
REDUCING TRAINING COST AND IMPROVING INFERENCE SPEED

THROUGH NEURAL NETWORK COMPRESSION

by

Cody Blakeney, B.S.

A dissertation submitted to the Graduate College of
Texas State University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

with a Major in Computer Science
May 2023

Committee Members:

Ziliang Zong, Chair

Yan Yan

Tanzima Islam

Vangelis Metsis

COPYRIGHT

by

Cody Blakeney

2023

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief
quotations from this material are allowed with proper acknowledgement. Use of this
material for financial gain without the author’s express written permission is not
allowed.

Duplication Permission

As the copyright holder of this work I, Cody Blakeney, refuse permission to copy in
excess of the "Fair Use" exemption without my written permission.

DEDICATION

This dissertation is dedicated to my mother Sharon Frances Chapman Blakeney.

Here’s to making the world a brighter place. Sláinte!

ACKNOWLEDGEMENTS

First, I would like to acknowledge my wife, Bridget Blakeney, who not only stuck

by me over the past five years of this crazy journey but even decided to become Mrs.

Blakeney during this time.

I would also like to express my sincere gratitude to my advisor, Dr. Ziliang Zong,

for his guidance, support, and encouragement throughout the course of this research.

His expertise and valuable insights have been instrumental in shaping this thesis.

I also extend my thanks to the members of my thesis committee, Dr. Tanzima Is-

lam, Dr. Yan Yan, and Dr. Vangelis Metsis for their valuable feedback and constructive

criticism.

And finally, I want to acknowledge my good friends and colleagues Gentry Atkinson

and Keshav Bhandari for always lending me their ears over beers on matters academic

and personal. More than one of my publications during this time was born from the

seeds of these conversations. I certainly wouldn’t be here without their patience to

indulge my hair-brained ideas.

v

TABLE OF CONTENTS
Page

ACKNOWLEDGEMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . xi

ABSTRACT . xiii

CHAPTER

I. INTRODUCTION . 1

Dissertation Organization . 3
Contributions . 5

Understanding Pruning and Model Representations 5
Mitigating Bias in Pruned Networks With Knowledge Distillation 5
Block-wise Distillation and Its Efficient Parallelization 6
Efficient Training and Compression with Knowledge Distillation 6

II. IS PRUNING COMPRESSION? . 7

Introduction . 7
Related Work . 9
Singular Vector Canonical Correlation Analysis (SVCCA) 13
Pruning Methods . 14

Magnitude Based Pruning . 14
Post-Pruning Re-initialization 15
Random Sparse Initialization . 15

Experimental Results . 16
Is Unstructured Pruning Compression? 16
Does Pruning Work for Untrained Neural Networks? 20
Do Learned Sparse Structures Carry Important Information? . . 23

Conclusion . 25

III.BIAS MITIGATION WITH DISTILLATION 27

Introduction . 27

vi

Evaluation Metrics for Model Bias 28
Pruning Identified Exemplars . 29
Combined Error Variance . 30
Symmetric Distance Error . 31
Comparison between CEV/SDE and PIEs 32
Pruning Details . 33
Results . 33

Mitigating Bias with Knowledge Distillation 35
Data Induced Bias . 36

Explaining Model Bias Using Model Similarity 38
Related Work . 41
Broader Impact . 42
Limitations . 42
Conclusion . 43

IV.CRAFT DISTILLATION AND PARALLEL BLOCKWISE DISTILLA-

TION . 44

Introduction . 44
Craft Distillation . 46

Architecture Search . 48
Order of Layer-wise Distillation 50
Comparison to Structured Pruning 52

Parallel Blockwise Distillation . 54
Independent Blockwise Distillation 54
Parallel Blockwise Distillation 56

Experimental Result . 60
Hardware Configuration . 60
System Profiling Tools . 60
Training Details . 61
Speedup and Accuracy . 62
Impact of Load Balancing . 65
Energy Savings . 67

Conclusions and Future Work . 68

V. REDUCE, REUSE, RECYCLE: IMPROVING TRAINING EFFICENCY

WITH DISTILLATION . 70

Introduction . 70
Related Work . 73

vii

Knowledge Distillation . 73
Teacher Ensembling and Self-Distillation 73
Distillation in Language Models 74
Distillation for Stepwise Training Speedups 74

Methodology and Experimental Setup 74
Simple Distillation Setup . 76
Scheduled Distillation Setup . 77
Teacher Selection Setup . 77
Ensembling Setup . 78
Extended Distillation Setup . 79

Experimental Results . 80
Simple distillation improves efficiency in ResNet-50 but not BERT 80
Early-phase-only distillation is optimal for BERT but not ResNet-50 82
Sub-optimal models can be ideal teachers 84
Efficient teacher ensembling via random selection 86
Extended distillation achieves state of the art on ResNet-18/34 . 87
Matryoshka Distillation . 88

Discussion . 89

VI.CONCLUSIONS . 92

Discussion and Future Research . 93

REFERENCES . 94

viii

LIST OF TABLESTable Page

2.1 Accuracy of single pass Pruned Models on CIFAR-10 21
2.2 Accuracy of single pass Pruned Models on CIFAR-100 21
2.3 Accuracy of Iteratively Pruned Models 23
3.1 Knowledge distillation methods and corresponding abbreviations 32
3.2 CIFAR100 class sample rate and mean class top-1 accuracy for original

dataset (Org) and down-sampled dataset (Bias) pruned at 45% sparsity. 36
3.3 Average SVCCA distances at each block and CEV/SDE results on biased

CIFAR100 dataset . 39
4.1 RMS Loss, Top-1 Accuracy, and Fine Tuning Top-1 Accuracy results of

different replacement architectures. 50
4.2 Results of Different Replacement Strategies 51
4.3 Comparison to L1-norm based Filter Pruning [1] 51
4.4 Individual layer comparison to L1-norm based Filter Pruning 53
4.5 Summary of Notations . 55
4.6 Speedup and Efficiency of ResNet and VGG on CIFAR10 (Single AMD

Server - Bin Packing Scheduling) . 62
4.7 Speedup and Efficiency of ResNet and VGG on CIFAR10 (Distributed

Cluster - Work Stealing Scheduling) 63
4.8 Speedup and Efficiency of ResNet on ImageNet (Single AMD Server -

Bin Packing Scheduling) . 63
4.9 Speedup and Efficiency of ResNet on ImageNet (Distributed Cluster -

Work Stealing Scheduling) . 64
4.10 Comparison of Top-1 Accuracy on CIFAR10 & CIFAR100 64
4.11 Comparison of Top-1 Accuracy on Imagenet 65
4.12 Greenup of ResNet on CIFAR10 . 68
5.1 Shared Training hyperparameters for teacher models and students. . . . 76
5.2 Training hyperparameters used for teacher models. 76
5.3 Results of hyperparameter sweep of teacher models on both ResNet-50

ImageNet and BERT on C4 and KD 80
5.4 Results from Early Stopping KD for ResNet-50 Trained on ImageNet. . 83
5.5 Results from Early stopping on BERT trained on C4 84

ix

5.6 Accuracy and runtime duration of distilled models when accounting for
the total cost of training . 87

5.7 Comparison of Distillation and other state-of-the-art resnet results . . . 89

x

LIST OF FIGURESFigure Page

2.1 Overview of proposed approach. 8
2.2 Similarity distributions for Pruned Magnitude ResNet-34 as compared to

the original model. 17
2.3 Similarity of 90% sparse ResNet during retraining 18
2.4 Similarities of VGG layer by layer at different sparsities resulting from

iterative pruning . 19
2.5 Similarity distributions for Post-Pruning Re-initialization and Random

Sparse Initial ResNet-34 as compared to the original model. 23
3.1 PIEs may represent noisy or confusing data (e.g. image (a) is hard for

humans to classify). 29
3.2 Accuracy, PIEs, CEV, and SDE results and comparison 34
3.3 Scatter plot of normalized false positive and false negatives rate (FPR/FNR)

change for different distillation methods on CIFAR100 35
3.4 Normalized FP/FN Rate Change for distillation methods on biased

CIFAR100 dataset . 37
3.5 Scatter Plot of Combined Error Variance Plotted against SVCCA Dis-

tance at each layer output with regression line overlaid 39
4.1 System level overview of parallel blockwise distillation 44
4.2 Overview of the craft distillation process 47
4.3 Candidate Replacement Layer Architectures 49
4.4 Overview of the parallel blockwise distillation process 57
4.5 Comparison of ResNet speedup when using fixed or variable number of

threads to preprocess data. 65
4.6 Comparison of VGG16 speedup when using Round Robin or Bin Packing

to schedule layers. 66
5.1 ResNet-50 trained on ImageNet with vs. without distillation 81
5.2 Wallclock comparisons of individual GLUE tasks 83
5.3 Quality vs. wall-clock-time when training with vs. without knowledge

distillation in ResNet50 and BERT. 85
5.4 Wallclock time vs. accuracy plots for distilling ResNet and BERT using

teachers with lower accuracy . 86

xi

5.5 Pareto curve comparing single model distillation, multi-model distillation,
and randomly sampling teachers . 88

xii

ABSTRACT

As AI models have become integral to many software applications used in

everyday life, the need for ways to run these computationally intensive applications

on mobile and edge devices has grown. To help solve these problems, a new research

area of neural network compression has emerged. Techniques like quantization,

pruning, and model distillation have become standard. However, these methods have

several drawbacks. Many of these techniques require specialized hardware for

inference, reduce robustness to adversarial examples as well as amplify existing model

biases, and require significant retraining done in a time-consuming iterative process.

This dissertation explores several shortcomings in model compression, how to

address them, and ultimately provides a simple, repeatable recipe for creating

high-quality neural network models for inference. It shows that model pruning is not

a true compression process, and in fact, pruning causes model representations to

change such that they are as different as a new model trained at random. It explores

how pruning can cause unwanted effects of pruning and how knowledge distillation

can be used to mitigate these effects. It demonstrates how model compression for

more accurate fidelity to the original can be achieved while also deconstructing it into

a highly efficient and parallelized process by replacing sections of the model in a

block-wise fashion. Finally, it examines how knowledge distillation can be used during

the training process such that it both improves training efficiency, amortizes the cost

of hyper-parameter searchers, and can provide state-of-the-art compression results.

xiii

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated remarkable success in various

challenging tasks in natural language processing, speech recognition, and computer

vision. These networks have been widely adopted to support a range of powerful

applications, including machine translation of social media messages into multiple

languages [2, 3], enhancing image previews [4], providing virtual green screen

backgrounds for video conferencing, and facilitating the capture of

professional-quality photographs by amateurs [5, 6].

Recent advances in generative models, such as chatGPT [7, 8] and Text-to-Image

generation with diffusion models [9, 10], suggest that we are on the cusp of another

transformative revolution in this field. However, DNNs of the past decade, and those

of the future, are known to be computationally intensive, memory-intensive, and

power-hungry, making them difficult to deploy on edge devices such as mobile phones

and IoT equipment. Furthermore, training DNNs requires significant resources.

Therefore, it is critical to developing compression techniques that can significantly

reduce the computation, size, and power consumption of DNNs, to facilitate their

deployment on resource-constrained systems and reduce the cost of compression

training.

Currently, the state-of-the-art compression techniques for DNNs can be broadly

classified into three categories: (1) Quantization [11, 12, 13, 14], by far the most

widespread, which reduces the memory footprint and computation demand of DNNs

by representing each weight using a smaller number of bits. (2) Network pruning,

which includes unstructured pruning [15] and structured pruning [16]. Both aim to

eliminate unimportant weights in a DNN to reduce its size and computation demand.

The difference is that unstructured pruning sets unimportant weights to zero

arbitrarily, while structured pruning can remove entire kernels or filters when

1

necessary. (3) Knowledge distillation [17], which typically distills the knowledge

learned from a large, complex teacher model (or an ensemble of models) to a simpler

student model with less computation, smaller size, and similar accuracy.

However, current compression techniques have several drawbacks:

1. Training time: training time for compressing models is significant.

• Pruning generally requires retraining done in an iterative process, which

is both time-consuming and energy-intensive. This can account for 20-40%

of the entire training budget [18].

• Knowledge Distillation, on the other hand, requires that after first

having trained a larger model (or models), you must now train from

scratch a new smaller model (or student). Loading of the model or

ensemble of the models can slow the training time anywhere from 30-200%

as these models generally take more time to complete the forward pass

than the student model.

Since many machine learning models are trained often to respond to shifts in

data distribution, the running time and energy consumption of these

compression methods are also critical to consider.

2. Specialized Hardware: Many techniques, like unstructured pruning and more

extreme quantization, require specialized hardware to run or realize speed up.

3. Quantization: Arguably, the most successful compression methodology is

quickly approaching the limits of what is possible. Most models are already

trained in 16-bit, 8-bit training is soon becoming standard [19], and the

literature points to 4-bits as the extreme limit of what is possible without a

significant reduction in quality [20, 21]. It is unlikely that this trend will

continue to provide significant savings in the future.

2

4. Abundant Compression Choices: The design space for selecting an

appropriate model and compressing it to a level suitable for specific deployment

hardware is extensive. The field of neural architecture search has emerged to

address the systematic design of efficient neural networks. However, the

computational demands of these techniques are significant, limiting their

implementation to only a select few organizations with substantial

computational resources.

Dissertation Organization

The chapters of this dissertation consist of four comprehensive studies that

explore and address the challenges outlined above. These studies were conducted in a

way that builds on the findings of the previous studies, allowing for a deeper

understanding of model compression and the potential solutions that may be effective

in addressing them.

• Chapter I summarizes the motivation and major contributions of this

dissertation.

• Chapter II shows that model pruning is not a true compression processes [22].

This study investigates the effectiveness and limitations of unstructured neural

network pruning to reduce large neural networks’ size and computational

demands. We study three unstructured pruning methods and use the Singular

Vector Canonical Correlation Analysis (SVCCA) to analyze the layer

representations of pruned and original models. We show that model

representations change significantly during the pruning and retraining process,

and pruning should not be viewed as a neutral compression process.

• Chapter III explores how pruning impacts the implicit bias of models, how to

measure the impact, and how knowledge distillation can be used to mitigate

3

these effects [23, 24]. After establishing that pruning is more than a neutral

compression process, this study examines the bias introduced into neural

networks when performing model pruning and how to mitigate it. It

demonstrates that knowledge distillation can effectively mitigate induced bias in

these networks, even when working with unbalanced datasets. The study also

finds that model similarity has strong correlations with bias in pruned neural

networks, which can be used to explain the occurrence of bias in these networks.

• Chapter IV examines an alternative to structured pruning and traditional

knowledge distillation via block-wise distillation for replacing individual

components of a neural network [25]. It then demonstrates this process can be

deconstructed into highly parallelizable tasks [26]. This approach has the

advantage of loading only a portion of the network graph into memory, making

the knowledge distillation significantly more energy and resource-efficient. It also

presents scheduling and system adjustments that can be made such that these

individual jobs scale well at both the single-node and distributed system levels.

• Chapter V investigates how distillation can not only compress models, but also

accelerate the training of deep neural networks. It explores the distillation of

same-sized models and how doing so can amortize the training cost of

hyper-parameter sweeps, which allows for more efficient training of models of

any size while also achieving SOTA performance on "compressed" models. The

effectiveness of this methodology has been evaluated using both vision and

language tasks.

• Chapter VI summarizes this dissertation and discusses future work for efficient

deep learning.

4

Contributions

Understanding Pruning and Model Representations

1. This study shows that pruned neural networks evolve to substantially different

representations while still maintaining similar accuracy, suggesting that pruning

is not a passive compression process without learning new knowledge.

2. It demonstrates that initialized sparse models can achieve good accuracy,

overturning the conventional wisdom that models must be first trained in full

capacity before they undergo pruning.

3. It finds that sparsity structures discovered by pruning are not inherently

important or useful, suggesting that new methodologies can be developed to

speed up the pruning/training process by training models with some amount of

sparsity from the beginning.

Mitigating Bias in Pruned Networks With Knowledge Distillation

1. This study demonstrates that knowledge distillation can mitigate bias and

improve accuracy in pruned neural networks, especially when working with

unbalanced datasets.

2. It introduces the Combined Error Variance (CEV) and Symmetric Distance

Error (SDE) metrics for evaluating bias in compressed neural networks.

3. It provides evidence that model representation similarity (as measured by

SVCCA) is correlated with bias in pruned neural networks, providing

motivation for future knowledge distillation research.

5

Block-wise Distillation and Its Efficient Parallelization

1. This study develops a parallel blockwise distillation algorithm that performs

independent blockwise distillation, using depthwise separable layers as an

efficient replacement block architecture and addressing limiting factors that

affect parallelism.

2. It achieves 3x speedup and 19% energy savings on VGG distillation, and 3.5x

speedup and 29% energy savings on ResNet distillation without compromising

accuracy.

3. It further improves the speedup of ResNet distillation to 3.87 when

implemented on a distributed cluster with four RTX6000 GPUs.

4. It creats a more efficient and generalizable student model through the use of

independently trained replacement blocks and an optimized replacement block

architecture.

Efficient Training and Compression with Knowledge Distillation

1. This study demonstrates that training with distillation is almost always more

efficient than training without distillation, even when using the poorest-quality

model as a teacher, in both ResNet-50 and BERT.

2. It acheives state-of-the-art (SOTA) distillation performance for ResNet-18 and

ResNet-34.

3. It achieves a training speedup of 1.96x in ResNet-50 and 1.42x on BERT when

evaluated on GLUE.

6

II. IS PRUNING COMPRESSION?

Introduction

Nowadays, deep artificial neural networks have undoubtedly become the most

promising method in solving many challenging computer vision problems [27, 28].

However, the model size and parameter space of successful deep neural networks are

typically massive, which prevents them from being deployed on edge-devices (e.g.,

mobile phones) with limited resources.

To address this problem, pruning has been studied extensively in the literature

[29, 30, 31, 32, 33, 34] as an effective technique that can significantly reduce

theoretical model size, computation demand and energy consumption of large neural

networks without compromising accuracy. The key idea of pruning is to eliminate or

mask non-essential components (e.g., less important neurons or negligible weight

values) of a deep neural network. Exemplary pruning methods include the early work

presented by [35] and a more recent work by Han et al. [30]. Since then, a variety of

pruning methods, such as parameter pruning and sharing [30, 31, 29], low-rank

factorization [36, 37, 38], and compact convolutional filters [39, 40], have been

published (ref. Related Work for details). Despite all this progress, our fundamental

understanding about pruning is still in its infancy. For example, existing pruning

theories and techniques tend to agree with the following hypotheses:

• Hypothesis 1: Pruning is an iterative compressing process. It compresses the

original model to a subnet and the representation of the original network

remains similar, which is why a pruned network can achieve similar accuracy as

the original network.

• Hypothesis 2: A complex model needs to be trained first before it can be

pruned. Models with sparsity at initialization are unlikely to succeed.

7

Figure 2.1: Overview of proposed approach.

• Hypothesis 3: Once a deep neural network is pruned and recovered to good

accuracy (after retraining), its pruned model structure and weights carry

important information and should help improve models trained from scratch.

As more pruning methods being developed, it is time to rethink if these

hypotheses that are derived from previous research and practices still hold true and

ask the following fundamental questions about pruning. Do the pruned neural

networks contain the same representations as the original network? Is pruning truly a

compression process? Does pruning only work on trained neural networks? Do we

really need sophisticated pruning strategies? What happens if sparsity is chosen

randomly?

This chapter strives to answer these questions. Specifically, we analyze three

fine-grained pruning methods (magnitude based pruning, post-pruning

re-initialization, and random sparse initialization). In our experiments, the Singular

Vector Canonical Correlation Analysis (SVCCA) tool [41] is utilized to study and

8

contrast layer representations of pruned and original ResNet [28], VGG, and ConvNet

[42] models. We find that: 1) Pruning is not a passive compression process without

learning new knowledge. Rather, the pruned model is capable of evolving proactively

to survive in a dramatically changed environment, which is done by learning and

transforming to more effective representations when aggressive pruning is occurring.

2) Models initialized with sparsity structures can achieve reasonably good accuracy

compared to well-engineered pruning methods. 3) Sparsity structures discovered by

performing unstructured pruning on models are not inherently important or useful.

Figure 2.1 illustrates the overview of our proposed approach. We first take an

original network (ResNet, VGG, or ConvNet) and prune it using magnitude based

pruning, post-pruning re-initialization, or random sparse initialization (ref. section 4

for details) at different sparsities respectively. The neurons’ vectors at each layer,

which are generated by Tensorflow during the training and pruning process, are then

stored and processed by the SVCCA analysis tool created by Google [41] (ref. section

3 for details). Lastly, the accuracy of different pruning methods and the similarity of

different representations are analyzed and presented in section 5.

Related Work

Deep neural networks have become extremely popular and been successfully used

in different applications recently. However, most designed neural networks in machine

learning and computer vision field [27, 28] focused on accuracy rather than efficiency.

There has been some work on reducing the storage and computation cost by model

compression. For example, Lecun Yann had done early work about pruning network

which has been investigated in the optimal brain damage work [35]. The basic idea is

that different neurons contribute differently in the network. The low ranking neurons

can be removed, which results in a smaller and faster network. Recently, Mariet et al.

[43] proposed to identify a subset of diverse neurons that do not require retraining to

9

reduce redundancy of the network. In this section, we first review the model

compression [44] from three aspects, i.e., parameter pruning and sharing, low-rank

factorization, and compact convolutional filters. Afterwards, we briefly discuss the

Lottery Ticket Hypotheses and the existing work to explore the nature of network

pruning.

Parameter Pruning and Sharing reduces redundant parameters which are not

sensitive to the performance. It can be used in both convolutional layers and fully

connected layers. Han et al. [30] proposed to reduce the total number of parameters

and operations in the entire neural network. Chen et al. [31] introduced a HashedNet

model that used a low-cost hash function to group weights into hash buckets for

parameter sharing. Lebedev et al. [29] imposed group sparsity constraint on the

convolutional filters to achieve structured brain damage. Zhou et al. [32] proposed a

group-sparse regularizer on neurons during the training stage to learn compact CNNs

with reduced filters. Magnitude-based weight pruning methods are computationally

efficient and scalable to large networks and datasets, which makes it become a

popular approach for network pruning. See et al. [33] showed that weight pruning

with retraining was a highly effective method of compression and regularization on a

state-of-the-art NMT system, compressing the model to 20% of its size with no loss of

performance. Narang et al. [34] proposed a technique to reduce the parameters of a

network by pruning weights during the initial training of the network. At the end of

training, the parameters of the network were sparse while accuracy was still close to

the original dense neural network. The network size was reduced by 8x and the time

required to train the model remained constant. Anwar et al. [45] introduced a

three-level pruning of the weights and locate the pruning candidates using particle

filtering, which selected the best combination from a number of random generated

masks. Polyak et al. [46] detected the less frequently activated feature maps with

sample input data for face detection applications.

10

Low-rank Factorization uses matrix or tensor decomposition to estimate the

informative parameters. It can be used in both convolutional layers and fully

connected layers. Rigamonti et al. [36] introduced learning separable 1D filter

following the idea of dictionary learning. Jaderberg et al. [37] proposed using different

tensor decomposition schemes to achieve double speed for a single convolutional layer

with 1% drop in classification accuracy in text recognition. Tai et al. [38] proposed a

new algorithm for computing the low-rank tensor decomposition for training low-rank

constrained CNNs from scratch.

Compact Convolutional Filters is to design special structural convolutional filters

to save parameters. The approaches can be only used for convolutional layers. Cohen

et al. introduced Group equivariant Convolutional Neural Networks (G-CNNs), a

natural generalization of convolutional neural networks that can reduce sample

complexity by exploiting symmetries. G-CNNs use G-convolutions, a new type of layer

that enjoys a substantially higher degree of weight sharing than regular convolution

layers. Zhai et al. [39] proposed doubly convolutional neural networks (DCNNs),

which significantly improved the performance of CNNs by further exploring this idea.

Instead of allocating a set of convolutional filters that were independently learned, a

DCNN maintained groups of filters where filters within each group were translated

versions of each other. Shang et al. [40] integrated CRelu into several state-of-the-art

CNN architectures and demonstrated improvement in their recognition performance

on the CIFAR-10/100 and ImageNet datasets with fewer trainable parameters.

Lottery Ticket Hypotheses and The Nature of Network Pruning. After the

renewed interest in pruning proposed by [30], many researchers have begun studying

what is happening during the process of pruning and how it works. A notable recent

work which focuses on unstructured iterative pruning [47] proposes the Lottery Ticket

Hypothesis which states "Dense, randomly-initialized, feed-forward networks contain

sub-networks (winning tickets) that - when trained in isolation – reach test accuracy

11

comparable to the original network in a similar number of iterations." These subnets

as the paper articulates have particularly lucky weights and connections such that

they are able to converge through gradient descent towards accuracies as better than

the model as a whole. The paper suggests that the effectiveness of deep learning is

due in part to the high number of weights and layers which increases the odds of

initializing some subnets within the model that can find some good local minima.

While the authors claim that it is a combination of both weights and connections that

make these "winning tickets", it is unclear to what role, the weights and connections

respectively, play. Our work tries to address more thoroughly on how network

topology affects accuracy and learned representations.

Another work [48] trying to explain the nature of pruning focuses primarily on

structured pruning. They find the resulting model architectures from the structured

pruning process are well suited for training from scratch. That is, the resulting

architectures (not the found weights) are useful. Their work suggests that structured

pruning can be considered as one type of neural network architecture search. The

contradictions between their findings and that from [47] show that there is a

fundamental difference in what structured and unstructured pruning algorithms do

with the original model.

Nevertheless, none of the prior work has studied the fundamental questions that

we asked previously. The lack of understanding about the nature of pruning, the

learned representations during the pruning and retraining process, and the trend of

developing more sophisticated pruning algorithms raises concerns to us. By exploring

these questions, this study is distinct from all previous work on neural network

pruning.

12

Singular Vector Canonical Correlation Analysis (SVCCA)

Most previous work has been focused on improving different pruning methods

without deep understanding about how network pruning really works. In order to

take a deep dive into the learning process, it is essential to understand what

representations are learned at every stage of training and pruning. Additionally, it is

critical to have a tool that can quantitatively compare two representations and

evaluate how similar or different they are. In this study, we leverage the Singular

Vector Canonical Correlation Analysis (SVCCA) tool created by [41] to compare and

analyze the learned representations of different layers. This section summarizes the

SVCCA process and briefly discusses how it functions.

In SVCCA, a series of activations of a neuron is treated as a vector and the

model’s layers are treated as subspaces that those vectors will span. SVCCA is able

to compare the learned representations of any two layers and tell whether or not they

have learned the similar or different representations. It does this by combining

Singular Vector Decomposition (SVD), which reduces the dimensions of layer

subspaces, and Canonical Correlation Analysis (CCA), which maximizes a projection

between the two layers that results in the highest correlation. This process allows

layers with different configurations of weights, neurons, biases and activation

functions to be analyzed. For a given dataset X = {x1, ..., xm} and a neuron i on

layer l the output of that neuron on the entire dataset is defined as the vector zli.

SVCCA takes input from two layers l1 = {zl11 , ..., zl1n1
} and l2 = {zl21 , ..., zl2n2

} where n1

and n2 are the number of neurons in their respective layers. SVD is performed on

each layer to get new subspaces l′1 and l′2 where l′1 ⊂ l1, l′2 ⊂ l2. Next, l′1 and l′2 are

linearly transformed to be as aligned as possible and correlation coefficients are

calculated. SVCCA outputs aligned directions (z̃l1i , z̃
l2
i) and how well they correlate.

The higher the correlation value ρi is, the more similar the two aligned directions are.

13

In this study, we primarily focus on the SVCCA similarity ρ̄. ρ̄ is the mean of

the ρi values from the top CCA directions and essentially describes how similar the

representations of two layers are with each other. The ρ̄ values can be used to observe

how the learned representations change overtime if similarties of layers are calculated

at different time steps. In other words, we use layer similarities as the metric to

evaluate the changes in learned representations as models undergo the pruning and

retraining process.

Pruning Methods

Despite various pruning methods published in the literature, we only evaluate

three unstructured pruning methods (magnitude based pruning, post-pruning

re-initialization, and random sparse re-initialization) in this study. They are carefully

selected to focus on answering the key questions about pruning: 1) do the

representations remain identical during the pruning and retraining process? 2) How

important is it to carefully design pruning methods? 3) How important is the

structure learned from the pruning process

Magnitude Based Pruning

The magnitude based pruning presented by [30] serves as the baseline method,

which first trains an original model to convergence, then prunes each layer by

removing the weights with the smallest absolute value until the desired sparsity is

reached, and finally retrains the pruned model to recover to a similar accuracy as the

original model. The important distinction between our method and Han’s approach

[30] is that pruning is done layer by layer (not globally on the whole model). We use

both an iterative and single shot pruning method, which aims to identify what

knowledge is carried over from the original model. We also omit pruning the final

fully connected layer as it represents only a tiny portion of the overall weights of a

14

model. We speculate that magnitude based pruning would result in the most similar

representations to the original model across layers.

Post-Pruning Re-initialization

The post-pruning re-initialization method makes copies of each magnitude based

pruned model, reinitializes the all variables, but keeps the mask from the magnitude

based method. In this way the topology of the pruned network is preserved and the

network is trained from scratch for the same number of epochs as the baseline model.

The post-pruning re-initialization method is specifically designed to find out: 1) how

much capacity is needed for training; 2) if restricting weights to a learned topology

will result in more similar representations to the original; and 3) if this topology

uncovered by pruning encodes important information about the original model and

helps improve models trained from scratch.

Random Sparse Initialization

To measure the efficacy of the post-pruning re-initialization method, we compare

it with a model initialized to the same sparsity where the pruned weights are chosen

at random. For each layer in the original model, we randomly prune an index from its

weights until the desired sparsity is reached. We then allow those models to train for

the same number of epochs as the baseline model. Random sparse initialization sheds

lights on how models can be taught when their capacity is reduced in perhaps the

least advantageous way possible. The random selection of weights ensures that it

cannot take advantage of any architectural structure advantage, and the process may

potentially remove important components.

15

Experimental Results

This section presents a series of experiments that are specifically designed to

answer the following key questions: 1) Is pruning truly a compression process? 2)

Does pruning work for untrained neural networks? 3) Do learned sparse structures

carry important information? For each question, we restate the hypothesis, explain

the detailed experiments, discuss the results, and finally draw our conclusions.

Is Unstructured Pruning Compression?

The conventional wisdom believes that pruning is merely a compression process,

in which the redundant information is removed and the key network structure is

preserved. In fact, almost all existing literature refer pruning as a compress technique

for neural networks. The recently published "Lottery Ticket Hypothesis" [47] claimed

that successfully trained large networks contain wining tickets from the beginning.

The winning tickets refer to the sub-networks that have connections and initial

weights that make training particularly effective. Therefore, the pruning process is

just a lucky draw that helps to find the wining ticket. If pruning is merely a

compression process, a neural network should learn none or minimal new knowledge

while being pruned. As a result, the learned representations among all layers and

models should have very high similarities (e.g. close to 100%). However, as the

authors themselves noted in [47], the discovered lottery ticket winning sub-nets have

weights that change the most during the retraining process.

To verify if pruning is truly compression or not, we design and conduct an

experiment as follows. We train the original ResNet and VGG models using

CIFAR-10 and CIFAR-100 datasets to serve as the baseline. The representations of

each layer are recorded and analyzed using the SVCCA tool. Once the baseline model

has been trained, we prune it in two ways: 1) iteratively using the magnitude based

16

Figure 2.2: Similarity distributions for Pruned Magnitude ResNet-34 as compared to the
original model.

pruning method, and 2) at incremental sparsity levels of 30%, 45%, 60%, 75% and

90% using magnitude based pruning, post-pruning re-initialization, and random

sparse re-initialization. This allows us to observe how models react from moderate

pruning towards intensive pruning where they could no longer maintain the desired

accuracy. When all pruned models have finished training, we evaluate their accuracy,

record their representations, and analyze the similarities using the SVCCA tool. We

construct the input function in a way that guarantees each model to see the exact

same images in the same order, which is critical for preserving the consistency of

learned neuron vectors. Lastly, we calculate the SVCCA similarity value ρ̄ for each

layer and use it as the metric to fairly compare the similarities of different

representations.

Figure 2.2 shows the SVCCA similarity value distributions for iteratively pruned

17

Figure 2.3: Similarity of 90% sparse ResNet during retraining. Similarities are calculated
with respect to the initial state of the model before retraining (note: additional
parts of the computation graph like batch normalization and skip layer additions
are also calculated resulting in a layer count greater than 50).

magnitude ResNet-34 as compared to their original models. We can observe that the

learned representations of moderate pruning (e.g. 30% of sparsity) remain relatively

similar with the original model. However, the more aggressively (i.e. the higher the

sparsity) a model is pruned, the less similar its learned representations are to the

original model it is derived from.

We also investigate in what ways the models are changing while they undergo

pruning. Figure 2.3 shows the similarities using a heatmap for the 90% sparsity

model’s layers in different epochs while retraining ResNet. This allows us to obtain

visual insights about the evolutionary process the model undergoes to regain its

18

Figure 2.4: Similarities of VGG layer by layer at different sparsities resulting from iterative
pruning. Layers go from left to right with the leftmost squares being the first
convolutional layer and the last three being the fully connected and softmax
layers.

accuracy. We observe that the filters that are closer to the output, where presumably

high-level class features are located, change at the fastest pace. The high-level layers

reach a steady state in the earliest time and propagate backward to the earlier layers

in the model. This is different from the observations reported in [41] for models that

are training from scratch, where the lower level layers converge to their final

representations first. We believe our results complement [41] well with Google’s results

by showing how pruned models must repair their high-level representations first

during the retraining process. In addition, an interesting stripping pattern is observed

in the similarities, which is the result from the residual block of ResNet. While further

investigation is needed to understand the phenomena, we speculate it is easier for the

model to discard the information between the skip connections than to repair the

19

damage to the layers caused by pruning. Figure 2.4 contains a similar visualization for

layer similarities of VGG at different sparsities compared to its original model. Figure

2.4 shows that the first two convolution layers maintain high similarities in both data

sets similar to ResNet’s first few layers. The CIFAR-10 VGG model has a pattern of

propagating change similar to the ResNet CIFAR-10 model, while the CIFAR-100

model has noticeably more disruption in the middle layers at all sparsity values.

These results clearly demonstrate that pruning does not always result in the same

representation. Actually, the aggressive pruning seems to force the network to adapt

to the dramatically changed environment. As a result, the learned representations

evolve to a new form, probably a more effective one than the originally learned

representation. These observations are controversial to the traditional compression

theory which treats pruning as a passive process without much of new learning.

Does Pruning Work for Untrained Neural Networks?

It is the common belief that a complex model should be trained with full

capacity first before it can be pruned for better efficiency and initialized sparsity in

an untrained neural network is unlikely to succeed. To test this hypothesis, we

conduct an experiment with sparsly intialized models to see if pruning before training

is a viable option, and if so how much model capacity is needed for training. In this

experiment, we use the post-pruning re-initialization method. First a baseline mode is

trained using TensorFlow and either the CIFAR-10, or CIFAR-100 dataset. Once the

baseline model is finished training, the model is pruned to incremental sparsity levels

of 30%, 45%, 60%, 75% and 90%. We take those pruned models and reinitialize all of

their values, but leave their sparse structures, and let them train for the same number

of epochs as the baseline model. Table 2.1 and 2.2 show the results of the

post-pruning re-initialization accuracy as it compares to the original model, from

which we can observe that full capacity is not always needed to train a model from

20

Table 2.1: Accuracy of single pass Pruned Models on CIFAR-10

Accuracy
Sparsity Ref (0%) 30% 45% 60% 75% 90%

ResNet-34
Mag. 92.6% 92.4% 92.5% 91.9% 91.2% 87.2%

Re-Init. 92.6% 92.1% 92.0% 90.8% 89.9% 88.4%
Rand. 92.6% 92.4% 91.8% 91.1% 90.2% 87.2%

VGG-16
Mag. 88.7% 88.7% 88.6% 88.2% 87.4% 10.0%

Re-Init. 88.7% 87.3% 86.9% 10.0% 10.0% 10.0%
Rand. 88.7% 87.0% 87.0% 10.0% 10.0% 10.0%

ConvNet
Mag. 86.3% 86.1% 85.8 86.0% 86.0% 83.6%

Re-Init. 86.3% 85.7% 85.6% 84.6% 84.3% 81.0%
Rand. 86.3% 86.0% 86.2% 85.2% 84.1% 80.1%

Table 2.2: Accuracy of single pass Pruned Models on CIFAR-100

Accuracy
Sparsity Ref (0%) 30% 45% 60% 75% 90%

ResNet-34
Mag. 68.8% 68.2% 68.5% 67.6% 65.8% 54.4%

Re-Init. 68.8% 68.3% 67.5% 66.1% 65.4% 60.8%
Rand. 68.8% 68.2% 67.2% 66.4% 64.6% 60.5%

VGG-16
Mag. 56.7% 57.5% 57.25% 56.4% 50.1% 1.1%

Re-Init. 56.7% 53.1% 56.6% 1.0% 1.0% 1.0%
Rand. 56.7% 57.4% 56.2% 1.0% 1.0% 1.0%

ConvNet
Magn. 58.5% 58.5% 58.3 57.6% 58.1% 53.4%
Re-Init. 58.5% 57.9% 57.9% 58.0% 58.4% 58.4%
Rand. 58.5% 58.3% 58.0% 58.8% 58.0% 58.%

scratch. For all but the most extreme level of pruning (e.g. 90% sparsity), the models

can be trained to very similar accuracy as the baseline model. Furthermore, as

demonstrated in Table 2.1, the sparsely initialized models perform equally well and

sometimes even better than the original magnitude based pruning strategy for ResNet

and ConvNet models.

21

VGG, however, is an exception. The accuracy of VGG (with initialized sparsity

pruning) drops significantly when the sparsity goes beyond 45% (e.g. 10% for

CIFAR-10 and 1% for CIFAR-100) and even the magnitude based method drops to

1.1% at 90% sparsity (see Tables 2.1 and 2.2). This indicates that sparsities over 45%

prevents the VGG model from learning. The recorded test accuracies become only as

good as random guessing for both datasets. We tried to adjust the learning rates and

reduce or remove the drop out layers, but none of these changes helped the model to

learn anything meaningful.

This is interesting because the ConvNet is similar in design philosophy to the

VGG model. It has 2 convolutional layers, 2 fully connected layers, and a softmax

layer. If redundancy of a model is measured only in number of weights or layers, then

the VGG model should be able to survive from more aggressive pruning and still

learn. These results agree with the observation by [48] that redundency in VGG is not

evenly distributed. We believe ResNet is able to survive these catastrophic collapses

during training with initialized sparsity because of its skip connections in the residual

blocks. If a single convolution layer is broken or problematic, its deep network is

capable of bypassing the layer.

Comparing the accuracies of the iterative pruning methods in Table 2.3 to that

of the single pass magnitude pruning and pre-initialized sparsity methods in Tables

2.1 and 2.2, we observe that the real advantage iterative methods have is increasingly

better initialization for the model weights and substantially larger training budgets.

The original VGG paper [49] explicitly explained how sensitive VGG is to

initialization, going as far as to train a smaller model to warm start the larger

VGG-16 and VGG-19. This may also explain why iterative and single pass magnitude

pruning are able to succeed at higher sparsities while the initialized sparsity methods

can not.

These results overturn the conventional wisdom that models must be first trained

22

in full capacity before they undergo pruning. When attempting to design efficient

models, new methodologies thus can be developed to speed up the pruning/training

process by training models with some amount of sparsity from the beginning.

Table 2.3: Accuracy of Iteratively Pruned Models

Accuracy
Sparsity Ref (0%) 60% 70% 80% 90%

CIFAR-10 ResNet-34 92.6% 92.9% 93.0% 92.6% 91.7%
VGG-16 88.7% 89.2% 89.9% 88.5% 87.9%

CIFAR-100 ResNet-34 68.8% 69.3% 69.3% 68.5% 60.7%
VGG-16 56.7% 63.0% 63.4% 63.7% 63.4%

Do Learned Sparse Structures Carry Important Information?

Figure 2.5: Similarity distributions for Post-Pruning Re-initialization and Random Sparse
Initial ResNet-34 as compared to the original model.

23

Sparse structures resulting from structured pruning as in [48] has been

demonstrated to have significant value. It is less clear what if any value network

topology that is a result of unstructured pruning has. We design an experiment in

this subsection to verify if the learned structure of the sparsity is important and if

random sparsity can yield good accuracy.

In this experiment, we take the baseline model and randomly select weights in

each layer to prune until the desired sparsity is reached. We prune to the same

sparsities described in the previous experiment, and allow the model to train for the

same number of epochs as our baseline model. Tables 2.1 and 2.2 compares the

results of the learned pre-pruning method to the random pre-pruning method. In

contrast to [48]’s findings for structured sparsity, there is virtually no distinction in

performance between our random sparse initalized and post-pruning re-initialization

methods. Our random initialized sparsity method does nearly as well or better than

the post-pruning initialized method at all sparsities. ResNet-34 model preforms only

1% less in accuracy compared with the time-consuming magnitude based pruning

method at the different sparsity levels. It also performs as well as magnitude based

pruning methods at the 90% sparsity level for CIFAR-10 and outperforms magnitude

based pruning for CIFAR-100. We also show that models that have prior knowledge

of good sparse structures do not necessarily preform better. The only requirement is

not to be over-aggressive for capacity (e.g. use 90% or higher sparsity). As long as

moderate amounts of weights are available, the model will find a way to adapt and

overcome its lower capacity and still learn. This indicates that not only can

pre-pruning be effective, but it can be easily implemented using randomness.

We have already demonstrated that post-pruned re-initialized models do not

have any significant difference in performance to randomly intialized sparse models.

Purhaps as [47] suggest the data intensive process of unstructured pruning will create

a sparsity structure that contains a certain bias. To further investigate if the learned

24

sparsity structures carry valuable information, we analyze the SVCCA similarity

value distributions for the post-pruning initialized and random initialized ResNet-34

models compared with the original ResNet-34 model (see Figure 2.5). It can be

observed that the median similarity values of the representations are less than 50% at

all sparsities and the distinction between the randomly initialized and post-prune

initialized methods is negligible. We also observe that as the level of sparsity

increases, the similarities of post-prune initialization actually decreased (it should

increase if the sparse structures really carry important information), which indicates

that the learned sparse structures do not carry valuable information.

Conclusion

As an effective technique to reduce the size of modern neural networks, pruning

has been extensively studied in recent years. However, the current understanding

about pruning is still in its early stage with numerous misconceptions and

inappropriate hypotheses. This chapter explores several fundamental questions about

pruning and strives to find out 1) if pruning is truly compression; 2) if pruning can

work on untrained neural networks; and 3) if sparsity structures from unstructured

pruning provide valuable information. The following conclusions can be drawn from

our experiments and observations.

First, after analyzing the similarities of various learned representations using the

SVCCA tool, we find that pruning is not a passive compression process without

learning new knowledge. Rather, the pruned model is capable of evolving proactively

to survive in a dramatically changed environment, which is done by learning and

transforming to more effective representations when aggressive pruning is occurring.

Second, our results indicate that initialized sparsity can work for untrained

neural networks with certain architectures or capacities. Taking advanced knowledge

from one model (e.g. which weights are important) and using it to train another

25

model will not result in any significant performance gains when training.

Third, we observe that the sparsity structure from the post-pruning

re-initialization is not inherently useful or meaningful. Random initialized sparse

models perform equally well compared to post-pruning re-initialized sparse models.

The similarity of their layer representations share almost no connection or valuable

information to the original models where they derive from. This is in contrast to

structured pruning where the discovered structures can be used to train efficient

models from scratch.

26

III. BIAS MITIGATION WITH DISTILLATION

Introduction

Deep neural networks (DNNs) are widely deployed across many domains but

they are incredibly compute- and memory-intensive. To solve this problem,

compression techniques such as pruning and quantization have been widely used to

reduce the model size, computation demand, and energy consumption of complex

DNNs without compromising top-line metrics (e.g. top-1 and top-5 accuracy).

Nevertheless, recent literature has exposed the prevalence of undesirable biases in

compressed neural networks[50, 51]. For example, Hooker et al. found that pruned

networks often sacrifice the accuracy of a subset of the classes to preserve overall

accuracy in classification tasks [50]. This exacerbates existing issues of algorithmic

bias already observed in DNNs like CV models working better for people with lighter

skin [52]. Unfortunately, these algorithmic biases generated by AI are more abstract

and unintuitive, which makes it harder to explain, evaluate, and mitigate. Despite the

rising concerns in bias and fairness of AI, research on how to evaluate and mitigate

bias is still in its infancy.

In this paper, we strive to tackle the challenging issues of evaluating, mitigating,

and explaining bias caused by pruning neural networks. Specifically, we make the

following three contributions.

• Bias evaluation: We propose two simple yet effective metrics, Combined Error

Variance (CEV) and Symmetric Distance Error (SDE), to quantitatively

evaluate the bias prevention quality of pruned neural networks. Compared to

existing metric such as Pruning Identified Exemplars (PIEs), CEV and SDE

have clear advantages. First, they do not require training large populations of

models. Two models can be compared directly. Second, SDE and CEV can

27

evaluate any compression methods (like PIEs or CIEs) but they are more

objective than PIEs or CIEs by providing clear measurement of model quality

in bias prevention.

• Bias mitigation: We demonstrate that knowledge distillation can effectively

mitigate bias in pruned neural networks, even with unbalanced datasets. We

apply state-of-the-art knowledge distillation algorithms on network pruning and

use our proposed CEV and SDE metrics to evaluate their model bias. Our

results clearly show that knowledge distillation provides a viable solution for

mitigating bias in pruned neural networks. We also investigate the impact of

unbalanced dataset on model bias. Although unbalanced datasets can amplify

bias issues in pruned networks, our experiments confirm that knowledge

distillation remain effective in mitigating bias in pruned models with

unbalanced datasets.

• Bias explanation: We reveal that model similarity has strong correlations

with compression induced bias, which provides a powerful method to explain

why bias occurs in pruned neural networks. We utilize Singular Vector

Canonical Correlation Analysis (SVCCA) [41] to compare similarity of layer

representations between the original (non-pruned) and pruned models. Our

experimental results unanimously show that pruned models that yield high

similarity to original models induce less bias.

Evaluation Metrics for Model Bias

To evaluate the severity of bias in different AI models, it is essential to define fair

and effective metrics. Recently, Google has conducted important work by exposing

the prevalence of undesirable biases in compressed neural networks [51] and proposed

Pruning Identified Exemplars (PIEs) [50] as a metric for measuring compression

28

induced bias in pruned neural networks. In this section, we discuss PIEs and its

limitations. Meanwhile, we propose two new metrics, Combined Error Variance

(CEV) and Symmetric Distance Error (SDE), and demonstrate their effectiveness by

comparing to PIEs.

Pruning Identified Exemplars

(a) Shared PIE (b) PIE without distillation

Figure 3.1: PIEs may represent noisy or confusing data (e.g. image (a) is hard for humans to
classify).

PIEs are defined as the following equation, which represents images in a dataset

for which pruning explicitly changes the behavior of the answer. In [50], they trained

a population of 30 models for each compression method and sparsity level. They then

defined an image i as an exemplar if modal label Y M
i,t , or class most predicted by the

t-compressed model population disagrees with the label produced from the original

unpruned networks.

PIEi,t =

1, if yMi,0 ̸= yMi,t

0, otherwise

While PIEs help reveal the bias issues in pruned models, not every image

reported as a PIE represents a problem. A good portion of PIEs represent images

that are equally hard for human to classify and may simply be a case where the

29

uncompressed networks overfit to learn the example. Figure 3.1(a) is a PIE image

that is found both in pruned models with and without distillation. This image doesn’t

have a clear subject and is hard for human to label as well. It is probably not proper

to say that miss labeling this example is a poor model. However, Figure 3.1(b) is a

very different case. The subject is in the center of the image, is not obstructed, and

contains no other objects that might be labeled. Missing labeling it indicates low

quality of pruned models.

While PIEs are an important step towards identifying and detecting bias in

pruned models, they have clear limitations. First, finding PIEs requires training a

population of models for which to compare a modal answer. Therefore, it is not

practical to directly compare the quality of a pruned model to the original model.

Second, as PIEs only compare examples labeled by two populations (or original

model), they cannot provide insights about distribution variance or shift, which are

critical to evaluate model bias.

To address the weaknesses of PIEs, we propose two new metrics, Combined Error

Variance (CEV) and Symmetric Distance Error (SDE). Pruning and quantization

have been observed to sacrifice accuracy on a subset of class in classification tasks in

order to retain overall top-k accuracy [50]. To catch and reflect this bias, our metrics

are designed to quantify both the spread of the change in classification error as well

as changes in how the model is making mistakes. As a result, both of our proposed

metrics consider the distribution of change in false positive and false negative rates

(FPR, FNR) for all classes.

Combined Error Variance

The principle of the Combined Error Variance (CEV) metric is to discourage the

bias of sacrificing one class for the benefit of another class. Therefore, CEV calculates

the variance of the FNR/FPR changes and penalizes changes in FNR/FPR away from

30

the model’s average change. Mathematically, CEV is defined and calculated as follows.

Let Xi be a tuple of the FPR and FNR for class i of the compressed model and

X̂i be the original models FPR/FNR tuple. We first find a the normalized change in

FPR/FNR δXi and the mean normalized change δXµ.

δXi =
Xi − X̂i

X̂i

× 100 (III.1)

δXµ =
1

n

n∑
i=0

(δXi) (III.2)

The variance of the change in FPR and FNR is calculated for all n classes as

follows.

cev =
1

n

n∑
i=0

(δXµ − δXi)
2 (III.3)

Symmetric Distance Error

The principle of the Symmetric Distance Error (SDE) metric is to discourage

another undesirable bias behavior in pruned models. That is, a class with more

training examples or that has similar features to another class is more frequently to

be chosen by the model as its capacity degrades. Conversely, classes with fewer

training examples are more likely to be cannibalized by the model and guessed less

frequently. To reflect this bias behavior, SDE calculates "how far away" from

balanced is the change in FPR/FNR for a single class error. More intuitively, if we

make a scatter plot with changes in FPR and FNR as X and Y values, the diagonal

line in that plot would be a perfectly balanced change in FPR/FNR. Therefore, the

SDE can be calculated as the symmetric distance of each change to that balance line.

Mathematically, it can be proven that for a line given by the equations

ax+ by + c = 0, the distance d from any point (x0, y0) can be derived from the

31

following equation:

d =
|a(x0) + b(y0)|√

a2 + b2
(III.4)

In our specific context, the diagonal of the Cartesian plane (i.e. the balance line)

is x = y or x− y = 0. Therefore, given any change in the form of FNR (i.e. x) and

FPR (i.e. y) coordinate, the symmetric distance of that change to the balance line

can be calculated as:

d =
|(1)(x0) + (−1)(y0)|√

(1)2 + (−1)2
=

|x0 − y0|√
2

(III.5)

Once the symmetric distance of each change is calculated, SDE of a pruned

model can be calculated as the mean magnitude of normalized FP/FN rate difference

divided by
√
2.

sde =
1

n

n∑
i=0

|δFNRi − δFPRi|√
2

(III.6)

Comparison between CEV/SDE and PIEs

To demonstrate the effectiveness of CEV and SDE for evaluating model bias in

pruned models, we outline the following experiments and compare with the PIEs

metric.

Table 3.1: Knowledge distillation methods and corresponding abbreviations

Distillation Method Proposed By Abbreviation

Knowledge Distillation Hinton et al. [17] KD
Attention Transfer Zagorukyo et al. [53] AT
Similarity-Preserving Knowledge Distillation Tung et al. [54] SP
Flow of Solution Procedure Yim et al. [55] FSP
Probablistic Knowlege Transfer Passalis et al. [56] PKT
Contrastive Representation Distillation Tian et al. [57] CRD

32

Pruning Details

We train a CNN ResNet [58] (ResNet32x4) model on CIFAR100 [59] and prune

it to various sparsities using Filter-wise Structured Pruning. We use pruning as the

baseline model and the rest of models are pruned jointly with one of the

state-of-the-art knowledge distillation methods shown in Table 3.1. We utilize Tian et

al’s [57] implementation for all distillation methods tested. For all experiments the

models are pruned initially to 10% sparsity then gradually pruned every 5 epochs

until the desired sparsity is reached according to the AGP [60] schedule. All pruning

is completed at the halfway point of training and allowed to continue to finetune for

another 120 epochs. The chosen sparsity levels are 30%, 45%, 60%, 75%. Each layer

in the model is pruned to the same sparsity. We do not perform any layer sensitivity

analysis or prune layers at different ratios. Although that may have resulted in higher

accuracy, our goal is not to reach state-of-the-art compression ratios but study the

effect of pruning and how to mitigate bias.

Results

Figure 3.2 plots the experimental results on accuracy and model bias of each

pruned model evaluated using the PIE metric and our CEV/SDE metrics. We can

observe from Figure 3.2 (a) that several methods reach nearly identical accuracy (e.g.

KD, SP, and FSP at 45% sparsity). Figure 3.2 (b) shows the evaluation results of

model bias using the PIEs metric, from which we can see that the ranking of three

models with similary accuracy would be SP > KD > FSP (i.e. less PIEs indicates

better models). However, the ranking will change dramatically to KD > FSP > SP

(i.e. small CEV/SDE indicates better models) when evaluating using CEV (ref.

Figure 3.2 (c)) and SDE (ref. Figure 3.2 (d)) respectively. To find out which metrics

better reflect the bias issues in pruned models, we plot the actual distribution of

33

Figure 3.2: Accuracy, PIEs, CEV, and SDE results and comparison

FPR/FNR change of the baseline pruned model and FSP in 3.3 (a). We can

immediately see that the ellipse of FSP is much smaller than the ellipse of SP. Since

ellipses contain 95% of data points, it clearly shows the error distribution of FSP is

certainly better than SP (i.e. less biased), although FSP has a higher number of PIEs.

An even more exaggerated case is the comparison of the CRD and KD models.

CRD has a higher accuracy by nearly half a percentage point at 75% sparsity (ref.

Figure 3.2 (a)) and the number of PIEs for the two models at this sparsity is nearly

identical (ref. Figure 3.2 (b)). CRD seems to be a better model. However, when

34

(a) Pruning vs. FSP (b) KD vs. CRD

Figure 3.3: Scatter plot of normalized false positive and false negatives rate (FPR/FNR)
change for different distillation methods on CIFAR100. Each point represents a
single class’s normalized change. Ellipses contain 95% of data points.

plotting the error distribution of KD and CRD at 75% sparsity (ref. Figure 3.3 (b)),

we can clearly observe that KD has better error distribution for the majority of classes

and its outliers are much less pronounced than the CRD distilled models. These

important characteristics are missed by PIEs but correctly reflected by our CEV/SDE

metrics (ref. Figures 3.2 (c) and (d)). These two examples provide strong evidence

that our metrics are more descriptive than the PIEs metric in evaluating model bias.

Mitigating Bias with Knowledge Distillation

From previous experiments, we notice that all pruned models with distillation

achieves higher accuracy at every sparsity than the model pruned without distillation

(ref. Figure 3.2 (a)). Surprisingly, we also notice that knowledge distillation can

effectively mitigate pruning induced bias by tightening the distribution between the

normalized change in FPR and FNR (ref. Figure 3.3 (a) as an example). It appears

that distilled pruned models have tighter distribution of classes overall and their

35

extreme outliers are less pronounced.

Data Induced Bias

Table 3.2: CIFAR100 class sample rate and mean class top-1 accuracy for original dataset
(Org) and down-sampled dataset (Bias) pruned at 45% sparsity.

Method Struct Pruning KD FSP FSP + KD SP
Org Bias Org Bias Org Bias Org Bias Org Bias

Class Name Percentage Remain

apple 10.00 88.74 66.99 91.24 79.24 90.74 72.99 91.49 78.74 91.49 75.49
bicycle 10.00 84.24 33.24 88.74 62.24 85.74 37.74 85.74 58.24 85.99 42.74
crocodile 10.00 92.49 63.99 92.49 79.49 92.74 71.99 92.24 79.49 92.49 71.24
maple tree 10.00 88.74 55.99 87.24 77.99 89.24 63.49 89.99 77.24 91.24 63.74
shrew 10.00 76.49 29.99 80.24 45.49 78.74 34.99 74.99 48.99 75.74 34.99
butterfly 20.00 83.24 59.74 84.24 71.24 82.99 68.49 85.24 69.49 83.99 65.74
can 20.00 89.74 80.99 88.49 81.24 89.74 80.49 89.24 82.74 90.24 81.24
oak tree 20.00 77.74 63.74 78.49 70.74 77.49 65.49 79.49 68.74 77.24 68.49
palm tree 20.00 88.24 71.99 90.24 79.49 90.49 77.99 90.49 80.24 90.24 77.49
train 20.00 95.49 84.99 94.74 90.24 94.24 86.49 95.99 87.24 94.99 86.24
dinosaur 50.00 92.74 89.74 92.74 90.49 92.74 88.99 91.74 89.99 92.99 90.24
elephant 50.00 92.24 86.99 89.74 89.74 93.49 90.74 91.99 89.49 91.74 89.74
flatfish 50.00 82.74 74.49 86.49 80.99 86.49 76.24 86.49 82.24 85.99 76.49
orange 50.00 81.49 70.49 82.49 75.99 78.24 72.74 81.74 75.99 82.49 74.24
raccoon 50.00 75.49 62.74 77.99 72.49 77.99 68.24 78.99 72.24 79.49 70.74

Method SP + KD PKT PKT + KD AT AT + KD
Org Bias Org Bias Org Bias Org Bias Org Bias

Class Name Percentage Remain

apple 10.00 92.24 79.24 90.74 79.99 90.49 83.99 89.74 81.24 89.74 84.99
bicycle 10.00 88.24 60.74 85.74 49.99 88.24 69.49 87.24 59.74 86.99 68.99
crocodile 10.00 92.99 81.24 90.99 71.99 92.49 84.74 90.99 73.99 92.99 86.24
maple tree 10.00 91.24 75.74 88.49 65.99 88.74 82.49 87.49 72.99 88.99 82.49
shrew 10.00 76.99 48.99 79.49 41.24 80.74 54.74 73.99 43.49 81.24 56.24
butterfly 20.00 84.24 73.49 86.99 72.99 87.24 75.74 88.74 72.49 87.49 77.24
can 20.00 88.74 83.49 87.24 81.74 86.99 85.99 89.49 83.24 89.74 87.24
oak tree 20.00 78.24 70.74 77.24 69.24 78.24 71.49 75.74 69.49 77.24 71.99
palm tree 20.00 90.24 80.99 89.99 77.49 89.99 83.99 90.74 81.74 88.24 84.99
train 20.00 95.49 90.24 93.99 84.99 95.49 90.49 96.24 86.49 93.74 90.74
dinosaur 50.00 92.99 91.49 93.99 88.49 92.74 92.74 92.74 90.74 93.74 91.74
elephant 50.00 89.99 89.74 91.99 90.49 92.99 91.99 92.24 89.49 90.99 90.99
flatfish 50.00 85.99 79.24 84.49 76.99 84.24 80.49 81.49 76.99 82.49 76.74
orange 50.00 81.74 74.49 85.49 76.24 84.24 77.99 84.24 76.24 84.24 76.74
raccoon 50.00 77.74 74.24 79.24 72.49 78.24 74.74 75.24 68.24 78.99 73.74

While the results we have presented so far are encouraging, they are merely

based on our experiments on CIFAR100 (a well balanced dataset), which is not

36

(a) Pruning vs Distillation (b) AT/PKT + KD

Figure 3.4: Normalized FP/FN Rate Change for distillation methods on biased CIFAR100
dataset

necessarily reflective of datasets in the wild. Real world data is often unbalanced and

could amplify the bias induced by pruning. Hooker et al. reported that the negative

effects of compression are most observed on underrepresented groups [51]. Therefore,

we design a series of experiments to verify if knowledge distillation can mitigate data

induced bias in pruned networks. We resample the CIFAR100 dataset to purposely

under represent certain classes in the training set. We select 15 classes and reduce the

remaining training samples to 50%, 20%, and 10% of their original numbers. Table 3.2

shows the selected classes and their original Top-1 accuracy. These classes are selected

according to which classes from all our previous pruning experiments have either the

smallest change in FPR/FNR or have an increase in accuracy. Our hypothesis is that

these biased classes with less data samples will more likely be picked as "victims" by

the pruned models. We also test if combining our feature map based distillation

methods with KD (e.g. AT + KD or PKT + KD) can achieve additional benefits.

From Table 3.2, we can see that pruning alone performs significantly worse than

knowledge distillation on nearly all classes with removed samples (marked in red).

37

Noteably the "shrew" class went from 76.49% top-1 accuracy when pruned on the

entire dataset to just 29.99% when reduced to just 10% of of its original training

examples. While AT + KD reached 54.24% top-1 accuracy, an 88.09% improvement.

In addition, the best outcomes (bolded) for down sampled classes all came from

combining distillation methods that use internal feature maps with KD. Table 3.3

shows that Attention and PKT + KD reduced SDE in half at 45% sparsity and CEV

to less than 25% of its value with pruning alone. Looking at the distribution of

FPR/FNR change in Figure 3.4, we can see that the improvements are not limited to

the 15 classes we intentionally down sampled. The models pruned normally have seen

a substantial number of classes with significant shifts in both the false positive (FP)

and false negatives (FN) direction. The pruned models over guess classes not down

sampled and under guess those down sampled (i.e. bias is amplified). It is notable

that the distributions of error change of PKT/AT + KD in Figure 3.4 (b) are clearly

more desirable than that of pruning alone pruning, even though they have nearly

identical top-1 accuracy. This reinforces the usefulness of CEV/SDE in evaluating

model bias. We conclude that knowledge distillation methods, especially those that

align both feature maps as well as the output layer, are incredibly effective at

mitigating pruning induced bias, even with unbalanced datasets.

Explaining Model Bias Using Model Similarity

Previous studies [22, 61] have shown that pruned neural networks evolve to

substantially different representations while striving to preserve overall accuracy. In

Section 3, we have demonstrated that knowledge distillation can effectively mitigate

both pruning and data induced bias in compressed networks. Inspired by both work,

we will be able to explain the occurrence of bias in pruned networks if strong

correlations between model similarity and model bias can be confirmed.

We utilize the Singular Vector Canonical Correlation Analysis (SVCCA) [41] to

38

Figure 3.5: Scatter Plot of Combined Error Variance Plotted against SVCCA Distance at
each layer output with regression line overlaid. Values are colored by network
sparsity

Table 3.3: Average SVCCA distances at each block and CEV/SDE results on biased CIFAR100
dataset

PIEs Method Block 1 Block 2 Block 3 FC CEV SDE Accuracy

742 AT + KD 0.051 0.121 0.480 0.122 851.694 25.246 77.100
748 PKT + KD 0.071 0.164 0.495 0.128 903.329 25.103 77.335
768 SP + KD 0.107 0.231 0.538 0.161 1506.103 30.974 76.927
742 FSP + KD 0.063 0.187 0.514 0.156 1518.462 30.668 75.285
770 KD 0.106 0.230 0.540 0.160 1536.566 30.789 78.142
909 AT 0.044 0.104 0.475 0.142 1955.926 37.000 78.097
881 PKT 0.075 0.167 0.506 0.154 2190.690 38.121 78.963
838 SP 0.113 0.240 0.535 0.187 2654.847 41.378 78.520
877 FSP 0.045 0.162 0.508 0.171 2901.940 43.169 78.413
887 Struct Pruning 0.127 0.268 0.581 0.261 4237.391 51.146 77.242

study and contrast layer representations of pruned and original models. It combines

Singular Vector Decomposition (SVD) to reduce the dimensionality of layer

activations, and Canonical Correlation Analysis (CCA), to maximize a projection

between two layers that results in the highest correlation. For a given dataset

39

X = {x1, ..., xm} and a neuron i on layer l, the output of that neuron on the entire

dataset is defined as the vector zli. SVCCA takes input from two layers

l1 = {zl11 , ..., zl1n1
} and l2 = {zl21 , ..., zl2n2

} where n1 and n2 are the number of neurons in

their respective layers. SVD is performed on each layer to get new subspaces l′1 and l′2

where l′1 ⊂ l1, l′2 ⊂ l2. Next, l′1 and l′2 are linearly transformed to be as aligned as

possible and correlation coefficients are calculated. SVCCA outputs aligned directions

(z̃l1i , z̃
l2
i) and how well they correlate. The higher the correlation value ρi is, the more

similar the two aligned directions are.

To calculate the similarity, we compare the feature maps and activations of the

baseline model in our compressed populations. We use the same sets of features

targeted by our various distillation methods. These activation output blocks in

ResNet are the feature maps in the model where their input shapes change. In

CIFAR100, the output shapes include 32x32, 16x16, 8x8. We also look at the

similarity of the fully connected output layer before softmax, which is a tensor of size

100. In our experiments, we calculate the SVCCA distance 1− ρ̄ where ρ̄ is the mean

of the ρi values from the top SVCCA similarity. A larger SVCCA distance indicates a

lower similarity between two layers (or block of layers).

The calculated SVCCA distance and corresponding CEV values at different

sparsities are shown in Figure 3.5, which are strongly correlated as evidenced by the

regression line. In other words, a pruned model that yields higher similarity to the

original model will have better CEV values (i.e. less induced bias). High similarity

from the FC layer leading to better outcomes may intuitively be less surprising. After

all, if two models with different configurations both reach the same answer, a small

SVCCA distance is expected. However, we observe the strong correlations between

similarity and CEV not only in the FC layer but all levels of model features.

If knowledge distillation shows how to reduce desperate impact of

underrepresented classes when pruning, we believe network feature similarity explains

40

why it works. Regardless of sparsity level or pruning methods, we find the best

predictor of CEV in our models is SVCCA layer distance. This holds true for both

our experiments with blanced CIFAR100 and biased CIFAR100, as shown in Table

3.3. Additionally, we find that top-1 accuracy is not a great indicator of CEV. In fact,

our models with the highest top-1 accuracy on the biased dataset are ranked near the

bottom of CEV/SDE scores. We believe the strong correlation between similarity and

CEV provides an important direction for future research in developing better pruning

and distillation methods with mitigated bias.

Related Work

With the ubiquitous usage of AI, a substantial literature has recently emerged

concerning algorithmic bias, discrimination, and fairness. Here we only discuss

relevant studies that focused on addressing bias induced by data and algorithms.

Mehrabi et al. conducted a survey on bias and fairness in machine learning [62].

Mitchell et al. explored how model cards can be used to provide details on model

performance across cultural, racial, and intersectional groups and to inform when

their usage is not well suited [63]. Gebru el al. proposed to use datasheets as a

standard process for documenting datasets [64]. Amini,et al. proposed to mitigate

algorithmic bias through resampling datasets by learning latent features of images

[65]. Wang et al. designed a visual recognition benchmark for studying bias mitigation

in visual recognition. [66]. Literature on network pruning has been historically focused

on accuracy [67, 68] with recently work on robustness [69, 70]. Movva and Zhao [61]

investigated the impact of pruning on layer similarities of NLP models using

LinearCKA [71]. Ansuini et al. and Blakeney et al. also investigated how pruning can

change representations using similarity based measures [72, 22]. Unfortunately, very

few work have studied how pruning can induce bias and how to evaluate and mitigate

the pruning induced bias. To the best of knowledge, our work is the first one to tackle

41

the evaluation, mitigation and explanation of pruning induced bias altogether.

Broader Impact

Compressed DNNs are widely used and our research can help alleviate increasing

concerns in society regarding algorithmic bias in AI. Specifically, (1) we help the

community better understand why bias occur in pruned models. (2) we present a

viable solution to mitigate algorithmic bias induced by pruning. (3) CEV and SDE

provide new metrics to evaluate the bias-prevention quality of pruned models.

However, our research is currently limited to study and mitigate bias induced by

pruning only. We believe there are many other types of biases exist in various AI

models, which may not be addressed by this dissertation. Our metrics are not a

replacement for carefully studying the behavior of models and ensuring that they

meet other fairness standards. Therefore, we do not encourage policy makers or

stakeholders use our metrics to establish a scoring system for ranking general AI

models.

Limitations

Our work has three primary limitations. First, we only show extensive

experimental results on a single model (ResNet) and dataset(CIFAR100). However,

we do include limited eexperiments using VGG16 on CIFAR10, Imagenette, and

Imagewoof in the appendix. Second, our model population size for each

method/sparsity is much lower than the populations size (30 each) of Google’s PIE

paper [50]. While more results could increase our confidence, we believe our

experiments are sufficient to draw conclusions from. Third, there is no human

involvement in our method. The combination of automatic bias prevention techniques

(like ours) and human-in-the-loop process (e.g. auditing) may further reduce biases in

pruned neural networks.

42

Conclusion

In this chapter, we propose two new metrics, Combined Error Variance (CEV)

and Symmetric Distance Error (SDE), to evaluate the pruning induced bias in

compressed neural networks. We also demonstrate that knowledge distillation can

effectively mitigate bias in pruned models, even with unbalanced datasets. Moreover,

we reveal that model similarity has strong correlations with pruning induced bias,

which can be used to explain why bias occurs in pruned neural networks.

43

IV. CRAFT DISTILLATION AND PARALLEL BLOCKWISE

DISTILLATION

Introduction

This chapter discusses work from both [25], which describes how one can design

a replacement for individual layers of blocks in neural networks and replace them

after a model is trained to convergence (Craft Distillation), and from [26], which

extends this and demonstrates how this can be broken into embarrassingly parallel

jobs (Parallel Blockwise Distillation). Notably, this technique uses a feature

distillation technique similar to AT [53] from the last chapter, which was found to

preserve best the similarity and original biases’ of the model. This allows for an

alternative to structured pruning, which is also well-suited for compressing models

without specialized hardware.

Figure 4.1: System level overview of parallel blockwise distillation

The two parts of this chapter jointly address two challenges with knowledge

distillation. First, typically in knowledge distillation, one must select both a student

44

and a teacher [17]. However, this is not a trivial choice as it has been well

documented that differences in architecture and "capacity gap" (loosely defined as

differences in the number of parameters of flops) can cause inferior performance

[73, 74]. This can result in significant wasted compute experimenting with training

models to find an acceptable accuracy size trade-off curve. Craft Distillation solves

this problem by transforming any teacher architecture by replacing computationally

expensive or memory-intensive layers with more efficient ones. It can be seen as an

extreme form of Progressive Block-wise Knowledge Distillation [75], allowing for more

granular control over the compression process while not being constrained to a

specific model architecture.

The second problem, which applies to knowledge distillation and other

memory-intensive techniques in deep learning, is that scaling the method efficiently is

challenging. Most models are trained using only data parallelism and require

synchronization after the backwards pass. This scales well with single GPU and even

single-node training but often scales poorly across multiple nodes. Parallel Blockwise

Distillation provides the solution to the second issue by allowing distillation to scale

to an arbitrary number of GPUS distributed to any number of nodes. It also reduces

the total memory consumption of each training job by only loading the required

portion of the model, reducing the training time of each job and energy consumption.

The combined steps are illustrated in Figure 4.1. First, it identifies all

compressible layers in the teacher model and creates independent tasks for replacing

them (one task for each layer). All tasks will be distributed to multiple GPUs via a

group of TensorFlow instances and MPI processes following a specific scheduling

algorithm such as round robin, bin packing, or work stealing. Each process trains its

replacement blocks independently on the activations of the layers to be replaced.

Once all layers have been trained, the main MPI process gathers the weights from all

processes and reassembles the compressed DNN. Last but not least, the reassembled

45

student model will be fine-tuned to minimize the accuracy loss from the teacher

model.

Our algorithm has the following advantages: (1) It requires relatively few epochs

for each training layer and runs once (not iteratively), which reduces training time

over traditional compression methods. (2) It utilizes task parallelism to increase the

simultaneous execution of different tasks on multiple GPUs with very little

communication, which minimizes synchronization overhead. (3) It transparently

ensures elasticity and scalability because users do not need to adjust their

hyperparameters when adding more GPUs. (4) It significantly reduces training time

and total energy consumption, which is crucial for DNNs used in production software,

where they are often deployed, evaluated, retrained, and redeployed in repeated

development cycles.

Craft Distillation

In traditional knowledge distillation [17], a large “teacher model" is used to train

a smaller “student model." In this phase, we present a different process of distilling a

model in a layer-wise fashion which we call “craft distillation". Figure 4.2 illustrates

the proposed craft distillation process, which selects a single layer of the original

model at a time and teaches a block consisting of one or more depthwise separable

layers (or other layer types that can reduce complexity). After selecting a convolution

layer to replace, the input feature maps for the layer are used as the training data

and act as the teacher. The output feature maps become the labels. The training is

treated as a simple regression problem using L2 loss. Let us consider the case of

replacing layer l in our model. Let fl be the function that maps an input image to the

activations at layer l. Let g be the replacement block for layer l. Our loss function can

be represented as L = 1
N

∑N
i=1 ||fl(xi)− g ◦ fl−1(xi)||2. When the replacement block

has reached convergence, it is inserted into the original model in place of the selected

46

Figure 4.2: Overview of the craft distillation process. A convolutional layer of the dense model
is selected as the “Teacher" to train cheaper depthwise separable convolution layers.
The trained cheaper layers are inserted back to replace the original convolutional
layer. Such a layer-wise distillation process is repeated in a top-down manner to
replace other convolutional layers in the dense model.

convolutional layer. This process is referred to as layer-wise distillation. Craft

distillation performs layer-wise distillation repeatedly to replace several or all

convolutional layers in the “teacher model". The large “teacher model" is transformed

into a small model when craft distillation is completed.

In order to effectively carry out the craft distillation process described above,

several key research questions need to be answered.

1. How to select the replacement blocks?

2. In what order should layers be replaced?

3. How does craft distillation perform compared to other structure-altering

compression techniques?

In the following subsections, we describe the designed experiments to answer

47

each of these questions. Each experiment is carefully designed to determine the best

strategy when conducting craft distillation as well as evaluate the effectiveness of

craft distillation compared to other model compression techniques. Subsequently,

after demonstrating that this method works sequentially, we also demonstrate that

independent training of the blocks is possible and just as effective and demonstrate

how this can be exploited to speed up the compression of the model by leveraging

parallelism.

Architecture Search

Finding an efficient replacement block for the costly convolution layers is

essential to the effectiveness of craft distillation. We first attempt to train a single

depthwise separable layer as a replacement for a convolution layer but end up with

inferior results. The next natural thought will be stacking several depthwise separable

layers, which still use fewer parameters and flops than a traditional convolution layer,

thanks to the properties of depthwise separable layers. We conduct a series of

architecture searches to evaluate the best way to stack depthwise separable layers.

The ideal architecture for replacement blocks should keep the added number of

parameters as low as possible and be able to minimize the MSE loss.

Figure 4.3 depicts the four candidate architectures explored in our experiments,

which include the two depthwise separable layers (a), three depthwise separable layers

(b), two depthwise separable layers with skip connections similar to residual blocks

(c), and three depthwise separable layers with skip connections (d). We design

experiments to evaluate the effectiveness of four candidates as follows. First, we train

a VGG16 model on CIFAR-10 with a baseline accuracy of 86.45%. Each candidate

architecture aims to replace the second convolution layer in the VGG model. We train

each block for 20 epochs on the teacher model’s intermediate activations. After that,

the layers are inserted into the original model to replace layer 2, and the model’s

48

(a) Two Layer Replacement (b) Three Layer Replacement

(c) Two Layers w/ Skip (d) Three Layers w/ Skip

Figure 4.3: Candidate Replacement Layer Architectures. For the purpose of this work we
refer to the combination of depth-wise separable, batch normalization, and relu
activation as one layer.

accuracy is recorded. The weights of the 2nd layer are then fine-tuned using

traditional cross-entropy loss on the labeled CIFAR-10 image data. All model weights

other than the replacement block are frozen during fine-tuning.

Table 4.1 summarizes the results of the four candidate architectures. While the

layers with skip connections do reasonably well, they do not outperform the simple

two-layer variation. We hypothesize that this might be because these blocks are not

49

Table 4.1: RMS Loss, Top-1 Accuracy, and Fine Tuning Top-1 Accuracy results of different
replacement architectures.

Arch Loss Top-1 FT Top-1

Two Layer 3.028E-05 86.40% 87.32%
Three Layer 7.410E-05 85.28% 85.37%
Two Layer w/Skip 3.536E-05 86.28% 86.98%
Three Layer w/Skip 3.877E-05 86.16% 87.03%

deep enough to have significant problems with disappearing gradients. Since the two

layers architecture yields the best performance, we use it as the replacement block for

convolution layers in the rest of the experiments.

Order of Layer-wise Distillation

In the subsequent Parallel Blockwise Distillation section, we will see that the

layers can be distilled independently. However, experiments of training the layers in

order still tell us how error propagates when it is dependent on other distillation

processes. In the following experiment, we look at which order model layers should be

replaced if done sequentially. The obvious choices are either top-down or bottom-up

replacement. To determine the best strategy, we took the pre-trained VGG16 model

on CIFAR-10 with an original accuracy of 86.45% as the baseline model. Each

targeted layer for replacement is trained for 50 epochs on the intermediate layer

activation. The layer is then inserted into the model, and the loss on the test set is

recorded with the replacement blocks. The model is then fine-tuned for five epochs

with all layers but the replacement block frozen. After the fine-tuning process, the

weights that resulted in the lowest loss, either from fine-tuning or layer distillation,

are kept. After the individual layer training, the resulting model becomes the “teacher

model", and the next layer to be replaced was chosen.

As seen from Table 4.2, the top-down strategy results in the highest accuracy. It

50

Table 4.2: Results of Different Replacement Strategies

Model Loss Top-1

Original 0.50657 86.45%
Bottom Up 0.76339 81.67%
Top Down 0.61581 86.59%

Table 4.3: Comparison to L1-norm based Filter Pruning [1]. Results are calculated for the
CIFAR-10 dataset.

Model Top-1 (%) MACCs Reduced % Parameters Reduced %
VGG-16 93.3 3.13 x 108 1.5 x 107

ResNet-50 95.3 2.38 x 107

VGG-16 [1] 94.0 2.06 x 108 34 5.4 x 106 64
VGG-16 (ours) 92.7 7.93 x 107 74.6 3.57 x 106 74.4
ResNet-50 (ours) 94.5 1.49 x 107 37.0

is even higher than the original model, which could result from the base model not

being trained optimally. It is also worth noting that even though the top-down

strategy yields a higher accuracy than the original model, it also has a higher loss.

This may indicate that it is less robust to adversarial attacks and is less sure of its

predictions. It could also be that the top-down strategy alleviates the overfitting issue

of the dataset.

A possible reason for the different accuracies is the fine-tuning. The bottom-up

strategy gives less or no opportunity to fix mistakes in the layer representations.

When training and replacing happen in a top-down manner, if the previous layer

reaches some sub-optimal local minimal that shifts the layer representations, the next

layer still has a chance to repair it and restore accuracy through fine-tuning.

51

Comparison to Structured Pruning

To the best of our knowledge, no current work compares directly to the proposed

craft distillation method. Quantization [14] achieves similar model size reductions in

memory, although it retains the same number of parameters and can increase the

throughput of the calculations by using FP16 or Int8 data types. But it doesn’t alter

the structure of the original model or the total number of arithmetic operations.

Unstructured pruning [14] does modify the model’s structure but requires specialized

hardware to run effectively. Structured pruning is probably the fairest comparison to

craft distillation because it is performed on a layer-by-layer basis of a pre-trained

model, and it does not require specialized hardware to work.

Table 4.3 and 4.4 illustrate the comparison results of craft distillation to the

L1-norm based filter pruning [1] for compressing VGG-16 on the CIFAR-10 dataset

and our results on ResNet-50. While the structured pruning method achieves a higher

accuracy (94%) than our method (92.7%), we can reduce the total number of flops by

74.6%. Table 4.4 shows the detailed comparison of each individual layer. It appears

that structured pruning does not prune each layer by the same percentage. It leaves

several layers unpruned entirely. In craft distillation, however, there is no option of

what percentage of weights will be removed from a layer. A layer is either completely

replaced or is not replaced at all. We argue that craft distillation is more efficient than

structured pruning to compress CNN models with negligible accuracy degradation.

The essence of craft distillation is distinct from structured pruning as well.

52

Table 4.4: Individual layer comparison to L1-norm based Filter Pruning [1]. The two right-
most columns indicate the reduction in the percentage of MACCs for both methods.
Craft distillation significantly reduces MACCs (by 74.6%) even though it does not
apply to the fully connected layers.

layer type wi x hi MACCs MACC% [1] MACC% (ours)

Conv_1 32 x 32 1.8E+06 50% 0%
Conv_2 32 x 32 3.8E+07 50% 74.7%
Conv_3 16 x 16 1.9E+07 0% 64.3%
Conv_4 16 x 16 3.8E+07 0% 76.2%
Conv_5 8 x 8 1.9E+07 0% 65.5%
Conv_6 8 x 8 3.8E+07 0% 77.0%
Conv_7 8 x 8 3.8E+07 0% 77.0%
Conv_8 4 x 4 1.9E+07 50% 66.1%
Conv_9 4 x 4 3.8E+07 75% 77.4%
Conv_10 4 x 4 3.8E+07 75% 77.4%
Conv_11 2 x 2 9.4E+06 75% 77.4%
Conv_12 2 x 2 9.4E+06 75% 77.4%
Conv_13 2 x 2 9.4E+06 75% 77.4%
Linear 1 2.6E+05 50% 0%
Linear 1 5.1E+03 0% 0%

Total 3.1E+08 34% 74.6%

53

Parallel Blockwise Distillation

In this section, we extend the work from the Craft Distillation section and

propose a novel parallel algorithm for block-wise knowledge distillation, which works

as illustrated in Figure 4.1. First, it identifies all compressible layers in the teacher

model and creates independent tasks for replacing these layers (one task for each

layer). All tasks will be distributed to multiple GPUs via a group of TensorFlow

instances and MPI processes by following a specific scheduling algorithm such as

round robin, bin packing, or work stealing. Each process trains its replacement blocks

independently on the activations of the layers to be replaced. Once all layers have

been trained, the main MPI process gathers the weights from all processes and

reassembles the compressed DNN. Last but not least, the reassembled student model

will be fine-tuned to minimize the accuracy loss from the teacher model.

Independent Blockwise Distillation

Progressive blockwise distillation [75] works similarly to the Craft Distillation

method described above. Still, a key difference is it defines groups of layer blocks from

a teacher model and creates a less computationally intense set of layers to replace

them. Another critical difference is they essentially use filter pruning to reduce

computational complexity instead of replacing the layer blocks with a completely

different design. Let us consider a teacher network T that can be represented as a

composite function of its k subnetwork blocks:

T = c ◦ fk ◦ fk−1 ◦ ... ◦ f1 (IV.1)

Knowledge distillation aims to derive a smaller student network S where its k

network blocks are simplified networks but can mimic the larger networks in the

teacher model.

54

Table 4.5: Summary of Notations

Term Definition

T Teacher Model
S Student Model
block sequential group of 1 or more layers
Lk
local Local loss for block k

Lk
cls Cross Entropy Loss

λlocal hyper-parameter used in [75]

S = c ◦ gk ◦ gk−1 ◦ ... ◦ g1 (IV.2)

In [75], the distillation process is conducted progressively in a "bottom-up"

fashion, which refers to replacing the blocks in the order of (1, 2, ..., k). The blocks

are trained on both the local activations of the blocks being replaced in the teacher

model and the cross entropy loss from the student with the ground truth labels. Once

a layer is trained, it is frozen in the student model, and the subsequent replacement

layer is prepared. This requires each layer to be trained sequentially.

Let us consider the case of replacing block k in our model. Let fk be the function

that maps an input image to the activations at block k. Let g be the replacement

block for block k. The local loss function can be represented as:

Lk
local =

1

N

N∑
i=1

||fk(xi)− gk ◦ fk−1(xi)||2 (IV.3)

And the combined loss would be defined as:

Lk = λlocalL
k
local + Lk

cls (IV.4)

Where λlocal is a hyper-parameter to balance the loss terms. xi is an individual

55

training image, and N is the total number of training images.

We improved the progressive blockwise distillation method [75] from the

following perspectives. First, we consider only the local loss (equation IV.3) between

the student model and the teacher model’s feature maps. This makes it unnecessary

to store a full copy of either the teacher or the student model into GPU memory. We

can recreate the subset of teacher model layers up until and including the block to be

replaced. The activations from the proceeding block are used as inputs for the student

block as described in equation IV.3, and the activations from the original block being

replaced become our labels.

Second, instead of replacing the blocks in a progressive bottom-up fashion, all

candidate blocks are trained independently and simultaneously. This not only

eliminates most unwanted dependencies but also allows us to reduce the accumulated

error from the model. Once every replacement block is trained, the algorithm

evaluates each one to see if they reach or exceed a predetermined accuracy threshold.

Only the blocks that meet the predetermined accuracy threshold will be added to the

reconstructed model. Then, the final student model will be produced after fine-tuning

to regain accuracy.

Parallel Blockwise Distillation

Once the blockwise distillation process and replacement block architecture are

determined, the last missing puzzle is how to parallelize the training process.

Algorithm 1 explains the parallel blockwise distillation method in detail. The

first step is to identify all layers of the model to be replaced. Our algorithm considers

every convolutional layer except 1x1 convolutions. This is because the 1x1

convolution is already more efficient than depthwise separable convolution. As

depicted in Figure 4.4, each identified replacement block is viewed as an independent

task. All tasks will be allocated to the available GPUs based on a selected scheduling

56

Figure 4.4: Overview of the parallel blockwise distillation process

Algorithm 1 Parallel Blockwise Distillation
Input : Teacher Network T = c ◦ fk ◦ fk−1 ◦ ... ◦ f1
Output : Student Network S = c ◦ gk ◦ gk−1 ◦ ... ◦ g1

1: identify all layers to be compressed
2: broadcast layer assignment to workers
3: for each worker do
4: for all allocated layers do
5: train each layer as described in IV
6: if epoch %2 == 0 then
7: evaluate model with student block
8: end if
9: end for

10: end for
11: gather all weights to process 0
12: for all layers do
13: if accuracy > threshold then
14: replace teacher block with student block
15: end if
16: end for
17: fine-tune resulting model
18: return S

57

algorithm. Users can choose either a naive scheduling algorithm (e.g., round robin) or

a more advanced scheduling algorithm (e.g., bin packing or work-stealing).

The choice of scheduling algorithms could influence the speedup because

inappropriate scheduling algorithms may lead to load-balancing problems. The

round-robin scheduling algorithm works well for DNNs with many blocks with a

similar training time. However, for DNNs like VGG16, where the training time of

each layer is vastly different, and the total number of replacement blocks is relatively

small, naive scheduling such as round robin will likely cause load balancing issues. In

this case, a more advanced scheduling algorithm, such as bin packing or work stealing,

is needed. The bin-packing algorithm considers tasks with various execution times as

items with varied weights, and the number of GPUs are viewed as the number of bins.

The goal of bin packing scheduling is to allocate tasks to available GPUs so that each

GPU has a balanced workload. More formally, given n bins of unlimited capacity and

m tasks of weight wm, the bin packing algorithm distributes the m tasks so that for

every bin bn their sum
∑
m∈b

wm are as even as possible. In our algorithm, we leverage

the bin packing implementation in the python library[76], which uses the heuristic

Worst Fit Decreasing (WFD) approach that first sorts the items to be placed in

decreasing order, then puts them one by one into the next most empty bin until all

tasks are distributed. Bin packing scheduling is very effective, but it requires prior

knowledge of each task’s execution time. Generally speaking, if a model is compressed

frequently, it is worthwhile to get such prior knowledge because obtaining the training

time once could benefit all compression processes after that. However, when prior

knowledge is unavailable, or the cost of receiving such information is too high, bin

packing scheduling becomes less ideal. The work-stealing scheduling policy can

address this issue as the load balancing can be achieved dynamically while running

the model. In a work-stealing scheduler, each GPU has a queue of tasks. When a

GPU runs out of work, it checks the queues of other GPUs and steals their tasks from

58

the tail of the queue. As a result, work-stealing achieves dynamic load balancing by

distributing the tasks evenly over all GPUs. Our algorithm uses the work-stealing

scheduling policy implemented by Dask [77], which is deployed on the Chameleon

system [78].

Each layer is trained using local loss as described in equation IV.3, which helps

significantly to reduce the amount of subnetwork graph that must be loaded in

memory to perform the block distillation. This allows us to use larger batch sizes and

perform the distillation on a single GPU. It also results in very fast training time per

block because of the limited number of layers that require gradient information

during the back prorogation phase. However, this also requires a careful balancing act

to load and remove the necessary components of the computation graph at each part

of the training phase. We load our teacher network and save a temporary copy of the

teacher subnetwork up until the considered kth block for replacement. Then the GPU

memory must be explicitly flushed. After that, the teacher subnetwork and the

student block are loaded again and trained for two epochs. Then our algorithm checks

how the distillation performs by evaluating the trained accuracy of each replacement

block in the student model. Once all GPUs have finished their workload, the main

MPI process with rank = 0 does a single gather from all GPUs, and layers are

compared with a user-defined threshold for accuracy. Only student blocks that exceed

the accuracy threshold will be used in the model reassembly process. When the

compressed model is assembled, it is fine-tuned for a few epochs to recover accuracy

and returned as the final student model output.

The performance of a parallel algorithm is usually affected by dependencies,

synchronization overhead, load unbalancing, and speed gap between CPUs and GPUs.

Our algorithm addresses each bottleneck as follows. First, by extracting local

information, our algorithm makes each replacement block training an independent

task, which eliminates most dependencies and only requires two synchronizations (one

59

at the beginning to dispatch tasks to GPUs and one at the end to assemble the

student model). Second, by leveraging different scheduling algorithms (round robin or

bin packing), the workload of each GPU is well balanced. Third, we can adjust the

number of threads used for CPU data preprocessing to match the GPU speed on

consuming training data. In our experiments, we observed that the recommended

default settings in TensorFlow are not ideal, so we adjusted the number of CPU

threads to achieve better speedup. Successfully tackling all these bottlenecks makes

our proposed algorithm a very appealing solution to parallel knowledge distillation.

Even better, our algorithm scales automatically on single machines with multiple

GPUs and a multi-node GPU system. This scalability is transparent to users because

they do not need to modify their hyper-parameters.

Experimental Results

Hardware Configuration

Experiments were conducted on two different systems. The first system is a

single server with an AMD Ryzen Threadripper 2950x processor (16 physical cores

with hyperthreading support for 32 threads), 4 Nvidia RTX 2080TI GPUs, and

128GB of DDR4 Memory in quad-channel configuration. The second one contains

multiple nodes from the NSF Chameleon system [78]. Each Chameleon node has

192GB of DDR4 Memory, 2 Intel Xeon Gold 6126 Processors (12 physical cores, each

with hyperthreading support for 24 threads), and an Nvidia RTX6000 GPU. These

Chameleon nodes are connected as a cluster using a 10Gb network.

System Profiling Tool

A system profiling tool is developed to collect real-time information about CPU

utilization, CPU power consumption, and multiple GPUs’ utilization and power

consumption. To ensure the profiling tool is lightweight, we choose a sampling

60

frequency of 1Hz, which has a negligible impact on the knowledge distillation process.

The profiling for GPUs is via the Nvidia Management Library(NVML), which is

already well-known; thus, the details are skipped here. We provide more details about

profiling the AMD Ryzen Threadripper processor as follows.

Power consumption. The power consumption data is collected from the Model

Specific Register(MSR) files. We can access different registers by seeking the MSR

number as an offset. For example, we can go to each cpunum MSR directory and read

8 bytes starting from the offset 0xC001029A to get per CPU core energy. The

package energy (i.e., total energy consumed on a single CPU chip) can be obtained

from the offset 0xC001029B. Since the recorded energy value is accumulative, we

measure delta energy consumption over a sampling time period to calculate the

average power consumption using the following equation:

CPUavgpower = ∆Energy ∗ frequency (IV.5)

CPU utilization. CPU usage information is obtained from the /proc/stat/ file,

which holds various information about the kernel activities. To measure CPU

utilization, we can sum up CPUtime spends on user mode and kernel mode divided

by the total CPU time spends within a sampling interval. The average CPU usage

can be calculated with the equation below:

CPUavgusage =
(∆CPUuser +∆CPUkernel)

∆CPUtotal

(IV.6)

Training Details

The CIFAR10 implementations are trained for 30 epochs per layer (although

most converged within 5-10 epochs) and fine-tune the assembled model for 20 epochs.

ImageNet models use provided Keras applications and pre-trained weights. The layers

61

are each trained for roughly the equivalent number of total steps as the CIFAR10

models, which results in about 1.5 epochs on the larger dataset. Models are then

fine-tuned for two epochs over the full dataset when assembled. ResNet includes many

1x1 convolutional layers, which are not replaced in our algorithm. During the

fine-tuning stage of ResNet, all 1x1 convolution layers are frozen and fully connected

layers so that only the replacement blocks are fine-tuned. Further implementation

details can be found on the Github at

https://github.com/codestar12/Parallel-Independent-Blockwise-Distillation.

Speedup and Accuracy

Table 4.6: Speedup and Efficiency of ResNet and VGG on CIFAR10 (Single AMD Server -
Bin Packing Scheduling)

of GPUs Time (s) Speedup Efficiency DNN Model

4 2749.81 3.53 0.96 ResNet
3 3876.03 2.50 0.83 ResNet
2 5060.97 1.92 0.88 ResNet
1 9693.24 1 1 ResNet

4 1274.77 3.08 0.77 VGG
3 1603.12 2.45 0.82 VGG
2 2214.57 1.77 0.89 VGG
1 3920.53 1 1 VGG

In this section, we present experimental results to verify the proposed algorithm

can achieve near-linear speedup without compromising accuracy. Table 4.6 and 4.7

depict the speedup and efficiency (the ratio of speedup over the number of GPUs) for

VGG and ResNet when using our parallel knowledge distillation algorithm on the

CIFAR10 dataset. We observe a 1.92, 2.50, and 3.53 speedup for ResNet and 1.77,

2.45, and 3.08 speedup for VGG when using two, three, and four GPUs, respectively,

on the single AMD server with 4 GPUs. Meanwhile, we achieve even higher speedup

62

Table 4.7: Speedup and Efficiency of ResNet and VGG on CIFAR10 (Distributed Cluster -
Work Stealing Scheduling)

of GPUs Time (s) Speedup Effeciency DNN Model

4 2094.21 3.87 0.9685 ResNet
2 4064.43 1.996 0.998 ResNet
1 8113.087 1 1 ResNet

4 1556.94 2.93 0.732 VGG
2 2456.59 1.856 0.927 VGG
1 4558.57 1 1 VGG

Table 4.8: Speedup and Efficiency of ResNet on ImageNet (Single AMD Server - Bin Packing
Scheduling)

of GPUs Time (s) Speedup Efficiency DNN Model

4 13871.72 2.75 0.69 ResNet
3 16893.19 2.26 0.75 ResNet
2 20895.00 1.83 0.91 ResNet
1 38171.40 1 1 ResNet

(3.87 for 4 GPUs) and efficiency (0.97 for 4 GPUs) for ResNet running on the

distributed cluster with work-stealing scheduling enabled (see Table 4.9). Table 4.9

shows that our algorithm can also achieve near linear speedup (1.998, 2.92, and 3.64

for two, three, and four GPUs) when training the student VGG using the ImageNet

dataset, which is better than the results from the single AMD server (see Table 4.8).

This is primarily due to the 16-core CPU’s inability in the single server to

simultaneously process a larger volume of ImageNet images for multiple GPUs.

In terms of accuracy, we compare our algorithm with the progressive blockwise

distillation algorithm [75], which is the state-of-the-art knowledge distillation

algorithm. Since the versions of trained VGG and ResNet models used in our

experiment differ from those used in [75], the accuracy of our teacher models is not

the same as the accuracy of teacher models used in [75]. For a fair comparison, we

63

Table 4.9: Speedup and Efficiency of ResNet on ImageNet (Distributed Cluster - Work
Stealing Scheduling)

of GPUs Time (s) Speedup Efficiency DNN Model

4 9234.09 3.639 0.910 ResNet
3 11517.76 2.918 0.973 ResNet
2 16821.35 1.998 0.999 ResNet
1 33605.60 1 1 ResNet

Table 4.10: Comparison of Top-1 Accuracy on CIFAR10 & CIFAR100

Model Top-1 Accuracy Change

CIFAR10

Teacher VGG [75] 86.61%
Student VGG [75] 83.56% -3.05%
Teacher VGG Ours 87.32%
Student VGG Ours 86.59% -0.73%
Teacher ResNet 90.36%
Student ResNet 88.77% -1.59%

CIFAR100

Teacher ResNet [79] 71.21%
Student ResNet [79] 70.77% -0.44%
Teacher ResNet Ours 72.14%
Student ResNet Ours 70.53% -1.61%

highlight the accuracy changes in the last column of Table 4.10, from which we can

see that the accuracy drops by 3.05% for VGG when using the algorithm proposed in

[75] on the CIFAR10 dataset. However, the accuracy degrades by only 0.73% for

VGG and 1.59% for ResNet when using our algorithm. Table 4.11 shows that the

accuracy of our algorithm on the ImageNet dataset decreases by merely 0.6% for

VGG and even increases by 1.91% for ResNet.

64

Table 4.11: Comparison of Top-1 Accuracy on Imagenet

Model Top-1 Accuracy Change

ImageNet

Teacher VGG [75] 68.28%
Student VGG [75] 70.28% +2.00%
Teacher VGG Ours 65.7%
Student VGG Ours 65.1% -0.6%
Teacher ResNet 70.56%
Student ResNet 72.47% +1.91%

(a) Speedup of ResNet on CIFAR10 (b) Efficiency of ResNet on CIFAR10

(c) ResNet CIFAR10 layer runtimes with a vari-
able number of threads

(d) ResNet CIFAR10 layer runtimes with a fixed
number of threads

Figure 4.5: Comparison of ResNet speedup when using fixed or variable number of threads
to preprocess data.

Impact of Load Balancing

Another critical factor that affects speedup is load balancing, which is primarily

determined by the characteristics of tasks and how these tasks are scheduled for
65

(a) Speedup of VGG16 on CIFAR10 (b) Efficiency of VGG16 on CIFAR10

(c) Round Robin task allocation for VGG16 (d) Bin Packing task distribution for VGG16

Figure 4.6: Comparison of VGG16 speedup when using Round Robin or Bin Packing to
schedule layers.

execution. The naive round-robin scheduling achieves good load balancing for ResNet

because tasks in ResNet have similar runtimes. However, naive scheduling can

seriously impact speedup for DNNs with much fewer blocks to replace and more

significant variations in feature map size like VGG16. Figure 4.6c shows how

round-robin scheduling assigns the 13 VGG tasks (the number inside each task

indicates its runtime in seconds) to four GPUs, from which we can see that the

workload of GPU0 and GPU1 is much higher than the workload of GPU2 and GPU3.

On the other hand, the bin packing scheduling allocates tasks more evenly (see Figure

4.6d), which significantly increases the speedup of 4 GPUs from around 2.5 to 3.0 and

efficiency from 0.65 to 0.8. However, bin packing scheduling requires prior knowledge

66

about the runtime of each parallel task, which may not be available. In that case,

work-stealing scheduling can dynamically achieve load balancing.

Energy Savings

Energy consumption is another concern when training and compressing large

DNNs. Since DNNs are often trained and evaluated frequently in production

applications, even relatively small improvements in energy efficiency can lead to a

significant reduction in energy and carbon emissions over time. In this section, we use

the greenup metric to compare the energy consumption of our parallel compression

algorithm with the serial implementation. Greenup was first introduced by

Abdulsalam et al. in [80] and defined as follows:

Greenup = Energyserial/Energyparallel (IV.7)

Since the total energy consumption is the accumulated product of runtime over

power, all factors that can affect runtime or power can influence total energy

consumption. For example, the Dynamic Voltage and Frequency Scaling (DVFS)

techniques have been enabled on both CPU and GPU as default settings, which

constantly try to reduce power when workload drops. Other factors may have

conflicting effects on runtime and power. For example, using more GPUs to achieve a

larger speedup will help reduce runtime but will also increase both the CPU power

and GPU power.

Table 4.12 summarizes the total energy and greenup when running our parallel

algorithm on the single AMD server using different numbers of GPUs on ResNet and

VGG, respectively. Our algorithm achieves a maximum of 1.29x greenup (i.e., 29%

energy savings) on ResNet and a maximum of 1.19x greenup (i.e., 19% energy

savings) on VGG, both when using four GPUs. The energy savings mainly come from

dramatically shortened training time, as discussed in Table 4.6.

67

Table 4.12: Greenup of ResNet on CIFAR10

of GPUs Energy (kJ) Greenup DNN Model

4 977.39 1.29 ResNet
3 1067.82 1.18 ResNet
2 1106.68 1.18 ResNet
1 1263.43 1 ResNet

4 893.44 1.19 VGG
3 929.30 1.14 VGG
2 950.70 1.12 VGG
1 1061.98 1 VGG

We also notice that VGG has less energy reduction than ResNet. It is partially

because VGG16 has fewer tasks that can be evenly distributed on multiple GPUs, as

illustrated in Figures 4.6 (c) and (d). As a result, GPUs that finish their tasks much

earlier would have to stay idle, waiting for other GPUs to complete. In our

experiments, we find that idle devices also consume considerable energy over time

without contributing useful work. Moreover, since the CIFAR10 dataset is relatively

small for the distillation process, the overall system utilization is not high (< 60%

most of the time). For distillation on larger datasets (e.g., ImageNet), the execution

time of each task will be much longer, and system utilization will be higher.

Consequently, more energy savings are expected because the load imbalancing issue

and the DVFS techniques will generate less impact on greenup.

Conclusions and Future Work

Knowledge distillation is a promising technique to compress large deep neural

networks (DNNs) by replacing the complex sub-networks in the teacher model with

simplified sub-networks in the student model. However, existing knowledge

distillation algorithms take a long time to train. In this chapter, we propose a novel

68

parallel block-wise distillation algorithm that can significantly reduce the distillation

process’s training time and energy consumption. The experimental results running on

an AMD server with four Geforce RTX 2080Ti GPUs show that our algorithm can

achieve 3x speedup plus 19% energy savings on VGG distillation and 3.5x speedup

plus 29% energy savings on ResNet distillation, both with negligible accuracy loss.

The speedup of ResNet distillation can be further improved to 3.87 when using four

RTX6000 GPUs in a distributed cluster. In addition, our method can leverage

different scheduling algorithms (e.g., bin packing or work stealing) based on the

nature of the target DNNs to achieve good load balancing. More importantly, our

algorithm can scale automatically and transparently when more GPUs are available

without requiring users to tune their hyper-parameters.

Our current work can be further extended in two directions. First, we confirm

that our method works well on the convolutional layers of VGG and ResNet in this

work. We believe it can be applied more broadly, and future work can be done to

evaluate its effectiveness on other models or different types of layers. Second, since our

method uses only local loss and does not require labeled data, we plan to investigate

further if our approach can work with unlabeled data and unsupervised learning.

69

V. REDUCE, REUSE, RECYCLE: IMPROVING TRAINING

EFFICENCY WITH DISTILLATION

Introduction

Neural network training has a waste problem. Considerable attention has been

given to the financial cost, electricity consumption, and carbon footprint of neural

networks [81, 82, 83]. At the same time, many of these figures under-represent the full

cost of training a network because they only measure the costs of the final training

run. Far more resources are dedicated to searching for the optimal hyper-parameters

for a given model, dataset, or recipe of techniques [84, 85]. During this search phase,

trained models’ performance metrics are used to reduce the hyperparameter search

space; the representations that models have learned are rarely leveraged to improve

training. This leads us to define the Iterated Runs Problem: How can previous

training runs be used to improve the efficiency1 of a subsequent training run?

Several machine learning research areas—some of them seemingly quite

disparate—address the Iterated Runs Problem, including sample pruning and core-set

selection [87, 88, 89, 90, 91, 92, 93, 94, 95], active learning [96], model averaging

[97, 98, 99], and knowledge distillation (KD) [17, 100]. Work in these areas is not

always conducted or framed with the goal of improving training efficiency. Some

approaches are scientifically valuable but impractical. For example, [92]’s

memorization and influence scores for data pruning require training several models

equal to the size of the training dataset. Similarly, many works within knowledge

distillation seek to compress models or maximize model quality without considerations

for resource usage during training. Work that studies distillation for training efficiency

1We define efficiency here as in [86]: achieving a target level of model quality using fewer resources
(e.g. GPU hours) than a baseline, or achieving an increased level of model quality using the same
resources as a baseline.

70

typically measures units of optimization steps [55, 101, 102, 103, 104]. However,

optimization steps overlooks computational burden of distillation and training, and

accelerator resources are typically priced in units of time, not optimization steps.

Framing knowledge distillation as a solution to the Iterated Runs Problem and a

means to improve training efficiency leads to a number of research questions:

• Does distillation improve training efficiency?

• Traditional distillation paradigms distill for all of training, but is this necessary

to obtain the benefits of distillation? Can we optimize traditional distillation

paradigms to reduce resource usage while retaining model quality

improvements?

• Hyperparameter sweeps can still result in suboptimal models. Can they be

salvaged to make useful teachers?

• Previous work has also shown that distilling from ensembles of models can yield

benefits beyond those of distilling from a single model [102, 105, 106, 104], but

distilling from multiple models imposes increased computational cost. Can we

obtain the benefits of having multiple teacher models without paying the full

computational cost?

• What is the utility of extending training time?

We conducted a series of experiments to investigate the utility of distillation for

improving training efficiency in an Iterated Runs scenario using ResNet-50 [58]

trained on ImageNet [107] and BERT [108] trained with a masked language objective

on C4 [109] and evaluated on GLUE [110]. These experiments used a hyperparameter

sweep across four learning rates, then distilled a fifth model of the same architecutre

with one (or more) of the trained models. Our results are as follows:

71

• Distillation consistently improves training efficiency. We found distillation can

speed up training up to 1.96x2 in ResNet-50 trained on ImageNet, up to 1.20x

on BERT when evaluated on masked pretraining accuracy, and up to 1.42x on

BERT when evaluated on GLUE.

• Optimal distillation schedules vary across models. Distilling for the entirety of

training is optimal for ResNet-50. In contrast, training BERT with distillation

for all of the training decreases efficiency. Instead, distillation for BERT yields

optimal results when only performed for the first 20-50% of training.

• Model quality does not guarantee teacher quality. Training with distillation is

almost always more efficient than without, even when using a poor-quality

model as a teacher in both ResNet-50 and BERT.

• Randomly sampling one teacher model from a pool of teachers on each iteration

provides similar quality gains as those obtained from using that same pool of

models as an ensemble of teachers on every iteration in ResNet-50 trained on

ImageNet. This effectively reduces the runtime cost of teacher ensembles from

O(N) to O(1).

• By combining our methods with extended training durations, we set new

performance records for ResNet-18 and ResNet-34 on ImageNet, without the

use of supplementary training data or augmentations. We further improve these

results by using teachers that are themselves trained with distillation,

demonstrating that the benefits of distillation are “heritable" between

generations of student models. We refer to the practice of using distilled

teachers as Matryoshka Distillation.

These results show that distillation can substantially improve training efficiency

in image classification and language modeling. Furthermore, our results show that
2All speedups are measured on 8x NVIDIA A100 accelerators

72

distillation improves the efficiency of training, regardless of the quality of the teacher

model. We also show that the benefits of distillation on training speed and model

quality are fungible. Thus, our proposed optimizations to distillation protocols can

improve model quality and reduce training costs. Taken together, this work

emphasizes the utility of distillation for improving the efficiency of training deep

neural networks.

Related Work

Knowledge Distillation

Knowledge distillation [17] is a method that improves and compresses models

[100]. Teacher models are often larger than student models, though large size

discrepancies can reduce the benefits of distillation [73]. Distillation is also included

in many recipes that push the limits of model quality [111, 112, 113], and many

approaches utilize distilled models of similar or identical architecture

[55, 101, 102, 105, 106].

Teacher Ensembling and Self-Distillation

The Iterated Runs Problem emphasizes self-distillation, distilling from previous

checkpoints in a training run [101, 102, 105, 114], and distilling from ensembles of

teachers, which has been shown to improve model quality effectively

[115, 105, 103, 116, 114, 117, 106, 104]. While our work explores both aspects of this

question approaches combine both self-distillation and ensembling

[105, 114, 106].[118] suggests that ensembles benefit from response diversity but did

not examine distillation specifically.

73

Distillation in Language Models

While many studies have examined distillation to improve the quality of vision

models, fewer works have studied language models [114]. Most research on the

distillation of language models focuses on improving model compression rather than

model quality [119, 120, 121, 122, 123, 124].

Distillation for Stepwise Training Speedups

Numerous works have claimed that distillation improves training efficiency by

demonstrating reductions in optimization steps used to achieve a given level of model

quality relative to a baseline [55, 101, 102, 103, 104]. Notably, [104] showed that

much of the benefit of distillation can be obtained at reduced computational cost (in

optimization steps) by distilling intermittently (i.e., once every K steps). They also

showed that randomly sampling of teacher models from a pool of teachers at each

step is nearly as effective as distilling from the entire ensemble of teachers.

Unfortunately, measuring "efficiency" in optimization steps overlooks the increased

computational cost of distillation, leaving it unclear whether these approaches

improve resource usage efficiency.

Methodology and Experimental Setup

We designed a series of experiments examining the utility of distillation to

improve training efficiency. We measured efficiency as defined in [86]: a model is

efficient if it achieves the same level of quality as a baseline but with fewer resources

(e.g., GPU hours), or a greater level of quality for the same amount of resources as

the baseline (i.e., a Pareto improvement). Our experiments addressed the following

questions:

• Can distillation improve training efficiency?

74

• Should you distill for all of training?

• Does model quality predict its quality as a teacher?

• Are multiple teachers more helpful than a single teacher?

• Can extended training help distillation?

Our experiments used models with identical architectures, optimizers, and

dataset. For each experiment, train the same model architecture to the same or

higher quality with fewer resources. We use the term “distillation" even though the

student and teacher model architectures are identical in an experiment. Our goal is to

examine whether the teaching signal can improve training efficiency. For image

classification, we measured efficiency as speedup to reach the Top-1 accuracy of the

baseline. For BERT we evaluated both Masked Language Modeling (MLM) accuracy

when distilling and pre-trained model performance on downstream tasks from GLUE

[110]. We did not conduct experiments that perform model compression.

We used only response-based distillation, not internal features, in order to

compare approaches across domains and model architectures. We compared the use of

both Kullback-Leibler (KL) divergence loss Lkl as described in[17] and MSE loss

LMSE. Student models were trained using a linear combination of the KD losses Lkd

as cross-entropy loss, Lce.

L = λLkd + Lce

where λ controls the weight of the KD loss term.

Data and Models We performed model distillation on two domains and tasks:

image classification with ResNet-50 [58] trained on ImageNet [107] and Masked

Language Modeling with BERT [108] pre-trained on C4 [109] and finetuned on GLUE

[110]. For ResNet-50, we followed the procedure described by [58] using 224 x 224 test

resolution. Notably, we used SGDW [125] as the optimizer and cosine annealing [126]

75

as the learning rate scheduler. We additionally extend this setup to ResNet-18 and

ResNet-34, to test the effect of longer training duration. For BERT pre-training, we

used AdamW [125] and linear decay. Instead of a fixed warmup length, we scaled the

warmup period by the percentage of training duration. Details are in table 5.1.

Table 5.1: Shared Training hyperparameters for teacher models and students.

Model ResNet-50 BERT

Batch size 2048 4096
Training Duration (baseline model) 90 epochs 286.72M sequences
Max Sequence Len N/A 128
Optimizer SGDW AdamW
Weight Decay 5.00E-04 1.00E-05
Momentum 0.875 N/A
Warmup 8 epochs 6% of training duration
Scheduler Cosine Annealing Linear Decay

Table 5.2: Training hyperparameters used for teacher models.

Hyper Parameters Model

ResNet B1 B2 B3 B4
lr 1 2.045 0.01 0.1

BERT A1 A2 A3 A4
lr 5.00E-04 5.00E-04 1.00E-04 1.00E-04
wd 1.00E-05 1.00E-04 1.00E-05 1.00E-04

Hardware and Trainer We conducted our experiments using Composer [127],

a PyTorch [128] library for efficient training. Our plots are visualized using Seaborn

[129]. All experiments were conducted on 8x NVIDIA A100 80GB.

Simple Distillation Setup

To understand the benefits of distiation to improve efficiency, we conducted a

hyperparameter sweep across five learning rates (all other hyperparameters kept

constant). We then selected the highest-quality model from the sweep as the baseline

76

and the teacher model to train a student model with distillation. There are two

variants of this experiment: one holds the learning rate schedule fixed, while the other

accounts for changes to the learning rate schedule and shortens the training duration.

We then compared the wall clock time-to-train for the baseline model to reach its

final eval accuracy to the wall clock time-to-train for the distilled model to reach the

baseline model’s final eval accuracy.

Scheduled Distillation Setup

While many distill for the entirety of the training, distilling for a subset of

training may be more efficient. In these experiments, we allowed student models to

train for a percentage of the total training duration (e.g. 25%, 50%) and then stop

distilling. These experiments were motivated by work highlighting the impact of

interventions during the early phase of training [130, 131, 132, 133, 134, 135] and

preliminary results implying the viability of scheduled distillation to reduce

computational costs [104].

Teacher Selection Setup

While there are varying results regarding the correlation between the quality of a

model and the quality of the same model as a teacher [136], it’s unclear whether

sub-optimal models can improve training efficiency. If sub-optimal teacher models

consistently have a negative impact on training efficiency, then training with

distillation could take longer to reach baseline accuracy than training without

distillation.

To investigate the impact of model quality on training efficiency, we apply the

process of training with distillation for the same set of training durations (and scaled

learning rate schedules) described in the last section, utilizing each possible teacher

model our hyperparameter sweep.

77

While publicly-available checkpoints allow for easy access to possible teachers,

it’s also possible that one could obtain a teacher model as a result of a

hyperparameter sweep. To account for the cost of training teachers, we quantified the

total efficiency improvement from distillation by adding the wall-clock training time

for the teacher to the the wall-clock train time for the student with distillation.

Ensembling Setup

Using a single teacher fails to leverage the resources spent on training the

remaining models that are not used as teachers. Additionally, numerous studies have

shown that using ensembles of teachers can improve model quality more than using a

single teacher [115, 105, 103, 116, 114, 117, 106, 104]. It’s possible that the quality

improvement from adding more teachers outweighs the additional computational

burden and that composition of the teacher ensemble affects training efficiency. If

consistency is important, the static and constant response provided of greedily

selected ensemble of teachers will be the most effective (as noted in [113]).

Alternatively, sampling from a larger population of diverse teachers may be the most

efficient configuration.

Given the research on teacher ensembles and in the spirit of the Iterated Runs

Problem, we studied the efficiency of teacher ensembles for distillation in three

paradigms.

Our first method selected the models with the best accuracy one at a time.

Testing all possible combinations of teachers would be computationally prohibitive,

but scaling up the size of our teacher ensembles in a greedy fashion from the models

with the highest accuracy is a reasonable and practical approach to building such an

ensemble.

Our second method ensembled on-the-fly by loading all models onto GPU

memory, then choosing the desired number at random without replacement on each

78

step and averaging their responses. This does slightly impact hardware performance

as more memory must be used even for the models not selected on a given step.

Our third method sampled a single teacher model at random at each training

step. It’s possible that exposure to the same variety of models is a sufficient

approximation of a larger ensemble without the additional computational overhead.

In these experiments, we again used the same set of teacher models from Table

5.3. We also add an additional teacher model trained with mix-up to improve model

diversity. We now average the ensemble responses such that our new loss term is:

L = λLmse(zt, zs) + Lce

Where zs is the student logit vector and zt =
1
n

∑n
1 zn is the mean teacher logit

vector for n number of teachers.

We compare these models to a selection of results from our previous section: 1. A

naive baseline distilled from the model with the best accuracy. 2. The top performing

distilled model from each training duration. 3. The top performing teacher model

from each training duration as a baseline.

The naive approach distills using the teacher with the best-reported accuracy at

90 epochs of training on ImageNet. The baselines from Section V serve as stronger

baselines which would be impractical and computationally prohibitive for most

applications.

Extended Distillation Setup

Drawing inspiration from the work of [113], we tested the utility of extending the

duration of training time. apply our recipe to ResNet-18 and ResNet-34, and

substantially increase our training times. We performed the same hyperparameter

sweep over learning rates used for ResNet-50 teachers A1-A4 and create an ensemble

of teacher models for both ResNet-18 and ResNet-34. We did not tune these or any

79

other hyperparameters to improve the quality of these models.

Experimental Results

Our experiments tested whether distilation can improve efficiency. As described

in [86], if a distilled model longer wallclock time to reach the baseline model’s final

accuracy, it is not efficient. If the distilled model to reaches the baseline final accuracy

faster than the baseline model or reaches a higher accuracy at the same training time,

distillation improves training efficiency. Section V tests a simple distilation setup,

while later sections propose modifications that may provide further gains in efficiency.

Table 5.3: Results of hyperparameter sweep of teacher models on both ResNet-50 ImageNet
and BERT on C4 and KD. The teacher model is the highest-quality model (B1 for
ResNet-50, A1 for BERT) at standard training length (90 epochs for ResNet-50,
286.72M sequences for BERT). KL: KL-Divergence distillation loss; MSE: Mean-
squared error distillation loss.

Model B1 B2 B3 B4 KD - KL KD - MSE
ResNet-50 - ImageNet Epochs

Top-1 Val Accuracy

22 72.31% 72.96% 39.53% 68.16% 74.82% 75.64%
45 75.43% 75.64% 60.85% 73.46% 76.51% 76.73%
90 76.62% 76.40% 68.85% 75.86% 77.333% 77.21%
135 76.79% 76.52% 71.27% 76.85% 77.42% 77.31%
180 76.87% 76.51% 72.29% 77.17% 77.53% 77.37%

Model A1 A2 A3 A4 KD - KL
BERT - C4 MLM Training Steps

MLM Val Accuracy

17500 63.11% 62.59% 53.38% 48.89% 64.94%
35000 65.49% 64.77% 58.52% 51.54% 66.71%
52500 66.59% 65.79% 61.13% 52.28% 67.43%
70000 67.31% 66.41% 62.71% 52.40% 67.88%
87500 67.77% 66.77% 63.79% 52.49% 68.23%

Simple distillation improves efficiency in ResNet-50 but not BERT

Our experiments demonstrate that simple distillation can substantially improve

training efficiency for ResNet-50 trained on ImageNet, but may not improve training

80

Figure 5.1: ResNet-50 trained on ImageNet with vs. without distillation. Wallclock time-to-
train (x-axis) comparison of teacher model B1 vs student models trained with
B1 as a teacher using MSE and KL losses. Points denote models trained for the
number of epochs reported in Table 5.3.

efficiency for BERT trained on C4. These results suggest that additional

modifications may be need to improve efficiency.

In ResNet-50 trained on ImageNet, distillation, holding the learning rate

schedule fixed, substantially improves eval accuracy but is much slower than training

the baseline model. After 90 epochs, the baseline model (B1) reached 76.6% eval

accuracy in 179.8 minutes. To achieve the same level of accuracy, the distilled model

took 200 minutes but as at epoch 80 of 90. At the end of 90 epochs, the distilled

model reached a final eval accuracy of 77.2%.

When we trained the distilled model for 45 epochs and scaled the learning rate

decay, we found that we were able to reach the final accuracy of the 90-epoch baseline

in 91.6 minutes, a 1.96x speed-up (Figure 5.1).

81

We repeated these experiments using BERT trained on C4 (see Section V),

holding the learning rate schedule fixed. Training our baseline on 286,720,000

sequences of 128 tokens took 11.3 hours and achieved 67.31% val MLM accuracy and

83.37% accuracy on GLUE. As with ResNet50, naïvely applying distillation yielded

worse results: the distilled model achieved baseline MLM accuracy in 18 hours.

We also performed distillation using MSE loss student-teacher loss instead of

KL-divergence/student-teacher loss. For ResNet on ImageNet, we found that MSE is

a substantial improvement over KL-divergence for shorter training (22, 45 epochs),

but performed slightly worse for longer training (Figure 5.1). However, we observed

that MSE has very little observable impact on BERT pretraining.

Our experiments demonstrate that distillation can substantially improve training

efficiency for ResNet-50 trained on ImageNet, but that distillation may not improve

training efficiency for BERT trained on C4. However, it’s possible that our distillation

configuration is sub-optimal, and there are potential efficiency gains that remain to

be realized.

Early-phase-only distillation is optimal for BERT but not ResNet-50

Our results suggest that constant BERT benefits from partial distillation, while

ResNet-50 benefits from constant distillation. Stopping distillation early for BERT

always resulted in better or equal MLM accuracy than distilling for the duration of

training (see Table 5.5). Although the optimal distillation duration varies for different

training durations and teacher models, we found that the best percentage for training

with distillation tended to fall within the range of 15-40%. For ResNet-50 trained on

ImageNet, we found very little efficiency improvement from stopping distillation

compared to distilling the whole training duration (see Table 5.4). This is slightly

contradictory to the results in [137], but maybe a result of a difference in choice of

learning rate schedules as the is a significant boost in training accuracy near the end

82

Figure 5.2: Wallclock comparisons of individual GLUE tasks for the highest quality baseline
model (A1) and distilled model using A1 as a teacher (KD - KL) when pretraining
for different durations. Benefits from distillation are not equal across all tasks.
Generally, tasks with larger finetuning datasets saw the most benefit. Note: the
x-axis denotes the pretraining duration, not the duration of training on GLUE.

Table 5.4: Results from Early Stopping KD for ResNet-50 Trained on ImageNet.

Epochs Training Duration Distillation Pct Top-1

Baseline 45 5455.4 NA 75.64%
90 10799.2 NA 76.62%

Distillation
45 5812.5 25% 75.95%
45 6175 50% 76.46%
45 6887 100% 77.48%

of training with cosine schedulers.

Based on these BERT results, we ran distilation for the first 30% of training,

then re-ran our experiments training BERT on C4 with distillation. Using this setup,

we reached the same MLM accuracy as the baseline teacher model up to 1.20x faster

(Figure 5.3a). The student model also reaches an equal GLUE score as the baseline

up to 1.42x faster than the baseline (Figure 5.3b).

Downstream GLUE tasks with larger datasets most benefited from distilation,

while with smaller and less stable datasets benefited less. Figure 5.2 shows that

applying distillation in the early phase of training allowed QNLI, and STSTB to

83

Table 5.5: Results from Early stopping on BERT trained on C4. Stopping early cuts training
duration significantly and improves MLM accuracy for the same number of training
steps.

Training Steps Training Duration Distillation pct Weight MLM Acc

Baseline
35000 20025.79 NA

NA
65.49%

52500 29945.81 NA 66.59%
70000 40156.39 NA 67.31%

Distillation
35000 37351 100%

1.00E-04 65.65%
1.00E-05 66.22%
1.00E-06 66.15%

35000 23534.05 30% 5.00E-04 66.71%
52500 35640.97 67.43%

match or exceed the baseline model in only 25% of the training steps. MNLI, QQP,

SST-2 were able to match or exceed the teacher model in 50% of the training steps.

Sub-optimal models can be ideal teachers

Our teacher selection experiments allow us to make the following two conclusions.

First, the risk of a training outcome worse than training without distillation is very

low. Even when selecting the worst teacher, distillation is likely to be an efficiency

improvement. Second, the quality of a model does not consistently predict the quality

of that model as a teacher for distillation. When accounting for the cost of training

the teacher model, it can still be more efficient to train a teacher and distill a student

than train a single model.

We present our ResNet-50 results in Figure 5.4. Three of the four models trained

with distillation reached the accuracy of their teacher models in shorter time. None of

the teacher models resulted in a step-wise improvement. There was low correlation

between teacher model accuracy and teaching ability. Our best model from the first

results section (B1) was the lowest performing teacher on 2 of 5 training durations

(135, 180). Our third-best model(B4) became more competitive as the training

duration increased to 180 epochs.

84

(a) MLM Accuracy of pretraining on C4 dataset
with BERT utilizing Early-phase-only distilla-
tion. Individual points along each line denote
models trained for the number of sequences
reported in Table

(b) GLUE score of BERT when applying the opti-
mization of stopping distillation early. When
trained for as many steps as the teacher model
there is a slight dip in GLUE score. Note:
distillation was only used during pretraining;
GLUE finetuning was performed without dis-
tillation.

Figure 5.3: Quality vs. wall-clock-time when training with vs. without knowledge distillation
in ResNet50 and BERT.

We saw similar outcomes for masked language pre-training on BERT (Figure

5.4b). Two of the models trained with distillation reached the accuracy of the best

non-distilled model (A1) faster than the best non-distilled model, and all of the

models trained with distillation reached the accuracy of the remaining three

non-distilled models faster than the non-distilled models themselves. Again, the

highest quality, non-distilled model (A1) was not the best teacher (A2). Additionally,

the student taught with the lowest-quality non-distilled model (A4) ultimately

reached an MLM accuracy that is nearly 10 percentage points higher than its teacher

at equal wallclock time.

Accounting for Teacher Training the Cost As shown in Table 5.6, for half

of our teacher models it is more efficient to train the teacher model for 90 epochs and

then distill it into a student model for 45 epochs than to continue training the teacher

model for a total of 180 epochs. These results indicate that even in the scenario where

a teacher model is unavailable, distillation can still be efficient.

85

(a) For ResNet models, we see that not only is
the best teacher not the one with the highest
accuracy, but also depends on the training
duration.

(b) For BERT we see similar results with A2 being
the best choice of Teacher.

Figure 5.4: Wallclock time vs. accuracy plots for distilling ResNet and BERT using teachers
with lower accuracy. For both domains, we see the best teacher model is not the
teacher with the highest accuracy. Teacher accuracies and wallclock times are
marked in black with matching markers. (A4 omitted for scaling)

Efficient teacher ensembling via random selection

For all our experiments, we observed an efficiency improvement over our baseline

model (Figure 5.5). In shorter training regimes (22 and 45 epochs), we found that

selecting the best model from a single teacher performs best (Best Single Teacher).

However, this approach required an exhaustive search for the best teacher: not just

for the task, but also the training duration (as we have shown in the previous section).

We also found that distilling from a greedy ensemble of teacher models is not a

Pareto improvement as compared to selecting the best single teacher, but randomly

sampling the ensemble on the fly is.

We found that random sampling a single teacher per step from an ensemble of

teachers is able to reach the Top-1 Accuracy of our best baseline model trained for 90

epoch 1.85x faster. For all ranges of values, sampling a teacher at random for

distillation resulted in a speedup of 1.32-3.16x for all training duration.

86

Table 5.6: Accuracy and runtime duration of distilled models when accounting for the total
cost of training. The top shows teacher epochs + student epochs and total duration.
The bottommost row shows the teacher training duration. Even when including
the duration of training for the teacher models, half of our models would be more
efficient with distillation than additional training.

Method Epochs duration Teachers/baseline
B1 B2 B3 B4

KD 90 + 45 17654.5 76.51 77.47 75.41 76.82
90 + 90 24595.1 73.33 78.12 77.12 77.81

Baseline 180 21418 76.87 76.51 72.29 77.17

We also found that the choice of the loss function is not trivial. When using

KL-divergence, the inclusion of specific models hurt performance. Those models

dragged the accuracy down to the worst single-model distillation performance. MSE

on the other hand, while never as good at distilling with only a single teacher, was

more robust to teacher selection.

Extended distillation achieves state of the art on ResNet-18/34

In the preceding experiments, we examined the optimal combination of teachers

for Pareto-optimal distillation. We also applied our recipe to ResNet-18 and

ResNet-34, and substantially increase our training times.

Simply increasing training duration and randomly selecting a single teacher per

step for distillation achieved state-of-the-art results for both ResNet-18 and

ResNet-34 (73.11% and 76.75%, respectively) at 224px resolution. Details can be seen

in Table 5.7. We note that, unlike previous works, our technique did not use any

additional data or augmentations.

87

Figure 5.5: Pareto curve comparing single model distillation, multi-model distillation, and
randomly sampling teachers. Dark green: baseline (no kd); blue: single model
distillation; orange: 90 epochs with 2, 3, or 4, teachers chosen greedily (MSE
loss); light green: 90 epochs with 2, 3, or 4, teachers randomly-selected from 5
(MSE) loss; pink: randomly select 1 teacher from 5, trained for 22, 45, 90, 135, or
180 epochs

Matryoshka Distillation

Distillation improves model quality. But we showed that the quality of a model

does not necessarily correspond to its quality as a teacher. This leads to the question

of whether the benefits of distillation are cumulative. Are distilled models better

teachers than non-distilled models? Or are distillation-related improvements in model

quality not heritable between generations of students? We investigated this by

training students with teachers that were themselves trained with distillation, which

we refer to as Matryoshka Distillation. We found that ensemble diversity is still

important and we use the same learning rates as the original teacher ensemble. This

88

Table 5.7: Comparison of Distillation and other state-of-the-art resnet results. Distilling from
an ensemble of teachers with random selection achieves a new state-of-the-art for
ResNet18 and ResNet-34 on ImageNet trained without additional data. The best
results from other methods are highlighted in blue, best overall results are in bold.
(note: † indicates results reported in [138])

Method Technique Top-1 Epochs
ResNet-18 ResNet-34

Baselines Torchvision 69.75 73.31 90
Ours 70.55 74.01 90

KD

KD † [17] 71.37 100
CRD [139] 71.17 100
FT † [140] 71.13 100
PAD-L2 [141] 71.71 100

Semi-Sup Billion-scale [142] 72.6

Data Aug. Strikes Back [143] 71.5 76.4 600
SAMix [144] 72.33 76.35 300

Ours
Radom Selection 72.93 76.75 720

73.11 900

Matryoshka KD 73.04 76.88 720
73.27 1080

resulted in a further 0.16% and 0.13% accuracy improvement for ResNet-18 and

ResNet-34, respectively, on top of our previous SOTA distillation results (Table 5.7).

Discussion

We conducted a series of experiments to investigate the utility of distillation for

improving training efficiency using ResNet-50 trained on ImageNet and BERT trained

on C4 and evaluated on GLUE. We found that distillation improves training

efficiency: it can speed up training by up to 1.96x in ResNet-50 trained on ImageNet

and up to 1.42x on BERT when evaluated on GLUE. We also found that distillation

schedules matter. Distillation for BERT yields optimal results when it is only

89

performed for the first 20-50% of training, but that distilling for the entirety of

training is optimal for ResNet-50 on ImageNet. Furthermore, we found that model

quality does not consistently predict teacher quality. Training with distillation is

almost always more efficient than training without distillation, even when using the

poorest-quality model as a teacher, in both ResNet-50 and BERT. We were also able

to reduce the runtime cost of teacher ensembles from O(N) to O(1) while still

retaining their benefits to distillation by randomly sampling one teacher model from a

pool of teachers on each iteration. We also observed differences between mean squared

error (MSE) and KL-Divergence (KL) distillation loss in ResNet-50 trained on

ImageNet. MSE is more robust—it more consistently yields higher quality student

models across a wide range of hyperparameter values—but KL-Divergence distillation

loss yields the best student models. Finally, by using distilled teachers and combining

our methods with extended training durations, we were able to set new SOTA

performance for ResNet-18 and ResNet-34 on ImageNet without the use of

supplementary training data or augmentations.

[113] obtain impressive results with extended distillation using a single teacher,

showing that it’s possible for the student to reach the accuracy of the teacher. Our

work shows that when using identical architectures, it’s possible to improve the

student beyond the accuracy of the teacher.

A caveat to our work is that distillation requires loading a teacher model into

GPU memory. Depending on the size of the teacher and student models and the

amount of GPU memory, distillation can exceed the GPU memory capacity. In such a

scenario, memory-saving techniques such as gradient accumulation may be necessary,

which can impose additional computational overhead. Accordingly, distillation may no

longer improve efficiency in such a scenario.

Another shortcoming of this work is that we do not provide a precise nor

analytical basis for our recommendation about when to stop using distillation when

90

pretraining BERT. Our recommendation of stopping 20-50% through training is

derived entirely from empirical observation.

Our findings demonstrate that distillation consistently improves training

efficiency in both image classification and language modeling across a range of

training durations and teacher model qualities. We also show that the benefits of

distillation on training speed and model quality are fungible, meaning that our

proposed optimizations to distillation protocols—using distilled teacher models,

randomly sampling from ensembles of teacher models, and distilling for the beginning

30% of training (in BERT)—can be flexibly leveraged to reduce training time or

increase model quality, depending on the needs of the practitioner. This work

emphasizes the value of distillation for improving the efficiency of training deep

neural networks.

91

VI. CONCLUSIONS

In conclusion, this dissertation has examined neural network model compression

from multiple angles. The work has been rooted in practical solutions that can realize

model acceleration without specialized hardware and minimize training time and

resources while also aiming to shed light on the underlying mechanisms that allow

compression techniques to operate.

First, Chapter II investigates the limitations of unstructured neural network

pruning to reduce large neural networks’ size and computational demands.

Specifically, it analyzes three pruning methods using Singular Vector Canonical

Correlation Analysis and demonstrates that this process significantly changes the

representation of the model. This understanding of the evolving nature of pruned

models informs Chapter III. Chapter III examines the bias and errors introduced into

neural networks during pruning and how to mitigate them using knowledge

distillation. It finds a strong correlation between model similarity and bias in pruned

networks and provides insight into which knowledge distillation techniques best

preserve the model’s original qualities. Chapter IV explores an alternative to

structured pruning and traditional knowledge distillation by constructing more

efficient replacements of sub-model components and replacing expensive individual

sections of the model in a block-wise manner. It then presents how block-wise

distillation can be parallelized in local and distributed systems. Chapter V

investigates how distillation can accelerate the training of deep neural networks and

amortize the training cost of models’ hyper-parameters sweeps. It also achieves SOTA

performance on ResNet-18 and ResNet-34, significantly improving existing results

while using teacher models of much lower accuracy challenging traditional ideas of

"compression" and knowledge distillation.

92

Discussion and Future Research

The throughline in this dissertation’s work has been challenging convention and

reexamining practices taken for granted in the community that trains neural networks.

I firmly believe that much of the conventional wisdom of network compression

research is misguided and needs re-evaluation. I am excited by the findings of Chapter

V and the following new research directions. It points to 1) The best-compressed

model you can find is simply the one that meets your inference needs, and you train

to the highest quality. 2) Knowledge Distillation (at least response-based distillation)

functions via a mechanism that behaves very differently than many in this field

understand. It is, in fact, essential that the labels teachers provide are wrong, and

specifically how they are wrong. I believe that what is valuable about the predictions

of the model used in union with the ground truth labels is that you are receiving an

excellent prior of what a model should predict over that dataset. Otherwise, why

would it be possible to train a model to a higher quality than its teacher models?

Why would it be more successful to use the same model architecture as a teacher

compared to one of a higher capacity?

In summary, this dissertation has contributed to many avenues of investigation.

A better understanding of how model representations change during compression and

how to measure and mitigate unwanted side effects of compression, and efficiency in

knowledge distillation. It is my hope that the compilation of research presented in

this dissertation provides fresh perspectives for those studying issues in compression,

bias, and energy efficiency of AI models.

93

REFERENCES

[1] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for
efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[2] H. Lim, D. Cosley, and S. R. Fussell, “Beyond translation: Design and
evaluation of an emotional and contextual knowledge interface for foreign
language social media posts,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pp. 1–12, 2018.

[3] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural machine translation
system: Bridging the gap between human and machine translation,” arXiv
preprint arXiv:1609.08144, 2016.

[4] L. Theis, I. Korshunova, A. Tejani, and F. Huszár, “Faster gaze prediction with
dense networks and fisher pruning,” arXiv preprint arXiv:1801.05787, 2018.

[5] N. Wadhwa, R. Garg, D. E. Jacobs, B. E. Feldman, N. Kanazawa, R. Carroll,
Y. Movshovitz-Attias, J. T. Barron, Y. Pritch, and M. Levoy, “Synthetic
depth-of-field with a single-camera mobile phone,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pp. 1–13, 2018.

[6] I. Alhashim and P. Wonka, “High quality monocular depth estimation via
transfer learning,” arXiv preprint arXiv:1812.11941, 2018.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are
few-shot learners,” in Advances in Neural Information Processing Systems
(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33,
pp. 1877–1901, Curran Associates, Inc., 2020.

[8] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat,
S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou,
D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan,
S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz,
E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz,
O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov,
and N. Fiedel, “Palm: Scaling language modeling with pathways,”
arxiv:2204.02311, 2022.

94

[9] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

[10] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10684–10695, June 2022.

[11] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional
networks using vector quantization,” arXiv preprint arXiv:1412.6115, 2014.

[12] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4820–4828, 2016.

[13] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on cpus,” 2011.

[14] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv
preprint arXiv:1510.00149, 2015.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Conference on Neural Information Processing
Systems(NIPS), 2015.

[16] W. S. Sajid Anwar, Kyuyeon Hwang, “Structured pruning of deep convolutional
neural networks,” ACM Journal on Emerging Technologies in Computing
Systems, 2017.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[18] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep
neural network compression,” in Proceedings of the IEEE international
conference on computer vision, pp. 5058–5066, 2017.

[19] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey, R. Grisenthwaite,
S. Ha, A. Heinecke, P. Judd, J. Kamalu, et al., “Fp8 formats for deep learning,”
arXiv preprint arXiv:2209.05433, 2022.

[20] T. Dettmers and L. Zettlemoyer, “The case for 4-bit precision: k-bit inference
scaling laws,” arXiv preprint arXiv:2212.09720, 2022.

[21] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani,
K. El Maghraoui, V. V. Srinivasan, and K. Gopalakrishnan, “Ultra-low
precision 4-bit training of deep neural networks,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1796–1807, 2020.

95

[22] C. Blakeney, Y. Yan, and Z. Zong, “Is pruning compression?: Investigating
pruning via network layer similarity,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 914–922, 2020.

[23] C. Blakeney, N. Huish, Y. Yan, and Z. Zong, “Simon says: Evaluating and
mitigating bias in pruned neural networks with knowledge distillation,” arXiv
preprint arXiv:2106.07849, 2021.

[24] C. Blakeney, G. Atkinson, N. Huish, Y. Yan, V. Metsis, and Z. Zong,
“Measuring bias and fairness in multiclass classification,” in 2022 IEEE
International Conference on Networking, Architecture and Storage (NAS),
pp. 1–6, IEEE, 2022.

[25] C. Blakeney, X. Li, Y. Yan, and Z. Zong, “Craft distillation: Layer-wise
convolutional neural network distillation,” in 2020 7th IEEE International
Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom),
pp. 252–257, IEEE, 2020.

[26] C. Blakeney, X. Li, Y. Yan, and Z. Zong, “Parallel blockwise knowledge
distillation for deep neural network compression,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 7, pp. 1765–1776, 2020.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in CVPR,
2015.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2015.

[29] V. Lebedev and V. Lempisky, “Fast convnets using group-wise brain damage,”
in CVPR, 2016.

[30] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in NIPS, 2015.

[31] W. Chen, J. Wilson, T. S., W. K. Q., and C. Y., “Compressing neural networks
with the hashing trick,” in JMLR workshop, 2015.

[32] H. Zhou, A. J. M., and P. F., “Less is more: Towards compact cnns,” in ECCV,
2016.

[33] A. See, M.-T. Luong, and C. D. Manning, “Compression of neural machine
translation models via pruning,” in CoNLL, 2016.

[34] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen, “Exploring sparsity in
recurrent neural networks,” in arXiv preprint arXiv: 1704.05119, 2017.

[35] Y. Lecun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in NIPS, 1990.

96

[36] R. Rigamonti, A. Sironi, V. Lepetit, and F. P, “Learning separable filters,” in
CVPR, 2013.

[37] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolitional neural
networks with low rank expansions,” in BMVC, 2014.

[38] C. Tai, T. Xiao, and X. Wang, “Convolutional neural networks with low-rank
regularization,” in arXiv preprint arXiv:1511.06067, 2015.

[39] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Doubly convolutional neural
networks,” in NIPS, 2016.

[40] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and improving
convolutional neural networks via concatenated rectified linear units,” in ICML,
2016.

[41] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability,”
in NIPS, pp. 6076–6085, 2017.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in NIPS, 2012.

[43] Z. Mariet and S. Sra, “Diversity networks,” in ICLR, 2016.

[44] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression
and acceleration for deep neural networks,” IEEE Signal Processing Magazine,
2018.

[45] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional
neural networks,” in arXiv preprint arXiv:1512.08571, 2015.

[46] A. Polyak and L. Wolf, “Channel-level acceleration of deep face representations,”
in IEEE Access, 2015.

[47] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in International Conference on Learning
Representations, 2019.

[48] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of
network pruning,” in International Conference on Learning Representations,
2019.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[50] S. Hooker, A. Courville, G. Clark, Y. Dauphin, and A. Frome, “What do
compressed deep neural networks forget?,” arXiv preprint arXiv:1911.05248,
2019.

97

[51] S. Hooker, N. Moorosi, G. Clark, S. Bengio, and E. Denton, “Characterising
bias in compressed models,” arXiv preprint arXiv:2010.03058, 2020.

[52] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy
disparities in commercial gender classification,” in Conference on fairness,
accountability and transparency, pp. 77–91, PMLR, 2018.

[53] S. Zagoruyko and N. Komodakis, “Paying more attention to attention:
Improving the performance of convolutional neural networks via attention
transfer,” in ICLR, 2017.

[54] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1365–1374, 2019.

[55] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 4133–4141,
2017.

[56] N. Passalis and A. Tefas, “Learning deep representations with probabilistic
knowledge transfer,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018.

[57] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,”
arXiv preprint arXiv:1910.10699, 2019.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[59] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech.
rep., 2009.

[60] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy of
pruning for model compression,” arXiv preprint arXiv:1710.01878, 2017.

[61] R. Movva and J. Y. Zhao, “Dissecting lottery ticket transformers: Structural
and behavioral study of sparse neural machine translation,” arXiv preprint
arXiv:2009.13270, 2020.

[62] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey
on bias and fairness in machine learning,” arXiv preprint arXiv:1908.09635,
2019.

[63] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson,
E. Spitzer, I. D. Raji, and T. Gebru, “Model cards for model reporting,” in
Proceedings of the conference on fairness, accountability, and transparency,
pp. 220–229, 2019.

98

[64] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach,
H. Daumé III, and K. Crawford, “Datasheets for datasets,” arXiv preprint
arXiv:1803.09010, 2018.

[65] A. Amini, A. P. Soleimany, W. Schwarting, S. N. Bhatia, and D. Rus,
“Uncovering and mitigating algorithmic bias through learned latent structure,”
in Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,
pp. 289–295, 2019.

[66] Z. Wang, K. Qinami, I. C. Karakozis, K. Genova, P. Nair, K. Hata, and
O. Russakovsky, “Towards fairness in visual recognition: Effective strategies for
bias mitigation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8919–8928, 2020.

[67] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances
in neural information processing systems, pp. 598–605, 1990.

[68] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the lottery:
Making all tickets winners,” in International Conference on Machine Learning,
pp. 2943–2952, PMLR, 2020.

[69] Y. Guo, C. Zhang, C. Zhang, and Y. Chen, “Sparse dnns with improved
adversarial robustness,” arXiv preprint arXiv:1810.09619, 2018.

[70] L. Wang, G. W. Ding, R. Huang, Y. Cao, and Y. C. Lui, “Adversarial
robustness of pruned neural networks,” 2018.

[71] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of neural network
representations revisited,” in International Conference on Machine Learning,
pp. 3519–3529, PMLR, 2019.

[72] A. Ansuini, E. Medvet, F. A. Pellegrino, and M. Zullich, “On the similarity
between hidden layers of pruned and unpruned convolutional neural networks.,”
in ICPRAM, pp. 52–59, 2020.

[73] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh, “Improved knowledge distillation via teacher assistant,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 34,
pp. 5191–5198, 2020.

[74] W. Son, J. Na, J. Choi, and W. Hwang, “Densely guided knowledge distillation
using multiple teacher assistants,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9395–9404, 2021.

[75] H. Wang, H. Zhao, X. Li, and X. Tan, “Progressive blockwise knowledge
distillation for neural network acceleration.,” in International Joint Conference
on Artificial Intelligence (IJCAI), pp. 2769–2775, 2018.

99

[76] B. F. Maie, “bin packing python library.”
https://pypi.org/project/binpacking/, 2019.

[77] Dask Development Team, “Work stealing.”
https://distributed.dask.org/en/latest/work-stealing.html, 2016.

[78] “Nsf chameleon cloud system.” https://www.chameleoncloud.org/.

[79] M. Gao, Y. Shen, Q. Li, J. Yan, L. Wan, D. Lin, C. C. Loy, and X. Tang, “An
embarrassingly simple approach for knowledge distillation,” arXiv preprint
arXiv:1812.01819, 2018.

[80] S. Abdulsalam, Z. Zong, Q. Gu, and M. Qiu, “Using the greenup, powerup, and
speedup metrics to evaluate software energy efficiency,” in 2015 Sixth
International Green and Sustainable Computing Conference (IGSC), pp. 1–8,
IEEE, 2015.

[81] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations
for deep learning in NLP,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, (Florence, Italy), pp. 3645–3650,
Association for Computational Linguistics, July 2019.

[82] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,” Commun.
ACM, Dec. 2020.

[83] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations
for modern deep learning research,” AAAI, vol. 34, pp. 13693–13696, Apr. 2020.

[84] J. Dodge, S. Gururangan, D. Card, R. Schwartz, and N. A. Smith, “Show your
work: Improved reporting of experimental results,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), (Hong Kong, China), pp. 2185–2194, Association for
Computational Linguistics, Nov. 2019.

[85] A. Feder Cooper, Y. Lu, J. Z. Forde, and C. De Sa, “Hyperparameter
optimization is deceiving us, and how to stop it,” In Submission, Feb. 2021.

[86] D. Blalock, M. Carbin, L. Florescu, J. Frankle, M. L. Leavitt, T. Lee,
M. Nadeem, J. Portes, N. Rao, L. Seguin, C. Stephenson, H. Tang, and
A. Venigalla, “On Evaluating and Improving the Efficiency of Deep Networks,”
tech. rep., 2021.

[87] K. Vodrahalli, K. Li, and J. Malik, “Are All Training Examples Created Equal?
An Empirical Study,” Nov. 2018. arXiv:1811.12569 [cs, stat].

[88] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and G. J.
Gordon, “An Empirical Study of Example Forgetting during Deep Neural
Network Learning,” arXiv:1812.05159 [cs, stat], Nov. 2019. arXiv: 1812.05159.

100

[89] S. Swayamdipta, R. Schwartz, N. Lourie, Y. Wang, H. Hajishirzi, N. A. Smith,
and Y. Choi, “Dataset Cartography: Mapping and Diagnosing Datasets with
Training Dynamics,” Tech. Rep. arXiv:2009.10795, arXiv, Oct. 2020.
arXiv:2009.10795 [cs] type: article.

[90] C. Coleman, C. Yeh, S. Mussmann, B. Mirzasoleiman, P. Bailis, P. Liang,
J. Leskovec, and M. Zaharia, “Selection via Proxy: Efficient Data Selection for
Deep Learning,” Oct. 2020. arXiv:1906.11829 [cs, stat].

[91] K. Chitta, J. M. Alvarez, E. Haussmann, and C. Farabet, “Training Data Subset
Search with Ensemble Active Learning,” Nov. 2020. arXiv:1905.12737 [cs, stat].

[92] V. Feldman and C. Zhang, “What Neural Networks Memorize and Why:
Discovering the Long Tail via Influence Estimation,” Aug. 2020.
arXiv:2008.03703 [cs, stat].

[93] M. Paul, S. Ganguli, and G. K. Dziugaite, “Deep Learning on a Data Diet:
Finding Important Examples Early in Training,” Advances in Neural
Information Processing Systems, p. 12, 2021.

[94] S. Mindermann, J. Brauner, M. Razzak, M. Sharma, A. Kirsch, W. Xu,
B. Höltgen, A. N. Gomez, A. Morisot, S. Farquhar, and Y. Gal, “Prioritized
Training on Points that are Learnable, Worth Learning, and Not Yet Learnt,”
Sept. 2022. arXiv:2206.07137 [cs].

[95] B. Sorscher, R. Geirhos, S. Shekhar, S. Ganguli, and A. S. Morcos, “Beyond
neural scaling laws: beating power law scaling via data pruning,” Aug. 2022.
arXiv:2206.14486 [cs, stat].

[96] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang, “A Survey of Deep Active Learning,” ACM Computing Surveys,
vol. 54, pp. 180:1–180:40, Oct. 2021.

[97] M. Wortsman, G. Ilharco, J. W. Kim, M. Li, S. Kornblith, R. Roelofs,
R. Gontijo-Lopes, H. Hajishirzi, A. Farhadi, H. Namkoong, and L. Schmidt,
“Robust fine-tuning of zero-shot models,” Sept. 2021.

[98] M. Matena and C. Raffel, “Merging Models with Fisher-Weighted Averaging,”
Aug. 2022. arXiv:2111.09832 [cs].

[99] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S.
Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, and L. Schmidt,
“Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time,” arXiv:2203.05482 [cs], Mar. 2022.
arXiv: 2203.05482.

[100] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A Survey,”
International Journal of Computer Vision, vol. 129, pp. 1789–1819, June 2021.
arXiv: 2006.05525.

101

[101] C. Yang, L. Xie, C. Su, and A. L. Yuille, “Snapshot Distillation:
Teacher-Student Optimization in One Generation,” arXiv:1812.00123 [cs], Nov.
2018. arXiv: 1812.00123.

[102] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, “Born
again neural networks,” in International Conference on Machine Learning,
pp. 1607–1616, PMLR, 2018.

[103] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble Distillation for Robust
Model Fusion in Federated Learning,” in Advances in Neural Information
Processing Systems, vol. 33, pp. 2351–2363, Curran Associates, Inc., 2020.

[104] X. Liu, A. Leonardi, L. Yu, C. Gilmer-Hill, M. L. Leavitt, and J. Frankle,
“Knowledge Distillation for Efficient Sequences of Training Runs,” July 2022.

[105] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be Your Own
Teacher: Improve the Performance of Convolutional Neural Networks via Self
Distillation,” in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), (Seoul, Korea (South)), pp. 3712–3721, IEEE, Oct. 2019.

[106] C. Wang, Q. Yang, R. Huang, S. Song, and G. Huang, “Efficient Knowledge
Distillation from Model Checkpoints,” Oct. 2022. arXiv:2210.06458 [cs].

[107] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol. 115, no. 3,
pp. 211–252, 2015.

[108] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[109] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified
text-to-text transformer,” arXiv e-prints, 2019.

[110] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “GLUE: A
Multi-Task Benchmark and Analysis Platform for Natural Language
Understanding,” Feb. 2019. arXiv:1804.07461 [cs].

[111] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy student
improves imagenet classification,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10687–10698, 2020.

[112] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
“Training data-efficient image transformers & distillation through attention,”
arXiv:2012.12877 [cs], Jan. 2021. arXiv: 2012.12877.

102

[113] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil, and A. Kolesnikov,
“Knowledge distillation: A good teacher is patient and consistent,”
arXiv:2106.05237 [cs], June 2021. arXiv: 2106.05237.

[114] Y. Xu, X. Qiu, L. Zhou, and X. Huang, “Improving BERT Fine-Tuning via
Self-Ensemble and Self-Distillation,” Feb. 2020. arXiv:2002.10345 [cs].

[115] A. Malinin, B. Mlodozeniec, and M. Gales, “Ensemble Distribution Distillation,”
Nov. 2019. arXiv:1905.00076 [cs, stat].

[116] U. Asif, J. Tang, and S. Harrer, “Ensemble Knowledge Distillation for Learning
Improved and Efficient Networks,” Apr. 2020. arXiv:1909.08097 [cs].

[117] Z. Allen-Zhu and Y. Li, “Towards Understanding Ensemble, Knowledge
Distillation and Self-Distillation in Deep Learning,” July 2021.
arXiv:2012.09816 [cs, math, stat].

[118] R. Gontijo-Lopes, Y. Dauphin, and E. D. Cubuk, “No One Representation to
Rule Them All: Overlapping Features of Training Methods,” arXiv:2110.12899
[cs], Oct. 2021. arXiv: 2110.12899.

[119] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient Knowledge Distillation for
BERT Model Compression,” Aug. 2019. arXiv:1908.09355 [cs].

[120] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu,
“TinyBERT: Distilling BERT for Natural Language Understanding,” Oct. 2020.
arXiv:1909.10351 [cs].

[121] W. Liu, P. Zhou, Z. Zhao, Z. Wang, H. Deng, and Q. Ju, “FastBERT: a
Self-distilling BERT with Adaptive Inference Time,” Apr. 2020.
arXiv:2004.02178 [cs].

[122] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter,” Feb. 2020. arXiv:1910.01108 [cs].

[123] C. Xu, W. Zhou, T. Ge, F. Wei, and M. Zhou, “BERT-of-Theseus: Compressing
BERT by Progressive Module Replacing,” Oct. 2020. arXiv:2002.02925 [cs].

[124] W. Zhang, L. Hou, Y. Yin, L. Shang, X. Chen, X. Jiang, and Q. Liu,
“TernaryBERT: Distillation-aware Ultra-low Bit BERT,” Oct. 2020.
arXiv:2009.12812 [cs, eess].

[125] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv
preprint arXiv:1711.05101, 2017.

[126] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient descent with warm
restarts,” in 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
OpenReview.net, 2017.

103

[127] H. Tang, R. Rahman, M. Patel, M. Nadeem, A. Venigalla, L. Seguin, D. S.
Khudia, D. Blalock, M. L. Leavitt, B. Shah, J. Bloxham, E. Racah,
A. Jacobson, C. Stephenson, A. Saini, D. King, J. Knighton, A. Ehsani,
K. Jariwala, N. Niklas, A. Lamp, I. Shastri, A. Trott, M. Cress, T. Lee, B. Cui,
J. Portes, L. Florescu, L. Li, J. Zosa-Forde, V. Ivanchuk, N. Sardana,
C. Blakeney, M. Carbin, H. Lupesko, J. Frankle, and N. Rao, “Composer: A
PyTorch Library for Efficient Neural Network Training,” 2022.

[128] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learning
Library,” in Advances in Neural Information Processing Systems 32
(H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and
R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[129] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open Source
Software, vol. 6, no. 60, p. 3021, 2021. Publisher: The Open Journal.

[130] G. Gur-Ari, D. A. Roberts, and E. Dyer, “Gradient Descent Happens in a Tiny
Subspace,” Dec. 2018. arXiv:1812.04754 [cs, stat].

[131] A. Achille, M. Rovere, and S. Soatto, “Critical learning periods in deep
networks,” in International Conference on Learning Representations, 2018.

[132] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou, “Empirical
Analysis of the Hessian of Over-Parametrized Neural Networks,” May 2018.
arXiv:1706.04454 [cs].

[133] A. S. Golatkar, A. Achille, and S. Soatto, “Time Matters in Regularizing Deep
Networks: Weight Decay and Data Augmentation Affect Early Learning
Dynamics, Matter Little Near Convergence,” in Advances in Neural Information
Processing Systems, vol. 32, Curran Associates, Inc., 2019.

[134] J. Frankle, G. K. Dziugaite, D. Roy, and M. Carbin, “Linear mode connectivity
and the lottery ticket hypothesis,” in International Conference on Machine
Learning, pp. 3259–3269, PMLR, 2020.

[135] J. Frankle, D. J. Schwab, and A. S. Morcos, “The Early Phase of Neural
Network Training,” arXiv:2002.10365 [cs, stat], Feb. 2020. arXiv: 2002.10365.

[136] G. Kaplun, E. Malach, P. Nakkiran, and S. Shalev-Shwartz, “Knowledge
Distillation: Bad Models Can Be Good Role Models,” Mar. 2022.
arXiv:2203.14649 [cs, stat].

[137] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,” in
Proceedings of the IEEE/CVF international conference on computer vision,
pp. 4794–4802, 2019.

104

[138] Y. Matsubara, “torchdistill: A Modular, Configuration-Driven Framework for
Knowledge Distillation,” in International Workshop on Reproducible Research in
Pattern Recognition, pp. 24–44, Springer, 2021.

[139] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,” in
International Conference on Learning Representations, 2020.

[140] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network: Network
compression via factor transfer,” Advances in neural information processing
systems, vol. 31, 2018.

[141] Y. Zhang, Z. Lan, Y. Dai, F. Zeng, Y. Bai, J. Chang, and Y. Wei, “Prime-aware
adaptive distillation,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIX 16,
pp. 658–674, Springer, 2020.

[142] I. Z. Yalniz, H. Jégou, K. Chen, M. Paluri, and D. Mahajan, “Billion-scale
semi-supervised learning for image classification,” 2019.

[143] R. Wightman, H. Touvron, and H. Jégou, “Resnet strikes back: An improved
training procedure in timm,” arXiv preprint arXiv:2110.00476, 2021.

[144] S. Li, Z. Liu, D. Wu, Z. Liu, and S. Z. Li, “Boosting discriminative visual
representation learning with scenario-agnostic mixup,” arXiv preprint
arXiv:2111.15454, 2021.

105

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER
	I INTRODUCTION
	Dissertation Organization
	Contributions
	Understanding Pruning and Model Representations
	Mitigating Bias in Pruned Networks With Knowledge Distillation
	Block-wise Distillation and Its Efficient Parallelization
	Efficient Training and Compression with Knowledge Distillation

	II IS PRUNING COMPRESSION?
	Introduction
	Related Work
	Singular Vector Canonical Correlation Analysis (SVCCA)
	Pruning Methods
	Magnitude Based Pruning
	Post-Pruning Re-initialization
	Random Sparse Initialization

	Experimental Results
	Is Unstructured Pruning Compression?
	Does Pruning Work for Untrained Neural Networks?
	Do Learned Sparse Structures Carry Important Information?

	Conclusion

	III BIAS MITIGATION WITH DISTILLATION
	Introduction
	Evaluation Metrics for Model Bias
	Pruning Identified Exemplars
	Combined Error Variance
	Symmetric Distance Error
	Comparison between CEV/SDE and PIEs
	Pruning Details
	Results

	Mitigating Bias with Knowledge Distillation
	Data Induced Bias

	Explaining Model Bias Using Model Similarity
	Related Work
	Broader Impact
	Limitations
	Conclusion

	IV CRAFT DISTILLATION AND PARALLEL BLOCKWISE DISTILLATION
	Introduction
	Craft Distillation
	Architecture Search
	Order of Layer-wise Distillation
	Comparison to Structured Pruning

	Parallel Blockwise Distillation
	Independent Blockwise Distillation
	Parallel Blockwise Distillation

	Experimental Result
	Hardware Configuration
	System Profiling Tools
	Training Details
	Speedup and Accuracy
	Impact of Load Balancing
	Energy Savings

	Conclusions and Future Work

	V REDUCE, REUSE, RECYCLE: IMPROVING TRAINING EFFICENCY WITH DISTILLATION
	Introduction
	Related Work
	Knowledge Distillation
	Teacher Ensembling and Self-Distillation
	Distillation in Language Models
	Distillation for Stepwise Training Speedups

	Methodology and Experimental Setup
	Simple Distillation Setup
	Scheduled Distillation Setup
	Teacher Selection Setup
	Ensembling Setup
	Extended Distillation Setup

	Experimental Results
	Simple distillation improves efficiency in ResNet-50 but not BERT
	Early-phase-only distillation is optimal for BERT but not ResNet-50
	Sub-optimal models can be ideal teachers
	Efficient teacher ensembling via random selection
	Extended distillation achieves state of the art on ResNet-18/34
	Matryoshka Distillation

	Discussion

	VI CONCLUSIONS
	Discussion and Future Research

	REFERENCES

