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CHAPTER 1

INTRODUCTION

The spatial examination of the locations, movements and interactions of human 

societal characteristics is the driving force of cultural geography. Understanding place 

requires knowledge of not only the physical landscape, but the cultural attributes of the 

humans occupying that space. Since gathering demographic data can be a costly and 

time-consuming process, new tools providing alternative techniques for gathering socio

economic information are useful to those seeking an understanding of cultural processes.

Remote sensing is the practice of gathering information about an object or place 

without being in actual contact with the object or place in question. In practice, the term 

remote sensing is usually used to refer to satellite or aerial imaging of the Earth’s surface 

by collecting and examining reflectance or emittance in some part of the electromagnetic 

spectrum. Remote sensing has become a standard tool for studying distributions and 

monitoring processes in the physical landscape. This technology has also found broad 

applications in the monitoring and classification of human activities on, and 

modifications to, this landscape. But relatively little investigation has been conducted 

regarding the linkages between remote sensing and social factors.

There is, however, a growing recognition that a fundamental relationship exists 

between the patterns of reflectance manifested in remotely sensed data and the patterns of 

human behavior. Studies showing some promise have concentrated on examining the
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relationship between the spectral content of satellite imagery and socio-economic 

variables such as housing characteristics (Forster 1983; Eyton 1993), energy consumption 

(Welch 1980), quality of life (Lo and Faber 1997) and crime (Eyton forthcoming).

At large scales, these patterns are evident in the structures humans build and the 

manner m which they modify their environment. In other words, local urban 

characteristics are often reflected m the three-dimensional form or the length, width and 

height of structures that make up a city. Quantitative measures of this form, m terms of 

heights and such derivatives as slope and curvature, are also representative of this human 

urban landscape.

It is theorized that Light Detection And Ranging (LIDAR) measurements that 

produce detailed, high-resolution (approximately 1.5 meter) Digital Elevation Models 

(DEMs) of urban structures may be indicative of human behavior patterns and provide 

the basis for determining relationships between the morphometries of an urban landscape 

and the socio-economic characteristics of the local culture as expressed in the local urban 

morphometry.

Summaries of the social characteristics of an urban population are of paramount 

interest to politicians, planners, developers, marketers, and other decision makers. These 

parties have long relied on census data to evaluate local populations and formulate policy.

While the decadal census provides a wealth of information about the state of American 

society at different scales, the infrequent intervals at which these data are collected 

presents difficulties for demographers trying to keep pace with the rapid changes 

occumng in the modem urban environment. Estimated values are derived by the census 

bureau for intervening years, but an independent, objective source of data could
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corroborate these projected values. Gathering LIDAR data has a lower cost and requires 

less time than conducting a census or survey. Additionally, existing LIDAR datasets 

could be utilized to further minimize expenses. Though such laser altimetry data is 

currently collected only at irregular intervals for specific,projects or purposes, the 

availability of high resolution data and even repeat coverage is becoming more prevalent. 

And unlike a survey, the results of aerial surveys do not depend on the timely cooperation 

of human participants or their willingness to divulge information.

To test the veracity of this theory, a LIDAR data set representing a major portion 

of the city of Austin, Texas, was registered to block group level census housing data. 

Multiple regression analysis was performed to determine what correlation exists between 

the elevation values (heights) and derivatives that describe the city’s form and the 

socioeconomic values that depict the distribution of cultural processes.

Since different types of urban morphology have distinctive forms, LIDAR data 

and the features quantitatively represented therein should have a demonstrable 

relationship with the socioeconomic factors. Demographic data, such as housing values 

tend to cluster spatially on the landscape. The median housing values for a newly 

developed subdivision at the edge of a city are usually very different from an inner-city 

neighborhood of fifty-year-old tract housing. Likewise, city centers with densely packed 

streets and numerous parking lots or garages (see figure la), have different housing 

densities than sprawling suburban neighborhoods (see figure lb).

If a correlation can be shown to exist between socio-cultural factors and the

measurable form of a city, this could enhance understanding of the processes at work,



provide an important new supplemental source of objective data to demographers and 

help to further extend the tools of remote sensing into the realm of cultural geography.
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Fig. la. Central Austin streets lined with cars (Hillshaded DEM).

Fig. lb. Suburban residential development (Hillshaded DEM).



CHAPTER 2

BACKGROUND LITERATURE

The social and economic structures of cities have been the focus of intense 

scrutiny in the geographic realm. Human actions are indelibly linked to the 

environmental context m which they transpire. This creates complex patterns of form, 

both structurally and sociologically, within cities. The built environment, can be 

conceived as a manifestation of the attributes of the creators and occupants of urban 

space. Characterizations, both qualitative and quantitative, of this structural component of 

urban form have proven useful to urban geographers. Most of these representations have 

focused on only the two-dimensional components of cities. Three-dimensional, or height, 

measurements of landforms can provide various derivative measures of shape and 

volume. While a variety of remotely-collected information has been shown to correlate 

with the reflectances of urban targets, little research has been done to examine the 

connections between the morphometry (or measurable form) of an urban landscape and 

the socioeconomic characteristics of a city’s inhabitants.

Urban Demographics

The cultural patterns of cities are the results of a complicated milieu. Human 

actions are inherently affected by the spaces they occupy. Thomlmson (1969) notes that 

despite efforts to change the landscape and overcome spatial bamers, human attitudes
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and activities “are still closely associated with the spatial characteristics of the areas 

[they] inhabit” (Thomhnson 1969, 3). These actions, m turn, modify the original 

landscape creating a complex web of interactions between population attributes and form. 

Knox (1982) argues that “the built environment is to a large extent a product of the 

social, economic and technological conditions prevailing at the time of construction” 

(Knox 1982, 62). In other words, the constructed landscape and the resident population 

reflect and influence one another over time.

Complex urban demographic patterns result from the dynamic relations between 

humans and the built environment. At the neighborhood scale, these social factors can 

vary greatly (Golledge and Stimson 1997). Similarly minded individuals tend to group 

together, by choice or controlling factors, into communities reflecting their values and 

status. The unequal distribution of resources and talent lead to a disparity of opportunity 

within cities. “Patterns of differentiation m the economic and social fortunes of citizens” 

have emerged (Golledge and Stimson 1997, 72). The characteristics of a residential 

population will evolve to reflect changing economic and social realities.

Urban Structure

Cities develop complex and hierarchical internal patterns of orgamzation. Gamer 

(1970) sees a straightforward, systematic approach as the best way for characterizing 

urban areas. The patterns present, he argues, are best understood in terms of variations in 

the nature and density of land use. In this approach, the framework of a city may be 

viewed as “a surface of differing intensity and character of use” (Gamer 1970, 6). Such a



statistical surface allows for the modeling of density gradients, providing a valuable tool 

for the analysis of urban structure.

On the other hand, Southwarth and Owens (1993), in their exploratory study of 

development on the urban fringe of San Francisco, present a more dynamic approach to 

patterns of city structure in space and time. They examine the shape and direction of 

development throughout the twentieth century at three nested levels of scale. From the 

basic “skeletal” structure of streets, down to the size of lots and the presence or absence 

of roadside landscaping, they assert that neighborhoods reflect the prevailing values and 

attitudes of their developers and original tenants.

Urban Morphology

The study of city form was one of the earliest components of urban geography.

Qualitative descnptions of building form, or morphology, were the original way of 

describing cityscapes. “Morpholological studies are concerned, by convention, with 

variations in style, layout and function of buildings” (Knox 1982, 62). By their nature, 

such analyses contain a subjective component. Human characterizations such as land use 

or building function do not correspond to sharply defined classes or variables.

Descriptive accounts can help to portray the general pattern of built structure within a 

city, but do not allow for the accurate modeling of spatial variability.

In contrast, later methods have focused on a more quantitative approach to the 

representation of city form. Numerical datasets representing building extent, function, 

and shape are more appropriately employed for statistical analyses. Even so, such 

techniques have concentrated primarily on the two-dimensional aspect of city form,
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representing the footprint of structures and the growth of urban areas on a two- 

dimensional plane. The three-dimensional morphology represented by the form and 

volume of urban buildings has largely been ignored (Moore, 2002).

Few current studies of urban areas take into account the morphometric texture and 

volume of structural components. Grimmond and Oke (1999) did make use of detailed 

three-dimensional models of several North American cities in their study of aerodynamic 

flows in urban locales. But the focus of this research was the effect of such obstacles on 

physical processes such as wind patterns. The density, local variability, and volume of 

city structures was not considered.

Measures of Form

In raster datasets representing landform, values portraying the third dimension, or 

height, are traditionally stored in spatially relative rows and columns. These data sets, 

known as digital elevation models (or DEMs), may be used to extract representative 

measures of elevation and the derivatives slope and curvature. DEMs can also be used to 

create three-dimensional perspective views of the landscape. Increasingly, airborne laser 

altimetry is being used as a tool for the creation of detailed, highly-reliable DEMs (Flood 

2002). Unlike traditional DEMs, the original data collected from LIDAR sensors include 

values for the elevation of above-surface elements of the environment such as vegetative 

cover or buildings. Standard processing of LIDAR datasets includes procedures to 

remove such non-ground elements, but this portion of the data set contains accurate, 

high-resolution measurements of these features. Although this information is a hindrance 

to the creation of accurate landform surface models, in urban areas the structures and



landscaping contained in this layer of data represent a detailed model of the three- 

dimensional form including the human constructed components such as buildings and 

landscaping.

Remotely Sensed Data and Socioeconomic Variables

Past studies have demonstrated a connection between remotely-collected data, 

representing the structure of cities, and tabular demographic data. Housing characteristics 

have been shown to relate to the brightness values in aerial photography (Lo 1986). Since 

the nature of housing often controls certain factors of the outside appearance of the 

dwelling, such as size or roof geometry, this stands to reason.

In pioneering studies, Forster (1980, 1983) found that housing value and housing 

density could also be predicted from visible/near-infrared satellite imagery in an urban 

area, allowing for the convenient simultaneous assessment of large urban expanses. The 

usefulness of these techniques improves with the resolution of the sensing system. Eyton 

(1993) found a high correlation between frequency counts of cover types m a classified 

Landsat image and both the housing value and age of dwelling. He also found that cover 

type frequency datasets were useful “in multiple regression models to examine the 

relationships between urban measures and the heterogeneous patterns of urban cover 

types” (Eyton 1993, 117).

Similarly, Welch (1980) used regression to relate patterns of urban energy 

consumption to the volume of three-dimensional plots of brightness values derived from 

nighttime satellite imagery. He found a correlation between energy consumption patterns 

and image brightness for several urban areas of the United States. Again, this makes



sense. The nighttime illumination of urban areas would have a direct relation to the 

electricity consumption of the population.

Lo and Faber (1997) took a different approach, combining satellite-derived data 

with census variables to assess a quality of life index for Athens, Georgia. They found the 

complementary use of these disparate datasets to create a useful measure of lifestyle. This 

index was highly related to vegetative cover and green spaces.

In his recent study, Alexander Pfaff (1999) explored connections between land 

cover change in the Brazilian Amazon, as portrayed by satellite imagery derived 

measures, and demographic and socioeconomic factors of immigrants m determining 

rates of deforestation. He concluded that the use of demographic “spatially disaggregated 

information” would provide for the more effective linkages with high-spatial resolution 

imagery (Pfaff 1999, 41). In other words, smaller groupings of tabular descriptive 

information are necessary with finer resolutions of imagery.

Eyton (forthcoming) examined the relationships between Landsat satellite data 

and cnme variables. He found a high degree of correlation, reporting r values between 

.75 and .85. He concluded that a demonstrable link may exist between reflected radiation 

values, as characterized by frequency counts of classified cover type, and crime rates.

And finally, Seto and Kaufmann (2003) attempted to model the controlling forces 

of urban land use change by comparing features extracted from a series of high spatial 

resolution images with socioeconomic data for a rapidly urbanizing area of the Pearl 

River Delta in China. While they found some ambiguity m the causality of relationships 

between these variables, a statistically significant linkage was present.
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CHAPTER 3

STUDY AREA AND DATA

The Austin, Texas metropolitan area provides a dynamic environment for 

exploring the links between urban structure and socioeconomic data. Different 

neighborhoods throughout the city exhibit a variety of demographic characteristics and 

morphometric forms. Austin’s nature, physically and socioeconomically, presents an 

interesting test case for exploring correlations between these variables.

Site Location

Located along the Colorado River at the physiographic boundary of the Texas Hill 

Country and the Blackland Prairie, Austin is a growing metropolitan area with a 

population of more than one million. Originally founded as the capital city of the 

independent Texas Republic, Austin’s purpose as a civil and administrative center 

persisted after statehood. In addition to public administration, the presence of the 

University of Texas played a central role in the development and expansion of the area.

In the past few decades, the city has experienced a dramatic surge of growth related to 

high-tech research and infrastructure. Austin’s position along the Interstate 35 corridor, 

one of the main arteries connecting the United States and Mexico, plays an increasingly 

important role in the city’s growth.
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The late 1990’s witnessed a dramatic redevelopment of Austin’s central business 

district and the rapid growth of urban residential properties, accompanied by an influx of 

residents into the central city. Associated measures of housing value, age, and density 

provide a robust test case for exploring the intuitive connection between urban form and 

descriptive social data.

The Austin area also offers a complex mixture of styles, in terms of architecture 

and layout, from different eras. Neighborhoods included m the study area vary widely. 

The hills to the west of the city are covered with sprawling, recently-developed upscale 

housing. Closer in, more established neighborhoods populate the bluff overlooking the 

central city and the areas bordering the Colorado River immediately adjacent to the 

Central Business District. North and East of the inner-city are large areas of tract housing 

from the post-war era. In the central city core itself, apartments and high-rise 

condominiums predominate.

Geographic Representation

The primary data utilized m this project was a 1.5 meter resolution raster DEM 

produced from an airborne LIDAR instrument. This dataset was collected over central 

Austin, Texas on August 17th and 18th of the year 2000 for the Bureau of Economic 

Geology at the University of Texas.

An Optech ALTM 1225 laser altimetry system operating from a modified Cessna 

206 platform was employed to capture the data points (Smyth et al. 2001). The laser, 

operating in the near-infrared portion of the electromagnetic spectrum, is capable of a



vertical accuracy of 10 to 15 centimeters and horizontal spacing as close as 1 meter. In 

addition, an inertial measurement unit logged aircraft attitude information while a 

differential global positioning receiver computed absolute aircraft trajectory. Several 

characteristics were recorded for each pulse of the device including the timing for 

multiple returns and the associated intensity of each measurement.

For a given pulse, not all of the energy may return at the same time. Much of the 

energy might, for instance, encounter and be reflected by tree canopy, returning directly 

to the sensor. A portion of the light, however, may penetrate the cover and travel further, 

providing a second strong return signal from the time of reflection from the ground.

This study used “first return” data or elevations calculated from the length of time 

elapsed between an outgoing pulse and the initial return signal received at the sensor. The 

Bureau of Economic Geology transformed these irregularly spaced measurements into a 

gridded DEM using SURFER software.

Additionally, a standard 7.5 minute United States Geological Survey DEM of the 

study area was incorporated into the project to represent the local terrain of Austin. This 

30 meter dataset provides a generalized surface of local topography.

Block group level census data for the year 2000 was obtained from the United 

States Census Bureau for the Austin-San Marcos Metropolitan Statistical Area. Variables 

were chosen to provide a representative characterization of housing attributes for the 

study area. The variables used were number of rooms, number of single detached units 

per structure (or single family homes), year structure was built, and value for specified 

owner-occupied housing units. These measures are indicative of the size, density, age, 

and value of residential properties by census tract block group.



Data included in the project serve to characterize the three-dimensional form of 

the city, the landforms underlying the urban area, and the properties of residential 

housing by spatial unit. This provides a sociological and morphological snapshot of the 

city of Austin m the year 2000 for comparison and analysis.



CHAPTER 4

METHODOLOGY

A raster dataset of LIDAR elevation values for the study area was imported into 

ArcView GIS 3.2 and set to UTM coordinates. A vector overlay of United States Census 

Bureau census tract block group boundaries was acquired and reprojected into UTM to 

match. Four United States Geological Survey 7.5 minute quadrangle DEMs covering the 

Austin metropolitan area were also reprojected to UTM and merged into a single dataset 

using ArcView Grid Analyst.

After all the data had been converted to the same projection, coverages were 

clipped to match the extent of the LIDAR study area. A hillshaded map showing 

elevation-derived relative insolation values for the study area overlaid with census tract 

boundaries and table numbers was created to assist in feature identification (see figure 2).

Tabular census data for the year 2000 corresponding to the 121 census tract block 

groups in the study area were obtained from the United States Census Bureau. Variables 

representing the number of rooms per dwelling, number of single-detached dwellings per 

block group, year of construction and value were acquired and saved m table form. The 

data for number of smgle-detached dwellings was used directly. Average year of 

construction, average number of rooms and median value were calculated using simple 

mathematical formulae (see table 1).
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Fig. 2. Hillshaded full LIDAR dataset with registered census tract block groups.
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Table 1. Formulae for Conversion of Census Variables

Average value of dwelling (in thousands of dollars) = (7.5di + 12.5d2 + 17.5d3 + 22.5d4 + 27.5d5 + 
32.5d6 + 37.5d? + 45.0dg + 55.0d9 + 65.0dio + 75.0dn + 85.0dx2 + 95.0dX3 + 112.5di4 + 137.5dxs + 
162.5di6 + 187.5dn + 225.0d18 + 275.0d19 + 350.0d20 + 450.0d21 + 625.0d22 + 875.0d23 +
1125. +  d2 + d3 + d4 + ds + dg + d7 + d8 + d9 + dm + dn + d32 + dX3 + di4 + dis + dXg + dX7 +
di8 + di9 + d2o + d21 + d22 + d23 + d^)

where: di = number with value less than $10,000 
and d2 = number with value of $ 10,000 to $ 14,999
and d3 = number with value of $15,000 to $19,999
and d4 = number with value of $20,000 to $24,999
and ds = number with value of $25,000 to $29,999
and = number with value of $30,000 to $34,999 
and d7 = number with value of $35,000 to $39,999
and d8 = number with value of $40,000 to $49,999
and d9 = number with value of $50,000 to $59,999
and d10 = number with value of $60,000 to $69,999
and dn = number with value of $70,000 to $79,999
and dX2 = number with value of $80,000 to $89,999
and d]3 = number with value of $90,000 to $99,999
and di4 = number with value of $100,000 to $124,999
and d^ = number with value of $ 125,000 to $ 149,999
and di6 = number with value of $ 150,000 to $ 174,999
and dn = number with value of $175,000 to $199,999
and di8 = number with value of $200,000 to $249,999
and d29 = number with value of $250,000 to $299,999
and d20 = number with value of $300,000 to $399,000
and d2i = number with value of $400,000 to $499,999
and d22 = number with value of $500,000 to $749,999
and d23 = number with value of $750,000 to $999,999
and d24 = number with value of $ 1,000,000 or above

Average year home built = (99.5di + 96.5d2 + 92.0d3 + 84.5d4 + 74.5d5 + 64.5d6 + 54.5d7 + 44.5d8 + 
34.5d9)/(dx + d2 + d3 + d4 + ds + d̂  + d7 + d8 + d9)

where: dx = number of dwellings built 1999 - March 2000 
and d2 = number of dwellings built 1995 - 1998 
and d3 = number of dwelling built 1990 - 1994 
and d4 = number of dwellings built 1980 - 1989
and ds = number of dwellings built 1970 - 1979
and d6 = number of dwellings built 1960 - 1969
and d7 = number of dwellings built 1950 - 1959
and d8 = number of dwellings built 1940 - 1949
and d9 = number of dwellings built 1939 or earlier



Table 1. (continued)

Average number of rooms = (l.Odi + 2.0d2 + 3.0d3 + 4.0d4 + 5.0d5 + 6.0d6 + 7.0d7 + 8.0dg + 
9.0d9)/(di + d2 + d3 + d4 + ds + dg + d7 + dg + d9) /

where: di = number of dwellings with 1 room
and d2 = number of dwellings with 2 rooms
and d3 = number of dwellings with 3 rooms
and d4 = number of dwellings with 4 rooms
and ds = number of dwellings with 5 rooms
and d6 = number of dwellings with 6 rooms
and d7 = number of dwellings with 7 rooms
and d8 = number of dwellings with 8 rooms
and d9 = number of dwellings with 9 rooms or more

after Eyton (1993)



The vector census tract boundary file was converted to a grid. This new raster 

dataset was then exported from Arcview 3.2 as a binary grid file. The grid cells 

representing the aereal extent of this mask data were set to a unique value for each census 

tract block group, from 1 to 121. In other words, the grid cells comprising census tract 

block group 42 would each hold the value 42.

The 7.5 minute DEMs were resampled from 30 meter resolution to 1.5 meter 

resolution using a cubic convolution technique. This created a generalized surface of 

topographic features matching the LIDAR dataset in spatial resolution and extent. A 

discrepancy of vertical datums was noted between the two elevation models. A set of 72 

measurements of difference were sampled throughout the dataset for visible ground 

features which remained constant between the two dates of compilation. These points, 

referenced to x and y coordinates within the dataset, were used to create an error surface 

representing the differences in observed measurement. This correction or error surface 

was generated using multiquadric equations (Hardy 1971).

The individual grid values from this error surface were subtracted from the 

corresponding 7.5 minute USGS DEM values, effectively registering the two datasets to 

the same vertical scale. This new DEM, representative of the topography of the Austin 

area without the addition of above ground features, was then subtracted from the LIDAR 

DEM. This data processing was intended to essentially flatten the terrain of Austin, 

leaving only buildings, trees, and other human-influenced factors to be examined in the 

final operating dataset.

This final model, containing the elevations of city structural elements, was then 

processed into three further datasets. The first was a simple elevation model, containing



only observed heights. The second data set was a model of slope magnitude. Slope can be 

simply defined as the rate of change in elevation with respect to distance. The third model 

was a representation of curvature. Curvature is the rate of change of slope over distance. 

Curvature manifests itself as concavities and convexities on the landscape. A Laplacian 

measure of curvature was calculated using a bi-directional operator with a 4-point kernel.

Each of the three datasets was broken into twenty equal intervals based on 

distribution of the data. These categories were used to classify each of the datasets into a 

new representative raster file in Terra Firma. This resulted in three new files, one each 

for elevation, slope, and curvature, with the grid cells containing a class value from one 

to twenty. The mask file was then used to count, for the specific census tract block 

groups, the frequency of occurrence of each class. The measure created serves not only to 

count the number of occurrences of each class, but does so in the framework of a known 

aereal unit (i.e. census tract block groups).

This frequency-based contextual classification data was combined in a 

spreadsheet with the four chosen housing variables for data analysis. Linear regression 

analysis was conducted using SPSS software. For the 121 census tract block groups, each 

of the four variables in turn was used as the dependent variable in an individual linear 

regression, with the 20 elevation equal interval class counts acting as independent 

variables. The same four regression models were run using slope classes and curvature 

classes as the independent variables. Resulting r2 values (coefficients of determination) 

and adjusted r values were compiled in tabular form for comparison.

Specific census tract block groups representing high, medium, and low examples 

for median home value and number of single-detached dwellings variables were selected.



The mask file was used to extract the curvature data from these areas. These Laplacian 

curvature values were then mapped m classed-color form to assist m the visual 

interpretation and analysis of the data.



CHAPTER 5

RESULTS AND ANALYSIS

This study seeks to elucidate the connection between socioeconomic metrics and 

measurable three-dimensional form of a city. Such a demonstrable link could provide a 

better understanding of the way in which demographic patterns manifest themselves in 

the observable urban environment and help to illustrate the dynamic connections between 

built locational form and the lives of residents. The r2 and adjusted r2 values derived from 

linear regression analysis of census housing variables versus classed elevation, slope, and 

curvature data provide a systematic way of assessing the correlation between these 

seemingly-disparate factors.

Maps of single census tract block groups, representative of high, medium, and 

low values in the housing data, help to provide a window on patterns of form that are 

affecting the regression analysis. These close-up views of elevation or derivatives 

mapped to smaller neighborhoods show that the frequency-based contextual classification 

process highlights not only the occurrence of different classes, but encompasses relative 

measures of distribution between classes. The statistics are capturing not just raw 

numerical counts, but the variability of form (or sometimes the lack thereof) within a 

spatial unit.
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Measures of Correlation

All four measures of housing showed high degrees of correlation with elevation 

frequency counts as well as the other elevation derivatives slope and curvature. Average 

year constructed and average number of room variables showed the best results using 

simple elevation classes as independent variables. Average housing value and number of 

single detached dwellings, on the other hand, showed a very high relation to curvature 

frequency counts. Of 121 census tract block groups falling within the study area, 66 were 

either missing one or more of the census bureau housing variables or did not fall entirely 

within the LIDAR dataset. This left 55 valid census tract block groups as a sample.

The coefficient of determination values for regressions performed using elevation 

class frequency counts as independent variables showed strong results (see table 2). Not 

only were r2 values high, but adjusted r2 values (which attempt to account for possible 

over-determination by the use of too many independent variables) were also strong.

Using average housing value as the dependent variable, an r of .614 was recorded with 

an adjusted r2 of .398. Average year constructed had an r2 value of .688 and an adjusted r2 

of .513. Number of single detached dwellings had an r2 of .646 and an adjusted r2 value of 

.449. Finally, average number of rooms had an r2 of .709 and an adjusted r2 of .547. In 

other words, all 4 housing variables had coefficients of determination of .6 or above when 

regressed against simple classed elevation.

The slope class regression analysis, using 20 equal interval classes as independent 

variables, produced results differing from the classed elevation analysis. While r values 

for 3 of the 4 independent variables showed only minor variations, average number of 

rooms differed markedly—showing much less correlation. Average housing value



Table 2. Coefficients of Determination (r2)

Elevation Frequency Count Slope Frequency Count Curvature Frequency Count

Average Value .614 (.398) .685 (.560) .746 (.645)

Average Year Constructed .688 (.513) .571 (.401) .610 (.456)

Number of Single Detached Dwellings .646 (.449) .781 (.694) .872 (.821)

Average Number of Rooms .709 (.547) .412 (.180) .486 (.284)

------ ..., . , 2 „ ... x(adjusted r2 in parentheses)



returned an r2 of .685 and a moderately higher adjusted r2 of .560. Average year 

constructed showed a less robust .571 r2 and an adjusted r2 of .401. Number of single 

detached dwellings r2 increased to .781 with an adjusted r2 of .694. But average number 

of rooms showed a much weaker relationship to slope, with an r value of .412 and an 

adjusted r2 of only .180.

Curvature appears to provide the best measure of form. The results obtained using 

curvature classes as independent variables were high. Average housing value versus 

curvature class counts showed an r of .746 and an adjusted r of .645. Average year 

constructed had an r2 value of .610 (close to the observed elevation correlation) and an 

adjusted r of .456. Number of single detached dwellings had a coefficient of 

determination of .872 versus classed curvature frequency counts and an adjusted r of 

.821. Average number of rooms again had a lower r of .486 and an adjusted r of .284. 

But overall, curvature seems to be an excellent measure of form and a good 

morphometric representation for correspondence to housing variables.

Observed Relations of Form and Socioeconomic Variables

The height and form of structures and landscape features, m terms of elevation 

value and curvature, appear to have an important connection to census-collected 

measures of housing characteristics. Slope magnitude, although related, plays a lesser 

role. Elevation values are representative of the height of structures or trees above the 

local terrain. The frequency count of Laplacian curvature, on the other hand, serves as a 

measure of an area’s variability in human-mfluenced form and landscaping.



Variability in concavities and convexities over a given distance can be difficult to 

visualize at this scale. While 1.5 meters is a relatively high spatial resolution for terrain 

data, only one value of elevation and one value of concavity or convexity will be 

calculated for each 2.25 square meters. This captures only general trends in height, slope 

or curvature m an area, not necessarily specific features. An examination of classed 

Laplacian curvature maps for specific census tract block groups helps to clarify the 

factors at work.
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Housing Value

Curvature showed a high correlation with average housing value using linear 

regression. Census tract block group number 97, just west of Central Austin, has the 

highest average home value in the city, at $537,000. This block group shows high 

variability in curvature (see figure 3), which stands to reason. This is one of the oldest 

residential sections of the city, perched on a bluff covered with live-oak and elm. This 

tree cover shows up in the dataset as an almost constant variation in curvature. Flatter 

areas visible in the scene, showing less variation, are Enfield Road (running east to west) 

and portions of Pease Park and Shoal Creek (running north to south along the right 

border). Even the roofs in this neighborhood show a higher variability in curvature. This 

also makes sense. The architecture in this area is quite ornate and gabled roofs are 

common. Additionally, since this area predates planned subdivisions and is built on steep 

grades, the roads follow undulating paths and don’t exhibit geometric patterns. This area 

of high housing values, then, seems also to demonstrate significant variation in amounts

of Laplacian curvature.
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Fig. 3. Census tract block group 97 with high average home value.



Census tract block group number 71, south of the Colorado River in the Barton 

Skyway area of Austin, is representative of areas of moderate average home value for the 

city (see figure 4). This is also an older neighborhood, dating from postwar years. Here 

again the older-growth tree canopy makes for a varied texture. But this neighborhood 

bears the marks of more systematic planning. A regular pattern of streets can be seen 

running through the map in a grid pattern. The houses tend to be aligned in direction and 

similar in shape.

Census tract block group number 6 has a low average housing value. This block 

group covers a small neighborhood just off Airport Boulevard in East Austin. Again, this 

is an older neighborhood, in this case consisting of 1950s era tract housing. But curvature 

in this tract shows much less variability (see figure 5). Airport Boulevard runs down the 

left-hand side of the map, and the parking lots and roofs associated with the businesses in 

the area (mainly car rental storage facilities) are relatively flat. This is a trend seen 

throughout the city. Mixed-use areas generally have lower average housing values than 

exclusively residential neighborhoods.

Evidently a highly variable mixture of curvature classes, often representative of a 

thick tree cover, can serve as an indicator of high housing value. The three examples 

given here all focused on older developments. But there are reasons to believe the same 

may hold true for newer subdivisions as well. Expensive houses tend to be situated on 

larger lots, allowing for more landscaping and less disturbance of the vegetation during 

construction. In Austin, at least, many of the more valuable dwellings built in recent 

years are in the hills west of town on steep inclines. This makes for less geometric 

patterns of streets and more open areas (often the ravines between houses are too steep to
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Fig. 4. Census Tract block group number 71 with moderate average home 
value.
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Fig. 5. Census tract block group number 6 with low average home value



be built on). On the other hand, more moderately priced houses of recent origin are often 

built close together to make maximum use of the developer’s land, and vegetation is 

completely cleared to allow for easy, systematic construction. The correlation then, 

between curvature variation and average housing value seems to follow conventional 

wisdom.

Average Year Constructed

Calculations of average year constructed showed correlation with elevation, slope 

and curvature, but a simple measure of elevation achieved the best results. Elevation may 

show a correspondence with age based on two different factors. First of all, the trees, 

bushes, and other landscaping which comprise much of the topography of a 

neighborhood will expand in density and increase in height over time (at least to a point). 

Secondly, multilevel tract homes have only become popular in Texas over the past two or 

three decades. Before this, one-story ranch style homes predominated. But these factors 

would seem to be at odds with one another. One would expect higher elevation values in 

older neighborhoods stemming from vegetation, but also higher elevations in newer 

neighborhoods from multi-level structures. But since the regression is looking at the 

variability amongst 20 elevation classes, older neighborhoods would show a great variety 

of different elevations of tree canopy. On the other hand, in newer neighborhoods, most 

elevations would fall into a few distinct classes representative of ground surface, single- 

level structures, and multilevel structures. Although there may be many two-story houses, 

they would all tend to have the same height, so their roofs would fall into a single class. 

Again what seems to emerge is a pattern of more or less variation among the elevation

classes.



Number of Single Detached Dwellings 

The number of single detached dwellings per census tract block group also 

showed a high correlation with all 3 classed data sets—elevation, slope and curvature. But 

with an r2 value of .872, the curvature frequency count versus number of single detached 

dwellings coefficient of determination was particularly high. In other words the form of 

the city, in terms of the 20 Laplacian curvature classes, could explain over 87% of the 

variation in single family home count. An examination of relevant block group maps 

again helps to illustrate the process at work.

Census tract block group number 7, just east of Interstate 35 from the University 

of Texas, is a prime example of an area with a high number of single detached dwellings 

(see figure 6). These small tract homes, built in the 1940s and 1950s, are closely packed 

along a trellice pattern of streets. The most notable thing about this area is the lack of 

open space. The only areas showing any open space at all are the university maintenance 

facilities and apartments visible in the lower left comer of the map. The rest of the block 

group is filled with tightly packed, narrow residential streets. The well-developed tree 

canopy also covers parts of the roads, further complicating the modeled curvature.

Census tract block group 52, on the other hand shows wider streets and some 

open space (see figure 7). This area represents a medium count of single family homes, 

for Austin block groups. Like the previous area, block group 52 also lies just east of the 

Interstate, but incorporates more open space in terms of businesses and parking along the 

frontage road (left side of block group) and an elementary school in the lower left comer. 

This helps break up the density of cover within the spatial extent of the block group.
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Fig. 7. Census tract block group number 52 with moderate single detached dwelling 
count.



Census tract block group number 113 represents a low occurence of single family 

houses. This large tract running along Loop 1 in West Austin incorporates businesses, 

residential areas, as well as most of Zilker Park, a large urban park along the Colorado 

River (see figure 8). Certainly the large expanses of this block group covered by such 

relatively curvature-invariant features as polo grounds and soccer fields (upper right 

portion of the map), the river itself (upper border of the block group), and sprawling 

office developments with parking lots (center of tract) help explain the low count of 

single family homes. But this also gives some indication of why single detached 

dwellings are so strongly correlated with curvature. The regression appears to be 

sensitive to some ratio of open space to cover (vegetative or otherwise). This holds true 

whether the open space is a park, an elementary school, or a shopping mall parking lot. 

This stands to reason: the more space within a block group that is devoid of convexities 

and concavities, the lower the occurrence of detached dwellings.

Average Number of Rooms

The final housing variable, average number of rooms, shows a distinctly different 

pattern than the other variables. The coefficient of determination is much higher for this 

variable when regressed against elevation class counts than either slope or curvature. The 

other three variables seemed to respond to measures of form and shape in general. 

Number of rooms per home shows a much stronger connection directly with measured 

height. This may in part be due to the fact that this variable isn’t limited to single-family 

homes but also includes room counts for duplexes, townhomes, and condominiums as 

well. These larger and often taller structures may be affecting the results. Logic dictates
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that larger or taller structures will likely contain more rooms. The measure of elevation 

will be sensitive to the amount of space under a roof (or the amount of area enclosed). So 

not just form but volume makes itself evident in the linear regressions comparing housing 

variables with classed elevation, slope, and curvature.



CHAPTER 6

SUMMARY AND CONCLUSIONS

Like a fingerprint, each city or urban expanse has a unique morphological 

signature. But these urban traits aren’t merely random structural noise. The patterns of 

streets, houses, and even landscaping on the urban surface appear to serve as a 

manifestation of a city’s residents and their characteristics.

Remote sensing has been used successfully in the past to demonstrate the links 

between socioeconomic characteristics and the two-dimensional structure evident in 

reflectance values. Three-dimensional form is then a logical extension of the search for 

the underlying nature of these relationships. The connections between these remotely- 

sensed morphometric properties and real world data are two-way. The structures and 

connections of neighborhoods influence the lives of residents. Yet those same residents 

reshape the dynamics of the cityscape on a daily basis.

While frequency counts of contextually-classed elevation and slope data show a 

strong connection between structure and census-derived housing indicators at the block 

group level, curvature classes seem to provide an even more sensitive measure of urban 

form. The convexities and concavities of Laplacian curvature are useful for discerning
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vegetation cover, an especially strong indicator of housing variables such as average 

value. Curvature class counts can also establish the ratio of open space to land cover 

within a given spatial unit. Frequency counts of classed data, whether derived from 

elevation, slope or curvature, provide a measure of the variability of form inside a given 

area. This can be conceived as a measure of texture for the urban environment.

LIDAR-derived data provides an alternative method of depicting the 

characteristics of the city, at a different scale and from a different viewpoint than what 

many planners may be familiar with. The strong correlation between this morphometric 

representation of the city and housing data such as size or value can assist government 

officials, planners and policy-makers in recognizing and understanding urban trends. Not 

only does it help to confirm pre-derived census measures, it also provides a quantitative 

representation of the built physical (and by extension social) structure of the city. 

Dynamic processes such as shifting housing values, urban sprawl, and gentrification 

make themselves evident in frequency-based contextual classification maps of built form. 

The unique perspective afforded by LIDAR-based city models helps to demonstrate these 

patterns and elucidate the forces at work within the context of the constructed urban 

environment.

Given a demonstrable connection between tabular data collected at the census 

tract or block group level and the three dimensional form as represented in a raster 

elevation model, several directions for further research are possible. This research was 

conducted in only one location for one period of time. Further research is warranted to 

determine if the same relationships discovered in Austin would hold true for other cities



or over significant periods of time. Could a shift m demographics within an urban 

population witnessed over time be seen m the corresponding changes in city form?

Logic dictates that housing variables might have a noticeable effect on measured 

form, but what about other socioeconomic variables? Since housing value tends to be 

connected with other measures such as income or education, would these also show a 

strong relationship to urban form? What about other variables that might have a spatial 

component influencing them? Could a regression analysis of, for instance, crime versus 

curvature give the police (and citizens) useful information about the urban morphology of 

dangerous places?

The morphometry of landscapes has long provided a means of characterizing and 

understanding the world around us. This usefulness m measuring form appears to extend 

beyond the modeling of physical processes at work on natural landforms to the social and 

cultural processes taking place on the three dimensional terrain of modem cityscapes. 

With slight adjustments to the scale of the form in question and the time required for 

processes to act on this new terrain, emerging technology allows for a greater 

understanding of the role of urban form in everyday life.
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