
MEASUREMENT OF CONTROL PARAMETERS FOR OMNIDIRECTIONAL

TREADMILLS USING RGBD CAMERA

by

Mohammad Azim Ul Ekram

A thesis submitted to the Graduate College of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Engineering,
Concentration: Electrical Engineering

August 2017

Committee Members:

Semih Aslan, Chair

William Stapleton

Bahram Asiabanpour

COPYRIGHT

by

Mohammad Azim Ul Ekram

2017

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgement.
Use of this material for financial gain without the author’s express written
permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Mohammad Azim Ul Ekram, authorize
duplication of this work, in whole or in part, for educational or scholarly
purposes only.

DEDICATION

To my parents and sister, who are there for me in every steps of my

life. Even if they live far away, they still are the guiding light for me.

AND

To my life partner, Mahmuda Akter Monne, for her support, encour-

agement and companion which gave me the strength to survive all the stress and

frustrations even in the darkest and difficult of days.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Semih Aslan for giving me the

opportunity to work in such a promising area. He continually conveyed a spirit

of encouragement in regard to research and life. His understanding, wisdom, pa-

tience, guidance and encouragement pushed me this far. Without his guidance

and persistent help this dissertation would be far from complete.

I also express thanks to my thesis committee members, Dr. William

Stapleton and Dr. Bahram Asiabanpour. With their patience and guidance, they

supported me all the way till the end and made this thesis possible.

I would also like to acknowledge, Dr. Jesus Jimenez, who allowed me to

setup equipments on his lab, Tasnuva Udita for her constant reminders to work

diligently, Syadus Sefat for his brilliant review, Texas State Writing center for

their awesome grammatical reviews.

Finally, I acknowledge my wife, whose companion blessed my life with

joy specially during the endless nights of work.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . xi

ABSTRACT . xii

CHAPTERS . 1

I. INTRODUCTION . 1

Motivation . 1

Research Questions and Goals . 2

Outline of Thesis . 4

II. RELATED WORKS . 6

III. TECHNICAL DETAILS . 10

Kinect . 10

General Overview . 10

Depth Camera . 11

Kinect Specifications . 11

Distance Measurement . 13

Distance to 3D Coordinates 13

Reason for Choosing Kinect . 17

Hardware Precision and Features 17

Multiple Choices of Kinect Dirvers and SDK 19

Basic Gait Parameters . 21

vi

IV. METHODOLOGY . 25

Proposed Device Position and Setup 26

Control Algorithm . 28

Algorithm Constraints . 28

Algorithm Flowchart . 29

V. EXPERIMENTS AND RESULTS 36

Testing Environment . 36

Testing Methods . 37

Result and Data Analysis . 38

Validation . 42

Implementation . 47

VI. CONCLUSIONS AND FUTURE WORK 49

Conclusions . 49

Limitations . 50

Future Works . 51

APPENDIX SECTION . 53

REFERENCES . 69

vii

LIST OF TABLES

Table Page

III.1. Detailed Kinect depth sensor performance parameters 12

III.2. Available Kinect Drivers and SDKs . 20

V.1. Correlation and MSE for different smoothing technique for Spine . . . 39

V.2. Correlation and MSE for different smoothing technique for Left Foot . 39

V.3. Correlation and MSE for different smoothing technique for Right Foot 40

V.4. Speed Comparison Table for distance of 7.5ft or 2.286m. Speed Unit

m/s, Time is in seconds . 45

V.5. Angle Measurement validation. Unit of angles are in Degree(◦) 46

A.1. Time measured for multiple runs . 53

A.2. Measured speed using time from TableA.1 53

A.3. Calculated speed using data from Kinect 54

A.4. Percentage error between Kinect’s calculated speed from TableA.3 and

measured speed data from Table A.2 54

viii

LIST OF FIGURES

Figure Page

II.1. Proposed Schematic of the Cybersphere 6

II.2. Kinematic Concept of 2D CyberWalk platform 8

II.3. CyberWalk Treadmill Design described in Souman et. al. 9

II.4. CyberWalk treadmill higher level control system 9

III.1. Stripped down Kinect showing location of sensors 11

III.2. Wrapped phases and distances for 80MHz, 16MHz and 120MHz mod-

ulated waves used in Kinect distance calculation 14

III.3. Real depth Calculation from Distance information 15

III.4. Pinhole camera model . 16

III.5. Skeleton Map and Coordinate system defined by Microsoft Kinect . 18

III.6. Segmentation and Learning process used in 18

III.7. Overview of Kinect SDK Architecture 19

III.8. The complete gait cycle and associated events 22

III.9. COM trajectory and step-to-step transition 23

III.10. Stride map and Lateral displacement of pelvis 23

III.11. Stride map and Lateral displacement of pelvis 24

IV.1. Suggested distance and height of the Kinect sensor by Microsoft . . . 27

IV.2. Distance and position of the Kinect sensor used by 27

IV.3. Proposed conceptual design of Omnidirectional Treadmill 28

IV.4. Basic Steps of the Algorithm . 30

IV.5. Determination of Data output . 35

V.1. Proposed tilt angle and distance of the Kinect Sensor 37

ix

V.2. Z Location data for Spine using exponential smoothing. 38

V.3. Result of Spine Speed in Z direction after using exponential smoothing 39

V.4. Spine Speed using Gaussian (window size seven) 40

V.5. Spine Speed using Triangular Smoothing (window size seven) 41

V.6. Spine Speed using Moving Average (window size seven) 42

V.7. Spine Acceleration using no smoothing and Gaussian smoothing(window

size seven) . 42

V.8. Spine Acceleration using no smoothing and Moving Average smooth-

ing(window size seven) . 43

V.9. Spine Acceleration using no smoothing and Triangular smoothing(window

size seven) . 43

V.10. Change of angle with respect to change of acceleration 44

V.11. Angle validation experiment setup 46

V.12. (a) is the software setting reference and floor parameter. (b) to (f)

shows the working condition of the software when a user walks toward

the Kinect and in an angle . 47

V.13. Basic Class diagram of the Software Used 48

x

LIST OF ABBREVIATIONS

Abbreviation Description

COM Center-of-Mass.

GPU Graphics Processing Unit.

HMD Head Mounter Display.

MSE Mean-Squared-Error.

OBDP Omni-directional Ball-bearing Disc Platform.

RGBD Red-Green-Blue-Depth.

SDK Software Development Kit.

ToF Time-of-Flight.

VE Virtual Environment.

VR Virtual Reality.

xi

ABSTRACT

Omnidirectional treadmill systems are an effective platform that allows

unconstrained locomotion possibilities to a user for effective VR exploration.

There are two most common problems associated with Omnidirectional tread-

mill systems. First one is the mechanical design of it. The second one is con-

trolling algorithm that controls the treadmill. This thesis focuses on the second

problem and presents an algorithm which measures important parameters for

controlling the direction and speed of omnidirectional treadmills. The primary

objective is to collect skeleton data from Kinect Sensor(RGBD) and measure

speed, acceleration and orientation vectors of lower body joints. From these

measurements, it is possible to calculate the control parameters for omnidirec-

tional treadmills. Using these parameters, the treadmill will try and compensate

user motion, to keep the user close to the platform center. Another objective is

to validate the parameters found from the algorithm and determine the accu-

racy of the algorithm using Kinect camera. Also, this article explores whether

the kinect can be a viable replacement for current motion capture systems used

for this purpose. Usage of Kinect camera can make VR experience non-invasive

and low-cost.

xii

I. INTRODUCTION

Motivation

Virtual Reality (VR) has received much attention and significant development

in the past decade. In terms of graphics quality, 3D displays and haptic feedback

interfaces [1, 2, 3], VR is now considered to be the next platform for gaming,

skill training, education and medical research. High-fidelity driving [4], flight

simulators, combat simulators as well as various multipurpose simulators [5]

have been developed to navigate through the Virtual Environments (VEs). These

research and developments shaped VR as an essential tool in many diverse areas

such as operation theater [6], military skill training [4], rehabilitation [7] and

various other medical analyses [8, 9]. In addition, VR is also spreading into do-

mains such as gaming, education and architecture. Although VR headsets have

been around for a decade, there are few pure VR locomotion interfaces that

have been developed which contains active locomotion through large VEs.

Our daily life depends intuitively on our ability to navigate through the

world on foot. As a matter of fact, throughout the largest part of evolutionary

history, the only mode of transportation of human ancestry was walking. Cur-

rent VR setups, however, lack the essential feature of walking through VEs or

simulate only in a very restrictive manner. Keyboard, mouse, joystick, or similar

input devices are used, in most cases, to simply navigate through the VE. This

creates a sensory conflict, where the user is physically not moving, but receives

visual input congruous with self-motion. According to various behavioral studies,

this sensory conflict may impede the formation of an accurate spatial-temporal

representation of the environment and impede navigation performance [10] and

even cause simulator sickness [11]. Hence, an omnidirectional locomotion in-

terface is required in order to allow users to walk naturally through large-scale

1

VEs. In principle, a general solution is offered by treadmills, where the users can

walk through arbitrarily large VEs while keeping them in a relatively restricted

area. However, general treadmill solutions don’t let you walk in any direction.

Treadmills are unidirectional.

The treadmill solution is far from satisfactory because of two major

problems. Firstly, the treadmill solution allows users to walk forward direction

only, restricting the possibilities of 360◦ rotation. This is the mechanical design

problem which is an active research field. There are several design patents filed

with different mechanisms [12, 13].

The second major problem is controlling the velocity of treadmills as

a function of the user’s walking characteristics [14]. Users should be kept on the

treadmill while either walking or standing still for obvious reason. Therefore,

most available setups permit the user to walk at only one fixed speed, predefined

by the treadmill. A desirable solution would be for the treadmills to respond

to changes in walking speed and direction, but this poses some serious set of

problems. Too high acceleration of the treadmill can disrupt the immersiveness

of VR and can even bring the user out of balance. On the other hand, too low

acceleration would make the person walk off the treadmill.

There are several solutions to the second problem, which are cited in

Chapter II. Both the control and design of omnidirectional treadmills have been

done with precision equipment and expensive systems. This paper examines the

possibility of utilizing Kinect camera for the purpose of controlling omnidirec-

tional treadmills.

Research Questions and Goals

This article focuses on the second problem of controlling the speed of omnidirec-

tional treadmills in such a way that doesn’t disrupt the VR immersive experi-

ence. For employing an unconstrained omnidirectional treadmill, achieving natu-

2

ral walking motion is imperative. This puts several constraints and requirements

on the treadmill system in terms of its size, possible speeds and accelerations.

These are all important parameters which play key roles in controlling the omni-

directional treadmill [14].

Our knowledge of omnidirectional treadmill is largely based on very

limited data as research in this area is yet to be matured. The aim of this re-

search is thus to develop a system for the omnidirectional treadmill to calculate

controlling parameters (velocity, acceleration, orientation, reference points) from

Red-Green-Blue-Depth (RGBD) cameras and allowing for changes in both walk-

ing speed and direction. In this article, we describe an algorithm and report the

results of experiments that we conducted to evaluate its effectiveness.

Hypothesis

Instead of using expensive motion capture systems it is possible to use Microsoft

Kinect RGBD cameras with reasonable accuracy and speed to control the omni-

directional treadmill for users to experience natural walking motion. Controlling

the omnidirectional treadmill requires calculation of speed, acceleration, orienta-

tion and reference points based on Kinect depth and body joint data.

Questions and Goals

The overarching goal of this research is to determine whether low-cost RGBD

cameras, like Microsoft Kinect, can be used effectively to control an omnidirec-

tional treadmill. A number of sub-topics are explored in order to answer this

question.

• What SDKs will be used with Kinect hardware as several is available?

What kind of data and information are available from these SDKs which

can be used for this research purpose?

• What is the quality and precision of the joint data acquired from Kinect?

3

What is the sampling rate and consistency?

• Calculate velocity, acceleration and reference point based on joint data.

• How the control algorithm works with the consistency of Kinect?

• Validation and precision measurement of the control algorithm.

In order to answer these questions and meet the goal, a prototype ap-

plication was developed and used to gather data and visualize the body joints

and show important information under various conditions.

Outline of Thesis

This thesis consists of six chapters. Introduction, Related Work, Technical De-

tails, Methodology, Experiments - Results and Conclusion.

The thesis begins with the first chapter, giving an introduction to the

overview of thesis, it’s importance and significance of thesis contributions. In

second chapter, related literature review is presented. Although exact match of

this work is very few, there are other similar research which are mentioned in

this chapter.

Third chapter is the longest chapter. It contains a lot of technical de-

tails required for the methodology chapter. Details about Kinect camera, it’s

specification, distance measurement, basic gait parameters are described in this

chapter.

Methodology is illustrated in chapter four. This chapter introduces the

proposed algorithm and system setup. Several fundamental topics are repre-

sented such as joint smoothing, floor parameter calculation, speed and acceler-

ation calculation etc.

Chapter five is the experimental result chapter, where the experiments

are described and subsequent data-sets are depicted and described. Also, it con-

tains opinions and explanation of various measurements.

4

The final chapter entails the conclusions of the thesis and includes limi-

tation of the thesis and provides useful insight into suggestions for improvements

and future plans.

5

II. RELATED WORKS

Since the advent into VR in 1965, special Head Mounter Display (HMD)s are

the most common way to experience VR. In 2003, Fernandes et al. developed

Cybersphere, which is an immersive spherical projection system. It comprised of

a large, hollow and translucent sphere ideally 3.5 meters in diameter and is sup-

ported by means of a low-pressure cushion of air. This is depicted in Fig. II.1.

Walking movements of the observer cause the sphere to rotate (see Fig. II.1), al-

Figure II.1: Proposed Schematic of the Cybersphere [15]

lowing the user to navigate and explore the virtual world in a natural manner

according to his or her interest in the visualized domain. Movement of the Cy-

bersphere is dictated by the walking motion of the user in all directions [15]. Im-

ages are projected onto segments of the outer surface of the large sphere by high

power projectors. Apart of the complex structure and design, it was difficult to

project the images in a multi-viewpoint fashion and natural movements are also

6

very limited, as a natural locomotion through the virtual environment is usually

restricted to the currently shown spot of the scenario. In the same year, a stoll-

based omnidirectional VR interface was brought to attention of research commu-

nity. It implements an unique locomotion design. Rather than using a treadmill,

the author used a locomotion mechanism called Omni-directional Ball-bearing

Disc Platform (OBDP), which allows the user to walk naturally on it and thus

to navigate the virtual environment. The gait sensing algorithm that simulates

the user’s posture based upon his footstep-data collected from the OBDP is

then elaborated, followed with an omnidirectional stroll-based virtual reality

system to integrate the OBDP with the gait sensing algorithm. Significantly,

instead of using the three-dimensional (3-D) tracker, the OBDP adopts arrays

of ball-bearing sensors on a disc to detect the pace. No other sensor, except the

head tracker to detect the user’s head rotation, is required on the user’s body

[16]. Based on that design, similar products in the market where instead of us-

ing ball-bearings, strolls under the shoe were used by KatWalk VR [17], Virtuix

Omni [18], Cyberith Virtualize etc. The design, while allowed the user to stay

in the middle of the platform and run or walk, didn’t employ a natural expe-

rience. Also, the user stance was limited and practice was required for proper

use. MSEAB Weibull Company created the Virtual Theater for military pur-

pose, which was later used for academic and research purpose. User can move

around in a fixed speed, but the user rotating direction is not handled very well

[19]. Recently, Infinadeck showcased an omnidirectional treadmill prototype in

CES 2016. While that promotes very good VR experience with natural walking

motion, it requires a belt to be wrapped around the torso which can sense the

direction and force of body movement and thus can suffer from impeded naviga-

tion performance and simulator sickness described above.

To the best of knowledge, CyberWalk(filed for patent in Germany [14,

20]) was the only unconstrained non-invasive omnidirectional treadmill we found,

which didn’t require any special devices to attach to the torso [14]. The ba-

7

sic concept diagram of the CyberWalk platform is shown in Fig. II.2. Three

Figure II.2: Kinematic Concept of 2D CyberWalk platform [13]

head pointers are attached to the headset. CyberWalk platform detects the head

pointers using Vicon Motion Capture System, a very costly motion detection

system. Then, based on these pointer positions and second-degree control equa-

tions, they calculate possible speed and acceleration to control the omnidirec-

tional treadmill using a separate PC. CyberWalk can be categorized as a com-

plete unconstrained omnidirectional treadmill, but it uses very costly equip-

ment and software to provide this natural experience. Their primary omnidi-

rectional treadmill design weigh more than 10000Kg and has a moving mass of

approximately 7500Kg [13]. There is a smaller version of it described in [20]. Ba-

sic design of the omnidirectional treadmill system is shown in Fig. II.3 and the

overview of control algorithm for CyberWalk is shown in Fig. II.4.

8

Figure II.3: CyberWalk Treadmill Design described in Souman et. al. [13]

Figure II.4: CyberWalk treadmill higher level control system [13]

9

III. TECHNICAL DETAILS

Kinect

General Overview

Popularity of RGBD cameras have been significantly raised within research com-

munities, mainly due to the emergence of Microsoft Kinect series. Kinect is a

RGBD acquisition device designed by Microsoft as a contact free controller for

Xbox. Initially, it was meant only as a major accessory for their Xbox game con-

soles. In addition to color camera, it also has depth camera which allows to find

out both color and spatial information about captured scenes. In 2010, Kinect

v1 was released which used the Structured Light Technology to capture depth

information [21]. The second version of Kinect was released in 2014 along with

the new Xbox version. The new Kinect uses a Modulated Light or Time-of-Flight

(ToF) technology for depth measurements [22]. It enables Kinect to obtain the

depth information with much better resolution and quality while also limiting

the interference from outside sources [22, 23].

Compared to most 3D scanners, Kinect is very affordable which makes

it an attractive tool for many researchers and companies. However, Kinect was

originally designed for tracking human body movements. Since the tracking has

to be done in real time, Kinect has been designed such that it could capture

the depth frames with a reasonable frame rate of 30 Hz maximum. However,

this frame rate means that there is very little time for accurate measuring to

be done. As a result, the Kinect depth information can be considerably noisy

or even incomplete [24]. Nevertheless, researchers have obtained decent results

using Kinect as a 3D modeling tool and human skeleton tracker. It features 25

point skeleton map for up to six people. With a wider horizontal and vertical

field depth, it has a tracking range from 0.5 meter to 4.5 meters [25, 26, 27, 28].

10

Depth Camera

The latest Kinect sensor(v2) has three infrared light sources each generating a

modulated wave with different amplitudes. In order to capture reflected waves,

Kinect also has an infrared camera. Location of lasers and sensors are shown in

Fig. III.1.

Figure III.1: Stripped down Kinect showing location of sensors [29]

Kinect Specifications

State of the art CMOS array of differential pixels is used for the infrared sen-

sors in Kinect v2. Performance parameters of Kinect Sensors are listed in Table

III.1. According to [30], each pixel has two photo diodes (A,B), which are be-

ing controlled by the same clock signal that controls wave modulation. Photo

diodes convert captured light into current which can be measured. The diodes

are driven by the clock signal such that if A = [ai] is turned on, B = [bi] is

turned off and vice versa. The following properties are observed:

• ([ai − [bi]]) shows correlation between retrieved light and the clock signal

and can be used to obtain phase information (“depth image”)

11

Table III.1: Detailed Kinect depth sensor performance parameters

Process Technology TSMC 0.13 1P5M
Pixel Pitch 10u*10u
Pixel Array 512*424

Chip size .2mm*14.2mm
System Dynamic Range >2500 = 68db

Modulation Contrast 68% @ 860nm @50Mhz
Modulation Frequency 10-130Mhz

Average Modulation Frequency 80MHz
FOV 70 (H) X 60 (V) degrees

Depth Uncertainty <0.5% of range
Distance Range 0.8-4.5m

Operating Wavelength 860nm
Frame Rate Average 30fps, max 60fps

ADC 2GS/s
Effective Fill Factor 60%

Reflectivity 15%-95%
Chip Power 2.1W

Responsiveness@860nm 0.144 A/W
Readout Noise 320 uV differential

ADC Resolution 10

• ([ai + [bi]]) gives regular grayscale image illuminated by normal ambient

lighting (“ambient image”)

•
√∑

i([ai]− [bi])2 gives grayscale image that is independent of ambient

lighting(“active image”)

As the infrared emits 860 nm wavelength light, a narrowband-pass filter is used

to block all light except the 860 nm wavelength range that corresponds to in-

frared illumination system wavelength. Kinect also uses multi-shutter propri-

etary engine that accumulates data from multiple shutters and chooses the best

shutter value for each pixel. The longest shutter time is chosen which does not

cause saturation. The engine also normalizes all values relative to the longest

shutter time.

12

Distance Measurement

As mentioned before, Kinect v2 uses optical ToF technology for measuring dis-

tances using a 0.13 µm CMOS system-on-chip for a 512 × 424 ToF image sensor

with multi-frequency photo-demodulation [31, 30]. The operation principle in

a ToF device is based on measuring the time it takes for light waves to travel

from emitter to object and back to sensor. Because of the reflection, there is a

change in phase shift and amplitude. Amplitude is not necessary for calculating

distance, hence it is discarded. Kinect sensors use three different phase-shifts of

0◦, 120◦ and 240◦ [23]. Since measuring the distance is based on phase shift of

the modulated wave, the maximum uniquely measurable distance depends on

the wavelength of this modulated wave. Phase wraps around at 360◦(2π). Hence,

using longer wavelengths generally allow for measuring longer distances. Bet-

ter resolution can be achieved using shorter wavelengths [31]. To achieve both

good resolution and measuring longer distances, three different frequencies of

120MHz, 80MHz and 16MHz are used by Kinect [32] as shown in Fig. III.2.

Common wrap around for these frequencies occurs at 18.75 meters, which is the

also the maximum distance for a Kinect device where depth can be identified

with a minimum precision [23, 31]. Kinect v2 sensor connectivity drives actu-

ally outputs the phase shift values which gives the researchers the opportunity

to provide depth map estimation of their own. In the current thesis, the default

implementation from Microsoft SDK that produces depth in millimeters for each

pixel is used.

Distance to 3D Coordinates

In order to model human skeleton and other objects, true 3D coordinates for

the points are desired. This can be achieved using the standard pinhole camera

model [33], doing the calculation in reverse order. That is we have the depth or

distance or Z-distance of each point.

13

Figure III.2: Wrapped phases and distances for 80MHz, 16MHz and 120MHz modu-
lated waves used in Kinect distance calculation [32]

Given a point P , to calculate distance z from camera center C we’ll

need distance from principal point to point P , projected on image plane x, cam-

era center distance d from P and focal length f . First, projection of the distance

from C to P on image plane can be calculated below in (III.1):

l =
√
f 2 + x2 (III.1)

Then, based on the similar triangle property from Fig. III.3,

z

d
=
f

l
(III.2)

14

Figure III.3: Real depth Calculation from Distance information

From those above two equations (III.1), (III.2)

z = d
f

l
= d

f√
f 2 + x2

(III.3)

Kinect SDK [29] outputs the depth values which are already in the depth map

format. It means that instead of the distance from camera center to point, each

pixel depth value represents the distance to the plane that has the correspond-

ing point and is perpendicular to the camera principal axis [33]. The coordinates

(X,Y) can be found from the standard pinhole camera model. Assuming the cen-

ter of the coordinate system is at camera center, from Fig. III.4, the distance

from center of projection to the image plane is f . A line starting from center

of projection and perpendicular to the image plane is called principal axis. If

P (X, Y, Z) is a 3D world coordinate of a model and p(x, y) is the corresponding

points in the image, from Fig. III.3, by similar triangles property, image coordi-

15

Figure III.4: Pinhole camera model

nates can be written as

x = f
X

Z
, and, y = f

Y

Z
(III.4)

Here, x and y are described in real-world coordinates but in pixel unit. To nor-

malize, column-wise and row-wise density (pixel-per-millimeter) is necessary.

After normalizing and translating to the origin location, assuming (x0, y0), we

have (III.5):

u

v

1

 =

αu 0 u0

0 αv v0

0 0 1

X
Z

y
Z

1

 = KP ′ (III.5)

Here, K is the intrinsic matrix, which is fixed for Kinect, (αu, αv) represent focal

lengths and (u0, v0) coordinates of the principal point. Since Z is known, X and

16

Y can be calculated for all u and v using following relation

ZK−1

u

v

1

 =

X

Y

Z

 (III.6)

Kinect SDK already has an easy to use function which converts between camera-

coordinate space and image coordinate space. For OpenNI and other libraries,

the function have to be user-defined as these equations depend on external cali-

bration.

Reason for Choosing Kinect

Hardware Precision and Features

It is very important to choose a good RGBD camera which is available, has a

good performance to usability ratio, and is vetted by the research community

as a viable and low-cost replacement to costly motion capture systems. Mi-

crosoft Kinect was chosen as there were numerous research conducted with it,

e. g., medical field, military simulator, VR, multimedia avateering, etc. Also,

there were several publications indicating its performance and accuracy. Xu

et al., Galna et al. executed several evaluative tests of Kinect vs state-of-the art

Vicon Motion Tracking System. In their evaluation, it was found that the Kinect

has good temporal accuracy, hence, step length and stride length were measured

with good precision [34, 28]. For this reason, this property will be used in our

system. But, unlike temporal accuracy, spatial measurements were not very ac-

curate [34]. As temporal accuracy is very important in determining speed, the

localized spatial data can be filtered or predicted using various methods [26, 24].

Detailed reports can be found at the respective articles. Although, the spatial

accuracy is not as good as the Vicon Systems, many authors have successfully

utilized Kinect for various research [35, 36, 37, 34].

17

(a) (b)

Figure III.5: Skeleton Map and Coordinate system defined by Microsoft Kinect [29]

Figure III.6: Segmentation and Learning process used in [38]

Microsoft Kinect v2 features tracking of 25 joints for at most six peo-

ple. Kinect exploits both temporal and kinematic constraints to approximate

joint positions with occlusion handling. Along with temporal data and kinematic

constraints, Kinect also partly implements the work of Shotton et al. for real-

time human pose recognition from depth images. In article [38], from depth im-

ages, body parts are segmented and recognized from depth images as an inter-

mediate representation for human pose estimation, and demonstrated that the

classifier can be made invariant to human body shape and pose by training a

large corpus of synthetic data [39]. Finally, using an unpublished, proprietary al-

gorithm, a skeleton model is fitted to the hypothesized joint positions. As shown

in Fig. III.6, depth images are first segmented then categorized using Random-

ized Decision Forests [38, 39], which is a well known algorithm for supervised

machine learning. Based on the learned data the joints are then approximated.

18

Multiple Choices of Kinect Dirvers and SDK

The first Kinect release was meant only for Xbox platform. But as it’s body

tracking and depth sensing capabilities, it soon gained traction in the research

community. So several open source and closed source drivers were developed to

use Kinect with PC. Later Microsoft also released their own SDK for use with

Windows PC [29]. The exploration of other drives other than Microsoft Kinect

Figure III.7: Overview of Kinect SDK Architecture [29].

SDK is important as they provide open source and platform agnostic utility.

Also some of them are faster than Kinect SDK in some areas as they calculate

depth and 3D position using different algorithms. Now a day’s libfreekinect and

OpenNI are most popular within research community who wants raw data from

Kinect or requires Linux platform.

Table III.2 below compares most popular open source drivers as of

2017 except Microsoft which is closed source but better performing. For our re-

search need, Microsoft SDK was chosen as it is shown in Table III.2 that Mi-

crosoft driver has been pre-calibrated with proper extrinsic and intrinsic param-

eters. This is a huge advantage as poor calibration can cause jittery or displaced

skeletal data, which will hamper calculations. Also, C# language support was

19

Table III.2: Available Kinect Drivers and SDKs

Library Name Platform Features Languages

libfreenect2
Windows,
Linux,
MacOSX

- Color and depth images
- motor and LED control
- Fakenect Kinect simulator
- Record to file
- GPU Processing

C,C++,Python
Java, Lisp,
Javascript

ROS freekinect Unix - Color and depth images
- Motor and LED control

Python, C++

OpenNI
Windows,
Linux,
MacOSX

- Color and depth images
- User identification
- Feature detection
- Gesture recognition
- Joint tracking (calibration
required)
- Record to file

C, C++

Microsoft
Kinect SDK

Windows

- Color and depth images
- User identification
- Feature detection
- Gesture recognition
- Joint tracking (no
calibration required)
- Floor detection
- Audio Processing
- Easy Application
integration
- Record to file

C, C++, C#,
VisualBasic,
F#, Python

20

a plus point as chosing C# made integration, GUI visualization easier with sig-

nificantly quicker and less arduous. An argument can be made for performance

comparison of C++ vs C# with Kinect camera, but that’s rather a discussion

beyond the scope of this article. Fig. III.7 contains API and driver hierarchy for

Kinect SDK by Microsoft.

Basic Gait Parameters

Human gait is an important indicator of health with application including but

not limited to diagnosis and monitoring. Among several proposed and well known

methods for gait analysis, marker-based systems which typically uses IR cam-

eras and markers placed on a subject’s body are favored for their accuracy. But

these devices are very expensive and impractical to move once setup. Kinect has

been used extensively since it’s debut in 2010 for gait analysis [28, 34, 40] and

other medical analysis as mentioned before. Gait parameters typically contain

information on different gait cycle parameters, pelvic movements, feet move-

ments, etc. We are only interested in the pelvic and feet movements analysis to

determine which joints to focus on in our algorithm and importance of those

joints.

The gait cycle is the time between successive feet contacts of the same

limbs. Therefore, in Fig. III.8 when the reference(grey) feet contacts the ground

and ends with subsequent floor contact of the same feet is called one gait cycle

[41]. Gait cycle is divided into two major phases: stance and swing. The stance

phase is referred to the period in which the feet is in contact with the ground,

and comprises of the first 62% of entire cycle. On the other hand, the swing

phase comprises the remaining 38% of the cycle and corresponds to the phase in

which the feet does not touch the ground. Being in this moment suspended on

the air, the body moves forward in order to induce limb advancement in the lo-

comotion [40]. Step length is the distance between the heel contact point of one

feet and that of the other feet. Stride length is the distance between successive

21

Figure III.8: The complete gait cycle and associated events [41].

heel contact points of the same feet. Hence,

StrideLength = 2× StepLength (III.7)

The Cadence defined as the rate of walking expressed in steps per minute, is an

important parameter. Cadence for a normal person is 100 ∼ 115 steps/minute.

Thus in the experiment, we used characters of different stride length and each of

them took around 10 steps within six seconds (for 160 ∼ 180 frames in 30fps)

for experiment results.

As our algorithm uses three joints, namely two feet and the spine-base,

significance of choosing these joints must be stated. As shown in Fig. III.9 it is

seen that the Center-of-Mass (COM) trajectory is smooth and have a very lit-

tle magnitude along Y -Axis. All the magnitude is along Z Axis (forward). Also,

notice from Fig. III.10 that, COM also moves very little in X-Axis. As a results,

the COM is a very reliable point to measure distance and speed. As a matter of

fact, Kinect outputs a joint similar to COM, called “Spine-Base”. Later in chap-

ter IV, the “Spine-base” is used for speed and acceleration calculation. Also, no-

tice that in Fig. III.11 there is a region where the body is in stance phase and

doubly supported by both legs. It is a phase when one leg has just touched the

22

Figure III.9: COM trajectory and step-to-step transition.

Figure III.10: Stride map and Lateral displacement of pelvis [41].

ground and the other leg starting to take off. In this stage the body can handle

any speed or acceleration change in the treadmill. So detecting this phase in the

algorithm is important because the treadmill is changed in this phase, chance of

being imbalanced is much lower [40].

23

Figure III.11: Stride map and Lateral displacement of pelvis [41].

24

IV. METHODOLOGY

As mentioned before, CyberWalk platform is the only unconstrained omnidirec-

tional treadmill described in [14, 20, 13]. The device uses costly Vicon Motion

Capture System to determine the position of the head (headset contains three

markers). The device weighs more than 10000KG and has an area of 4 × 4m2

[13]. Aside from the mechanical limitations, the system also suffers from several

issues:

• The system calculates 3D position from head pointers which is attached

to the VR Headset. Using head as a tracking position creates problems as

the head can move regardless of the body. So if a person leans forward or

bends forward, the system may capture the movement as a speed compo-

nent.

• How the system measures direction with respect to the head position is

not described. The head can also rotate independent of the body. If the

rotation is also controlled by head position, then the head must be kept

straight.

• Uses marker based Vicon Motion Capture system, which is very precise

but costly.

Here we present the methodology of our system, assuming an arbitrary

CyberWalk like omnidirectional treadmill which takes velocity, acceleration and

reference points as input values. But instead of using Vicon Motion System to

calculate parameters, our setup uses Kinect camera to determine those parame-

ters. Several approximation and design decisions have to be made before imple-

menting the system. First, the system should support normal walking speeds,

allowing users to walk in a natural motion and posture. The omnidirectional

treadmill should not force the user to lean abnormally or apply extra force at

25

all times to walk. Second, it should be quick enough to change the speed and

direction. Our method allows the user to move forward and backward with ac-

celeration and deceleration rather than forcing the user to stay in the middle of

the treadmill. This design decision was taken based on the work of [13, 14, 20].

According to the authors, when accelerating and decelerating, the vestibular sys-

tem provides the brain with critical information concerning the changes in walk-

ing speed. This inertial input was shown to be important for the perception of

walking speed and for maintaining postural stability. It turns out, the realization

of the perception wasn’t very easy to manipulate or replicate. That’s why the

users will be allowed to move forward or backward with acceleration or deceler-

ation but slowly revert back to the original reference position by controlling the

treadmill. Hence, speed of the treadmill gradually changes but at a lower accel-

eration rate than the user.

The algorithm can be used to control an omnidirectional treadmill

within the limits of its size and speed to respond smoothly to changes in walking

speed, allowing the user to start walking from standstill, to vary walking speed

in a natural way, and even to abruptly stop walking without obtrusive changes

in treadmill speed. The implementation of the algorithm was done using Mi-

crosoft Kinect, a low-cost RGBD capturing device as it is readily available in

the market.

Before describing the algorithms, describing the assumed position and

setup of the omnidirectional treadmill is important.

Proposed Device Position and Setup

The system is based on a treadmill of reasonable size deduced from empirical

data. For best results, a size of 19.6 × 19.6ft2(6 × 6meter2) is suggested in

[13]. But due to space, weight and cost limitation, their design used only 13.2 ×

13.2ft2(4× 4meter2) area. Other omnidirectional treadmills used less than 6.5×

6.5ft2(2×2meter2) of area such as [42, 17]. Kinect has a range of 1.64ft(0.5meter)

26

to 14.76ft(4.5meter) and 70◦ horizontal FOV and 60◦ vertical FOV as men-

tioned in Table III.1. According to Microsoft, the optimal distance of a user

from the Kinect camera is six feet and the width of the space should be at least

6ft(1.8m) and not more than 12ft(3.66m) wide [43]. Pictorial description of

these conditions are shown in Fig. IV.1. So Based on the information and dia-

gram shown in Fig. V.1, we are proposing that an area of 6×6ft2(1.83×1.83m2)

or 8×8 ft2(2.43×2.43m2) will work best with the Kinect sensor. Several authors

(a) (b)

Figure IV.1: Suggested distance and height of the Kinect sensor by Microsoft

suggested that placing the Kinect camera angled at 45◦ with respect to the user

produces good motion data [37, 36]. They also suggested to keep the Kinect at

a distance of almost 9ft and a height of 4ft as depicted in Fig. IV.2. While the

Figure IV.2: Distance and position of the Kinect sensor used by [37]

main idea is to avoid as much occlusion as possible [39], in our case, upper body

occlusion or hand gesture is not a concern. Gathering occlusion free lower body

27

joints are the primary goal here. Hence, the angle of Kinect is chosen as 30◦. An

overall treadmill concept design based on the parameters described above and

tailored in the fashion of CyberWalk [13], is shown in Fig. IV.3 from a top-down

view.

Figure IV.3: Proposed conceptual design of Omnidirectional Treadmill

Control Algorithm

Algorithm Constraints

The algorithm allows users to start walking on a stationary treadmill. Gradu-

ally, it will respond to the speed of users which is a constant input to the tread-

mill by this algorithm. Likewise, if the user stops walking, the treadmill even-

tually stops and brings the user back to the center of the treadmill. This strat-

28

egy works best as it doesn’t involve manipulating the inertial input to the user

which is important for the perception of natural walking speed and postural sta-

bility [13]. The normal walking cycle has three main phases; acceleration phase,

deceleration phase and a steady or rhythmic phase [44]. During the steady state

phase, walking is mainly dominated by vision as well as relative motion of the

objects. During acceleration and deceleration phase, users can feel the change in

speed of the treadmill. This is unavoidable because treadmills with bigger area

allows for changes in treadmill speed that are low enough to maintain the pos-

tural stability of the user, but that also suffers from noticeable acceleration [13].

The maximum allowable walking speed of omnidirectional treadmill is 1.5 m/s.

Acceleration up to 1 m/s2 should be possible according to [13]. Hence, our algo-

rithm will maintain these limits at all times.

Another set of constraints is the relative position of Kinect Camera

when the user is changing direction. The Kinect has a FOV of about 60◦; when

users are changing direction, there can be possible occlusion which can ham-

per the operation of the algorithm. Hence, we chose to rotate the Kinect cam-

era around the square treadmill in a circular fashion to sustain proper algo-

rithm outputs. That is, the direction output of our algorithm will also rotate the

Kinect so that the angle between Kinect and user is always zero. This is shown

in Fig. IV.3.

Algorithm Flowchart

The basic steps of the algorithm are depicted in Fig. IV.4 and IV.5.

Joint Smoothing

The algorithm starts by capturing data from Kinect using our implemented soft-

ware which is responsible for data capture and real-time calculations. After joint

data is captured, the Spine-Base, Left feet and Right feet are tracked by the

29

Figure IV.4: Basic Steps of the Algorithm

software as suggested in Chapter III. As each joint data generated noise from

the environment and small body movements, it needs to be smoothed. But as

the data have to be processed realtime, exponential smoothing is used. Expo-

nential smoothing is originally a weighted average of the past observations, with

exponentially decaying weights as the observation get older. Simply put, recent

observations have a higher associated weight than the older ones. Basic equation

for exponential smoothing is shown in (IV.1) and (IV.2).

St+1 =αxt + (1− α)St, 0 < α ≤ 1,t > 0 (IV.1)

30

In other words, the new value is the old value plus an adjustment for the error

that occurred in the last adjustment i. e.

St+1 =St + αεt (IV.2)

Where εt is the prediction error, St is the smoothed data at t and α is the smooth-

ing parameter. But single exponential suffers from trending values. And our po-

sition data should have a data trend where the z-axis data will have a sinusoidal-

like shape. Hence, double-exponential smoothing is used by introducing second

constant γ. The equations are shown in (IV.3):

St = αxt + (1− α)(St−1 + bt−1) 0 ≤ α ≤ 1 (IV.3)

bt = γ(St − St−1) + (1− γ)bt−1 0 ≤ γ ≤ 1 (IV.4)

Here, γ is the correction parameter, bt is the current trend parameter at t. Be-

sides double-exponential smoothing, we’ve also introduced jitter reduction filter.

That is, if the position data deviates more than a certain amount (jitter radius,

rj) from the previous position value, it is calculated with another exponential

like function shown in (IV.5):

S ′t = St × β + St−1 × (1− β) where, β =
(St − St−1)

rj
,0 ≤ rj ≤ 1 (IV.5)

Reference Point and Floor Parameters

The smoothed data is then saved and can be used for floor-plane parameter

calculations and reference setting. Kinect inherently provides the floor param-

eters by default, but for better calibration of floor parameters to reference feet

positions, floor-plane parameters can be calculated from multiple points. At

first, the user is asked to walk several times in one direction. After that, the

data is pre-processed to find proper floor-parameters. The floor is defined by a

31

plane ax + by + cz + d = 0. If we have multiple points and have 4 variables

(namely a, b, c, d), we set c = −1 for simplicity. Then replacing x, y with multiple

points, we can solve for the floor parameters using Least-Square method shown

in (IV.6) and (IV.8):

ax+ by + d = z, assuming c = −1 (IV.6)

x1 y1 1

x2 y3 1

· · ·

xn yn 1

a

b

d

 =

z1

z2

z3

 (IV.7)

a

b

c

 = (ATA)−1ATB,where x =

x1 y1 1

x2 y3 1

· · ·

xn yn 1

, and B =

z1

z2

z3

 (IV.8)

After floor parameters are found, one can simply check whether a point is on

the floor by putting x, y, z values in the equation, and if that is zero (or close to

zero), then the point is on the floor.

Speed and Acceleration

Speed and acceleration calculations are straight forward. The elapsed time is

calculated using a timer. Hence, the difference between a frame and the next

frame is calculated and is called elapsed time t. The instantaneous speed of mo-

tion for desired skeletal joint is calculated as the resultant of x, y, and z posi-

tions over subsequent frames that represent a motion. Equation (IV.9) repre-

32

sents speed equation used in the algorithm.

Uinst(n) = d
dt
(x, y, z)

∣∣∣∣
T=nt

=
1

t

√
(xn − xn−1)2 + (yn − yn−1)2 + (zn − zn−1)2

(IV.9)

It might also be necessary to only calculate the Z-axis component. In that case

derivative of Z component is used. In a similar fashion, acceleration is calculated

from derivative of speed, referring to (IV.10):

Ainst(n) = d
dt
(Uinst)

∣∣∣∣
T=nt

=
1

t
(Vinst(n) − Vinst(n−1)) (IV.10)

However, after speed calculation but before acceleration, the speed values need

to be filtered, as Kinect coordinates have jitter and other irregular components,

even after applying exponential smoothing. Therefore, a smoothing needs to be

applied to the calculated speed values so that values passed to omnidirectional

treadmill are smooth and don’t contain abrupt changes. Based on trial and em-

pirical data, triangular smoothing was chosen. The triangular smoothing is sim-

ilar to the weighted rectangular smooth. (IV.11) Represents a 5-point triangular

smoothing:

St =
xt−2 + 2xt−1 + 3xt + 2xt−1 + xt−2

9
(IV.11)

Triangular smoothing doesn’t have any significant effect and preserves the area

under where it is a straight line. For implementation purpose, two passes of four

point rectangular smoothing was chosen. The general rule of thumb is, n passes

of a w-width smooth results in a combined width of n × w − n + 1. Therefore,

two passes of four point rectangular smoothing will result in a 7-point triangular

smoothing.

33

Data Output Filtering

Even though speed and acceleration are calculated per frame, they are not passed

to omnidirectional treadmills per frame. Based on several logic testing as shown

in Fig. IV.5, the values are passed to omnidirectional treadmills. The first con-

dition is checking the movement of front feet. It can be left or right feet, but the

front feet will be tracked. As described by the authors Xu et al. in [28], the back

feet suffers from an error as it is sometimes occluded from Kinect. The front feet

on ground test is based on the floor parameters calculated in (IV.6) to (IV.8). If

multiplying the correspondent feet position with these floor parameters results

in a value within a threshold value (ideally zero), then the feet are on the floor.

Then step length is calculated as the distance between the Z-axis of feet posi-

tions, which can be optional. The rotation vector is then calculated for X − Z-

plane in reference to Kinect position.

34

Figure IV.5: Determination of Data output

35

V. EXPERIMENTS AND RESULTS

Testing Environment

All testings was performed using a PC with configuration below:

• Kinect for XBox One (v2)

• Intel Core i7-4720HQ 2.6GHz Quad-Core

• 8 GB DDR3 RAM

• Microsoft Windows

• Visual Studio 2015 for Development

• Matlab for Analysis

The Kinect is placed straight in front of the user as seen in Fig. IV.1a.

To see the lower body joints clearly, being perpendicular to them is the ideal

case, which is not possible as Kinect can’t measure only the lower body joints; it

has to measure the whole body joints. In light of that, the Kinect is placed at a

height on a head level, we chose 6ft as shown in Fig. V.1.

Another important factor is the angle in which the Kinect sensor is

tilted, as we want to cover the average height of a human (∼ 6ft). As shown in

Fig. V.1, choosing an angle of 0◦, the minimum distance to the user is 10.39ft (3.17meter).

Any lower distance, the Kinect will lose track of the user’s lower body. Choosing

this angle, makes the available tread area lesser as maximum range for Kinect is

∼ 14.76ft or 4.5meter. Hence, 30◦ of angle is chosen where the area of operation

is sufficient and the height of an average human is supported.

36

Figure V.1: Proposed tilt angle and distance of the Kinect Sensor

Testing Methods

As omnidirectional treadmill was not available at the time of experiments, par-

ticipants were asked to walk starting from a distance of 12ft(3.66 m) towards

the Kinect Sensor for acceleration and speed calculation. On a second run, they

were asked to walk towards several angular markers ranging from −20◦ to 20◦

to measure the angle, speed and acceleration. The participants were directly fac-

ing the Kinect sensor at first, behind which a screen displayed the running pro-

gram with a video capture of their movements and rendered skeleton for their

reference. In each of these experiments, joint positions were recorded for all

available joints for each frame with no frame-gap. The speed, acceleration and

rotation values were calculated realtime. Furthermore, position data, calculated

speed, angle and acceleration values were saved for further analysis.

37

Result and Data Analysis

After reading Kinect joint positions, three joints are tracked; the spine-base, left

foot and right foot. After that, exponential smoothing is applied. As the Kinect

joint values tend to be jittery, an exponential smoothing with smoothing fac-

tor of 0.25, correction factor of 0.25, prediction factor of 0.25 and jitter radius

of 0.05 is used. The Fig. V.2 below represents the result of joint positions with

smoothing and without smoothing: Although, the effect is not much visible in

Figure V.2: Z Location data for Spine using exponential smoothing.

the figure, it is quite visible after calculation of speed, as shown in Fig. V.3: The

correlation coefficient calculated between the original and exponential have an

average of 0.8856 with range [0.9572, 0.7426]. Hence, the signals are almost simi-

lar to each other.

Speed and acceleration calculations are done in realtime. But before

that, choosing one smoothing technique was necessary. The depiction of speed

calculation using three different methods are shown in Fig. V.4, V.5 and V.6

Among these smoothing techniques, the Gaussian and Triangular works better

as we expect the speed to smoothly increase and decrease. Also, too much de-

viation from original data is avoided. As smoothing is a filter, it imposes delay

38

Figure V.3: Result of Spine Speed in Z direction after using exponential smoothing

based on window size. Hence, a window size of seven is chosen so that, the de-

lay remains minimum and the speed data can be smoothed to our need. This

deviation is determined from correlation value and percent Mean-Squared-Error

(MSE) value. Table V.1, V.2 and V.3 below shows the correlation and MSE of

all three joints over several data sets for different smoothing methods. It can

Table V.1: Correlation and MSE for different smoothing technique for Spine

Gaussian Triangular Moving Average

Corr MSE Corr MSE Corr MSE
0.87147 2.693% 0.82279 3.625% 0.7827 4.309%

Table V.2: Correlation and MSE for different smoothing technique for Left Foot

Gaussian Triangular Moving Average

Corr MSE Corr MSE Corr MSE
0.90185 4.3024% 0.85167 6.368% 0.77169 9.235%

be seen from the correlation and MSE values that the Gaussian smoothed value

is more suitable and correlated to the original value while retaining important

data. Hence, Gaussian was chosen as the default smoothing filter. Another point

can be noted that, the spine-base joint has the least error and largest correla-

39

Figure V.4: Spine Speed using Gaussian (window size seven)

Table V.3: Correlation and MSE for different smoothing technique for Right Foot

Gaussian Triangular Moving Average

Corr MSE Corr MSE Corr MSE
0.8953 6.096% 0.84066 8.872% 0.75637 12.806%

tion w.r.t other joints. As a result, we can conclude that our original hypothesis

of selecting the spine-base for determining omnidirectional treadmill speed and

acceleration value was correct. Also spine-base position is pretty immune to tilt-

ing, rotating and leaning the body. The data output algorithm shown in Fig.

IV.5 also rules out a several non-walking conditions which makes this control

system superior to CyberWalk system. Hence, our control algorithm solves the

first problem of CyberWalk system described in Chapter IV. The acceleration

is calculated for each of the three joints in realtime using (IV.10). Fig. V.7a,

V.9a and V.8a below are the plot of acceleration values which are derivatives

of speed. We can see, the acceleration values have noisy components which needs

to be further smoothed. Smoothing the acceleration values are important. Based

on the acceleration values, the omnidirectional treadmill will change the rate of

velocity increase or decrease. If the values are changed frequently, the omnidi-

40

Figure V.5: Spine Speed using Triangular Smoothing (window size seven)

rectional treadmill cannot cope up with that, and even if it can, it may cause

the user to fall out of balance. Hence, smoothing the acceleration values are also

important.

The angle is calculated simply as a normal component to the Spine-

Base point with respect to the hip bones. As a normal component it represents

a vector direction. Then an angle is calculated with this normal component

and the vector from spine-base to the Kinect sensor. It may also be easy to use

Kinect Supplied radian-angle around y-axis. We can get the cumulative angle

w.r.t the Kinect camera which is the center of camera 3D space. After getting

the cumulative angle, we have to smooth the data to make it usable. A simple

experiment with angular change was done. The subject was told to change di-

rection on every step. Fig. V.10 shows angular value w.r.t acceleration for that

experiment. Notice that, angular values sways from a fixed position. As shown

in chapter III, Fig. III.10, there is a lateral displacement in both angle and posi-

tion. The direction changing angular values represent the displacements.

41

Figure V.6: Spine Speed using Moving Average (window size seven)

(a) (b)

Figure V.7: Spine Acceleration using no smoothing and Gaussian smoothing(window
size seven)

Validation

Two separate experiments were conducted to validate the speed and angular cal-

culations. As an omnidirectional treadmill was not available, to validate the al-

gorithm’s speed and angle calculation, these experiments were necessary. First

experiment, for validation of speed calculation by the algorithm, the user was

told to walk in the same speed for a fixed distance multiple times (multiple

runs). The Kinect has a range of 4.26m(14 ft) and the proposed treadmill area

was 1.83 × 1.83m2(6 × 6ft2) or 2.43 × 2.43m2(8 × 8 ft2). For this reason,

42

(a) (b)

Figure V.8: Spine Acceleration using no smoothing and Moving Average smooth-
ing(window size seven)

(a) (b)

Figure V.9: Spine Acceleration using no smoothing and Triangular smoothing(window
size seven)

we’ve chosen to cover distance of 2.29m(7.5 ft) for this experiment, starting

from 3.66m(12 ft) and ending in 1.37m(4.5 ft). So, the user walked distance

of 2.29m(7.5 ft) in a fixed speed multiple times for each time range. Total range

of speed calculation 0.2ms−1 to 1.4ms−1. Time in milliseconds was noted us-

ing stopwatch, and average speed was calculated for the chosen distance. Kinect

data was also acquired for speed calculation and comparison. There were six

ranges of speed tested. The speed ranges were categorized based on time taken

to achieve that speed. Time ranges measurements were ‘1 to 2 seconds’, ‘2 to

3’, ‘3 to 4’, ‘4 to 5’, ‘5 to 6’ and ‘6 to 7 seconds’. For each time category, 10

walk samples were taken. Table V.4 below shows the average time measured for

7.5 ft. Based on this time measurement, the measured speed and Kinect calcu-

lated speed is also shown in Table V.4.

43

Figure V.10: Change of angle with respect to change of acceleration

According to Table V.4, it is apparent that Kinect’s speed calculation

error is increasing for higher speed. Speed calculated by the Kinect had an aver-

age error rate of 18.91% for > 1m/s speed.The equation for percent error calcu-

lation is shown in (V.1).

%Error =

∣∣∣∣Theoritical V alue− Experiment V alue

Theoritical V alue

∣∣∣∣× 100 (V.1)

Other speed ranges had low error rates than the high speed one. The average er-

ror of all the speed(except > 1m/s) is 8.21%. Hence, it can be concluded that

the Kinect can handle upto 1m/s speed with reasonable error margin (< 10%)

44

Table V.4: Speed Comparison Table for distance of 7.5ft or 2.286m. Speed Unit m/s,
Time is in seconds

Range(seconds) 1 to 2 2 ot 3 3 to 4 4 to 5 5 to 6 6 to 7

Time measured 1.9330 2.4315 3.3428 4.4667 5.4021 6.6086
Speed(Measured) 1.1843 0.9411 0.6855 0.5131 0.4247 0.3468
Speed(Kinect) 0.9597 0.8370 0.6380 0.4650 0.3908 0.3150

%Error 18.91 10.97 7.06 9.45 8.03 9.23

in this setup. The overall error rate including all speed ranges is 10.12%. Ta-

ble V.4 represents the average of all speeds taken during the experiment setup.

A detailed listing of timing and speed calculations for multiple sample can be

found in Table A.1, A.2 in Appendix A. Also, speed calculations for Kinect and

it’s percent error with respect to measured speeds can be found in Table A.3

and Table A.4 in Appendix A.

The second experiment, validates the accuracy of angular measure-

ments. The experiment setup is shown in Fig. V.11. The dotted lines represent

the angle markers, which were taped in the ground. From −20 to 20 degrees,

each marker was placed after five degrees. In this experiment, the subject is

asked to face towards each angle-marker multiple times for three to five seconds.

Based on this experiment, the angles were calculated based on Kinects data.

Table V.5 shows the calculated angle values by the algorithm, their percentage

error and the standard deviation.

As mentioned, for each angle multiple samples were taken. The Kinect

angle mean represents the average of all of the samples. ‘Abs Diff’ represents the

difference between the actual angle and the calculated mean angle. The percent

error was calculated using (V.1). The ‘STD’ of each angle is the standard devia-

tion of all the angles calculated for that specific angle. The ‘Max’ and ‘Min’ an-

gles are self-explanatory. It is apparent from Table V.5 that, ±20◦ has the high-

est percent error (> 10%) and a displacement of more than ±3◦. Although, 15◦

has an error rate of < 10%, from the standard deviation, it is apparent that the

45

Table V.5: Angle Measurement validation. Unit of angles are in Degree(◦)

Original Kinect Angle

Angle Angle(Mean) Abs Diff %Error STD Max Min
0 0.0452 0.0452 4.5197 0.8267 1.85 -1.02
5 5.0459 0.0459 0.918 0.8114 6.85 3.39
10 9.2784 0.7216 7.216 0.9799 11.28 8.13
15 13.466 1.534 10.2267 1.658 14.97 12.14
20 16.146 3.854 19.27 3.9012 17.51 14.81
-5 -5.3183 0.3183 6.366 0.5522 -4.43 -6.6
-10 -10.983 0.983 9.83 1.0135 -9.11 -12.79
-15 -13.514 1.486 9.907 1.3253 -12.25 -17.22
-20 -17.353 2.647 13.235 2.8504 -16.12 -19.90

angle calculation varies a lot within 1.5σ. The rest of the angles, namely, ±0◦,

±5◦, ±10◦ has a lower error rate than ±15◦ and ±20◦. Also their standard devi-

ation values suggest that, the tendency of varying their values are lower. Hence,

it can be deduced from Table V.5 that, the best angle range for this setup and

algorithm is −15◦ < Angle < 15◦.

Figure V.11: Angle validation experiment setup

46

Implementation

The software was implemented in .NET, Microsoft Visual Studio. Several sample

run of the software are shown in Fig. V.12a to V.12e. The basic class diagram of

(a) (b)

(c) (d)

(e) (f)

Figure V.12: (a) is the software setting reference and floor parameter. (b) to (f) shows
the working condition of the software when a user walks toward the
Kinect and in an angle

the software is shown in Fig. V.13.

The main class developed was MainWindow, responsible for reading

data from a Kinect device. Then it creates BodyEx and JointInfo class ob-

jects which actually are a placeholder for all body joints data and joint positions

47

Figure V.13: Basic Class diagram of the Software Used

and speed. The PositionTracker class does the actual work of smoothing the

data and calculating acceleration and speed in realtime. ExponentialJoint class

features the exponential smoothing of the joint positions. Core code segments

from the software are listed in appendix VI. The average lag for the processing

of these data and smoothing without optimization was ∼ 3ms. As optimization

wasn’t the priority here, details like using multi-threading or Graphics Process-

ing Unit (GPU) inclusion wasn’t implemented, which could make the software

run faster.

48

VI. CONCLUSIONS AND FUTURE WORK

Conclusions

The challenge of developing a control algorithm for omnidirectional treadmills is

largely correlated to the actual design of the omnidirectional treadmill. Indepen-

dently designing the control algorithm poses several limitations. As the speed,

acceleration and rotation values are calculated, they cannot be verified against

an actual output of omnidirectional treadmills. Hence, existing motion and ac-

celeration can be further parameterized to proper values required for omnidirec-

tional treadmills. This research confronts three major problems of existing algo-

rithms as described in Chapter IV. Our algorithm addresses the first problem by

choosing the appropriate smoothing technique and then choosing spine-base as

a reference for calculating velocity and acceleration. As mentioned before, the

spine-base position values are much more accurate than the other joints coun-

terpart. The second problem of rotation value was addressed in Experimental

Section Chapter V.

Angular values were calculated and validated to be changing properly

according to the acceleration value. Still, without the omnidirectional treadmill

setup, there are very few and expensive way to measure the accuracy of angle,

speed and acceleration. The most important problem was reducing cost of ex-

isting omnidirectional treadmill. As the omnidirectional treadmill itself tends to

be costly, using a motion capture device for reference calculation increases the

cost, although it provides accuracy. Instead of using a motion-capture camera, a

Kinect Camera would be much more affordable and available, although sacrific-

ing accuracy. It can still be used upto certain acceptable error margin(< 10%) as

it is still used by many researchers for medical and multimedia purposes.

Acceleration and speed is calculated, but there is no straight-forward

49

way to calibrate the calculations, verify or benchmark the values. Although, for

validation purpose only, a proper value change pattern is necessary, which we

have as shown in Fig. V.7a, V.7b, V.9a and V.4. Also, two experiments were

conducted to verify the standby angle and speed of the setup which is described

in Chapter V. Based on the results, it can be said that this setup and algo-

rithm works best for angle range of −15◦ < Angle < 15◦ and a speed range

of .2ms−1 < Speed < 1.4ms−1.

Aside from calculating velocity, acceleration and rotation, the algo-

rithm can also distinguish basic walking patterns. It can distinguish walking mo-

tion from non-walking motion, e. g., body lean, tilt or rotate. Walking is deter-

mined as a series of events, e. g., touching the floor, motion of a foot and spine,

etc, which makes the algorithm susceptible to abnormal walking behavior. A

user can lean forward to look at an object or rotate to watch another scene; our

system will differentiate those and parameters won’t be passed to the treadmill.

This is another advantage of our proposed system.

Limitations

The limitations of our system are listed below:

• The biggest limitation of this system is the framerate of Kinect Camera.

While the Kinect hardware is one of the most used research devices, it

suffers severely from framerate-deficiency. Kinect’s maximum framerate

is 30Hz, which is true for most of the cases. But even 30Hz framerate is

not enough for realtime applications. Kinect have been used successfully

for many medical analyses where researchers collect data from Kinect and

post-process [35, 36, 40, 34, 28], but our system is a realtime system which

needs to have good framerates. Average elapsed time for each frame was

found to be 40.15ms with range [33.33ms, 44.17ms]. .

• While the temporal accuracy is good [28], Kinect acceleration and speed

50

values are noisy. As a result, smoothing is required. Even after that, spa-

tial accuracy is not very reliable, which can be reduced by the subtraction

of position values or increased [28]. Also realtime smoothing produces de-

lay based on windowsize which can hamper the walking experience.

• The algorithm is not optimized enough to detect jumping, side-walking or

cross-walking.

• It is assumed that after passing the acceleration and velocity the omnidi-

rectional treadmill will automatically change the velocity over time based

on acceleration. Instead, we can make the progression and give feedback to

omnidirectional treadmills, to limit i’s processing.

Future Works

Omnidirectional Treadmills will be the next generation of virtual reality explor-

ing medium. This proposal will make the omnidirectional treadmill platform one

step closer to being unconstrained and low cost. Future plans of this thesis are

listed below:

• Implement the algorithm with an existing omnidirectional treadmill to ver-

ify it’s functionality

• Apply a new validation method using Smartphone sensors. For example,

Android and iOS smartphone sensors are very accurate, e. g., accelerome-

ter, gyroscope, rotation vector, etc. We can make an app which can com-

municate with the software for synchronization, then capture gyroscope

and accelerometer data. From the captured data it is possible to validate

our calculated speed, rotation and acceleration with reasonable accuracy.

• Employ more test cases based on age, height and gender.

• Incorporate high framerate industrial cameras to detect depth from dispar-

ity and calculate position based on optical flow

51

• Apply deep-learning based human pose detection, which can be applied to

our original proposal.

• Make a low-cost belt for the torso that will include a Smartphone sensor

which will gather data and communicate with omnidirectional treadmill

and VR headset rather than using camera to detect pose and position.

52

APPENDIX SECTION

APPENDIX A

Table A.1: Time measured for multiple runs

Range(seconds) 1 to 2 2 ot 3 3 to 4 4 to 5 5 to 6 6 to 7

Run 1 1.952 2.375 3.366 4.496 5.985 7.156
Run 2 1.765 2.398 3.428 4.483 5.437 6.707
Run 3 1.933 2.559 3.421 4.073 5.352 6.898
Run 4 1.956 2.523 3.351 4.779 5.594 6.274
Run 5 1.985 2.358 3.002 4.665 4.944 6.426
Run 6 2.011 2.376 3.489 4.304 5.101 6.191

Average Time 1.933 2.4315 3.3428 4.4667 5.4021 6.6086

Table A.2: Measured speed using time from TableA.1

Range(seconds) 1 to 2 2 ot 3 3 to 4 4 to 5 5 to 6 6 to 7

Run 1 1.1711 0.9625 0.6791 0.5084 0.3819 0.319
Run 2 1.2951 0.9532 0.6668 0.5099 0.4204 0.340
Run 3 1.1826 0.8933 0.6682 0.5612 0.4271 0.331
Run 4 1.1687 0.9060 0.6821 0.4783 0.4086 0.364
Run 5 1.1516 0.9694 0.7614 0.4900 0.4623 0.355
Run 6 1.1367 0.9621 0.6552 0.5311 0.4481 0.369

Average Speed 1.1843 0.9411 0.6855 0.5131 0.4247 0.3468

53

Table A.3: Calculated speed using data from Kinect

Range(seconds) 1 to 2 2 ot 3 3 to 4 4 to 5 5 to 6 6 to 7

Run 1 0.9309 0.8128 0.5577 0.4847 0.3419 0.2791
Run 2 1.0228 0.8440 0.6454 0.4308 0.3878 0.2988
Run 3 0.9503 0.8148 0.5988 0.5278 0.3920 0.3148
Run 4 0.9938 0.8675 0.6860 0.4385 0.3812 0.3361
Run 5 0.8631 0.8309 0.6980 0.4265 0.4129 0.3286
Run 6 0.9971 0.8514 0.6421 0.4815 0.4287 0.3320

Average Kinect Speed 0.9597 0.837 0.638 0.465 0.3908 0.315

Table A.4: Percentage error between Kinect’s calculated speed from TableA.3 and
measured speed data from Table A.2

Range(seconds) 1 to 2 2 ot 3 3 to 4 4 to 5 5 to 6 6 to 7

Run 1 20.51 15.55 17.87 4.67 10.47 12.63
Run 2 21.03 11.46 3.22 15.50 7.76 12.32
Run 3 19.64 8.78 10.38 5.95 8.22 5.00
Run 4 14.96 4.25 0.56 8.32 6.71 7.73
Run 5 25.05 14.29 8.33 12.94 10.69 7.61
Run 6 12.28 11.50 1.99 9.34 4.33 10.07

Average %Error 18.91 10.97 7.06 9.45 8.03 9.23

APPENDIX B

Software Core Codes

Code for Frame Processing

pr i va t e void FrameProcess (ob j e c t sender ,

BodyFrameArrivedEventArgs e)

{

bool dataReceived = f a l s e ;

Vector4 f l o o rP l ane = new Vector4 () ;

double elapsedTime = 0 ;

us ing (BodyFrame bodyFrame = e . FrameReference . AcquireFrame ())

{

i f (bodyFrame != nu l l)

54

{

i f (t h i s . bod ie s == nu l l)

{

t h i s . bod ie s = new Body [bodyFrame . BodyCount] ;

}

// The first time GetAndRefreshBodyData is called ,

Kinect will allocate each Body in the array.

// As long as those body objects are not disposed and

not set to null in the array,

// those body objects will be re-used.

bodyFrame . GetAndRefreshBodyData (t h i s . bod ie s) ;

dataReceived = true ;

f l o o rP l ane = bodyFrame . FloorCl ipPlane ;

//Calculation of Elapsed Time

elapsedTime = bodyFrame . RelativeTime . TotalSeconds −

lastFrameTime . TotalSeconds ;

lastFrameTime = bodyFrame . RelativeTime ;

}

}

i f (dataReceived)

{

us ing (DrawingContext dc = th i s . drawingGroup .Open ())

{

// Draw a transparent background to set the render

size

dc . DrawRectangle (Brushes . Black , nu l l , new Rect (0 . 0 ,

0 . 0 , t h i s . displayWidth , t h i s . d i sp layHe ight)) ;

i n t penIndex = 0 ;

//The Closest body is selected

Body body = bodie s . C lo s e s t () ;

i f (body != nu l l)

55

{

Pen drawPen = th i s . bodyColors [penIndex++];

i f (body . IsTracked)

{

t h i s . DrawClippedEdges (body , dc) ;

i f (refBody == nu l l)

{

refBody = new ReferenceBody () ;

}

i f (mainBody == nu l l)

{

mainBody = new BodyEx () ;

}

i f (mainBody != nu l l)

{

mainBody . UpdateBody (body) ;

}

//Lean helper for Reference Setting

s t r i n g bodyText = "Body i s " + (body . I s S t ab l e

() ? " Stab le " : "Not Stab le ") ;

i f (body . LeanTrackingState == TrackingState .

Tracked)

{

Point pt = new Point (10 , 5) ;

bodyText = St r ing . Format ("Body lean

{0 : 0 . 0000} , {1 : 0 . 0000} , Height :

{2 : 0 . 00} " , body . Lean .X, body . Lean .Y,

body . Height ()) ;

dc . DrawText (bodyText , pt ,

de fau l tFontColor) ;

56

}

i f (! refBody . I sRe f e r enceSe t)

{

//Reference set

refBody . SetRe fe rence (body) ;

dc . DrawText (S t r ing . Format ("Ref Count :

{0}" , refBody . ReferenceSetCount) ,

new Point (10 , 20) , de fau l tFontColor)

;

refBody . FloorPlane = f l o o rP l an e ;

mainBody . DrawBody(dc , drawPen ,

trackedJointBrush) ;

}

e l s e

{

//Exp Smoothing

f o r each (var item in mainBody . Jo in t s)

{

Jo i n t I n f o j i = item . Value ;

expSmooth . Update (r e f j i .

CameraSpacePosition , j i .

TrackingState) ;

}

mainBody . DrawBody(dc , drawPen ,

trackedJointBrush) ;

walkingBody . Update (mainBody , elapsedTime) ;

JointType [] j t s = { JointType . FootLeft ,

JointType . FootRight , JointType . SpineBase

} ;

f o r each (var j t in j t s)

{

57

Jo i n t I n f o j i i = mainBody [j t] ;

var euo = j i i . Or i enta t i on . Or i enta t i on .

ToEuler () ;

double [] e u l e r= { euo .X, euo .Y, euo . Z} ;

e u l e r [0] = eu l e r [0] . ToDegrees () ;

e u l e r [1] = eu l e r [1] . ToDegrees () ;

e u l e r [2] = eu l e r [2] . ToDegrees () ;

}

var eu l e rOr i = mainBody [JointType . SpineBase] .

Or i entat i on . Or i enta t ion . ToEuler () ;

i f ((walkingBody . RightFootMoving | |

walkingBody . LeftFootMoving) && walkingBody

. SpineMoving)

{

var eulerYAngles = ((double) eu l e rOr i .Y)

. ToDegrees () ;

t x t I n f o . Text = St r ing . Format ("Angle :

{ 0 : 0 . 0 0} , Speed : { 1 : 0 . 0 0 m/ s }" ,

eulerYAngles , walkingBody .

SpineBaseTracker . GaussianSpeed ()) ;

}

e l s e

{

t x t I n f o . Text = "" ;

}

}

}

}

// prevent drawing outside of our render area

58

t h i s . drawingGroup . ClipGeometry = new

RectangleGeometry (new Rect (0 . 0 , 0 . 0 , t h i s .

displayWidth , t h i s . d i sp layHe ight)) ;

}

}

} �
Code for PositionTracker

pub l i c c l a s s Pos i t i onTracker

{

p r i va t e :

Queue<Tuple<Vector3 , double>> posit ionSpeedQueue = new Queue<

Tuple<Vector3 , double >>() ;

Vector3 l a s tP o s i t i o n ;

double l a s tSpeed = 0 ;

double lastGauss ianSpeed = 0 ;

double la s tExponent ia lSpeed = 0 ;

//Calculation of Simple Speed based on geometric distance

double SimpleSpeed (Vector3 f i r s t P o s i t i o n , Vector3

l a s tPo s i t i o n , double elapsedTime)

{

f l o a t d i s t anc e = Vector3 . Distance (f i r s t P o s i t i o n ,

l a s tP o s i t i o n) ;

r e turn d i s t anc e / elapsedTime ;

}

//Calculation of Gaussian Speed

double GaussianSpeed (Queue<Tuple<Vector3 , double>> posSpeed)

{

59

double speed = 0 ;

i f (posSpeed . Count >= Se l ec t edKerne l . Length)

{

var a r r = posSpeed . ToArray () ;

//Multiplying selected kernel with the speed values

f o r (i n t i = 0 ; i < posSpeed . Count ; i++)

{

speed += Se l e c t edKerne l [i] ∗ ar r [i] . Item2 ;

}

}

re turn speed ;

}

double Pro c e s s Jo in tPo s i t i on (SharpDX . Vector3 pos i t i on , double

elapsedTime)

{

i f (posit ionSpeedQueue . Count >= Se l ec t edKerne l . Length)

{

var f i r s t P o s = posit ionSpeedQueue . Dequeue () ;

}

//Calculating Simple speed unless otherwise stated

double curSpeed = SimpleSpeed (l a s tPo s i t i o n , po s i t i on ,

elapsedTime) ;

//Enqueue values

posit ionSpeedQueue . Enqueue (new Tuple<Vector3 , double >(

pos i t i on , curSpeed)) ;

//Save this position and speed as last position to easiliy

calculate the speed and acceleration

t h i s . l a s tP o s i t i o n = po s i t i o n ;

l a s tSpeed = curSpeed ;

lastGauss ianSpeed = 0 ;

la s tExponent ia lSpeed = 0 ;

60

r e turn curSpeed ;

}

} �
Code for ExponentialJoint

Largely based on the work of [45]

pub l i c c l a s s ExponentialSmooth

{

f l o a t msmoothing ,

mcorrect ion ,

mpredict ion ,

mj i t terRadius ,

mmaxDeviationRadius ;

Fi l terDoubleExponent ia lData mhistory ;

void Update (r e f CameraSpacePoint point , TrackingState t s)

{

// If not tracked , we smooth a bit more by using a bigger

jitter radius

// Always filter feet highly as they are so noisy

var j i t t e rRad i u s = mj i t t e rRad ius ;

var maxDeviationRadius = mmaxDeviationRadius ;

i f (t s != TrackingState . Tracked)

{

j i t t e rRad i u s ∗= 2.0 f ;

maxDeviationRadius ∗= 2.0 f ;

}

Vector3 f i l t e r e dP o s i t i o n ,

pos i t i onDe l ta ,

trend ;

61

f l o a t d i f fVa l ;

var r epo r t edPos i t i on = new Vector3 (po int .X, po int .Y, po int .

Z) ;

var p r e vF i l t e r e dPo s i t i o n = mhistory . F i l t e r e dPo s i t i o n ;

var prevTrend = mhistory . Trend ;

var prevRawPosition = mhistory . ReportedPos i t ion ;

// If joint is invalid , reset the filter

i f (r epo r t edPos i t i on .X == 0 && repo r t edPos i t i on .Y == 0 &&

repo r t edPos i t i on . Z == 0)

{

Reset () ;

}

// Initial start values

i f (t h i s . mhistory . FrameCount == 0)

{

f i l t e r e dP o s i t i o n = repo r t edPos i t i on ;

trend = new Vector3 () ;

}

e l s e i f (t h i s . mhistory . FrameCount == 1)

{

f i l t e r e dP o s i t i o n = (r epo r t edPos i t i on + prevRawPosition) ∗

0 .5 f ;

po s i t i onDe l t a = f i l t e r e dP o s i t i o n − p r evF i l t e r e dPo s i t i o n ;

trend = (po s i t i onDe l t a ∗ mcorrect ion) + (prevTrend ∗ (1 . 0

f − mcorrect ion)) ;

}

e l s e

{

// First apply jitter filter

po s i t i onDe l t a = repo r t edPos i t i on − p r evF i l t e r e dPo s i t i o n ;

d i f fVa l = Math . Abs (po s i t i onDe l t a . Length ()) ;

62

i f (d i f fVa l <= j i t t e rRad i u s)

{

f i l t e r e dP o s i t i o n = (r epo r t edPos i t i on ∗ (d i f fVa l /

j i t t e rRad i u s)) +

(p r e vF i l t e r e dPo s i t i o n ∗ (1 . 0 f − (d i f fVa l / j i t t e rRad i u s

))) ;

}

e l s e

{

f i l t e r e dP o s i t i o n = repo r t edPos i t i on ;

}

// Now the double exponential smoothing filter

f i l t e r e dP o s i t i o n = (f i l t e r e dP o s i t i o n ∗ (1 . 0 f − msmoothing

)) +

((p r e vF i l t e r e dPo s i t i o n + prevTrend) ∗ msmoothing) ;

po s i t i onDe l t a = f i l t e r e dP o s i t i o n − p r evF i l t e r e dPo s i t i o n ;

trend = (po s i t i onDe l t a ∗ mcorrect ion) + (prevTrend ∗ (1 . 0

f − mcorrect ion)) ;

}

// Predict into the future to reduce latency

var p r ed i c t edPo s i t i on = f i l t e r e dP o s i t i o n + (trend ∗

mpredict ion) ;

// Check that we are not too far away from raw data

po s i t i onDe l t a = pr ed i c t edPo s i t i on − r epo r t edPos i t i on ;

d i f fVa l = Math . Abs (po s i t i onDe l t a . Length ()) ;

i f (d i f fVa l > maxDeviationRadius)

{

p r ed i c t edPo s i t i on = (p r ed i c t edPo s i t i on ∗ (

maxDeviationRadius / d i f fVa l)) +

63

(r epo r t edPos i t i on ∗ (1 . 0 f − (maxDeviationRadius / d i f fVa l

))) ;

}

// Save the data from this frame

t h i s . mhistory . ReportedPos i t ion = repo r t edPos i t i on ;

t h i s . mhistory . F i l t e r e dPo s i t i o n = f i l t e r e dP o s i t i o n ;

t h i s . mhistory . Trend = trend ;

t h i s . mhistory . FrameCount++;

// Set the filtered data back into the joint

point .X = pr ed i c t edPo s i t i on .X;

po int .Y = pr ed i c t edPo s i t i on .Y;

po int . Z = pr ed i c t edPo s i t i on . Z ;

}

p r i va t e s t r u c t Fi l terDoubleExponent ia lData

{

pub l i c Vector3 ReportedPos i t ion ;

pub l i c Vector3 F i l t e r e dPo s i t i o n ;

pub l i c Vector3 Trend ;

pub l i c u int FrameCount ;

}

} �
Matlab Code for analysis

f unc t i on te s t1_or i entat ion_pos i t i onFn (input_args)

c l e a r a l l ; c l o s e a l l ; main_data=load (’ t e s t 1_or i en ta t i on_pos i t i on .

txt ’) ;

64

sp ine = main_data (3 : 3 : end , :) ;

s p i n ePo s i t i on = sp ine (: , 4 : 6) ;

sp in eOr i en ta t i on = sp ine (: , 1 : 3) ;

data_time = sp ine (: , 7) ; % In second

% Calculate 3D distance

l i n ew id th = 1 . 2 ;

data3d = sp in ePo s i t i on ;

data_time = sp ine (: , 7) ; % In second

%data_time(1) = 1;

%t2 = 1:size(data_time ,1);

t2 = cumsum(data_time) ;

gwindowSize = 7 ;

fswindowSize = 7 ;

maKern = ones (1 , gwindowSize) /gwindowSize ;

spd3d = speed3D (data3d , data_time) ;

spd3d_fs = fastsmooth (spd3d , fswindowSize , 2 , 1) ;

spd3d_ma = f i l t e r (maKern , 1 , spd3d) ;

spd3d_g = doGauss (spd3d , 7) ;

corr_g = cor r (spd3d_g , spd3d) ;

cor r_fs = cor r (spd3d_fs , spd3d) ;

corr_ma = cor r (spd3d_ma , spd3d) ;

[corr_g corr_fs corr_ma]

mse_g = sum((spd3d_g−spd3d) .^2) / s i z e (spd3d , 1) ;

mse_fs = sum((spd3d_fs−spd3d) .^2) / s i z e (spd3d , 1) ;

mse_ma = sum((spd3d_ma−spd3d) .^2) / s i z e (spd3d , 1) ;

[mse_g mse_fs mse_ma]

65

f i gu r e , p l o t (t2 , spd3d , t2 , spd3d_g , ’ l i n ew id th ’ , l i n ew id th) ,

t i t l e (’ Spine Speed us ing Gaussian (window 7) ’) ,

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Speed (in ms^{−1}) ’) ,

l egend (’ Or i g i na l Speed ’ , ’ Smoothed Speed ’)

f i gu r e , p l o t (t2 , spd3d , t2 , spd3d_ma , ’ l i n ew id th ’ , l i n ew id th) ,

t i t l e (’ Spine Speed us ing Moving Average (window 7) ’)

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Speed (in ms^{−1}) ’)

l egend (’ Or i g i na l Speed ’ , ’ Smoothed Speed ’)

f i gu r e , p l o t (t2 , spd3d , t2 , spd3d_fs , ’ l i n ew id th ’ , l i n ew id th) ,

t i t l e (’ Spine Speed us ing Tr iangular (window 7) ’)

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Speed (in ms^{−1}) ’)

l egend (’ Or i g i na l Speed ’ , ’ Smoothed Speed ’)

%accel

a c c e l = ze ro s (s i z e (spd3d)) ;

accel_g = ze ro s (s i z e (spd3d)) ;

a c c e l_ f s = ze ro s (s i z e (spd3d)) ;

accel_ma = ze ro s (s i z e (spd3d)) ;

a c c e l (2 : end , :) = d i f f (spd3d) . / data_time (2 : end) ;

a c c e l_ f s (2 : end , :) = d i f f (spd3d_fs) . / data_time (2 : end) ;

a c c e l_ f s = fastsmooth (acce l_fs , f swindowSize+2) ;

accel_g (2 : end , :) = d i f f (spd3d_g) . / data_time (2 : end) ;

accel_g = doGauss (accel_g , gwindowSize+2) ;

accel_ma (2 : end , :) = d i f f (spd3d_ma) . / data_time (2 : end) ;

accel_ma = f i l t e r (maKern , 1 , accel_ma) ;

corr_ag = cor r (accel_g , a c c e l) ;

cor r_afs = co r r (acce l_fs , a c c e l) ;

66

corr_ama = cor r (accel_ma , a c c e l) ;

d i sp l ay (’−−−−− ’)

[corr_ag corr_afs corr_ama]

mse_ag = sum((accel_g−a c c e l) .^2) / s i z e (acce l , 1) ;

mse_afs = sum((acce l_fs−a c c e l) .^2) / s i z e (acce l , 1) ;

mse_ama = sum((accel_ma−a c c e l) .^2) / s i z e (acce l , 1) ;

[mse_ag mse_afs mse_ama]

ori_y = sp ineOr i en ta t i on (: , 2) ;

ori_y_fs = fastsmooth (ori_y , fswindowSize , 2 , 1) ;

ori_y_g = doGauss (ori_y , gwindowSize) ;

f i gu r e , p l o t (t2 , accel_g , t2 , ori_y , ’ l i n ew id th ’ , l i n ew id th) ,

t i t l e (’ t t ’) ;

f i gu r e , p l o t (t2 , accel_g , t2 , ori_y_fs , ’ l i n ew id th ’ , l i n ew id th)

, t i t l e (’ t t2 ’) ;

f i gu r e , p l o t (t2 , accel_g , ’ l i n ew id th ’ , l i n ew id th)

t i t l e (’ Spine Acce l e r a t i on Smoothed with Gaussian ’)

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Acc e l e r a t i on (in ms^{−2}) ’)

f i gu r e , p l o t (t2 , ori_y_g , ’ l i n ew id th ’ , l i n ew id th) ;

t i t l e (’ Spine Cumulative Angle smoothed with Gaussian ’)

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Angle (in Degree^{\ c i r c }) ’)

f i gu r e , p l o t (t2 , acce l , t2 , acce l_fs , ’ l i n ew id th ’ , l i n ew id th) ,

t i t l e (’ Spine Acce l e r a t i on us ing Tr iangular smoothing (window 7)

’)

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Acc e l e r a t i on (in ms^{−2}) ’)

l egend (’ Or i g i na l Acce l e r a t i on ’ , ’ Smoothed Acce l e r a t i on ’) ;

67

f i gu r e , p l o t (t2 , acce l , t2 , accel_g , ’ l i n ew id th ’ , l i n ew id th) ,

t i t l e (’ Accel vs accel_g ’) ;

t i t l e (’ Spine Acce l e r a t i on us ing Gaussian smoothing (window 7) ’)

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Acc e l e r a t i on (in ms^{−2}) ’)

l egend (’ Or i g i na l Acce l e r a t i on ’ , ’ Smoothed Acce l e r a t i on ’) ;

f i gu r e , p l o t (t2 , acce l , t2 , accel_ma , ’ l i n ew id th ’ , l i n ew id th) ,

t i t l e (’ Accel vs accel_ma ’) ;

t i t l e (’ Spine Acce l e r a t i on us ing Moving Average smoothing (

window 7) ’)

x l ab e l (’Time (in seconds) ’) , y l ab e l (’ Acc e l e r a t i on (in ms^{−2}) ’)

l egend (’ Or i g i na l Acce l e r a t i on ’ , ’ Smoothed Acce l e r a t i on ’) ;

f i gu r e , p l o t (t2 , acce l_fs , t2 , accel_ma , ’ l i n ew id th ’ , l i n ew id th

) , t i t l e (’ Accel_fs vs accel_ma ’) ;

f i gu r e , p l o t (t2 , accel_g , t2 , accel_ma , ’ l i n ew id th ’ , l i n ew id th)

, t i t l e (’ Accel_g vs accel_ma ’) ;

f i gu r e , p l o t (t2 , accel_g , t2 , acce l_fs , ’ l i n ew id th ’ , l i n ew id th)

, t i t l e (’ Accel_g vs acce l_ f s ’) ;

end �

68

REFERENCES

[1] G. K. Edgar, “Accommodation, cognition, and virtual image displays: A
review of the literature,” Displays, vol. 28, no. 2, pp. 45–59, 2007.

[2] M. Fritschi, H. Esen, M. Buss, and M. O. Ernst, “Multi-modal vr systems,”
in The Sense of Touch and Its Rendering. Springer, 2008, pp. 179–206.

[3] E. Richard, A. Tijou, P. Richard, and J.-L. Ferrier, “Multi-modal virtual
environments for education with haptic and olfactory feedback,” Virtual
Reality, vol. 10, no. 3-4, pp. 207–225, 2006.

[4] A. Kemeny, “Driving simulation for virtual testing and perception studies,”
in Proceedings of DSC Europe Conference, Monte-Carlo, 2009, pp. 15–23.

[5] H. Teufel, H.-G. Nusseck, K. Beykirch, J. Butler, M. Kerger, and
H. Bülthoff, “Mpi motion simulator: development and analysis of a novel
motion simulator,” in AIAA Modeling and Simulation Technologies Confer-
ence and Exhibit, 2007, p. 6476.

[6] N. E. Seymour, “Vr to or: a review of the evidence that virtual reality sim-
ulation improves operating room performance,” World journal of surgery,
vol. 32, no. 2, pp. 182–188, 2008.

[7] C. V. Erren-Wolters, H. van Dijk, A. C. de Kort, M. J. IJzerman, and M. J.
Jannink, “Virtual reality for mobility devices: training applications and clin-
ical results: a review,” International Journal of Rehabilitation Research,
vol. 30, no. 2, pp. 91–96, 2007.

[8] F. P. Vidal, F. Bello, K. W. Brodlie, N. W. John, D. Gould, R. Phillips,
and N. J. Avis, “Principles and applications of computer graphics in
medicine,” in Computer Graphics Forum, vol. 25, no. 1. Wiley Online
Library, 2006, pp. 113–137.

[9] M. V. Sanchez-Vives and M. Slater, “From presence to consciousness
through virtual reality,” Nature Reviews Neuroscience, vol. 6, no. 4, pp.
332–339, 2005.

[10] R. A. Ruddle and S. Lessels, “For efficient navigational search, humans re-
quire full physical movement, but not a rich visual scene,” Psychological
Science, vol. 17, no. 6, pp. 460–465, 2006.

[11] R. Bertin, C. Collet, S. Espié, and W. Graf, “Objective measurement of
simulator sickness and the role of visual-vestibular conflict situations,” in
Driving Simulation Conference North America, 2005, pp. 280–293.

[12] N. B. Epstein, “Omnidirectional moving surface,” Jun. 1 2004, uS Patent
6,743,154.

[13] J. L. Souman, P. R. Giordano, M. Schwaiger, I. Frissen, T. Thümmel,
H. Ulbrich, A. D. Luca, H. H. Bülthoff, and M. O. Ernst, “Cyberwalk:
Enabling unconstrained omnidirectional walking through virtual environ-
ments,” ACM Transactions on Applied Perception (TAP), vol. 8, no. 4,
p. 25, 2011.

69

[14] A. De Luca, R. Mattone, P. R. Giordano, and H. H. Bülthoff, “Control de-
sign and experimental evaluation of the 2d cyberwalk platform,” in Intelli-
gent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Con-
ference on. IEEE, 2009, pp. 5051–5058.

[15] K. J. Fernandes, V. Raja, and J. Eyre, “Cybersphere: the fully immersive
spherical projection system,” Communications of the ACM, vol. 46, no. 9,
pp. 141–146, 2003.

[16] J.-Y. Huang, “An omnidirectional stroll-based virtual reality interface and
its application on overhead crane training,” IEEE Transactions on Multime-
dia, vol. 5, no. 1, pp. 39–51, 2003.

[17] KatVR. (2015, jul) Katwalk VR premium. [Online]. Available:
http://www.katvr.com/gailan.html

[18] VirtuiX. (2016, jan) Virtuix omni VR platform. [Online]. Available:
http://www.virtuix.com/

[19] M. Hoffmann, K. Schuster, D. Schilberg, and S. Jeschke, “Next-generation
teaching and learning using the virtual theatre,” in Automation, Commu-
nication and Cybernetics in Science and Engineering 2015/2016. Springer,
2016, pp. 281–291.

[20] M. Schwaiger, T. Thuimmel, and H. Ulbrich, “Cyberwalk: An advanced pro-
totype of a belt array platform,” in Haptic, Audio and Visual Environments
and Games, 2007. HAVE 2007. IEEE International Workshop on. IEEE,
2007, pp. 50–55.

[21] N. Silberman and R. Fergus, “Indoor scene segmentation using a structured
light sensor,” in Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on. IEEE, 2011, pp. 601–608.

[22] E. Lachat, H. Macher, T. Landes, and P. Grussenmeyer, “Assessment and
calibration of a rgb-d camera (kinect v2 sensor) towards a potential use for
close-range 3d modeling,” Remote Sensing, vol. 7, no. 10, pp. 13 070–13 097,
2015.

[23] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: Structured-
light versus time-of-flight kinect,” Computer Vision and Image Understand-
ing, vol. 139, pp. 1–20, 2015.

[24] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. El Saddik, “Evaluating
and improving the depth accuracy of kinect for windows v2,” IEEE Sensors
Journal, vol. 15, no. 8, pp. 4275–4285, 2015.

[25] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion: real-
time 3d reconstruction and interaction using a moving depth camera,” in
Proceedings of the 24th annual ACM symposium on User interface software
and technology. ACM, 2011, pp. 559–568.

70

http://www.katvr.com/gailan.html
http://www.virtuix.com/

[26] J. A. Diego-Mas and J. Alcaide-Marzal, “Using kinect sensor in observational
methods for assessing postures at work,” Applied ergonomics, vol. 45, no. 4,
pp. 976–985, 2014.

[27] S. Asteriadis, A. Chatzitofis, D. Zarpalas, D. S. Alexiadis, and P. Daras,
“Estimating human motion from multiple kinect sensors,” in Proceedings
of the 6th international conference on computer vision/computer graphics
collaboration techniques and applications. ACM, 2013, p. 3.

[28] X. Xu, R. W. McGorry, L.-S. Chou, J.-h. Lin, and C.-c. Chang, “Accuracy of
the microsoft kinect for measuring gait parameters during treadmill walking,”
Gait & posture, vol. 42, no. 2, pp. 145–151, 2015.

[29] Microsoft. (2014, mar) Microsoft Kinect SDK. [Online]. Available:
https://developer.microsoft.com/en-us/windows/kinect/

[30] J. Sell and P. O’Connor, “The xbox one system on a chip and kinect sensor,”
IEEE Micro, vol. 34, no. 2, pp. 44–53, 2014.

[31] C. S. Bamji, P. O’Connor, T. Elkhatib, S. Mehta, B. Thompson, L. A.
Prather, D. Snow, O. C. Akkaya, A. Daniel, A. D. Payne et al., “A 0.13
µm cmos system-on-chip for a 512× 424 time-of-flight image sensor with
multi-frequency photo-demodulation up to 130 mhz and 2 gs/s adc,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 1, pp. 303–319, 2015.

[32] L. Valgma, “3d reconstruction using kinect v2 camera,” Ph.D. dissertation,
Tartu Ülikool, 2016.

[33] P. Sturm, “Pinhole camera model,” in Computer Vision. Springer, 2014, pp.
610–613.

[34] B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, and L. Rochester,
“Accuracy of the microsoft kinect sensor for measuring movement in people
with parkinson’s disease,” Gait & posture, vol. 39, no. 4, pp. 1062–1068, 2014.

[35] C.-Y. Chang, B. Lange, M. Zhang, S. Koenig, P. Requejo, N. Somboon,
A. A. Sawchuk, and A. A. Rizzo, “Towards pervasive physical rehabilitation
using microsoft kinect,” in Pervasive Computing Technologies for Healthcare
(PervasiveHealth), 2012 6th International Conference on. IEEE, 2012, pp.
159–162.

[36] M. Elgendi, F. Picon, N. Magnenat-Thalmann, and D. Abbott, “Arm
movement speed assessment via a kinect camera: a preliminary study in
healthy subjects,” Biomedical engineering online, vol. 13, no. 1, p. 88, 2014.

[37] M. Elgendi, F. Picon, and N. Magenant-Thalmann, “Real-time speed de-
tection of hand gesture using, kinect,” in Proc. Workshop on Autonomous
Social Robots and Virtual Humans, The 25th Annual Conference on Com-
puter Animation and Social Agents (CASA 2012), 2012.

71

https://developer.microsoft.com/en-us/windows/kinect/

[38] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake,
M. Cook, and R. Moore, “Real-time human pose recognition in parts from
single depth images,” Communications of the ACM, vol. 56, no. 1, pp.
116–124, 2013.

[39] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with
microsoft kinect sensor: A review,” IEEE transactions on cybernetics, vol. 43,
no. 5, pp. 1318–1334, 2013.

[40] M. Gabel, R. Gilad-Bachrach, E. Renshaw, and A. Schuster, “Full body
gait analysis with kinect,” in Engineering in Medicine and Biology Society
(EMBC), 2012 Annual International Conference of the IEEE. IEEE, 2012,
pp. 1964–1967.

[41] Midori Kitagawa. (2010) Dynamic walk representations in graphs. [Online].
Available: http://www.utdallas.edu/atec/midori/Handouts/walkingGraphs.
htm#GC

[42] Infinadeck. (2016, jan) Infinadeck at CES 2016. [Online]. Available:
https://www.facebook.com/Infinadeck/

[43] Microsoft. (2015, jan) Xbox playspace setup. [Online]. Available: https:
//support.xbox.com/en-US/xbox-360/accessories/kinect-sensor-setup#
e654fb0055954e9787040698b82b3591

[44] K. R. Kaufman and D. H. Sutherland, “Kinematics of normal human
walking,” Human walking, vol. 3, pp. 33–52, 2006.

[45] Paul York. (2015) Kinect extended library for kinect. [Online]. Available:
https://github.com/KinectEx/KinectEx

72

http://www.utdallas.edu/atec/midori/Handouts/walkingGraphs.htm#GC
http://www.utdallas.edu/atec/midori/Handouts/walkingGraphs.htm#GC
https://www.facebook.com/Infinadeck/
https://support.xbox.com/en-US/xbox-360/accessories/kinect-sensor-setup#e654fb0055954e9787040698b82b3591
https://support.xbox.com/en-US/xbox-360/accessories/kinect-sensor-setup#e654fb0055954e9787040698b82b3591
https://support.xbox.com/en-US/xbox-360/accessories/kinect-sensor-setup#e654fb0055954e9787040698b82b3591
https://github.com/KinectEx/KinectEx

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	CHAPTERS
	I INTRODUCTION
	Motivation
	Research Questions and Goals
	Outline of Thesis

	II RELATED WORKS
	III TECHNICAL DETAILS
	Kinect
	General Overview
	Depth Camera
	Kinect Specifications
	Distance Measurement
	Distance to 3D Coordinates
	Reason for Choosing Kinect
	Hardware Precision and Features
	Multiple Choices of Kinect Dirvers and SDK

	Basic Gait Parameters

	IV METHODOLOGY
	Proposed Device Position and Setup
	Control Algorithm
	Algorithm Constraints
	Algorithm Flowchart

	V EXPERIMENTS AND RESULTS
	Testing Environment
	Testing Methods
	Result and Data Analysis
	Validation

	Implementation
	VI CONCLUSIONS AND FUTURE WORK
	Conclusions
	Limitations
	Future Works

	APPENDIX SECTION

	REFERENCES

