cluster pattern.   

The application of cluster detection in public health research is primarily used to 

detect the unexpected aggregation of disease outbreaks and provide timely information 

for disease surveillance. These outbreaks may be caused by environmental hazards or 

bioterrorist attacks. To examine the question above, this study investigates the 

performance of automatic cluster techniques in detecting “anomalous” spatial patterns 

which might be an indication of an emerging epidemic. A new cluster method is 

developed and compared to the commonly-used scan statistic method.                

(2) Which scan statistic technique is more effective to detect the ‘true’ spatial 

pattern of disease data – the one with regular shape windows or the one with 

irregular shape windows? 

The spatial scan statistic, one of the most effective statistic techniques used in 

cluster pattern detection, has been extended from one dimension data description to two 

or three-dimension data exploration. In practice, the spatial scan statistic method adopts 

the variable windows with different shapes and sizes. Most researchers commonly 

employ scan windows with regular shapes, such as circles (Openshaw et al. 1987; 

Turnbull et al. 1990; Kulldorff and Nagarwalla 1995; Hjalmars et al. 1996; Alm 1997; 

Kulldorff 1997), ellipses (Kulldorff et al. 2006), rectangles (Alm 1997; Anderson and 

Titterington 1997) and triangles (Alm 1997). However, the outbreak of disease does not 

always follow regular shapes and this will hinder the subsequent investigation of the 
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diseases in question. To answer this question, this study investigates the effectiveness of 

irregular window shapes in disease cluster pattern analyses. 

(3) How to detect the impact of simultaneous occurrence of multiple variables, 

and is it possible to use the line cluster test to find out the potential combined 

impact from multiple variables? Is visual exploration technique efficient to 

detect the clustering of line segments?  

Most cluster detection methods so far have concentrated on the analyses related to 

spatial point patterns. These point cluster analyses are derived only from the distances 

and distributions between each pair of disease incidences without considering the impact 

from nearby environmental factors. Based on the previous research findings from the 

point data, this study explores the opportunities of visual exploration and spatial analysis 

techniques in detecting the concentration of the occurrences of two variables. 

 

1.3. Contributions and Significance 

This dissertation research presents a significant contribution in the literature of 

cluster analysis of spatial data. Building upon the existing cluster detection techniques, 

this project adopts alternative tactics to construct a set of scan windows with arbitrary 

shapes including circular windows. They are expected to identify clusters with more 

complex structures than those detected using the traditional circular spatial scan statistic. 

The result of line cluster detection will contribute to the body of knowledge regarding 

how multiple environment variables co-impact to the identified disease and the distance 

where the highest co-impact exists from multiple environmental factors. The new 

statistical techniques and results have the capacity to provide timely and practical 
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information to help manage the spread of a disease. The methods can be useful for 

scientific and educational purposes.  

The primary significance of this research can be appreciated from both technical 

and application perspectives: 

(1). From a technical perspective, this study develops an advanced algorithm to 

detect disease clusters automatically, especially for clusters with arbitrary shapes. By 

extending this scan statistic algorithm to line networks, the application domains of cluster 

detections has been extended from point patterns to line patterns. This new algorithm will 

also make significant contributions in other applications where the detection of clusters of 

line segments is important.  

(2). More significantly, this study provides a valuable tool to health departments 

and residents regarding disease cluster analysis. Using the proposed automatic cluster 

detection method, this research result will provide the tool capable of generating 

scientific evidence about potential outbreaks of disease which could then be used to warn 

the public at local, state, or even national levels. Moreover, it demonstrates that the 

arbitrary-shape cluster detection can identify emerging epidemics with higher spatial 

accuracy than the traditional scan statistic method.  

 

1.4. Structure of the Dissertation 

The remainder of the dissertation is divided into six chapters. Chapter 2 focuses 

on the review and discussion of related literature, and Chapter 3 describes the study sites 

and procedures about data preparation. Chapters 4 presents the theoretical and statistical 

framework to summarize Kulldorff’s spatial scan statistic, the basic principle this 
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dissertation build upon. Chapter 5 develops two new algorithms that can be used to detect 

spatial clusters with arbitrary shapes, using the murine typhus incidences in southern 

Texas as a case study. Chapter 6 combines visual exploration and scan statistic method to 

analyze linear clusters and discusses its potential applications to examine the combined 

impact of two variables. Chapter 7 discusses the research results, potential applications, 

and future research directions. 
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CHAPTER 2 

LITERATURE REVIEW 

 This chapter reviews previous research about cluster detection and related 

statistical methods. The review will start from the definition of cluster and cluster 

analysis. Then, the importance and applications of cluster analysis, particularly in 

epidemiology, will be discussed. Finally, various statistical methods employed in cluster 

analysis will be reviewed.  

 

2.1. Disease Cluster and Cluster Analysis  

Theoretically, clusters can be defined as an unusual aggregation of events which 

are represented as a high concentration of events or values in time and space (Sun 2008; 

CDC 2009). From a geographer’s perspective, cases inside these spatial regions are closer 

to each other than cases outside. The basic goal of spatial cluster detection is to identify 

the places where the observed incidents excess the expected incidents significantly in 

statistical terms, adjusting for underlying inhomogeneous population or other covariates 

such as age or gender. A cluster may provide useful clues for an emerging/existed disease 

outbreak. 

The spatial aggregation or cluster analysis has been used by researchers in a 

variety of disciplines, ranging from biological studies of DNA (Leung, Choi, and Chen 

2005) to environmental studies of national pollution (Diggle, Rowlingson, and Su 2005). 

For example, cluster analysis methods could be applied to unusual patterns in DNA 
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sequence to find biological origins of diseases (Leung, Choi, and Chen 2005). Similarly, 

in an environmental study, it might be necessary to identify anomaly of distributions in 

space and/or time domain that have higher density than expected. Generally, the 

application of cluster detection aims to find out the anomalous pattern and tendency of 

clustering. That is, cluster analysis will try to find out whether this unexpected pattern 

exists and where it happens. 

Clearly, it is impossible to interpret the result of clusters appropriately without 

defining the scale of measurements (Marshall 1991). This scale can be hundreds of miles 

to several miles over space or tens of years to several weeks over time. Comparing to a 

larger scale, an apparent spatial cluster within a small homogeneous area is more 

worthwhile and attracts more public attention since it is easy to identify the potential 

mechanism for the cluster (Rothman 1990). For example, one essential application of 

cluster analysis is to detect unexpected distribution of disease cases within the observed 

area (Neill 2006). The research of cluster detection, particular in the public health and 

epidemiology, has been explored by a variety of statistic models and quantitative 

methods. 

                

2.2. Cluster Detection in Public Health and Epidemiology 

2.2.1. Definition of a Disease Cluster 

There still remains a controversy about the definition of the term “disease 

cluster”. Many definitions of disease cluster have been proposed in terms of magnitudes 

of excessiveness of incidences (Caldwell and Heath 1976; Cook-Mozaffari et al. 1989; 

CDC 1990; Heath 1996; Moore and Carpenter 1999; Wartenberg 2001). Some of them 
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are rather general, for example, a disease cluster can be defined as “an unusual 

aggregation, real or perceived, of health events that are grouped together in time and 

space and that are reported to a health agency” (CDC 1990) or “an aggregation of cases 

in an identifiable subpopulation” (Wartenberg 2001), while some others are quite 

specific, such as “five cases representing at least a five-fold increase in risk have to be 

seen by a single physician (or a small group of close colleagues) over a short time” 

(Lancet 1990) or at least five cases with a high relative risk (Neutra 1990). These studies, 

taken together, suggest that the definition of disease cluster depends on the specific 

disease.  

A more qualitative definition, provided by Knox (1989), defines disease cluster as 

“being a geographically and or temporarily bounded group of occurrences of a disease 

already known to occur characteristically in clusters, or of sufficient size and 

concentration to be unlikely to have occurred by chance, or related to each other through 

some social or biological mechanism, or having a common relationship with some other 

event or circumstance”.  

None of these definitions, however, discusses how to tell whether the aggregation 

is a true cluster or not. According to CDC statistics, less than 5% reported clusters can be 

confirmed to be “true” clusters after investigations. Many researchers expressed their 

concerns over definition issues involved in disease cluster investigations (Rothman 1990; 

Wartenberg 1995, 2001; Wakefield, Quinn, and Raab 2001; Bachmann 2003). In these 

studies, the disease cluster was defined as a region where a statistically significant 

increase of disease incidence are observed than expected in a given area during a 

specified time period among a particular population group. 
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2.2.2. Early Work in Cluster Exploration of Public Health Data 

Disease Mapping 

The earliest statistical exploration of disease cluster in epidemiology and public 

health could be traced back to the early nineteenth century. An early well-known example 

is Dr. John Snow’s ingenious work on cholera epidemic (Snow 1855). During the 

formidable epidemic of cholera in 1854 in London, he used a map plotting the 

distribution of water pumps and victims of the fatal disease in the city. The map revealed 

there was a readily apparent aggregation of incidents around a public water pump on 

Broad Street (Figure 1). The abnormal aggregation led him to posit that the pestiferous 

source of cholera was the contaminated water instead of breathing foul air that the public 

were concerned with. A further investigation confirmed his hypothesis. His discovery of 

the means of spreading cholera brought the epidemic to an end after blocking the 

contaminated water pump. His research started an era of disease mapping in 

epidemiology.  
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Figure 1. The original John Snow’s famous cholera epidemic map (Source: Snow 1855). 
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Followed the similar method as John Snow, the Hamburg cholera epidemic in 

1892 attracted the public attention to disease mapping again (Lawson and Williams 

2003). Associated with other social economic data, such as population, the dot maps 

showed the case of cholera in the cities of Hamburg and Altona and indicated the 

potential risk source. Holden (1880) mapped the mortality and sanitary in New Jersey and 

recognized that the absence of sewage systems was the major reason of typhoid. The 

maps of typhus during 1922 to 1925 in Montgomery, Alabama further confirmed the 

formation of a rodent-borne disease. The value of these early disease maps was 

demonstrated their usefulness in helping determine the aetiology of an infectious disease.      

There are various ways to represent disease on maps, using formats such as 

proportional rates, grey scale, dot density, contour, or 3-Dimention plots. Using GIS 

(Geographical Information System) tools, many research projects were funded to produce 

small-scale disease distribution maps (Andes and Davis 1995; Bayers et al. 1996; 

Popovich and Tatham 1997; Hightower et al. 1998). Most early disease mappings tried to 

identify the suspected areas at high disease risk and some maps may help to verify the 

hypotheses about disease aggregation.  

Generally, early disease mapping played an important descriptive role in spatial 

epidemiology, however early mapping methods only obtained a “good” visual estimation 

of geographic distribution of the disease over the study area (Bailey 2001). Not 

surprisingly, when more disease cases with precise locations are available, there is an 

increasing demand on the application of quantitative or statistical method on pattern 

recognition and significance assessment. More advanced spatial statistics are needed to 

do a further spatial analysis. 
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Early Practices in Disease Clustering 

Disease clustering always occurs if there is some direct or indirect of risk factors, 

such as biological (Blum 1948), environmental or social (Fraser et al. 1977; Baptiste et 

al. 1984). It is necessary to track the pattern or process of these outbreaks to identify 

potential risk factors. More and more statistical techniques are proposed to model and 

represent disease incident distribution and process. Clayton and Kaldor (1987) developed 

an empirical Bayesian statistic to estimate the age-standardized risk. This statistic was 

further explored by Clayton and Bernardineli (1992) to map lip cancer in Scotland and 

breast cancer mortality in Sardinia. Cliff and Haggett (1988) used join count statistics to 

reveal a clustering pattern of cholera cases in London. Douven and Scholten (1995) 

summarized the statistic measurements on disease point data into three ways: based on 

distance, density, and inter-point distance. Kitron and Kazmierczak (1997) used Moran’s 

I to explore the pattern of Lyme disease in Wisconsin between 1991 and 1994. 

There are tremendous statistical methods applied to disease cluster analysis and 

these applications depend on the development of general statistical methods. In the 

following section, we will review the major categories of spatial cluster analysis method 

with a focus on two automatic cluster detection methods: the geographical analysis 

machine and the spatial scan statistic.    

     

2.3. Spatial Cluster Analyses and Major Statistical Methods 

2.3.1. Traditional Spatial Statistics 

Early spatial pattern studies were mostly descriptive using visual or mathematical 

methods, such as mean center or standard distance (Rogerson and Yamada 2009). The 
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descriptive statistics is a typical nonspatial statistics, aiming at summarizing the 

characteristics of spatial data distribution. The typical descriptive statistics include mean 

center, median center, range, percentiles, variance, deviation, standard distance, 

skewness, and kurtosis. Descriptive statistics measure the fundamental geographic 

concepts such as location, dispersion, and moments (David 2005). Specifically, the 

location analysis could be performed by Mean, Median or Mode while the dispersion 

could be analyzed by Range, Standard Deviation, Percentile, or Coefficient of Variation. 

The moments, which are other import geographic concepts, could be represented by 

Skewness, Kurtosis or Variance, and Semivariance (David 2005).  

Distinguished from descriptive statistics, inferential statistics aim to support 

inferential statements to a dataset or make comparisons between sets of data (David 

2005). The typical inferential statistical research studies include the construction of 

confidence intervals, statistical estimation, and hypothesis testing (Rogerson and Yamada 

2009). Although much emphasis has been placed on these traditional statistic models 

which provide foundation for spatial clustering analysis, most of them provide just one 

simple statistic to represent a single variable or trend and this highly limits their further 

applications to more complex data. 

Besides the distance, another commonly used test function for clustering is the 

density of points. For instance, kernel density estimation, one technique used to estimate 

density, is non-parametric through averaging the observed data by a known kernel 

function (Elgammal et al. 2002). Typically, an intensity surface is generated by 

estimating the intensity of the grid points covering the whole study area (Rogerson and 

Yamada 2009). Since no particular kernel function is required and any density function 
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could be selected, this technique is applicable to many clustering analyses when the 

underlying density is unknown (Scott 1992; Duda et al. 2000). 

Similar to kernel density estimation, k-function is another popular statistical 

measurement which aims to examine second-order characteristics of point data (Wong 

and Lee 2005; Rogerson and Yamada 2009). First-order characteristic and second-order 

characteristics differ in that the former measures the mean of a process over space while 

the latter emphasizes on the spatial process resulting from spatial dependency (Rogerson 

and Yamada 2009). K-function partitions the observed data into k clusters and compares 

it with the expected value (Ripley 1981; Rogerson and Yamada 2009). K-function is now 

widely used in analyzing spatial pattern of vegetation (Peter 1995), bird nests (Gaines et 

al. 2000), soil microbes (Nunan et al. 2002), traffic accidents (Jones et al. 1996), and 

disease incidents (Diggle and Chetwynd 1991). 

 

2.3.2. Categories of Statistical Methods for Cluster Analyses and Related Problems 

Before embarking on a review of various spatial cluster analysis methods, it is 

useful to group them into different categories. In terms of cluster dimensions, the tests 

could be grouped into spatial, temporal, and spatial-temporal cluster analysis. Given the 

data we use, these tests could be classified into point pattern analysis and area pattern 

analysis. They can also be grouped into distance, nearest neighbors, and autocorrelations 

according to the relationships that are measured.  

A more commonly used classification is provided by Besag and Newell (1991) 

based on the purpose of these statistics: test of clustering and test for the detection of 

clusters. Test of clustering could be further subdivided into two subcategories: global 

(general) statistics and focused statistics. Global statistics attempt to use a single test 
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statistic to assess overall clustering tendency of disease incidence over the whole study 

area (Jacquez 2008). It can indicate whether disease incidence clusters or not. Various 

random processes may result in global clustering (Haining 1998). One example is the 

spread of infectious disease where the disease is transmitted among nearest neighbors. 

Another example is that a large number of environment hazards such as lead-painted 

houses over the region of interest, which causes the excess of disease incidences at many 

locations. Focused statistics are usually used when there is a specific predefined 

hypothesis which concerns possible links between the aggregation of disease incidences 

and suspected risk factors. 

However, both the global and focused statistics have shortages as we apply them 

to clustering analysis. Specifically, global statistics can neither pinpoint the specific 

locations of potential clusters nor provide additional information on the sizes and shapes 

of clusters if they do exist. Focused statistics only show interests in a few particular 

locations where suspicious environmental exposures may account for clusters. These 

locations could be point pollution sources such as power plants or waste disposal sites, or 

linear sources like power lines or highways. A hypothesis cannot be generated from the 

distribution of data themselves; otherwise it will lead to the Texas sharp shooter problem 

(the Texas sharp shooter fires his gun at the wall of a barn first, and then draw the bulls-

eye around the bullet holes to show how he is good at shooting). Kulldorff (1998) called 

such methods “evaluating cluster alarms” when we observe a local excess from data 

distribution first and then want to assess its statistical significance. 

The second type of tests, test of the detection of clusters (also called local 

statistics), is concerned with finding local clusters. These tests have two goals: 1) 
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identifying locations, sizes and shapes of potential clusters, and 2) assessing whether the 

detected clusters are statistically significant or occur by chance. Usually, test of the 

detections of clusters is of more practical than test of clustering because it suggests the 

locations of significant disease clusters for further investigations.  

Generally speaking, each statistic category has its strengths and weakness in some 

particular applications. Before the cluster analyses are performed, each category should 

be well-known to select the method most appropriate for cluster analyses. In the 

following section, each detailed category will be reviewed.  

  

2.3.3. Global Statistics 

Theoretically, most early spatial cluster analyses are global by providing a single 

statistical summary without identifying exact cluster sizes and locations (Jacquez 2008). 

In the early global statistical research, the observed values of global statistics were 

compared with the expected statistical values upon which to accept or reject the null 

hypothesis (Rogerson and Yamada 2009).        

 Originally developed in the field of ecology, the quadrat method and the nearest 

neighbor statistic are two early methods to test whether the geographic distribution of 

species is spatially random or not (Rogerson and Yamada 2009). The quadrat method was 

initially developed to explore the characteristics of point distribution patterns (Haggett, 

Cliff, and Frey 1965; Diggle 2003). Typically, the quadrat method counts the points that 

fall in the quadrants which are divided from the study area. The parameters generated in 

this process, including the location of each quadrat, the number of point falling inside 
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each quadrat, the adjacency among these quadrats, will be incorporated to perform the 

spatial analyses.  

 The nearest neighbor method, originally proposed by J. G. Skellam (1952), is 

based on the ratio between the mean value of the nearest neighbor distance and the 

expected value of the nearest neighbor distance. The ratio less than one indicates a 

clustering tendency and the relatively dispersed pattern could be found with the ratio 

larger than one. This method was further explored by Clark and Evans (1954) through 

incorporating a statistical test of significance. Although the quadrat method and the 

nearest neighbor statistic method have been proven successful in many applications, they 

are quite limited when applied to the disease cluster analysis since the disease distribution 

is complicated which varies with many factors such as age, occupation, gender, income, 

environments etc.  

Developed by Moran (1948), Moran’I is by far the most widely used 

measurement of spatial autocorrelation. The larger absolute value of Moran’s I represents 

a higher autocorrelation among the observations and zero values represented random 

spatial distribution. The values smaller than zero represent negative relationships while 

the values larger than zero represent positive relationships. Moran’s I has been applied to 

hundreds of applications for spatial clustering since it was published, including 

methodology estimation (Cliff and Ord, 1972), population density (Assuncao and Reis 

1999), geographical data properties (Bennett and Haining 1985), public health (Walter 

1992), and species distribution (Carl and Kuhn 2007). 

Many other statistic indices based on the Moran’s I, have been developed to 

detect global clustering. These statistics include Geary’s C statistic (1954), Grimson’s 



21 
 

 
 

method (1989), Cuzick-Edwards Test (1990), Besag and Newell’s method (1991), Getic 

and Ord’s global statistic (1992), Oden’s Ipop statistic (1995), Tango’s statistic (1995), 

and spatial Chi-Square statistic (1997). The null hypothesis for these global statistical 

methods is usually defined as “no clustering exists”. Testing this null hypothesis based on 

one statistical value, global statistics do not provide a significant assessment for any 

particular locations which might lead to an error in missing the significant local “spots” 

of incidents (Rogerson and Yamada 2009).  

 

2.3.4. Focused Statistics 

Different from global statistics, focused statistics are only applied to some 

specific locations (Jacquez 2008). The majority of these statistics are practically 

appropriate to detect possible clusters near the source of environmental problems such as 

the disease cluster centers around the pollution source (Puett et al. 2005; Puett et al. 

2009). For example, Waller et al. (1992) applied the focused statistics to identify 

leukemia clusters near the groundwater sites which were affected by hazardous trichloro 

ethylene in upstate New York. Lawson and Williams (1994) examined the spatial clusters 

of respiratory cancer in Armadale from 1968 to 1974 using focused statistics. In their 

paper, they also suggested including the non-parametric kernel regression to detect the 

population at risk from the putative pollution sources. 

 Environmental exposure is still the major interested application of the focused 

cluster test. Along with this interest, various cluster detection methods have been 

proposed and applied. Bithell (1995) proposed incorporating the spatial functions such as 

inverse distance into the focused-cluster since the impact from the pollution will decline 
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when the distance to the source increases. This method was further improved in Bithell’s 

article (1999) for the disease mapping using the relative function. Through plotting the 

relative risk function (RRF), Bithell’s method counts a risk score for each case and 

summarizes these risk scores to derive the test statistic. This method is also called linear 

risk score (LRS) test due to its linear structure.  

 Diggle (1990) proposed an inhomogeneous Poisson process model to evaluate the 

pattern of Laryngeal cancer next to a disused industrial incinerator in Lancashire, 

England. Using the same dataset, Diggle and Rowlingson (1994) reanalyzed the impact 

of pollution from three industrial plants on the disease by a modified conditional 

approach. These focused statistics researches investigate the possible linkage between the 

increased risk of larynx and lung cancer and the suspicious environment factors. 

 Developed by Lawson (1989) and Waller et al. (1992), the score test is another 

popular focused statistical method. This method tests the frequency of spatial pattern 

around some particular point-focus under the hypothesis as “no clustering around the 

focus”. In this method, the inverse of distance to the focus is used to estimate the strength 

of environmental pollution. By accumulating the exposure strength from nearby pollution 

sources, each region got a score and this score is used to test whether the relationships 

among the environmental factors and the focused sites exist or not. More effects, such as 

peaked effect, direction effect, are combined using the mathematical functions in the 

Lawson (1993) research on the mortality events using pre-defined points.  
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2.3.5. Local Statistics 

Local statistics, with many of them derived from global statistics, quantify spatial 

clustering within the small areas and these small areas could cover the entire study area 

(Jacquez 2008). The most famous system of local statistics is the Local Indicators of 

Spatial Association (LISA) (Anselin 1995) which is a set of local statistics decomposed 

from global Moran’I statistics.   

Many other local statistics were developed upon Anselin’s LISA method: Tango 

(1995) developed a modified score statistic Tango’s CF Statistic to test clusters around 

perspecified locations; Besag and Newell (1991)’s local statistic version is developed to 

screen the clusters for childhood leukemia; Getis’ Gi Statistic (Ord and Getis 1995) was 

developed from global statistic to measure the local clustering tendency. 

 More complex statistics are developed when the spatial trend, such as population 

heterogeneity, is to be modeled. Clayton and Kaldaor (1987) brought the spatial Gaussian 

prior into the likelihood estimation for relatively common diseases in disease mapping. 

Clayton and Bernardinelli (1992) incorporated prior knowledge into cancer mapping. 

Besag et al. (1991) used the Gibbs sampler for counts and over dispersion in image 

restoration. Turnbull et al. (1990) detected local spatial clusters of leukemia cases. 

Kulldorff (1997) developed the famous scan statistic to identify the unusual pattern of 

cases in space and time. The detailed information about the spatial scan statistic will be 

reviewed in the following section. 

However, one disadvantage of these local statistical methods is their huge 

computational task. They have to search over an enormous number of regions to test the 

multiple hypotheses and this is not practical for massive real-world datasets. If less 
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restrictive constraints are applied or a large number of hypotheses need to be tested, this 

situation will be even worse (Openshaw et al. 1988; Neill 2006). Automatic cluster 

detection, a new method to analyze the data without any preconceived hypothesis, 

becomes very popular in cluster analysis. 

 

2.4. Automatic Cluster Detection 

2.4.1. The Geographical Analysis Machine (GAM) and its Development 

 Developed by Openshaw and his colleagues in 1987 and 1988, the GAM 

(Geographical Analysis Machine) is an early effort to look for spatial patterns in an 

automatic manner. It has been commented as “the first major attempt to identify clusters 

of a rare disease”(Besag and Newell 1991, p.148). The GAM employs an exploratory 

approach to indicate the possible locations of clusters so that a hypothesis might be 

derived. The approach is carried out as follows: GAM lays out a grid mesh over the study 

area of interest. Then a large number of circles with a fixed radius are generated as 

possible clusters (Figure 2). They are centered at each grid point location and the radius is 

chosen to be a little bit larger than the grid spacing so that neighboring circles have a 

certain degree of overlap. GAM repeats the procedure with a range of radii so that all 

possible clusters with different sizes in the study area are guaranteed to be found. These 

circles are examined in an exhaustive way in order to find those in which disease 

incidence exceeds the expectation derived from a Poisson distribution. Their statistical 

significances are then evaluated by Monte Carlo simulations. Those circles with elevated 

incidence but lower significance than a given statistics level are drawn on the map. Those 

areas with most intensity of circles are of interest for further investigation. 
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Figure 2. Openshaw’s GAM applied to childhood leukaemia in England (Source: 
Openshaw 1987). 

 
The GAM attracts some criticisms. First, it does not allow for risk covariates such 

as sex and age. Second, it searches over a large number of circles in an exhaustive way 

requiring enormous computational workload. Third, it is hard to calculate the number of 

incidences and population susceptible to the disease in the generated circular areas 

because the real data are usually aggregated into administrative districts which have 

irregular shapes (Besag and Newell 1991). It is also heavily criticized because its ad hoc 

statistical basis and the massive generated overlapping circles lead to the problem of 
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multiple testing, that is, many false positive clusters are bound to be detected (Besag and 

Newell 1991; Marshall 1991; Kulldorff and Nagarwalla 1995). The GAM carries out 

statistical tests for each area separately to examine whether the area is a false cluster 

given a fixed significant level (α). For example, α = 0.05, corresponds to a cluster can be 

falsely detected with the probability 0.05. That is, if 10,000 circles are tested separately, 

there would be 500 expected false clusters. Moreover, if an area is tested 10,000 times 

independently, at least one false cluster would be detected because the probability will be 

1- (1-0.05)10000 ≈ 1. Marshall (1991) pointed out that this multiple testing problem may 

distort the discovery of true clusters. Despite these drawbacks, GAM is a successful 

method because it avoids the problem of preselection bias, uses data at a fine resolution 

and avoids urban-rural bias resulting from either fixed-size or fixed population 

subregions (Besag and Newell 1991). The GAM has inspired the development of several 

related methods. 

Fotheringham and Zhan (1996) presented a “refined” GAM in attempting to 

alleviate the computation workload by examining fewer circles. They proposed 

generating circles to be tested in a random manner rather than exhaustively. Instead of 

systematically generating numerous circles at each grid point, the proposed method 

creates circles whose locations are randomly assigned and whose sizes are arbitrarily 

chosen from a specified range. A sufficient number of circles would be generated and 

tested so that there is little chance of "left out" for any part of the study area during the 

entire procedure. Compared with GAM, fewer circles are examined; therefore, it 

significantly eases the computational workload which is heavily criticized in GAM. In 

addition, since the method examines fewer circles, the result correspondingly contains 
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fewer false clusters. Regarding to the significance testing, they adopted the Poisson 

probability of observed counts within a circle as their test statistic instead of using 

observed counts directly.    

Rushton and Lolonis (1996) developed a method to search for spatial clusters of 

birth defect for the people living in the urban. This method is similar in spirit to 

Openshaw's GAM (1987) except three slight differences. First, Rushton and Lolonis 

chose radii smaller than the grid spacing, therefore, fewer circles would share some 

particular incidents. Second, they adopted incident rate instead of incident count as the 

test statistic in this method. This modification takes into account the underlying 

heterogeneous population distribution. And third, a different strategy was applied in 

Monte Carlo simulations. The expected incidences were generated according to the 

overall risk rate and the probability obtained from a uniform distribution, resulting in the 

total number of cases varies in each simulation.     

The Cluster Evaluation Permutation Procedure (CEPP), introduced by Turnbull et 

al. (1990), is another method modified upon the GAM (Openshaw et al. 1987). In the 

previous research (Openshaw et al. 1987; Fotheringham and Zhan 1996; Rushton and 

Lolonis 1996), the collections of circles are generated with a geographic or Euclidean 

distance as their radius. So even for the same radius, circles would contain 

inhomogeneous population at risk and various observed incidences. Turnbull et al. (1990) 

proposed to use circles at various geography sizes. Within each circles, he predefined the 

number of population who are at risk. Therefore, the collection of circles would contain a 

constant population size but vary in geographic size since the population density is 

heterogeneous. The predefined population size is achieved in such a way that a circle 
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around a region will absorb the population from its nearest neighbors. When the number 

of persons residing in the nearest regions is aggregated, there is little chance to get a 

circle with the exact population specified in advance. Therefore, it would be better to add 

a portion of population from the last nearest region to reach the required population, as 

well as that corresponding portion of cases. As the collection of circles has constant 

population, the comparison is only needed to make comparisons with the amount of 

observed cases within each circle. Instead of getting a lot of clusters as reported in other 

methods, the CEPP is only interested in the place where the most likely cluster is located. 

So in this method, the test statistic value is selected from the any circle which has the 

maximum case number, referring to that of the most likely cluster. Since it is sensitive for 

the selection of population size, Turnbull et al. (1990) suggested running their test with 

different population sizes in order to get an optimal result. 

In their test, Turnbull et al. (1990) introduced an innovative way to test the 

significance level by adopting the Monte Carlo method to make the simulated data. 

Unlike other tests, their significance test only deals with a single test statistic and a single 

reference distribution. For one particular circle, the previous tests compare the test 

statistic between the real data and the simulated data. Instead, their test makes 

comparisons between the most likely cluster observed and the most likely clusters from 

the simulations, which could be any circle at any place in each simulation. Then, the 

statistical significance is evaluated as the probability that the ratio of the most likely 

clusters from the real data is no less than those from the simulations. They employed this 

strategy in order to avoid or at least reduce the problem of multiple testing. However, in 

their method, they required the cluster detection test to be applied with different 
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population sizes in order to get an optimal result. This requirement inevitably introduces 

the multiple testing problem again, because it does not provide the comparison across 

circles with various size of population.    

Besag and Newell (1991) used another way to improve GAM. In contrast to the 

CEPP, in which Turnbull et al. (1990) used the fixed number of population as the radii to 

construct circles, Besag and Newell (1991) concentrated their attention on circles which 

have a constant case number for a rare disease. In other words, they explicitly determined 

the size of cluster first, and then tried to search for those circles which have the most 

likely clusters among a collection of circles with the pre-specified number of cases. This 

method was implemented as following: first put a circle at the centroid of each area 

which contains non-zero cases and then include its nearest neighboring areas in the order 

of the ascending distances until the collection of areas contain at least pre-specified 

number of cases. Unlike the CEPP, this method does not require adding a portion of cases 

or population to obtain the difference from the included neighbor. The required number 

of areas to construct such a circle is used as their test statistic. A small number indicates a 

likely cluster. The method uses Monte Carlo method to evaluate the significance of 

detected likely clusters. The simulated cases for each area are generated under the null 

hypothesis that these areas have a constant risk rate and each area has an independent 

Poisson distribution. They examine the probability that the prescribed number of cases 

will be observed in a circle made up by fewer areas than that observed from the real data. 

Besag and Newell (1991) suggested plotting these circles with smaller significances than 

a given level on a map as the presence of the most likely clusters. Furthermore, Besag 

and Newell (1991) also suggested to use the global clustering index which is the total 
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number of detected clusters that fall below a given significance threshold. Since this 

presented method searches for clusters in a selective manner, it is able to reduce the 

processing time compared with the GAM (Openshaw et al. 1987). This method also bears 

some limitations. One is that its significance evaluation procedure inevitably results in 

multiple testing problem and this problem is further exaggerated when testing for a range 

of cluster sizes. The other problem is it requires a fixed size of cluster which is 

subjectively determined by users. Thus this method limits the power to detect clusters 

with variable sizes. If a small size is given, the method would stop when it achieves the 

required minimum number of study cases, leaving out some possible large clusters to be 

assessed or just returning subclusters of large clusters; if a large size is given, and then it 

would miss many small clusters. 

The results of the preceding tests are sensitive to somewhat unknown parameters 

which should be set before they start the program. For instance, the CEPP (Turnbull et al. 

1990) needs to generate circular windows with an unknown constant population size. In 

Besag and Newell’s (1991) research, they set the cluster size to an unknown number. 

While the models developed by Openshaw et al. (1987), Rushton and Lolonis (1996), and 

Fotheringham and Zhan (1996) required a predefined distance radius. When we attempt 

to apply these tests, we have to figure out appropriate values for these parameters in 

advance, which are to some extent arbitrary and hard to be determined by the non-

professional users. But unfortunately, the choice of these parameter values is likely to 

affect the test result. Therefore, we have to repeat these procedures with a range of 

parameter settings. Moreover, all of these proceeding tests encounter the problem of 

multiple testing. A new method is needed to solve these problems. 



31 
 

 
 

2.4.2. A Detailed Review on Spatial Scan Statistic and its Derivations 

Inspired by the work of Openshaw et al. (1987) and Turnbull et al. (1990), 

Kulldorff (1997) developed the famous spatial scan statistic and it can be used to detect 

clusters of various sizes as well as account for the multiple testing problem. Kulldorff  

 

 

Figure 3. A subset of circular scan windows. 
 

(1997) treated the CEPP model (Turnbull et al. 1990) and the model developed by 

Rushton and Lolonis (1996) as two special cases of his general approach. By placing a 

circular window on the map, the spatial scan statistic will move across the study area as 

shown in the Figure 3. The position of the centroid can be the area centers, the case 

locations, or other different coordinates. Rather than specifying the size of a potential 

cluster a priori, this method uses a scan window of varying sizes, corresponding to 

varying population and varying number of incidents. The radius of windows increases 



32 
 

 
 

continuously from zero till an upper radius which is predefined based on either a 

population percentage or a geographical size. And then the method will calculate a 

likelihood ratio for each window (as a circle) according to the probability of the observed 

and expected number from Poisson model or Bernoulli model within this window. The 

window with the highest value is identified out to be the most likely cluster. Once the 

most likely cluster is detected, its statistical significance is evaluated by Monte Carlo 

simulation. Rather to examine the significance of a particular circular window at a given 

level, the spatial scan statistic evaluates the probability of getting a more extreme 

likelihood ratio from the simulations than the value of the most likely cluster from the 

real data. Since these maximum likelihood ratios are acquired independently between the 

simulations, it provides a valid adjustment for the problem of multiple testing.  

In addition to the most likely cluster, Kulldorff (1997) suggested using the same 

way to search for secondary clusters which have lower likelihood ratios. They are of less 

use if little additional information would be provided. Since adding or removing a fewer 

areas to or from the most likely cluster exerts little influence on the values of likelihood, 

the likelihood ratio of the secondary clusters and the most likely cluster would be almost 

the same if the secondary clusters overlap with the subset areas of the most likely cluster. 

Thus those secondary clusters that are nonoverlapping with the most likely one should be 

highlighted as our interesting clusters. The significance of these secondary clusters is 

assessed through comparing their likelihood values with the maximum likelihood 

distribution obtained from simulations. The reason to do so is that the null hypothesis 

should be rejected, if the secondary cluster is a real one, no matter the most likely cluster 
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is true or not. This also implies that no secondary cluster is significant enough if the most 

likely cluster is not.  

Generally speaking, the spatial scan statistic has the following features (Kulldorff 

1999): 1) it takes account of inhomogeneous population density and other confounding 

variables, for example, gender or age; 2) it avoids the problem of pre-selection bias by 

searching clusters without any a priori assumption on the size and location; 3) it corrects 

the inherent problem of multiple testing when many possible sizes and geographical 

locations of clusters are taken into consideration; 4) it indicates the approximate location 

of a cluster when it results in the rejection of the null hypothesis; 5) it is able to detect 

clusters with higher risks as well as clusters with lower risks. Furthermore, a recent 

performance comparison shows that this method is the most powerful test in detecting a 

compact cluster (Kulldorff, Tango, and Park 2003). Due to these advantages, the spatial 

scan statistic has rapidly become very popular and it is widely used in a large number of 

applications.  

 

Derivations Based on Scan Windows with Fixed Shapes 

Based on the circular spatial scan statistic, Kulldorff (1999) proposed an 

extension of his test two years later, which was named as the isotonic spatial scan 

statistic. This new method takes account of the relationship between risk and distance, 

that is, it makes an assumption that the risk is higher within a certain distance from a 

cluster center than the risk beyond that distance. Thus the risk can be modeled using a 

step function in which the risk decreases with increasing distance to a cluster center. 
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Kulldorff (1999) suggested using an isotonic regression function to obtain the highest 

likelihood. 

 Kulldorff (2001) also extended the spatial scan statistic for both spatial and 

temporal clusters. In the proposed space-time scan statistic, a three-dimensional 

cylindrical window in various sizes is used. Similar as the spatial scan statistic method, 

the base of the cylinder is a circular window to represent an exact particular geographical 

area and use the cylinder height to represent one of the time intervals of the study period. 

The cylinder is flexible in the location, circular geographical base size, its starting date 

and time interval. The cylinder is moved in space and time so that a large number of 

overlapping clusters varying in size and height are obtained, examined and evaluated. 

The cylinder with the highest likelihood represents the most likely cluster. 

Later on, Kulldorff et al. (2006) provided an elliptical spatial scan statistic. Unlike 

the circular spatial scan statistic which uses circles as scanning windows, the new method 

attempts to use ellipses to define cluster areas. An ellipse is controlled by location, shape, 

orientation, and size. The locations are represented by the centroids’ x coordinates and y 

coordinates which are usually corresponding to the centroids of areas. The shape of the 

moving ellipse could be defined by the ratio between the length of semimajor axis (the 

longest axis) and semiminor axis (the shortest axis). To reduce the computational 

workload, a specific number of  shapes are chosen such as 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 15, 

20, 30, 60 and 120 (Kulldorff et al. 2006). An ellipse would be degraded to a circle when 

the shape equals to one, that is, the semimajor axis and the semiminor axis have the same 

length. The ellipses’ orientation could be defined by the angle between the semimajor 

axis and the axis in the horizontal direction. The angles are chosen so that there is an 
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around 70 percent overlap among the ellipses regarding to their shape, location or size. 

The size of an ellipse ranges from zero to a pre-specified upper limit such as half of the 

total population. In order to reduce the number of eccentric ellipses, which are of less 

interest in the analysis, Kulldorff et al. (2006) introduced an eccentricity penalty function 

to adjust the likelihood ratio. Their results show that the elliptical spatial scan statistic has 

a good performance in detecting clusters of circular or elliptical shapes. Finally, Kulldorff 

et al. (2006) emphasized that the location and size is critical for detecting clusters, 

whereas the choice of the shape of the scanning window, irrespective of circle or ellipse, 

is of less importance because the most likely cluster merely provides an indication of the 

general area of a true cluster, whose exact boundary usually is vague.     

Based on Kulldorff’s model, Neill and Moore introduced a fast scan algorithm      

(Neill and Moore 2004; Neill 2006). The primary objective is to speed up the 

performance of the spatial scan statistic when a large dataset is under consideration and 

the second objective is to detect elongated clusters. The algorithm is based on a novel 

overlap-kd tree data structure dividing the rectangular study area into overlapping 

subregions, and a top-down search approach. It searches large subregions first and then 

their smaller subregions. It bounds regions including their subregions which can obtain 

the maximum likelihood ratio, and prunes regions and their subregions that are not the 

most likely cluster. This method is likely to only examine a subset of subregions, 

consequently considerably reducing the search time. Since it uses rectangular regions as 

scan windows, it is able to detect axis-aligned elongated clusters.  
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Derivations Based on Scan Windows with Arbitrary Shapes 

A major critique to Kulldorff’s method is its predefined-shape scan windows 

which prevent its application from the arbitrary cluster patterns. As mentioned above, it 

uses windows in circles or other fixed shapes with various sizes to detect potential 

clusters, though Kulldorff (1997) pointed out in his paper that they could be any other 

shapes. Using circles or rectangles or any other predefined geometrical shapes as scan 

windows restricts the patterns of disease clusters to be detected and leaves a large number 

of candidate clusters out of the test. Empirical results show that spatial scan statistic 

performs well in identifying compact clusters, but poor in dealing with elongated or 

arbitrary-shaped clusters (Kulldorff, Tango, and Park 2003). However, disease clusters in 

the real world could appear in any shapes. For example, pathogens, one kind of disease 

source, may disperse in a lot of ways. The wind can carry airborne pathogens in certain 

directions. The running water may spread waterborne pathogens along the path of a river 

or a stream. Similarly, pathogens may disperse along a road or other transportation 

routes. Under these conditions, the disease incidence patterns will shape as elongated 

clusters. Therefore, the shapes of disease clusters are potentially dependent on the way 

how disease incidences occur and disperse. Furthermore, even the inhomogeneous 

underlying population at risk will distort the shape of clusters. In addition, Tango and 

Takahashi reported that the spatial scan statistic based on circular windows is likely to 

include neighboring areas without elevated risk which result in a larger cluster detected 

than the true one (Tango 2000; Tango and Takahashi 2005). How to detect arbitrary-

shaped clusters presents a challenge for researchers. 
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Recently, many researchers attempted to solve this problem and proposed many 

solutions. These new methods adopted the identical statistical principles behind the 

circular spatial scan statistic but differentiate in the collection of candidate scanning 

windows. They introduced different strategies for the construction of scanning windows 

of irregular shapes. For example, Patil and Taillie (2004) introduced the concept “upper 

level set”, a set of areas having a larger risk rate than a given constant, to detect 

arbitrarily shaped hotspots. Duczmal and Assuncao (2004) introduced the famous 

“simulated annealing strategy”, one of the global optimization methods, to search the 

local maxima for the arbitrarily-shaped spatial clusters detection.    

More searching strategies are proposed based on some advanced algorithms. 

Assuncao et al. (2006) brought forward a more generalization strategy, minimum 

spanning tree, to reduce the number of neighbors to be searched. A genetic algorithm is 

employed to limit the irregular shape of clusters in order to find the most potential real 

clusters (Duczmal et al. 2007). Wieland et al. (2007) introduced Euclidean minimum 

spanning trees to locate any noncircular clusters. Yiannkoulias et al. (2007) presented two 

approaches to improve the greedy growth search: one is the non-connectivity penalty to 

limit the very irregular cluster shapes and another one is the depth limit to prevent the 

generation of large super-clusters from smaller clusters.  

One common feature of these derivations to detect the arbitrary shape clusters is 

their consideration of adjacency characteristics of areas instead of using predetermined 

geometry shapes. They search for irregular-shaped clusters among adjacent areas based 

on the assumption that any subset of adjacent areas could make up a potential cluster and 

the shape of this cluster might not be circular or rectangular. Since exhaustive search 
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might be implementation infeasible, various constrains are set to guide the search process 

so as to reduce the number of candidate scan windows. 

With these various derivations developed, the spatial scan statistic becomes 

popular, even though it still has some drawbacks which restrict its applications. The 

spatial scan statistic has less capability in dealing with a large dataset (Neill 2006) which 

makes its approach insufficient when applied to the large dataset such as large-scale 

health surveillance. In addition, spatial scan statistic has a limited number of statistical 

models available for underlying data (Duczmal and Assuncao 2004; Patil and Taillie 

2004; Tango and Takahashi 2005; Neill 2006). Kulldorff (1997) gave two special discrete 

models in his paper, namely, Poisson model and Bernoulli model. He limits its 

application to some real phenomena since continuous or other type data are very common 

in many other cases. For example, Kulldorff’s approach restricts its application on 

network spaces such as river networks or highway systems (Patil and Taillie 2004). If 

these drawbacks can be overcome, the spatial scan statistic will certainly play a critical 

role in the spatial cluster analysis, not only for the public health, but also for other 

applications.  
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CHAPTER 3 

THEORETICAL AND STATISTICAL FRAMEWORK OF SPATIAL SCAN 

STATISTIC 

Before presenting the study method and algorithm, this chapter will introduce the 

theoretical and statistical framework to summarize Kulldorff’s spatial scan statistic. 

Kulldorff’s spatial scan statistic consists of at least three parts: choosing a distribution 

model of data, identifying the most significant cluster, and testing its statistical 

significance. 

 

3.1 Choosing a Distribution Model of Data 

Spatial scan statistic carries out the likelihood ratio test based on two particular 

models: Bernoulli distribution and Poisson distribution. Both models are applied to 

calculate the probability of observed phenomena. In a Bernoulli model, people are 

described by zeros or ones, correspondingly representing cases or controls. These cases 

and controls make up the total population. In a Poisson model, the number of people with 

a disease in an area follows a Poisson distribution. In other words, the expected cases in 

an area are proportional to its population at risk.      

 Generally, spatial scan statistic attempts to identify clusters with a risk rate which 

is statistically significantly high. It makes an assumption that the observed cases are 

drawn from a chosen distribution model. The null hypothesis (H0), that is, no cluster, 

against a set of alternative hypotheses (H1) that there is a cluster in a given area will be
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tested. If the null hypothesis is true, the risk rate for any area should be the same as the 

risk rate of the entire study area. More precisely, it is defined as: 

           H0: the underlying risk rate is a constant for all areas.  

           H1: the underlying risk rate of an area is higher than those rates outside the area.    

The basic theory of spatial scan statistic is to test the likelihood ratio for the study 

area. It compares the likelihood of observed data to the likelihood which derived from the 

null hypothesis. For the sake of simplicity, the same notations and equations will be 

adopted as Kulldorff's (1997) in the following part. Let Z be the set of regions generated 

by the scan circles, µ(G) represent the total population of the study area, nG denote the 

total observed case number, µ(z) stand for the population of zth region, and nz be the 

observed number in zth region. Meanwhile, p is defined as the probability that an incident 

falls in the zth region, q as the probability that an incident falls in the rest of the study 

area, and p, q are the numbers between 0 and 1. Now a specific region z could be tested 

whether it is a cluster. The null hypothesis is it has a constant probability for all areas (H0: 

p=q, z є Z) and the alternative hypothesis is the specific area z has a larger p than qs of 

the outside areas (H1: p>q, z є Z.). 

  For a given region z, the likelihood function based on the Bernoulli model can be 

expressed as the following formula: 

 ))()()(()( )1()1()(),,(sup)( zzzz nnGzGnnGnzn

qp
qqppqpzLzL −−−−−
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−××−×== μμμ     (1) 
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            The observed likelihood function on region z can be given by 
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Thus the expected likelihood function can be derived using: 
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Therefore the likelihood ratio λ(z) can be obtained as the quotient through 

dividing the observed likelihood by expected likelihood:  
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           Kulldorff (1997) also calculate the likelihood ratio test based on the Poisson model 

as following: 
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3.2. Identifying the Most Significant Cluster 

Given the above likelihood ratio formulas based on either one of the two models,  

)(zλ  can be easily calculated for a set of possible regions. The test is carried out through 

the following steps. To begin with, it gets the centre positions of the component areas of 

the map. Then it will associate the number of disease incidents and the population of a 

corresponding area to these positions. In the second step, a moving circle window is 

placed on the study area and position of the centroid of the circular window can be the 

centre of census position or other different coordinates. The size of the moving window 

changes from zero to pre-selected value. Each circular window defines a region which is 

made up by a set of areas whose centroids reside in the circle. And then a likelihood ratio 

for each region will be calculated by comparing the observed likelihood and expected 

likelihood according to a distribution model. Finally, the test will sort the likelihood 

results within each circle and choose the maximum result as the most likely cluster.  

Since no prior knowledge about possible clusters is available when running these 

tests, they are usually used “blindly” which might result in two types of inevitable errors 

in cluster detections (Neill 2006). The first type of error, false positives, occurs when the 

insignificant clusters are mistakenly treated as true clusters. While the second type of 
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error, false negatives, treats the true clusters as false ones. These errors must be 

controlled during our tests because both of them may result in high costs for public 

health. The first type error may mislead health departments to spend precious limited 

resources and efforts on unnecessary investigations while the second type error may 

delay the interventions which could control and prevent an emerging disease outbreak 

effectively. To enhance the capability of detecting the true clusters, these errors should be 

minimized. That is why the third step, significance assessment, is essential. 

 

3.3. Testing Statistical Significance 

Once the most likely cluster has been identified, the next step will be the test that 

whether “this potential cluster” occurs due to a disease break or just by chance. To do so, 

p-value, derived from the Monte Carlo simulation, is used to assess the statistical 

significance for the detected cluster.  

The Monte Carlo simulation was proposed by Dwass (1957) and was first 

introduced to cluster detection tests by Turnbull et al. (1990). In a Monte Carlo 

simulation, a large number of random replications will be generated under a chosen 

distribution model conditioned on the simulated case number will be the same as the real 

data. If the Poisson model is adopted to test the null hypothesis, then the real population 

from each area will be used in this replication. The disease events in each area are drawn 

from an inhomogeneous Poisson distribution with mean 
)(

)(
G

nGz
μ

μ   , where )(zμ  

denotes the population of area z, )(Gμ  represents the total population of the whole study 

area and nG is the total observed number. The likelihood ratio for each region was 

calculated using the replica data as well as the real data and plenty simulations were 
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performed. Each simulated data will get a maximum likelihood ratio in the same way as 

the real data. Then p-value can be calculated based on the sorted likelihood ratio of the 

real data and simulated data. For example, if there are N simulated datasets and one real 

dataset and the total number of datasets will be N+1. Within these total datasets, there is 

n simulations having a larger or equal maximum likelihood ratio compared to the one 

obtained from the real data. That is, the rank of the real data is n when we sort the data by 

their maximum likelihood ratios. The p-value for the significant testing in this example 

will equal to n/(N+1). Theoretically, the smaller the p-value, the more significant the 

cluster will be. 
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CHAPTER 4 

DATA PREPARATION AND PROCESSING 

 In this chapter a detailed description of data preparation and processing will be 

provided. Since this dissertation was conducted from two research focuses, cluster 

detection of general disease cluster shapes and multiple variables analysis, two datasets 

were collected for each aspect. Dataset one is the murine typhus cases reported in the 

South Texas and second one is Texas births data and public toxic substances data from U. 

S. Department of health and Human Services.   

 

4.1. Data to Support Detection of General Disease Cluster Shapes 

4.1.1. Data Preparation 

 The study area for our first research is south Texas, one of the areas having the 

most murine typhus cases occurred in United States. From the 1970s, the murine typhus 

cases were reported around 20 cases/year in this area (Boostrom et al. 2002). Centered at 

98° 18' W longitude and 27° 12' N latitude, the study area includes 17 counties of in 

south Texas with population around 2 million.     

The data used in this research include census block group boundary data, 

population data, and disease data issued by the department of health. In this research, the 

cluster detection was performed at the census block group level in our cluster detection 

(Figure 4). The data were obtained from ESRI website and DVD (ESRI 2008). The entire 

study area covers 1,068 census block groups with 1,728,393 inhabitants (U. S. Census 
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Bureau 2000). The disease data used in this research consist of 555 murine typhus case 

records reported to the Health Department of Texas in the south Texas from 1996 to 

2006. The raw disease data are stored in an Excel file, containing the geographical 

location of cases (latitude and longitude), the onset time of cases (year, month, and day), 

age, gender, and race of patients, zip code and street name of cases. Although these cases 

are reported throughout the whole year, 44% of cases are found in May, June, and July. 

 

 

Figure 4. Study area and census block groups used as study boundary. 

 
4.1.2. Data Processing 

The original census data and disease data come in various data types and formats. 

The census block group file was downloaded as a GIS shape file, while population and 

disease data were acquired in a text file format. In order to analyze and display all the 

data in the GIS platform, it is imperative to join the population data and disease data into 

the same format as the boundary file. The excel tables of population data were converted 
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into MS Access tables and joined to boundary files at census block group level. The 

demographic information is essential in the following research since they provide the 

number to calculate the probability for each unit. 

The disease data were spatial joined to the census block groups using software 

ArcGIS 9.3. The disease data are provided in Excel file with two accuracy levels: zip 

code and street. When joined disease data to the census block groups, only the records at 

the street accuracy level were used and the records at the zip code level were excluded. 

Thus, after the data processing, there were 555 murine typhus cases at the zip code level 

and 391 cases for the analysis at the census block group levels. The distribution of murine 

typhus is illustrated in Figure 5, 6, and 7 at zip code area level, census tract level, and 

census block group level. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Distribution of murine typhus cases at the zip code level in South Texas. 
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Figure 6. Distribution of murine typhus cases at the census tract level in South Texas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Distribution of murine typhus cases at the census block group level in South 
Texas. 
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4.2. Data Preparation and Processing to Support Cluster Analysis Involving Multiple 

Variables 

Most researches about the distance proximity between the disease and 

environment try to explore the relationship of a single case to a single environment 

variable without considering the combined influences from multiple environment 

exposures. Our second research object was to explore the line cluster method, combined 

with the visualization technique, to identify the spatial correlation among multiple 

variables.   

Regarding to the second research, the emphasis was put on the distance of each 

case to environmental exposures without considering the exact location of each identified 

disease case. The visual exploration was incorporated with the line clusters detection 

techniques to conduct this analysis. In order to test this method, one dataset was collected 

from the Texas health department in a MS excel format. The investigated group contains 

around 1500 identified oral clefts, organized by the case number.  

Five variables were used to perform this multiple variables analysis and the values 

of these variables were the distance from each disease case to one variable, e.g. the near 

environment hazards in this research. As an example, Figure 8 shows that the 

investigated superfund as the potential pollution sources to the oral cleft. Since this 

dissertation research is a methodology research, the disease data collected in this research 

are just an example with no further study on the specific etiology of this disease and this 

proposed method could be applied to other disease studies as the method for multiple 

variables analysis.  
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Figure 8. Superfund sites in Texas. 
 

The data record five environmental pollution sources to the disease: the average 

dry weight of metal (DWTMETAL), average dry weight of polycyclic aromatic 

hydrocarbons (DWTPAH), average dry weight of solvent (DWTSOLV), average dry 

weight of aHsO (DWTAHSO), and average dry weight of aromatic solvent 

(DWTARSOL). The number in the table represents the distance of the identified disease 

case to each variable (e.g. environmental hazards) and each record represents one case. A 

subset of sample data is listed in the Table 1. 
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Table 1. The recorded diseases and distances of five closest environmental hazards 
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CHAPTER 5 

ARBITRARY SHAPE DISEASE CLUSTER DETECTION USING A NEIGHBOR-

EXPANDING APPROACH  

5.1. Introduction 

Detecting spatial disease clusters is vital to public health surveillance. Developing 

tools to reveal such clusters has received considerable attention from researchers in 

epidemiology, mathematics, and geography, who have proposed a variety of tests to 

facilitate the task. As reviewed in the Chapter 2, the spatial scan statistic model proposed 

by Kulldorff is a widely used automatic method to detect disease cluster patterns. This 

method has been applied to many research fields. Examples of these applications include 

disease pattern analysis (Fischer et al. 2008), criminology (Minamisava et al. 2009; 

Nakaya and Yano 2010), network (Duczmal et al. 2007), as well as ecology and the 

environment (Tonini et al. 2009). However, the spatial scan statistic and other similar 

approaches suffer from some restrictions in practice (Neill et al. 2005; Chen et al. 2008). 

Although this method can be adopted to include any shape for scan windows (Kulldorff, 

1997), it still has limitation in practice due to the predefined geometrical shapes of scan 

windows (Neill and Sabhanani 2005) which leave a large number of candidate clusters 

out of the test. It is therefore necessary for researchers to develop methods that can be 

used to detect clusters with arbitrary shapes.

Recently, many methods and strategies have been proposed to improve the 

detection of clusters with arbitrary shapes by constructing scanning windows of irregular 
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shapes. Tango and Takahashi (2005) presented a “flexibly shaped spatial scan statistic” 

(FlexScan) which uses a limited exhaustive search to detect arbitrarily shaped clusters by 

aggregating its nearest circular neighboring areas (Tang and Takahashi 2005). The spatial 

scan statistic superimposes circular windows on the study area, while FlexScan generates 

irregularly shaped windows on each area by aggregating its nearest neighboring areas. To 

reduce the number of arbitrarily shaped scanning windows, Tango and Takahashi (2005) 

limited the length of clusters referring to the relatively small number of areas contained in 

a scanning window. This method extends the spatial scan statistic to detect irregular 

shapes but is only applicable for detecting clusters of small or moderate sizes. In addition, 

the determination of the threshold size of a cluster is very subjective, though Tango and 

Takahashi (2005) suggested choosing about 10~15 percent of the size of the whole study 

area as a reasonable number.   

One solution to this problem involves setting a constraint to guide the search 

process so as to reduce the number of candidate scan windows. Patil and Taillie (2004) 

introduced the concept of “upper level set” and developed an “upper level set scan 

statistic”. Based on this statistic, a more generalized strategy named minimum spanning 

tree (also called a cheapest connecting network) was proposed by Assuncao et al (2006) 

to reduce the number of neighbors to be searched. This method is called a cheapest 

connecting network or a greedy growth search (GGS) which only absorbs the 

neighboring areas to maximize the likelihood of a new window. This idea was further 

improved in the Density-Equalizing Euclidean Minimum Spanning Tree (DEEMST) 

method proposed by Wieland and her colleagues (2007). The Minimum Spanning Tree 

method offers two different functions: in a static minimum spanning tree, the weight 
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refers to the difference of risk rate; in a dynamic minimum spanning tree, the variance of 

maximum likelihood ratio is taken into account. These methods are similar to GGS as 

they absorb only the neighboring areas in the search process to maximize the likelihood 

of a new window. It has the flexibility to start the search from any location in the study 

area.  

GGS cannot avoid the local maximum problem (Duczmal and Assuncao 2004). 

Many algorithms were adopted or developed to improve the GGS. The genetic algorithm 

is employed to limit the irregular shape of most potential real clusters (Conley et al. 2005; 

Sahajpal et al. 2005; Duczmal et al. 2007). Yiannkoulias et al. (2007) presented two 

approaches to improve the greedy growth search: one is the non-connectivity penalty in 

order to limit the very irregular cluster shapes and the other is the depth limit (u) to 

prevent the generation of large super-clusters from smaller clusters (Yiannakoulias 2007). 

These approaches will terminate the search in GGS if it fails to increase the likelihood 

after some steps. 

Another famous improvement is a “simulated annealing strategy” proposed by 

Duczmal and Assuncao (2004). This method is based on graph theory in which nodes 

present centers of areas, and edges present the geographical relationships among areas 

(Duczmal and Assuncao 2004). The simulated annealing spatial scan statistic was 

improved by introducing a non-compactness penalty to reduce the chance that the cluster 

with extremely irregular shapes would be found (Duczmal et al. 2006). Most of the recent 

proposed methods try to detect the globally most likely cluster (Duczmal and Assuncao 

2004; Duczmal et al. 2007) and this is critical in cluster detection since the search process 

of some methods frequently leads to or sticks on the locally most likely clusters. 
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In this chapter, the development of two algorithms were reported that use a new 

neighbor-expanding approach based on the assumption that any subset of adjacent areas 

could make up a potential cluster, and that the shape of this cluster might not be circular 

or rectangular. These two algorithms are called the maxima -likelihood-first (MLF) 

algorithm and non-greedy growth (NGG) algorithm. These two algorithms build upon the 

existing cluster detect techniques, and adopt neighbor-expanding tactics to construct a set 

of scan windows instead of just using the scan windows in some predefined shapes. 

Furthermore, the proposed algorithms improve the arbitrarily-shape cluster detection 

method in avoiding the local maximum problem since the algorithms search for the 

globally most likely cluster at each step in the search process. 

  

5.2. A New Neighbor-expanding Approach 

A new neighbor-expanding approach was developed here to detect clusters with 

arbitrary shapes. Suppose we have a map consisting of a tessellation of component areas. 

These areas are associated with case numbers and the total population at risk. Two areas 

were considered as neighbors when their boundaries are touched. It was assumed that a 

region with any set of connected areas may make up a potential cluster and a cluster may 

appear in different shapes depending on how many and how aggregated the set of 

connected areas are. The goal is to find such clusters with the likelihood ratio in the scan 

statistic. In the search process, a large subset of connected areas was swept, constructing 

a new region at each step by aggregating one of its neighbor areas, until certain 

thresholds were met or the expected results were obtained. For the sake of simplicity, the 

length was used to indicate the number of areas that constitute a region. Usually, a new 
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region is derived with a higher length k+1 by combining a k length region and one of its 

neighboring areas. One can easily figure out the number of regions with k+1 length based 

on a k length region. If the number of the neighbors around k length region is j, then one 

can obtain j regions at k+1 length. To clarify, this process is illustrated using an example 

as shown in Figure 9. In Figure 9, every area is labeled with a number on it. A set of 

numbers were used to represent the region that is made up of both a region and its 

neighbors. For example, {16} means a region containing a single area 16 and {16, 18} 

corresponds to a region consisting of areas 16 and 18.  

     

 

 

 

  

        a.            b. 

Figure 9. Example of neighbor-expanding. a) an example map showing a chosen region; 
b) the neighbor areas. The red color highlights the chosen area and cyan color highlights  
the neighbor areas. 
 

Now if {16} is a seed region at first length, which is highlighted by red color in 

Figure 9a, and it has seven neighbors, area 10, 11, 12, 15, 18, 22, and 23. The neighbors 

of {16} are shown in the Figure 9b. Thus the seven regions can be obtained at the second 

length based on region {16}. These seven regions are {10, 16}, {11, 16}, {12, 16}, {15, 

16}, {18, 16}, {22, 16}, and {23, 16}. Furthermore, in order to obtain the third length 

regions, the region {15, 16} has the following neighbor areas: 14, 10, 11, 12, 13, 19, 18, 

17, 21, 22, and 23.  Region {15, 16} and its neighbor areas are illustrated in Figure 10b. 
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Now 11 regions are derived at the third length: {14, 15, 16}, {10, 15, 16}, {11, 15, 16},  

{12, 15, 16},  {13, 15, 16},  {19, 15, 16},  {18, 15, 16},  {17, 15, 16},  {21, 15, 16},  {22, 

15, 16},  and {23, 15, 16}. 

 
 
 
 
 
 
 
 
 
 
 

a.               b.  

Figure 10.  Example of neighbor-expanding. a) region {15, 16}; b) the neighbor areas of 
region {15, 16}. Using red color to highlight the chosen area and cyan color to highlight 
the neighbor areas of the chosen area. 
 

While this search process continues, the number of regions increases 

exponentially as we aggregate more areas. This process is computationally very 

intensive. In order to reduce the number of regions, two alternative algorithms were 

developed for the construction of regions or scan windows: maxima-likelihood-first 

(MLF) algorithm and non-greedy growth (NGG) algorithm. 

 

5.2.1. Maximum-likelihood-first Algorithm 

The principal goal of this algorithm was to direct the new region construction 

process to obtain a global maximum. This maximum refers to the highest value obtained 

by the proposed approach. After analyzing equations (4) and (5) in Chapter 3, it was 

found that it was hard to determine which of the following factors make the most 
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contribution to the likelihood ratio: the number of cases, population size, or the 

relationship between them. Thus, there is no clear guidance that could help to construct 

scan windows which would have the highest likelihood ratios. Rather than construct scan 

windows randomly, the focus of this algorithm is to generate windows for the most 

promising clusters. This approach was named as the maximum-likelihood-first (MLF) 

approach because it always constructs new promising clusters by expanding from the 

current best candidate, yielding the maximum likelihood ratio. 

The proposed approach is illustrated in the flowchart in Figure 11. In the initial 

step of the algorithm, the Log likelihood ratios (LLRs) are calculated for all areas and put 

the elevated LLRs into a temporary candidate list. After sorting their LLRs in the 

temporary candidate list, the one with the highest LLR is selected as the candidate region. 

In the next step, the candidate region aggregates one of its neighboring areas to create a 

new region. A group of new regions are obtained and the LLRs of these new regions are 

calculated. These new regions are put into the temporary candidate list, and then the new 

and old members are sorted in the candidate list together again, and the one with the new 

maximum LLR is selected as the new candidate. Unlike the minimum spanning tree 

algorithm (Assuncao et al. 2006), this algorithm expands the neighbors based on multiple 

seeds in the cluster candidate list. The seed for each neighbor expansion is selected from 

all the candidates in the temporary candidate list. The procedure is repeated until either 

the aggregated area covers half of the study area or has half of the total population. 
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Figure 11.  A flowchart illustrating the maximum-likelihood-first algorithm. 
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When detecting the cluster using the neighbor-expanding approach described 

above, it is very likely that the procedure may stick to some areas with high LLRs and 

unable to search the entire study area. Usually, LLRs of candidate clusters depend on the 

risk rates of their neighbors (Wieland et al. 207). That is, areas with higher risk rates are 

more likely to have higher LLRs than those with lower risk rates since LLRs of clusters 

do not vary a lot if they contain the same subset of areas (Kulldorff 1997). It means if a 

candidate cluster overlaps largely with another candidate cluster with a high LLR, it may 

have a higher LLR than other areas which have not been explored. This observation leads 

to proposed search procedure to stick with one area and its neighbors if their LLRs 

increase fast at the beginning and decrease slowly. Therefore, it is necessary to set a 

threshold to stop the search around a particular area and its neighbors when the LLRs of 

the newly generated clusters fail to increase in certain steps. This arrangement allows the 

search to move to other unexplored areas to detect other potential cluster centers. 

Originally suggested by Yiannakoulias, Rosychuk, and Hodgson (2007) as a depth limit 

adaptation, this idea is incorporated into the MLF algorithm. 

As shown in Figure 11, this procedure was repeated until half of the total 

population or study area is covered. The cluster with the highest LLR was selected as the 

most likely cluster while the secondary cluster is the cluster having both the second 

highest LLR with no overlap area with the most likely cluster. Since this approach does 

not focus on one or some particular areas, it is expected to avoid the local maximum 

problem.  
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5.2.2. Non-greedy Growth Algorithm 

The non-greedy growth (NGG) algorithm is an improved version of greedy 

growth algorithm (Yiannakoulias 2007). Several researchers have described how greedy 

growth approaches perform in searching clusters with irregular shapes (Duczmal et al. 

2006; Yiannakoulias 2007). The greedy growth search starts with areas having high log 

likelihood ratio as seed areas for potential clusters. The search is only interested in a 

neighboring area that has the maximum LLR or has the capability to maximize the LLR 

when aggregated to form a new potential cluster. Similar to the procedure described 

above, the greedy growth algorithm joins other areas until a given population size or 

other thresholds are reached. The same procedure is repeated from other seed areas.  

The greedy growth approach sounds tempting, but it has an inherent deficiency in 

that it does not guarantee to find either the best solution or the global maximum. This 

method easily falls into the trap of local maximum since it excludes some areas which 

might potentially form a more promising cluster when they combine with other areas. 

To solve this problem, a new algorithm was proposed to minimize the impact of 

the local maximum problem. To distinguish it from traditional greedy growth approaches, 

we name it “the non-greedy growth algorithm”. The algorithm allows not only the 

neighboring area with the local maximum to be included but also includes many other 

neighboring areas in the search procedure. Usually the number of newly formed regions 

relies on the number of candidate regions and the number of neighbors of each region. 

With this method, a constraint can been set on each of these two numbers control the 

number of newly formed regions at the next step of the search process. Previous studies 

suggest that the number of candidate regions increase exponentially, while the number of 
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neighbors of each region does not change dramatically. Therefore, it is more reasonable 

to set a threshold on the number of candidate regions. Theoretically, if only one candidate 

and one of its neighbors were chosen with the highest LLR each time, this method 

degrades to the traditional greedy growth search method. The inverse extreme of this 

approach is the naïve exhaustive approach where no limitation is set.  

In the NGG algorithm, a threshold (M) is set on the maximum expected number 

of new regions in each iteration. Given that threshold and the average number of 

neighbors, it is easy to determine how many candidate regions should be chosen to 

participate in the aggregation process. There are a few options in the choice of candidate 

regions. One is to choose M most promising regions, directly from the pool of candidates, 

or to choose them randomly. In the actual implementation reported in this chapter, a 

combination of the two was used, that is, part of M candidates are from the top regions 

and the rest are chosen randomly. 

The flowchart showing the NGG algorithm is given in Figure 12. At first, a 

threshold M is set for the maximum number of potential clusters generated at each step. 

Then all areas are put into a temporary list and the LLRs of these areas are calculated. In 

the next step, the average number of neighbors (L) of each region is calculated. The 

approximate number of candidates (N) for the next iteration is estimated by the preset 

parameter M and the average number of neighbor L using the equation N = M/L. N areas 

with the highest LLRs were chosen from the temporary list and the list was emptied 

afterward. New regions created from the candidates and their neighbors were put into the   

 

 



63 
 

 
 

 

   

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 12. A flowchart showing the non-greedy algorithm. 
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emptied list. These steps were repeated until either the aggregated area covers half of the 

study area or has half of the total population. 

MLF and NGG have their own advantages and disadvantages. An comparison of 

these two algorithms is presented below. 

 

Table 2. An initial comparison of MLF and NGG 

 

 
5.3. Results and Discussion 

5.3.1. Performance Test Using Simulated Data and Benchmark Data 

The performance of the two new algorithms was evaluated and compared with the 

simulated annealing (SA) strategy method, flexible-shape scan statistic (FlexScan), and 

spatial scan statistic (SaTScan) before applied to the south Texas data. The simulated data 

consisted of a tessellation of approximately 300 hexagon component areas (Figure 13). 

These hexagonal areas had the same size. It was assumed that populations were 

homogeneously distributed, and that each hexagonal area had an equal population (1000 

persons) subject to disease risk.  The areas falling in a synthesized cluster were assumed 

to have a high risk rate of 0.5% (5 cases /1000 person) while areas outside have a low 

 Advantage Disadvantage Favored Situation 

MLF 

• results might be more 
significant with higher 
LLRs 

• it is faster than NGG when 
there are few clusters 

 

• it is hard to control when most 
clusters have relative similar 
LLRs 

• only the cluster with the 
highest LLR is kept into the 
next search 

• data containing 
few extreme 
clusters 

• small number of 
units 

 
NGG

• the maximum number of  
candidate cluster is 
controllable 

• it is simple to be 
implemented 

• the search procedure will 
continue until it reaches the 
criteria 

• large number of 
units 
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risk rate of 0.2% (2 cases / 1000 person). The comparisons were based on five different 

scenarios: a compacted cluster, a ring-shape cluster with regular patterns, an elongated-

shape cluster, a strange-shape cluster, and a two-shape cluster with irregular patterns. 

 

 

 

 

 

 

 

 

 

 

Figure 13. The simulated five cluster patterns for the performance test. 
 
 

Figure 14 shows the most likely and secondary clusters detected by the MLF, 

NGG, SA, FlexScan, and SaTScan. Our methods, both MLF and NGG, and SA 

performed better than the FlexScan and SaTScan methods. Obviously, the SaTScan only 

performed very well on the compact regular cluster, achieving the same LLR and p-value 

as other methods (Table 3). However, as the pattern became less regular or less compact, 

the performance of SaTScan became unsatisfied. The worst performance was found in 

the two-cluster pattern, with the largest p-value (0.998) and the smallest LLR value 

(2.627). The FlexScan method did not perform well in situations involving the ring shape 

or two-cluster shape with small LLRs (7.165 and 6.599) and large p-values (0.836 and 
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0.954). The possible reason is that the FlexScan method tries to search for the nearest 

neighbor; this strategy would trap the search at a location since most of neighbors in the 

ring and two-cluster patterns are far away from each other. For the extreme irregular 

shaped patterns, two sub-clusters were detected by the SaTScan with a much less LLR 

value (9.143) than that of the MLF (32.513). With the two-cluster  

 

 

 

 

Figure 14. The first line shows the most likely and secondary clusters detected by the 
spatial scan statistic and the second line shows the most likely and secondary clusters 
detected by the maximum-likelihood-first method. 
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pattern, the secondary cluster shows much weaker in the SaTScan method with a larger 

p-value (0.998) and a smaller LLR (2.627). These results indicate that SaTScan and 

FlexScan are not appropriate in catching clusters with irregular shapes. 

 

Table 3. The comparison between the MLF method, NNG method, SA method, Tango’s 
FlexScan method and Kulldorff’s SaTScan method using the synthesized data 

 

 

 

Clusters   Observed # Expected # LLR p-value 
MLF 95 41.646 27.396 0.001 
NNG 95 41.646 27.396 0.001 

SA 95 41.464 27.396 0.001 
FlexScan 95 41.646 27.396 0.001 

Compact shape 
 

SaTScan 95 41.646 27.396 0.001 
MLF 90 39.273 26.083 0.001 
NNG 90 39.273 26.083 0.001 

SA 90 39.273 26.083 0.001 
FlexScan 32 15.273 7.165 0.836 

Ring shape 
 

SaTScan 128 80.730 13.756 0.001 
MLF 50 21.010 15.069 0.001 
NNG 50 21.010 15.069 0.001 

SA 50 21.010 15.069 0.001 
FlexScan 30 12.606 8.866 0.432 

Long shape 
 

SaTScan 28 16.810 3.202 0.993 
MLF 115 51.343 32.513 0.001 
NNG 115 51.343 32.513 0.001 

SA 115 51.343 32.513 0.001 
FlexScan 65 29.020 17.477 0.003 

 45 20.091 11.877 0.081 
SaTScan 86 49.110 12.425 0.001 

Extreme shape 
  

  35 15.630 9.143 0.024 
MLF 70 30.970 19.367 0.001 

  35 15.485 9.343 0.016 
NNG 70 30.970 19.367 0.001 

 35 15.485 9.343 0.016 
SA 70 30.970 19.367 0.001 

 35 15.485 9.343 0.016 
FlexScan 70 30.970 19.367 0.001 

 25 11.061 6.599 0.954 
SaTScan 78 39.820 15.470 0.001 

Two-cluster 

  28 17.700 2.627 0.998 
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A further comparison was performed among these methods using the benchmark 

real disease data. The data were collected from 11 states and the District of Columbia in 

the Northeast US from 1988 – 1992, consisting of 58,943 deaths from breast cancer 

among women. Figure 15 shows the most likely clusters detected by MLF, NGG, SA, 

FlexScan, and SaTScan methods and Table 4 summarizes these results. For the most 

detection methods, the most likely clusters had significantly lower p-values (≤ 0.01) and 

high LLR values (Table 4). Based on the p-value and LLR values, it was concluded that 

MLF is the most accurate method for detecting clusters with arbitrary shapes, followed in 

decreasing order by SA, NGG, FlexScan, Elliptic SaTScan, and Circular SaTScan. 

 

Table 4. A comparison of the MLF method, NNG method, Duczmal’s SA method, 
Tango’s FlexScan method, and Kulldorff’s SaTScan method using the benchmark data 
 

 

 

 

 

Note: # means number; LLR means log-likelihood ratio. 

 

 

 

 

 

SaTScan  MLF NGG SA FlexScan Circular Elliptic
Population 29,535,210 
Total case 58,943 
Observed # 17,002 17,743 15,122 6,980 21,039 15,122 
Expected # 14,166 15,383 12,988 6,005 19,734 12,988 
LLR 237.24 85.97 227.11 84.11 44.95 44.71 
p-value 0.001 0.001 0.001 0.001 0.01 0.001 
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Figure 15. The most likely cluster in the benchmark real disease data detected by MLF, 
NGG, SA, FlexScan, and SaTScan. 
 

 

 

 

 
 
 
 
 
 
 



70 
 

 
 

5.3.2. Detection of Cluster with Arbitrary Shapes 

 The spatial distribution of murine typhus in the south Texas from 1998 – 2008 

was identified using the new neighbor-expanding approach developed in this study and 

traditional SaTScan, FlexScan, and SA methods. The most likely clusters and the 

secondary clusters detected by the methods are showed in figure 16 (MLF), Figure 17 

(NGG), Figure 18 (SA), Figure 19 (FlexScan), Figure 20 (Elliptic SaTScan), and Figure 

21 (Circular SaTScan). Both the most likely clusters and the secondary clusters detected 

by these six methods are highlighted. 

 

Figure 16. The most likely cluster and the secondary cluster detected by the MLF method 
at the census block group level. 
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Figure 17. The most likely cluster and the secondary cluster detected by the NGG method 
at the census block group level. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18. The most likely cluster detected by the SA method at the census block group 
level. 
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Figure 19. The most likely cluster and the secondary cluster detected by the FlexScan 
method at the census block group level. 
 

 

Figure 20. The most likely cluster and the secondary cluster detected by the Elliptic 
SaTScan method at the census block group level. 
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Figure 21. The most likely cluster and the secondary cluster detected by the Circular 
SaTSCan method at the census block group level. 
 

 

 
Table 5. Results of cluster analysis of the Murine Typhus case in south Texas from 1996 
to 2000 at the census block group level 
 

 

 

 MLF NGG  FlexScan  SaTScan  SA 
Most Likely 

Cluster 
Secondary 

Cluster 

  

Most 
Likely 
Cluster 

Seconda
ry 

Cluster 

Most 
Likely 
Cluster

Seconda
ry 

Cluster

Most 
Likely 
Cluster

Seconda
ry 

Cluster Circular Elliptic Circular Elliptic

Most 
Likely 
Cluster

Secon
dary 

Cluste
r 

Population 1,728,393 
Total case 391 
LLR 186.43 9.33 197.51 6.15 42.95 36.95 97.60 124.69 6.67 6.49 177.15 N/A
# of zones 71 11 94 1 16 9 127 121 27 3 164 N/A
Observed # 142 12 167 3 30 25 145 138 2518 6 220 N/A
Expected # 18.96 2.53 26.5 0.15 3.01 2.37 33.54 28.99 6.69 0.87 50.5 N/A
p-value 0.01 0.25 0.01 0.32 0.01 0.01 0.01 0.01 0.42 0.74 0.01 N/A
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As shown in the figures, all the most likely clusters found by the algorithms are 

significant with a p-vaule of 0.01 and high LLR values. The LLR value of the most likely 

cluster detected by the MLF algorithm (186.43) and NGG algorithm (197.51) are slightly 

higher than that of the SA algorithm (177.15) and significantly higher than that of the 

FlexScan method (42.95) and Circular SaTScan (97.60) (Table 5). The number of most-

likely clusters detected by the NGG method (94) is obviously larger than that from the 

MLF method (71) while the number of secondary clusters detected by the NGG method 

(1) is much less than that from the MLF method (11). A possible reason for this result is 

the design of the algorithm itself. Instead of finding the maximum value in the candidate 

cluster, the NGG algorithm keeps expanding to its neighbors by selecting multiple 

candidates as seeds for subsequent steps. This procedure will surely lead to a wide 

distribution of the most likely clusters. Another significant difference found in the NGG 

algorithm is the shape of detected clusters. Although the distribution of detected clusters 

is very similar, it was found that the shape of clusters detected by the NGG algorithm 

(Figure 17) is more irregular than that from the other three algorithms. The potential 

reason is the same: the algorithm keeps expanding to its neighbors by selecting multiple 

candidates as seeds for next steps. Since we did not incorporate any penalty function to 

restrict neighbor expanding, it will influence the direction of the search and the power of 

the NGG algorithm significantly (Duczmal et al. 2006). 
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5.3.3. Spatial Distribution of Cluster and Socioeconomic Factors 

An examination of Figures 16-21 reveals that the presence of the most likely 

clusters is mainly distributed in the coastal counties, particularly in Nueces County. 

Caused by two organisms, Rickettsia typhi and R. felis [Azad 1990], murine typhus is 

easily carried and transmitted by small mammals such as mice, domestic cats, and 

opossums and the associated fleas. Theoretically, the spreading of murine typhus requires 

a warm and humid environment. This is probably why most of the detected clusters are 

distributed in the coastal area.  

The distribution of population and related environmental problems might be the 

reasons responsible for clustering of the cases. Figure 22 is the population density at the 

census block group level. Of the total 1,068 census blocks in the study area, half of them 

(534) have more than 1,000 persons per square kilometer. Most of these density 

populated counties are found in the eastern coastal region and in the southern area. The 

large cities in the southern area are the city of McAllen and Brownsville, and the largest 

city in the eastern coastal region is Corpus Christi. Not surprisingly, these large cities 

with high population densities are the major seating area of the detected most likely 

cluster and secondary clusters in this study. In the MLF method, there are 71 census 

block groups detected out as the most likely cluster and 66 of them (92.96%) had 

densities higher than 1,000 persons per square kilometers; 42 of them (59.15%) had 

densities higher than 2,000 persons per square kilometers (Table 6). A similarly high 

percentage could be found in FlexScan (100%), Circular SaTScan (91.34%), and Elliptic 

SaTScan (90.18%). 
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 The similarity between the distribution of cluster patterns and the environmental 

factors can be found for all the cluster detection results. Most of reported cases are found 

in urban areas with very high population densities. Usually, the high density population 

brings problems, such as increasing amounts of urban garbage and commensal rodents. 

These will also increase the likely exposure of opossums, a peridomestic animal, to the 

cat fleas and rickettsial pathogens due to their frequent visiting of human habitation to 

search for both food and harborage (Wen and Kedem 2009). Moreover, the high 

population densities also enlarge the number of household pet, which is another common 

host of cat fleas. Besides the rats and mice, the cat flea is easily switched from the 

parasitized cats and opossums to other animals of the same size. 

 

 

 

 

 

 

 

Figure 22. The population density at the block group level 
 

 

Figure 22. The population density at the census block group level. 
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Table 6. Relation between the number of most likely cluster and areas with high 
population density 
 

Density > 1000 Density > 2000 
 # of cluster # of cluster Percentage 

(%) # of cluster Percentage 
(%) 

Max-First 71 66 92.96 42 59.15 
Non Greedy 94 77 81.91 44 46.81 

SaTScan 127 116 91.34 67 52.76 
 

 To further verify and explain the detected cluster patterns, four other 

socioeconomic factors were collected and analyzed at both county level and census block 

group level: median household income, the rate of population with their poverty status 

below poverty, median house built year, and median value of owner-occupied house 

units. Nueces County, with the majority of the most likely clusters, has a relative higher 

median household income ($35,959) and median house value ($70,100) than the average 

value (median household income $27,026 and median house value $48,467) for all 18 

counties. Driven mainly by tourism and the petrochemical industry, the main economic 

support of Nueces County depends upon its largest coastal city, Corpus Christi, which 

also drives the development of related commercial real estate and other industries. 

For the socioeconomic analysis at the census block group level, the location and 

distribution of the most likely clusters detected by MLF, NGG, SA, FlexScan, Elliptic 

SaTScan, and Circular SaTScan within Nueces County (Figure 23) and the associated 

socioeconomic data (Table 7) were illustrated. Compared to the average value of all 

block groups within Nueces County, the median household income and house value of 

the ‘clustered’ census block groups are obviously lower than those in other block groups. 

Meanwhile, the poverty rate of this ‘hot spot’ area is relatively higher than the average 

poverty rate in all of Nueces County. All these data indicate that the detected cluster 
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patterns agree with the socioeconomic distribution which plays a critical role in the 

transmission of murine typhus. It is also likely that other information, such as the habitual 

environment of human and city animals, as well as transmission among people, may be 

critical in tracking the transmission model. This would be another interesting topic of 

future research if ancillary data can be obtained in the future. 

 

Figure 23. The most likely cluster detected within the Nueces County. 
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Table 7. Socioeconomic data of the most likely cluster within the Nueces County 
 

The block groups in the most like cluster detected by Socioeconomic 
All 

block 
groups MLF NGG SA FlexScan Elliptic 

SaTScan 
Circular 
SaTScan 

Median house income ($) 35,959 31,167 30,469 33,521 26,427 28,419 30,580 
Poverty rate (%) 18 21 19 19 24 26 23 

Median house built year 1967 1958 1919 1963 1953 1957 1959 
Median house value ($) 70,100 58,857 63,074 63,648 49,363 56,033 58,048 

 

 
5.4. Conclusion 

 There is an important difference among the performance of traditional SaTScan, 

FlexScan, SA, and the two algorithms (MLF and NGG) introduced in this chapter. 

Kulldorff's method tries to search the maximum likelihood ratio using a predefined 

geometrical shape (circle or ellipse) while the FlexScan method searches for the nearest 

maximum. For most circular-shape clusters, the spatial scan statistic method will promise 

fast and efficient cluster detection in many applications. That is why this method is 

popular in providing an initial analysis for most cluster studies. The two new algorithms 

make it easy to find out the exact location and boundaries of clusters with arbitrary 

shapes. Moreover, by adopting the idea of global-optimization strategies, the two new 

algorithms reduce the effects of the local maximum problem by searching for the global 

maximum of the likelihood ratios at each step.        

 Comparing the detected clusters from the two new algorithms and those from 

SaTScan, FlexScan, and SA, we found the performance of the neighbor-expanding 

method has been significantly improved in the cluster with arbitrary shapes. However, the 

computation time of the NGG algorithm was much longer than that of the MLF 

algorithm. This might be caused by the no-constraint rule when the NGG selects the seed 
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to detect the next level cluster in the search process. Without any penalty on the shape of 

the result, the NGG allows more detected clusters than the MLF and SA. One possible 

solution for this problem is to set the degree allowing irregular shape in the detected 

cluster according to some appropriate criteria, minimizing the occurrence of false 

clusters. Or the post-process of the entire detected result should be conducted after cluster 

analysis to remove the highly irregular ones. But this solution will require more detection 

time and expert knowledge in selecting an appropriate threshold.      

 One of the most critical components of environment epidemiology is to estimate 

the associations between human exposures and health outcomes (Nuckols et al. 2004; 

Ozkaynak et al. 2008). In order to further understand the etiology of a disease, it is 

necessary to explore the proximity, frequency, and magnitude of potential environmental 

hazards and their effects to humans. Obviously, this cluster analysis will help understand 

the geographic distribution of murine typhus in Texas. From this cluster analysis, it can 

be concluded that the most likely cluster of murine typhus is mostly distributed in warm 

and humid areas – notably eastern Nueces County along coastal Texas. Moreover, at the 

census block group level, most of the detected clusters (> 80% or 90%) are in high 

population density areas (population > 1000 per square kilometer) with lower household 

incomes and home values. These findings prove that the distribution of murine typhus is 

controlled by both environmental and socio-economic factors.   

 The choice of scale/resolution in cluster analysis deserves some attention. In most 

of case studies, it is preferred to choose a resolution small enough to represent most 

disease distribution in a relatively homogeneous area. Furthermore, the spatial 

aggregation of areal data may change the pattern of disease and bring some difficulty in 
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validating the results due to effects of the modifiable areal unit problem (MAUP). A 

possible solution to this problem involves performing the cluster analyses at different 

scales of area units to estimate the effects of MAUP and this issue will be addressed in 

future research. If possible, it would be much better to conduct an analysis of scale effect 

before conducting a cluster analysis. The choice of scale/resolution for specific cases or 

specific diseases at different regions should be treated differently. Although there is no 

specific rule to follow, users of the algorithms should be very familiar with the 

characteristics of the disease in question as well as the study area before the cluster 

detection is conducted.  
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CHAPTER 6 

VISUAL EXPLORATION OF MULTIVARIATE ENVIRONMENTAL HEALTH 

DATA: DETECTION OF LINE CLUSTERS  

6.1. Introduction 

 One critical component of environmental epidemiology involves estimating the 

associations between human exposures to environmental hazards and health outcomes 

(Nuckols et al. 2004; Ozkaynak et al. 2008). To further understand the etiology of a 

disease, it is necessary to explore how human exposure to different environmental 

hazards would impact human health. Different environmental hazards can be represented 

by different variables. Therefore, it is quite critical to identify the clustering of multiple 

variables in relation to a disease and this topic will be the focus of this chapter.  

 In an attempt to gain insights into complex multivariable data, a number of 

interesting statistical techniques have been proposed. These techniques include local 

indicators of spatial association (LISA) (Getis and Ord 1996), spatial autocorrelation 

analysis (Goodchild 1985; Griffith and Arnrhein 1991), multidimensional scaling (Cliff 

et al. 1981; Cliff et al. 1995), and trend-surface analysis (Unwin 1975; Gesler 1986). 

Many of these spatial analytical techniques, combined with GIS tools, have been 

successfully used in epidemiology and health research (Moore and Carpenter 1999).

With the advance in computer technology, graphic and computational 

methodologies have been developed with the purpose of exploring complex structural 
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relationships among spatial data. Most of early graphic tools, such as scatter diagrams 

and bar charts, have shown their advantage in exploring one or two variables in two-

dimensional Euclidean space (Chou, Lin and Yeh 1999). However, these traditional tools 

are very difficult to display or to use in exploring multiple variables or data with more 

than three dimensions. As an alternative technique, visualization plays a critical role in 

revealing hidden information about the structures or patterns of spatial data. 

Among the visualization methods, parallel coordinate plot offers an excellent tool 

for exploring the complex interrelationships among multiple variables. Proposed by 

Inselberg (1985) as a tool for computational geometry (Miller and Wegman 1991), this 

technique has been applied to data exploration (Bolorforoush and Wegman 1985), cluster 

identification (Chou, Lin, and Yeh 1999), and data visualization (Klemz and Dunne 

2000). Labeling each axis as one variable, the parallel coordinate plot connects points on 

the adjacent parallel axes using straight lines. This technique overcomes the weakness of 

traditional Cartesian plots since there is no limitation on the number of dimensionality 

while the Cartesian plots can only represent the data on two orthogonal coordinate axes 

(Miller and Wegman 1991). However, the parallel coordinate system analysis has one 

major limitation: it does not offer any type of statistic measure as regressive techniques to 

identify or assess the relationships among variables. This problem is more obvious when 

the size of data becomes very large with overplotting occurring within the scatterplots. 

Klemz and Dunne (2000) suggested more traditional conclusive research techniques 

should be performed after an analysis using the parallel coordinate visual. Miller and 

Wegman (1991) constructed line densities for parallel coordinate plots to display raw 

data with a density plot for applications involving large datasets. Johansson et al. (2005) 



84 
 

 
 

proposed a high-precision texture method to represent the cluster characteristics of 

parallel coordinates displays.  

In this chapter, a new line cluster detection technique was developed and 

combined with the visual exploration technique, parallel coordinate plots, to reveal the 

spatial relationship between two variables in multivariable datasets. The line cluster 

detection technique is based on Kulldorff’s spatial scan statistic to investigate the 

structure of clustered line segments in parallel coordinate plots. The major contribution of 

this study lies in developing a new method for displaying and revealing line structures 

within high density parallel coordinates plots. Building upon existing techniques, this 

study brings together new visual exploration technique and spatial statistical analysis. 

The potential application of this methodology is to detect the impact of environmental 

hazards on the identified disease as well as to indicate the potential exposure distance for 

each of these individual hazards. 

 

6.2. Methodology  

 The methodology section includes two parts. The first part describes how to 

generate a parallel coordinate plot to display the relationship among multiple variables. 

The second part presents the statistical method used to interpret the different types of line 

cluster patterns.   

 

 6.2.1. Parallel Coordinate Plots    

 The parallel coordinate plot method was designed to visualize N-dimensional data 

in a R2 Euclidean space (Inselberg 1985). Historically, the statistical relation between 
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dependent and independent variables was interpreted by xy or xyz scatter plots (Figure 

24). This commonly-used method becomes impractical if the data has more than three 

dimensions. In the parallel coordinate plot, the xy-Cartesian coordinates is replaced by N 

parallel axes labeled as X1, X2, and X3…. These axes are equidistant and perpendicular 

to the x-axes, all having the same orientation as the y-axes.  

 

 

 

 

   

                              A.         B.                  

Figure 24. Conversion of Cartesian coordinate system to a parallel coordinate system 
(Klemz and Dunne 2000). 
 
 In the traditional Cartesian coordinates, one point in the N-dimension space has 

coordinates (A1, A2, A3,…, AN). As a simple example, Figure 24A illustrates a point (3, -

2, 1) in the three-dimensional xyz-Cartesian system. When the dimension number of data 

increases, it is difficult to display them in the same plane. Using the parallel coordinate 

system, the coordinates convert into the vertices (i, Ai) in the parallel coordinates on the 

X1, X2, X3,…, Xn while i = 1, 2, …, N. The sample example is illustrated in Figure 24B. 

It is obvious that the parallel coordinate plots can display N-dimensional Cartesian points 

using simple line segments.    

  In this study, parallel coordinate plot was adopted to represent the multivariable 

data. Unlike the parallel coordinate plot in which each observation is represented by an 

unbroken series of line segments, only a line segment will be ploted when both of the two 
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consecutive variables have non-null values. As shown in the following picture, there are 

segments between AB, DE (red solid line in Figure 25) while no line segment exists 

between BC and CD since C has a null value in my source data. The blue dash line is 

used in the Figure 26 to represent the virtual segments. 

 

 

 

 

Figure 25. Line segments used to represent the non-null variable and null variable. 
  

After visualizing the multivariable in the dataset, the proposed cluster technique 

was applied to the line segments to identify the line pattern within these multiple 

variables.  

 

 6.2.2. Representing Line Cluster Characteristics Using the Spatial Scan Statistic   

 A modified spatial scan statistic was applied to analyze the visualization result, 

through the following three major steps: 

 First, a set of various-size rectangles was generated as scan windows (Figure 26) 

to cover the whole set of line segments. These rectangles have their widths measurements 

which are either equal to or multiples of the distance of two consecutive variables along 

the x-axis and various vertical lengths.  The number of line segments in any rectangular 

scan window were counted and used in the next step. 
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Figure 26. Procedures of the proposed method. 
 

Secondly, the likelihoods of each rectangular scan window were calculated based 

on the number of line segments. Based on the theory from Kulldorff’s spatial scan 

statistic, the likelihood ratios were calculated based on two particular models: the 

Bernoulli model and the Poisson model. The following notations and equation were used 

in this chapter. Let Z be the set of rectangular scan windows, µ(G) represent the number 

of all possible line segments (red solid line segments and blue dash line segments). For 

instance, in the above Figure 26, there are four line segments: AB, BC, CD, and DE. Let 

nG denote the total number of observed line segments (red solid line segments), µ(z) 
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stands for the number of all possible line segments in zth scan window, and nz be the 

observed number in zth scan window. Moreover, p is defined as the probability that an 

incidence falls in the zth scan window, q as the probability that an incidence falls in the 

rest of the study area, and p, q as the numbers between 0 and 1. Now it can be tested 

whether the specific scan window z is a cluster. The null hypothesis is H1: p=q, z є Z and 

the alternative hypothesis is H0: p>q, z є Z.  The former represents that the probability is 

constant for all scan windows while the latter stands for the probability that an incidence 

in scan window z is different from the probability that any incidence outside the scan 

window z. 

For scan window z, the likelihood function based on the Bernoulli model can be 

expressed as the follow formula: 
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Therefore the likelihood ratio λ(z) can be obtained as a quotient by dividing the 

observed likelihood by the expected likelihood:  
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           Another likelihood ratio test is based on the Poisson model as presented below: 
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 After calculating the likelihood ratios for all scan windows using the set of 

formulas based on either one of the two models, the most likely cluster can now be 

identified by searching for the scan window with the maximum likelihood ratio.   

 The last step is to test the statistical significance. The significant of likelihood 

ratio λ(z) could be examined using the Monte Carlo simulation. Given the total number of 

observed line segments, the Monte Carlo simulation will distribute them randomly on the 

map under the null hypothesis. A larger number, N, of simulations, for example, 9999 

times, were performed. For each simulation, the likelihood ratio λ (z) of scan window z 

were calculated in the same way but using the simulated data. Then the number of 
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simulations, n, was calculated in which the simulated λ(z) was larger than or equal to the 

λ(z) obtained from the real data. The p-value can be estimated by n/(N+1). 

 

6.3. Results and Discussion 

6.3.1. An Initial Bi-variable Analysis 

 A regression analysis between every two environmental variables was analyzed 

using the matrix scatter diagram and the results show in Figure 27. The regression 

equation is shown with this symmetrical bi-variable matrix scatter diagram. Most of 

environmental variables are related to other variables and their R2 (coefficient of 

determination) is relatively high. The highest R2 (0.9896) is found between DWTSOLV 

(average dry weight of solvent) and DWTAHSO (average dry weight of aHsO). The 

second highest R2 (0.9608) is found between DWTARSOL (average dry weight of 

aromatic solvent) and DWTAHSO (average dry weight of aHsO). The least related 

hazards are DWTMETAL and DWTPAH with having the lowest R2 (0.5503).  

This scatter matrix diagram displays the relationship between each two variables 

very well by showing both the regression equation and coefficient of determination R2. 

However, this is not enough when more variables are involved such as to identify the 

impact of multiple environmental hazards on the identified disease cases. The 

relationship interpreted by the scatter matrix diagram only implies the co-occurrence of 

two variables, without identifying the relationships among these multiple variables. 

Second, this bi-variable analysis can only explore the relationship between each two 

variables while in the real world it would be possible to involve multiple dimensional 

data. The scatter matrix diagram method limits the impact from other variables by only 
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considering two variables one time. In this research, we performed a further analysis 

using an advanced visualization technique and Kulldorf’s spatial scan statistic to detect 

the spatial patterns for the potential research on the co-impact of multiple variables.  

 
Figure 27. The scatter matrix diagram showing the bi-variable relationship. 
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6.3.2. Parallel Coordinate Plots 

The parallel coordinate plots (PCP) method was adopted in this chapter to 

investigate the relationship among multiple variables. Figure 28 shows some initial 

results. In Figure 28, the x-axis is the variables and the y-axis is the distance between 

each identified case and all variables. In order to visualize the relationship between any 

two chemicals, all possible combination of every two variables is listed in the x axis. It 

can be easily found that the high density areas of lines are between variable 3 (average 

dry weight of solvent) and variable 5 (average dry weight of aromatic solvent) which is 

also the second highest correlation in the scatter diagram. The lowest line density is 

found between variable 1 (average dry weight of metal) and variable 2 (average dry 

weight hydrocarbons) which correlates least as a pair in the matrix scatter diagram. This 

match further validates the results from both matrix scatter diagram and parallel 

coordinate plots.    

 

 

 

 

 

 

 

 

 

Figure 28. The line segment plots. 
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Generally, the major contribution of PCP is twofold. First, this technique offers a 

new insight into the data structure without the extensive training in mathematics or 

statistics. This convenience offers a simple and practical tool to explore the complex data 

relationships in high dimensional data. Moreover, this technique helps gain insights into 

complex structures of multivariate data in large size without knowing the expected 

relationships among them. However, when there are a large number of cases, the “over-

plotting” problem is unavoidable and it is very hard for us to perceive any structures or 

trends. 

 In this research, the Kulldorf’s spatial scan statistic method was modified and 

applied for line displaying in the parallel coordinate techniques. Originally used for point 

data, this modified method still follows the neighbor-expanding idea when searching the 

cluster pattern of lines (Figure 29) and gradually expanded for each plot. The lines 

completed inside the search square were counted and calculated using equations (1)-(5). 

The result is illustrated in Figure 30. The darker the color of the scan window, the higher 

LLR value this window has. Obviously, the higher LLR (likelihood ratio) is found 

between variable 3 and variable 5 and the lowest LLR is found between variable 2 and 

variable 4. This result is very close to that found in the bi-variable analysis using matrix 

scatter diagram. 
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Figure 29. A subset of randomly selected scan windows. 
 

 

 

 

 

 

 

 

 

 

Figure 30. The set of scan windows containing significant line clusters. 
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Table 8. The first five highest LLRs between DWTSOLV and DWTARSOL 
 

 

 

 

 

A further analysis was conducted on plots with each combination of every two 

chemicals as consecutive variables plotter on the diagram. The statistic results show that 

the maximum LLR is found between variable 3 (average dry weight of solvent) and 

variable 5 (average dry weight of aromatic solvent) at a distance between 0.5 to 3.0 miles. 

This means that the highest co-impact distance between variable 3 and variable 5 is 

between 0.5 to 3.0 miles. Other high LLRs were found at distances of 3.5 miles and 4.0 

miles. The highest LLRs, representing the most effective co-impact distance between 

variable 3 and variable 5, are highlighted in Figure 30 and Table 8. The scale of 1-10 was 

used to categorize the combination of each two variables; category 7 (combination 

between variable 3 and variable 5) had the highest LLR and greatest distance 

combination among these variables. Table 8 shows the highest five LLRs and they are all 

found in category 7.   

 

 

 

 

 

Clusters Observed # Expected # LLR P-value 
7 596 62 829.54 0.001 
7 789 122 829.09 0.003 
7 688 89 826.69 0.012 
7 672 89 793.16 0.037 
7 867 159 788.862 0.053 
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Table 9. The first three high LLRs for each category 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  1: lines between metal and hydrocarbons;          2: lines between hydrocarbons and solvent;  
           3: lines between solvent and aHsO;                    4: lines between aHsO and aromatic solvent;  
           5: lines between aromatic solvent and metal;      6: lines between metal and solvent;  
           7: lines between solvent and aromatic solvent;   8: lines between aromatic solvent and hydrocarbons; 
           9: lines between hydrocarbons and aHsO;          10: lines between aHsO and metal.  
 

In order to find out the statistical significance of this cluster pattern analysis, the 

highest LLR for each two variables are listed in Table 9. It is easily noted that the most 

common distance range for all the categories falls between 1.0 to 4.5 miles. This means 

that within this distance, the highest co-impact from each pair of variables will occur. The 

high LLRs were found in category 7 (relationship between solvent and aromatic solvent) 

and category 6 (relationship between metal and solvent). The low LLRs were found in 

 Distance Range Obser-ved # Expec-ted # LLR P-value 
1.0 to 4.0 232 89 80.32 0.625 
1.0 to 4.5 276 121 73.82 0.649 1 
1.5 to 4.0 178 62 72.41 0.684 
1.0 to 4.0 255 89 103.83 0.458 
0.5 to 4.0 306 122 99.12 0.526 2 
0.5 to 3.5 246 89 94.37 0.593 
0.5 to 4.5 573 159 329.48 0.106 
1.0 to 4.5 488 121 320.49 0.129 3 
0.5 to 4.0 486 121 317.63 0.143 
1.0 to 4.5 453 122 268.93 0.182 
1.0 to 5.0 519 158 263.01 0.194 4 
1.0 to 4.0 377 89 260.50 0.207 
0.5 to 4.0 631 121 545.61 0.043 
0.5 to 4.5 721 159 544.45 0.065 5 
1.0 to 4.5 615 121 518.55 0.089 
0.5 to 4.0 737 121 735.38 0.023 
0.5 to 3.5 631 89 709.14 0.031 6 
0.5 to 4.5 815 159 689.49 0.036 
0.5 to 3.0 596 62 829.54 0.001 
0.5 to 4.0 789 122 829.09 0.003 7 
0.5 to 3.5 688 89 826.69 0.011 
1.0 to 4.0 264 89 113.62 0.432 
1.0 to 4.5 306 121 100.66 0.51 8 
1.0 to 3.5 198 62 94.85 0.586 
2.0 to 4.5 141 63 35.90 0.782 
2.0 to 4.0 104 40 35.58 0.799 9 
1.5 to 4.5 179 89 35.49 0.816 
1.0 to 4.5 422 121 230.84 0.239 
0.5 to 4.5 490 159 226.17 0.251 10 
1.0 to 5.0 490 159 226.17 0.251 
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category 9 (relationship between hydrocarbons and aHsO) and category 1 (metal and 

hydrocarbons). Many researchers have found that the relationship between the oral cleft 

and the exposure to solvents during pregnancy is significant (Holmberg et al. 1982; 

Laumon et al. 1996; Chevrier et al. 2006). Co-existence between the solvents will 

actually reinforce their impact; this is why the highest impact is found between solvent 

and aromatic solvent in this range of distance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31. The LLR trend for each category at increasing distance. 
Note: The category is the same as table 9; the starting distance is 0 miles. 

 

In order to identify the most significant distance and potential effects of co-impact 

distance among variable pairs, the LLRs for all categories were examined using scanning 

windows starting at 0.5 miles and ending at 5.0 miles. The results are shown in Figure 32. 

Obviously, the highest LLRs found in category 7 remain the same as the one shown in 

Figure 31. For most categories, the highest LLR is always found at 4 miles. These results 

indicate that the four-mile mark might be the distance having the highest influence from 

these multiple variables (chemicals). 
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(a) LLR values starting from 0.5 miles                                  (b) LLR values starting from 1.0 miles 
 
 

 

 
 
 
 

 

(c) LLR values starting from 1.5 miles                                      (d) LLR values starting from 2.0 miles                                       

 

 

 

 

 

 

(e) LLR values starting from 2.5 miles                                      (f) LLR values starting from 3.0 miles                                       

 
Figure 32. The LLR trend for each category at increasing distance starting from 0.5 
miles. 
Note: The categorizing range is the same as the one shown in table 9. 
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(g) LLR values starting from 3.5 miles                              (h) LLR values starting 4.0 miles                                       
 
 
 
 
 
 
 
 
 
 
 
 
    (i) LLR values starting from 4.5 miles                           (j) LLR values starting from 5.0 miles                                       
 
Figure 32. Continued 
 
 The LLR values from 1.0 to 5.0 at 0.5 increments for all categories are shown in 

Figure 32. For all distance intervals, the high LLRs are still found in category 7 with the 

highest one found in the distance from 0.5 to 3.0 miles. This result is consistent to the 

result we found in Table 8. Another interesting thing in these figures is that the LLR 

values in Figure 32 are not the highest LLR as expected. In the hypothesis, the highest 

impact would come from the closest variable/chemical, assuming the impact would be 

highest if two chemicals were very close to each other. However, most of the LLRs 

continue to increase even when the scanning windows start from 0.5 mile instead of from 

0 mile. Moreover, they increase as the searching scan window becomes larger than 3.0 
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miles and only decreases from 4.0 miles. This suggests that the highest impact from 

multiple variables is not always found in the closest proximity of these multiple variables. 

The possible reason might be the insufficient cases living close to the hazardous materials 

within 0.5 miles. In this study, the obvious threshold is found between 3.0 to 4.0 miles 

which appears to be the most dangerous place for the identified disease case in this study.  

 

 6.4. Conclusion  

 In this chapter, the spatial scan statistic method was adopted to reveal the 

structure in line clusters visualized by parallel coordinate plots. The method is the same 

as the one discussed in Chapter 5 by expanding neighbors as scan windows. An obvious 

result could be derived from the analysis: through testing the disease samples we have, it 

is very useful to detect the line cluster pattern to find out the relationship among multiple 

variables and the LLR values also could be used to test the significance of line cluster 

pattern. This method could be applied to identify the potential co-impact from multiple 

environment hazards and the most dangerous place with the highest impact from these 

hazards.  

 This research is based on two existing techniques—parallel coordinates plots and 

neighbor-expanding techniques—which is presented in Chapter 5. Our research results 

can be further improved in several aspects. First, it would be interesting to study whether 

advanced pattern analysis methods could be used to further reveal the “hidden” cluster 

properties. The spatial scan statistic method was originally developed for analyzing 

spatial point data instead of line distribution and it is not conclusive that this spatial scan 

statistic method is appropriate when applied to line data. It is still necessary to compare 
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and evaluate more sophisticated line cluster detection methods in more case studies 

before assuming the validity of spatial scan statistic method in linear patterns. 
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CHAPTER 7 

SUMMARY AND FUTURE WORK 

 This chapter summarizes the study by offering a discussion of the analysis along 

with a research summary. Both the limitations and potential contributions of this research 

are also discussed. After the research summary, the closing section provides a discussion 

of the directions of future work that could be built upon this research.  

 

7.1. Research Summary  

 The general goal of this doctoral research was to develop and examine a new 

method to automatically detect cluster patterns of arbitrary shapes in health data. The first 

research objective was to develop two algorithms for the cluster detection. Among the 

automatic detection methods, the spatial scan statistic model is one of the most-

commonly used methods. The major problem of this method lies in the usage of 

regularly-shaped scanning windows which limits its application to find geographic 

regions of general shapes where a cluster of disease concentrations may exist. A new 

neighbor-expanding approach is developed based on a maximum-likelihood-first 

algorithm and non-greedy growth algorithm. In addition, this method is evaluated using a 

dataset of murine typhus in Texas. The detailed algorithms were described in Chapter 5. 

By searching any arbitrarily shaped scan window, this neighbor-expanding approach was 

applied to detect the arbitrarily shaped cluster pattern of murine typhus in south Texas. 
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Comparing the detection results from the traditional spatial scan statistic, 

maximum-like-first method, and non-greedy growth algorithm, the maximum-like-first 

method performs better than the spatial scan statistic. The shape of detected objects 

affects the performance of the proposed non-greedy method; the computing time of the 

non-greedy algorithm is much longer than the other two methods. Unlike the other two 

methods, the non-greedy method allows more clusters detected with no constraints on the 

shape of detected shapes. All three methods imply that the detected most likely clusters 

are found in an area with high population density (with population density > 1,000 per 

square kilometer) as well as warm and humid environment along coastal Texas.  

Another research objective in this study was to ascertain the feasibility to apply 

the neighbor-expanding method, with the aid of visual exploration, to detect the line 

cluster patterns involving multiple variable analyses. Using the distance between the 

locations of identified disease incidences and the location of potential environment 

hazards, this research explores the potential of this proposed method to investigate the 

simultaneous impact of exposures to two containments in nearby environmental hazards 

for disease analysis.    

 

7.2. Limitations 

 There are several limitations in this doctoral research. One of the main limitations 

is the time-efficiency of neighbor-expanding methods since it tries to search all 

neighboring areas. Technically, this research is built upon the most popular cluster 

detection method, the spatial scan statistic method. Although the neighbor-expanding 

method improves the spatial scan statistic method for cluster analysis involving clusters 
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of arbitrary shapes and two variables, it still needs much improvement in time efficiency 

and accuracy. Therefore, these algorithms are not practical for large areas with huge 

volumes of data. Moreover, a detailed accuracy assessment was not undertaken for the 

line cluster analysis of this dissertation study since the spatial location was not available 

for each disease case, but this is still a necessary step for both methods in disease analysis. 

The accuracy is relatively high for point data; the linear data need more test and 

validation in the future.  

For the point disease data, the major limitation was that the locations of disease 

cases were the only useful information collected in the research area. The major transfer 

entities are small mammals such as domestic cats, mice, opossums and the fleas 

associated with them. It is very hard, if not impossible, to consistently determine the 

locations of these small mammals. Moreover, the movement of small mammals is very 

general and very hard to trace over a large geographic area. Because of the lack of 

information, the spatial distribution of mammals was assumed to be determined mainly 

by environmental factors. For this reason, only the population density was selected and 

studied for the impact analysis of environment.  

Another limitation was insufficient data for more fully accomplishing the second 

research objective. Based on the proposed method, further research on the etiology of 

disease will be a very interesting topic. However, the only available data was the distance 

between the locations of various environmental hazards and the locations of the cases. 

Although the disease may be caused by many factors, such as a patient’s age or a 

patient’s residential location, it was not possible to extend this research to a detailed 

analysis due to the lack of data. The correlation between the environment and individual 
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health reports should be analyzed first before we can perform significant evaluations 

concerning environment hazards. Further, some patients may have lived in several 

locations before they became sick. Due to the lack of this information, it was only 

possible to conduct the research as presented in this dissertation.  

    

7.3. Future Work 

 The methodology developed and reported in this research has many potential 

applications. Based on the results derived from this research, there are many potential 

studies that can be further explored. The algorithm and methodology development was 

the major focus of this dissertation. The major contribution is to determine how to 

improve the existing cluster detection methods. The inclusion of both pathology and 

environmental exposure was important for this research. Inclusion of other exposure 

assessments would help us understand the relationship between disease and 

environmental exposures. In the future, additional information about individual cases, 

such as a patient’s age, race, and health history would need to be involved in the cluster 

detection and pattern analysis.   

 Another future project would be the improvement of the algorithms. In order to 

apply it to a more general study, the algorithms still need more calibration and 

optimization with respect to both efficiency and accuracy. Both the maximum-likelihood-

first algorithm and non-greedy algorithm are step-by-step algorithms which make the 

whole process very slow. In the future, it would be much efficient if the simultaneous 

detections are introduced to detect several cluster centers at the same time or preselected 

by the detectors. This simultaneous detection would need higher computational power to 
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perform a quick search. Improved speed will make this technique more practical for 

cluster detection in large study areas with high volumes of data. 

 The multiple-year and cross-site tests would be an interesting topic in the 

future. More data would be collected to support tests covering multiple years and 

multiple sites. With other ancillary data, such as demographic data and environmental 

data, it is feasible to develop a sophisticated model to predict a potential cluster pattern. If 

there are a certain number of cases reported, this model could be used to predict a 

possible “hot spot” and provide timely warning alerting public health officials.   

 The development of more functions to calibrate the ambiguity and uncertainty 

associated with cluster detection and disease data is a fascinating topic. Most cluster 

detecting tests lack an easy and accessible technique for validating a model. A more 

efficient and accessible technique would not only allow a better understanding of cluster 

patterns, but also provide a certain confidence in offering the result to customers. Each of 

these assessments would provide valuable insight into the influence of data sources and 

detection methods related to cluster analyses. This type of useful information would 

likely have a significant influence on the design of cluster detection algorithms and the 

collection of ancillary data for cluster detection.  
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