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ANTI-PERIODIC SOLUTIONS FOR SECOND ORDER
DIFFERENTIAL INCLUSIONS

JEAN-FRANCOIS COUCHOURON, RADU PRECUP

ABSTRACT. In this paper, we extend the existence results presented in [9] for
LP spaces to operator inclusions of Hammerstein type in WP spaces. We also
show an application of our results to anti-periodic boundary-value problems
of second-order differential equations with nonlinearities depending on u’.

1. INTRODUCTION
This paper concerns the second-order boundary-value problem
—u"(t) € Au(t) + f(t,u(t),u'(t)) for a.e. t €[0,T]
u(0) = —u(T), u'(0)=—u'(T),

where 0 < T' < 00, A is an m-dissipative multivalued mapping in a Hilbert space
E and f :[0,T] x E? — 2F. However, in this section, and in Section 2, we shall
assume generally that F is a Banach space.

A function u € C1([0,T]; E) is said to be T-anti-periodic if u(0) = —u(T) and
u’(0) = —u/(T). Note that there exists a close connection between the anti-periodic

problem and the periodic one. Indeed, if u € W2P(0,T;E) (1 < p < o0) is a T-
anti-periodic solution of the inclusion

—u"(t) € Au(t) + f(t,u(t),u'(t)) a.e. on [0,T)
and A, f are odd in the following sense:
A(—ZL’) = —Az and f(t7 -, _y) = _f(t,l'7y),

then the function

() = u(t), 0<t<T
WEYcut—1), T<t<or

belongs to W2P(0,2T; E), is 2T-periodic, i.e., u(0) = u(2T), @' (0) = @' (2T), and
solves the inclusion

—a"(t) € Au(t) + f(t,u(t),a'(t)) a.e. on [0,27]
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where

~ fit,z,y), 0<tT

flt,zy) = (t.0.0)

f@&—T,z,y), T<t<2T.
The anti-periodic boundary value problem for various classes of evolution equations
has been considered by Aftabizadeh-Aizicovici-Pavel [1], [2]; Aizicovici-Pavel [3],
Aizicovici-Pavel-Vrabie [4], Cai-Pavel [6], Coron [7], Haraux [I7] and Okochi [19} 20].
Let us denote by | - | the norm of E, by |- |, the usual norm of L?(0,T; E) and

by |- |1, the norm of W?(0,T; E), |u|1, = max{|u|p, |u'|,}. One of the reasons of
working with anti-periodic solutions is given by the following proposition.

Proposition 1.1. Ifu € WhP(0,T;E) (1 <p < o00) and u(0) = —u(T), then
1, =
[u(®) < 5T |/l te[0,7), (1.1)

Proof. Adding u(t) = u(0) + fg u'(s)ds and u(t) = u(T) — ftT u'(s)ds we have
t T
2u(t) = / u'(s)ds — / u'(s)ds.

0 t

Hence
t T T
2ut) < [ Wlds+ [ fus)ids = [ 1s)lds
0 t 0
Now Holder’s inequality gives (|1.1)). d

Let us denote
C; ={uc Cl([O,T]; E) : u is T-anti-periodic}.

In what follows for a subset K C E, by P,(K) and Py.(K) we shall denote
the family of all nonempty acyclic subsets of K and, respectively, the family of all
nonempty compact convex subsets of K.

Recall that a metric space = is said to be acyclic if it has the same homology
as a single point space, and that = is called an absolute neighborhood retract (ANR
for short) if for every metric space Z and closed set A C Z, every continuous map
f : A — = has a continuous extension f to some neighborhood of A. Note that
every compact convex subset of a normed space is an ANR and is acyclic.

Our main abstract tools are: The Eilenberg-Montgomery fixed point theorem
[13, [18]; a lemma of Petryshyn-Fitzpatrick [14]; and strong and weak compactness
criteria in LP(0,T; E) (see [16] and [12]), where F is a general (non-reflexive) Banach
space.

Theorem 1.2. Let = be acyclic and absolute neighborhood retract, © be a compact
metric space, ® : Z — P,(©) be an upper semicontinuous map and ' : © — E be a
continuous single-valued map. Then the map T'® : E — 2% has a fized point.

Lemma 1.3. Let X be a Fréchet space, D C X be closed convex and N : D — 2X.
Then for each Q2 C D there exists a closed convex set K, depending on N, D and
Q, with Q C K andconv(QUN(DNK)) =K.

Theorem 1.4. Letp € [1,00]. Let M C L*(0,T; E) be countable and suppose that
there exists a v € LP(0,T) with |u(t)] < v(t) a.e. on [0,T) for all w € M. Assume
M cC C([0,T]; E) if p = co. Then M is relatively compact in LP(0,T; E) if and
only if
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(i) supuenr [Tht — Ul o0, 7—n;m) — 0 as h — 0
(il) M (t) is relatively compact in E for a.e. t € [0,T).

Theorem 1.5. Let p € [1,00]. Let M C LP(0,T; E) be countable and suppose
there exists v € LP(0,T) with |u(t)] < v(t) a.e. on [0,T] for allu € M. If M(t) is
relatively compact in E for a.e. t € [0,T], then M is weakly relatively compact in
L7(0,T; E).

Now, we recall the following definition: A map % : [a,b] x D — 2Y \ {0},
where D C X and (X,]|-|x), (Y,]-|y) are two Banach spaces, is said to be (g, p)-
Carathéodory (1 < g <o0,1<p<o0)if

(C1) 9(.,x) is strongly measurable for each z € D

(C2) ¥ (t,.) is upper semicontinuous for a.e. t € [a, b]

(C3) (a) if 1 < p < oo, there exists v € Li(a,b;R;) and d € Ry such that

[Y(t, )y < v(t)+dlzl% ae. on [a,b], for all x € D
(b) if p = oo, for each p > 0 there exists v, € L9(a,b;Ry) such that
[¥(t, )|y < v,(t) a.e. on [a,b], for all z € D with |z|x < p.

2. A GENERAL EXISTENCE PRINCIPLE

The aim of this section is to extend the general existence principles given in [10]
for inclusions in LP(0,T; E), to inclusions in W1?(0,T; E). Here again E a Banach
space with norm |-|. This extension allows us to consider boundary-value problems
for second order differential inclusions with «’ dependence perturbations and, by
this, it complements the theory from [§], [9] and [I0].

Let p € [1,00] and g € [1,00[. Let r €]1, 00| be the conjugate exponent of ¢, that
is 1/g+1/r =1. Let g: [0,T] x E*> — 2¥ and let G : W'P(0,T; E) — 2L*(0.T:E)
be the Nemytskii set-valued operator associated to g, p and ¢, given by

G(u) = {w € LY0,T; E) : w(s) € g(s,u(s),u'(s)) a.e. on [0,T]}. (2.1)
Also consider a single-valued nonlinear operator
S:L90,T; E) — W"P(0,T; E).
We have the following existence principle for the operator inclusion
u € SG(u), ueW'P(0,T;E). (2.2)
Theorem 2.1. Let K be a closed convex subset of WYP(0,T; E), U a convex rel-

atively open subset of K and ug € U. Assume

(H1) SG : U — P,(K) has closed graph and maps compact sets into relatively
compact sets
(H2) M C U, M closed, M C conv({uo} U SG(M)) implies that M is compact
(H3) u ¢ (1 —Nug +ASG(u) for all A €]0,1] and u e U\ U.
Then [2.2)) has a solution in U.

Proof. Let D = conv({up}USG(U)). Clearly ug € D C K. Let P : K — U be given
by P(u) = uifu € U and P(u) =uif u € K\U, where u = (1—X)ug+u € U\U,
A €]0,1[. Note P is single-valued, continuous and maps closed sets into closed sets.
Let N : D — P,(K), N(u) = SGP(u). It is easy to see that N(D) C D, the graph

of N is closed and N maps compact sets into relatively compact sets. Let Dy be a
closed convex set with Dy = conv({ug} UN(DoN D)) whose existence is guaranteed
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by Lemma Since N (D) C D we have Dy C D and so Dy = conv({ug}UN (D)).
Using the definition of P, we obtain

P(Dy) € conv({ug} U Do) = comv({ue} U N(Dy)) = comv({uo} U SG(P(Dy))).

In addition, since Dy is closed, P(Dy) is also closed. Now (H2) guarantees that
P(Dy) is compact. Since SG maps compact sets into relatively compact sets, we
have that N (Do) is relatively compact. Then Mazur’s Lemma guarantees that Dy
is compact. Now apply the Eilenberg-Montgomery Theorem with Z = © = Dy,
®=Nand T =identity of Dy, to deduce the existence of a fixed point u € Dy
of N. If u ¢ U, then P(u) = (1 — Nug + M = (1 — Aug + ASG(P(u)) for some
A €)0,1[. Since P(u) € U\ U, this contradicts (H3). Thus u € U, so u = SG(u)
and the proof is complete. ([l

Remark 2.2. Additional regularity for the solutions of (2.2)) depends on the values
of S. In particular if the values of S are in C! then so are all solutions of (2.2).

In what follows K will be a closed linear subspace of W(0,T; E), ug = 0 and
U will be the open ball of K,

U={ueK:|u| <R}

with respect to an equivalent norm ||.|| on K. For p € [1, 0] denote
— ulip | o ulso .
iy := sup{ T u€ K, u#0} po:=sup{ Tl u€ K, u#0}.
Note that p, and pg are finite because of the equivalence of norms || - || and |- |1,

on K and the continuously embedding of W1?(0,T; E) into C([0,T]; E).
Now we give sufficient conditions on S and g in order that the assumptions
(H1)-(H2) be satisfied.
(S1) There exists a function k : [0,T]> — R, with k(t,.) € L™(0,T) and a
constant L > 0 such that

T
1S(wn)(t) — S(wa)(t)] < / (t, ) wn (5) — wa(s)|ds

for a.e. t € 0,77, and |S(w1)" — S(w2)'|, < Lljwi — walq for all wy,ws €
L1(0,T; E)

(S2) S:L%0,T;E) — K and for every compact convex subset C' of F, S is se-
quentially continuous from L1 (0,T;C) to WP(0,T; E). (Here L. (0,T;C)
stands for L'(0,T; C) endowed with the weak topology of L*(0,T; E))

(G1) ¢g:[0,T] x E* — Py.(E)

(G2) ¢(.,2) has a strongly measurable selection on [0, T], for every z € E?

(G3) ¢(t,.) is upper semicontinuous for a.e. t € [0, 7]

(G4) If 1 < p < o0, then |g(t, 21, 22)| < v(t) for a.e. t € [0,T] and all 21,20 € E

with |z1| < poR; if p = oo, then |g(¢, 21, 22)| < v(t) for a.e. t € [0,T] and
all 21,20 € F with |21] < peo R and |22] < pooR. Here v € L1(0,T;R,).

(G5) For every separable closed subspace Ey of the space F, there exists a (g, 00)-
Carathéodory function w : [0,7] x [0, uoR] — Ry, w(t,0) = 0, such that for
almost every t € [0, 7],

BE,(9(t, M, Eo) N Ey) < w(t, Br,(M))
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for every set M C Ey satisfying |[M| < poR, and ¢ = 0 is the unique
solution in L*(0, T [0, uoR]) to the inequality

T
o(t) S/o E(t, s)w(s, p(s))ds a.e. on [0,T]. (2.3)

Here g, is the ball measure of non-compactness on Fy. (Recall that for a
bounded set A C Ey, Bg,(A) is the infimum of € > 0 for which A can be
covered by finitely many balls of Ey with radius not greater than )

(SG) For every u € U the set SG(u) is acyclic in K.

Remark 2.3. If S has values in C} then a sufficient condition for (S1) is to exist
a function § € L"(0,T;R.) such that

T
[S(w1)" = S(wa)]p < / 0(s) w1 (s) — wa(s)|ds
0
for all wy,ws € LY0,T; E).

Indeed, using Proposition 1.1 and Holder’s inequality, we immediately see that
p—1
(S1) is satisfied with k(t,s) = 377 6(s) and L = [6],..

Remark 2.4. In case that k(¢,.) € L>(0,T) for a.e. t € [0,7T], we may assume
that w in (G5) is a (1, 0c0)-Carathéodory function (in order that the integral in (2.3)
be defined).

As in [10] we can prove the following existence result.

Theorem 2.5. Assume (S1)-(52), (G1)-(G5) and (SG) hold. In addition assume
(H3). Then [2.2) has at least one solution u in K C WHP(0,T; E) with ||ul| < R.

The proof is based on Theorem [2.1{and consists in showing that conditions (H1)-
(H2) are satisfied. We shall use the following analog of [I0, lemma 4.4].

Lemma 2.6. Assume (S1), (52). Let M be a countable subset of L1(0,T;E)
such that M(t) is relatively compact for a.e. t € [0,T] and there is a function
v e L0, T;Ry) with |u(t)] < v(t) a.e. on [0,T], for every w € M. Then the
set S(M) is relatively compact in WP(0,T; E). In addition S is continuous from
M equipped with the relative weak topology of L1(0,T; E) to WLP(0,T; E) equipped
with its strong topology.

Proof. Let M = {u,, : n > 1} and let € > 0 be arbitrary. As in the proof of [10)
lemma 4.3], we can find functions 1, ; with values in a compact By, C E (B}, being
a closed ball of a kdimensional subspace of E) such that
|un - an7k|q <e
for every n > 1. Then assumption (S1) implies
1S (un) = S(Unk)lp < |k, rlpltn — Un,klq < ellk(E, )|, (2.4)
1S(un)" = S(@nk)lp < Llup — Unlq < L. (2.5)
On the other hand, according to Theorem the set {@y, : n > 1} C LY0,T; E)
is weakly relatively compact in L9(0,T; E). Then assumption (S2) guarantees that
{S(TUnx) : n > 1} is relatively compact in W1?(0,T; E). Hence from (2.4) and
(2.5) we see that {S(upx) : n > 1} is a relatively compact ep-net of S(M) with
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respect to the norm | - |15, where o = max{L,||k(t,.)|.|p}. Since e was arbitrary
we conclude that S(M) is relatively compact in W1P(0,T; E).

Now suppose that the sequence (w., )., converges weakly in L4(0,T'; E') to w and
wmy € M for all m > 1. In view of the relative compactness of S(M), we may
assume that (S(wm,))m converges in K towards some function v € K. We have to
prove

v=5(w).
For an arbitrary number ¢ > 0, we have already seen that the proof of [I0, lemma
4.3] provides a compact set P. and a sequence (w¢,),, of P.-valued functions satis-

fying,

|wm — Wi, < € (2.6)
for every m > 1. Now the sequence (wg,)m, being weakly relatively compact in

L1(0, T, E), a suitable subsequence (wy, ); must be weakly convergent in L?(0, T, E)
towards some w®. Then Mazur’s Lemma and provide
lw—wl, <e. (2.7)
The triangle inequality yields
[0 — S|y < [0 = S(wa, )y + S Cwm,) = S,y

+1S(wh,) = Sl +15(w®) = S(w)l,

(2.8)
and
v = S(w)'], < v — S(wmy‘)/|p + |S(wmj)l - S(w;j)/|p
+18(wy,,)" = S(w) |, + [S(w)" = S(w)'[p.
Passing to the limit when j goes to infinity in (2.8, (2.9) and using assumption
(S2) we obtain
v = S(w)lp < limsup [S(wm, ) — S(wy,,)lp +[S(w) = S(w)lp, (2.10)
J
o/ — S(w)'], < limsup |S(wn,)’ — S(ws, Yy + 5@ = S@Yl,.  (211)

J
According to (2.6) and (2.7) we deduce from (2.10), (2.11) and assumption (S1)
that

(2.9)

v = S(w)lp < 2el[k(t, Jrlp, [v" = S(w)']p < 2L
Hence |v — S(w)|1,p < 2€p. Since ¢ was arbitrary we must have v = S(w) and the
proof is complete. O

Proof of Theorem[2.5. (a) First we show that G(u) # @ and so SG(u) # 0 for
every u € U. Indeed, since g takes nonempty compact values and satisfies (G2)-
(G3), for each strongly measurable function u : [0, 7] — E? there exists a strongly
measurable selection w of g(.,u(.)) (see [11], Proof of Proposition 3.5 (a)). Next, if
u € LP(0,T; E?), (G4) guarantees w € L9(0,T; E). Hence w € G(u).

(b) The values of SG are acyclic according to assumption (SG).

(¢) The graph of SG is closed. To show this, let (u,,v,) € graph (SG), n > 1, with
|un — u|1p, |on —v|1p — 0 as n — oco. Let v, = S(wy), w, € LY0,T; E);w, €
G(uy). Since |u, — ul1, — 0, we may suppose that for every ¢ € [0,7], there
exists a compact set C C E? with {(un(t),u.,(t));n > 1} C C. Furthermore,
since ¢ is upper semicontinuous by (G3) and has compact values, we have that
g(t,C) is compact. Consequently, {w,(t) : n > 1} is relatively compact in E.
If we also take into account (G4) we may apply Theorem to conclude that
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(at least for a subsequence) (w,) converges weakly in L4(0,T; E) to some w. As
in [I5, p. 57], since g has convex values and satisfies (G3), we can show that
w € G(u). Furthermore, by using Lemma and a suitable subsequence we deduce
S(wp) — S(w). Thus v = S(w) and so (u,v) € graph (SG).
(d) We show that SG(M) is relatively compact for each compact M C U. Let
M C U be a compact set and (v,,) be any sequence of elements of SG(M). We
prove that (v,) has a convergent subsequence. Let u, € M and w, € L1(0,T; E)
with

v, = S(wy,) and  w, € G(uy,).
The set M being compact, we may assume that |u,, — u|;, — 0 for some u € U.
As above, there exists a w € G(u) with w,, — w weakly in L9(0,T; E) (at least for
a subsequence) and S(w,) — S(w). Hence v, — S(w) as we wished. Now (c) and
(d) guarantee (H1).
(e) Finally, we check (H2). Suppose M C U is closed and M C conv({0}USG(M)).
To prove that M is compact it suffices that every sequence (ul) of M has a con-
vergent subsequence. Let My = {ul : n > 1}. Clearly, there exists a count-
able subset My = {ul : n > 1} of M, w} € G(ul) and v} = S(w)l) with
My C conv({0} U V1), where V! = {v} : n > 1}. Furthermore, there exists
a countable subset My = {u? : n > 1} of M, w2 € G(u?) and v2 = S(w?)
with M; C conv({0} U V?), where V2 = {v2 : n > 1}, and so on. Hence for
every k > 1 we find a countable subset M, = {u* : n > 1} of M and corre-
spondingly w¥ € G(uk) and vF = S(wk) such that M;_, C conv({0} U V*), with
VF = {vk i n > 1} Let M* = Uyoo Mk It is clear that M* is countable,
My C M* C M and M* C conv({0} U V*), where V* = |J,~, V*. Since M*, V*
and W* := {w¥ : n > 1, k > 1} are countable sets of strongly measurable functions,
we may suppose that their values belong to a separable closed subspace Ey of F.
Since |wk (t)| < v(t) where v € L(0,T), then [10, Lemma 4.3] guarantees

Be, (M* (1)) < B, (V" () = Br, (SWF)(#)) < /0 k(t, 5)Bm, (W*(s))ds,
while (G5) gives

Br, (W™ (s)) < Br,(9(s, M*(s), Eo) N Eo) < w(s, Br,(M*(s))). (2.12)
It follows that

B (M*(1)) < / (t, 8)w(s, B, (M (5)))ds.

Moreover the function ¢(t) = Bg,(M*(t)) belongs to L>(0,T};[0, uoR]). Conse-
quently, ¢ = 0, and so
p(t) = B, (M*(t)) = 0

a.e. on [0,T]. Let (v}) be any sequence of V* and let (w}) be the corresponding
sequence of W*, with v} = S(w}) for all ¢ > 1. Then, as at step (c), (w]) has
a weakly convergent subsequence in L?(0,T; FE), say to w. Also together
with w(¢,0) = 0 implies that the set {w}(¢) : 4 > 1} is relatively compact for a.e.
t € [0,7]. From Lemma we then have that the corresponding subsequence of
(S(w})) = (v}) converges to S(w) in WHP(0,T; E). Hence V* is relatively compact.
Now Mazur’s Lemma guarantees that the set conv({0} U V*) is compact and so its
subset M* is relatively compact too. Thus My possesses a convergent subsequence
as we wished. Now the result follows from Theorem 2.11 O
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3. THE ANTI-PERIODIC SOLUTION OPERATOR

For the rest of this paper E will be a real Hilbert space of inner product (.,.)
and norm [.|. Consider the anti-periodic boundary value problem
—u" —eu' € Au+ g(t,u,u') a.e. on [0,7]
u(0) = —u(T), '(0)=—u'(T),
in £, where e € R and A : D(A) C E — 2P\ {(} is an odd m-dissipative nonlinear

operator.
Let us consider the anti-periodic solution operator associated to A and e,

S:L*0,T;E) — H*(0,T; E)nC}

(3.1)

defined by S(w) := u, where u is the unique solution of
—u" —eu' € Au+w a.e. on 0,7
uw(0) = —u(T), u'(0)=—u'(T).

The operator S is well defined as it follows from Theorem [3.1] in Aftabizadeh-

Aizicovici-Pavel [I]. It is clear that any fixed point u of N := SG, where G is the
Nemytskii set-valued operator given by (2.1) with p = ¢ = 2, is a solution for (3.1).

Theorem 3.1. The above operator S satisfies (S1) and (S2) for p = q = 2 and
K = Cl in HY(0,T; E) with norm ||u| = |v/|2.

Proof. (I) We first show that S satisfies (S1). Let wy,ws € L?(0,T; E) and denote
u; = S(w;), ¢ =1,2. Then —u} — eu} = v; + w;, where v;(t) € Au;(t) a.e. on [0,T].
One has

(3.2)

—(u1 —u2)"(t) — e(ur —u2)'(t) = (v1 — v2)(t) + (w1 — w2)(t).
Multiplying by (u; — u2)(t) and using that A dissipative, we obtain
— (Jua (t) = ua(t)*)" + 2[uy (8) — up()]* — e(|ur () — ua(t)]*)’
S 2(101 (t) — wg(t), U1 (t) — U,Q(t)).
Consequently,

(3.3)

luy (t) — ug(t))? < 2/0 G(t, s)(w1(s) — wa(s),u1(s) — ua(s))ds. (3.4)

Here G is the Green function of the differential operator —u” — eu’ corresponding
to the anti-periodic boundary conditions. This yields

[S(wi)(t) = S(w2) ()] < m/o w1 (s) — wa(s)|ds (3.5)

where m = 2max 50,772 G(t, 5). From (3.3) by integration we obtain

T T
/ |u) — uh|?ds < / (w1 — wa, uy — ug)ds.
0 0
This together with (3.5 yields
|S(U.)1)/ — S(’wg)l‘g S Vv mT|w1 — U)2|2.

(IT) The fact that S satisfies (S2) is achieved in several steps: (1) We first show that
the graph of S is sequentially closed in L2 (0,7 E) x H*(0,T; E). In this order,
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let w; — w weakly in L?(0,T; F) and S(w;) — u strongly in H'(0,T; F). Then
(wj —w, S(w;) — S(w)) — 0 strongly in L'(0,T;R). Now (3.4) implies

1S (w;)(t) = S(w)(t)] — 0 as j — oo.
Hence S(w) = u.
(2) For each positive integer n we let

1 .-

Ju= (T =247 Au=n(, - J),
where J is the identity map of E. We also consider the operator S,, : L*(0,T; E)
— H%*(0,T; E) N CL, given by S,,(w) = u,, where u,, is the unique solution of

—ul —eul, = Apu, +w a.e. on [0,7)

3.6
1a0) = —un(T), 1 (0) = ~u(T). (30
Then
—|ui? = e(uj, ui) = (Apug, ug,) — ((Apur)’s ug) + (w,uf).
Since Ay, is dissipative, we have
1
((Akuk)’, u;) = }ILIH%) E(Akuk(t + h) - Akuk(t), uk(t + h) — uk(t)) <0.
Hence €
up]? < —(Apup, up,) — (w,uy) — §(|U§g|2)'~
By integration, since Ay is odd and wuy, is anti-periodic, it follows
T T 1
il = [Pt < = [ (ot < Gl + ).
Consequently,
lug]2 < wla. (3.7)

Using 2|u/|? = (Jul?)” — 2(u”,u) and (|u|?)" = 2(u’,u) we obtain
T
2/ |uf, — ul,[2dt
0
T
= (Jur = ) (T) = (Jur, — um[*)'(0) = 2/ (uf — U, uk — up)dt  (3.8)
0

T
= —2/ (u) —ull g — Uy )dt .
0

On the other hand

(’LL;CI - u;;wuk - um)

= —(Apup — Ap, U — W) — (W), — Uy, U — Upy)

1

= —(Akuk — A, Jrup — Jpti, + %Akuk - EAmum) — (U —ul,, Up — Up)

and since Agur € AJyur, Apum € Adnuy, and A is dissipative, we obtain
1 1 €
—(Ug - u/r/muk - um) < (Akuk - Amum; EAkuk - EAmum) + §(|uk - Um‘Z)/~

From (3.6) and (3.7)), also applying Proposition 1.1 to u}, we see that

T T
| Akurle < [uglz + [wlo + [elluile < ugle + wle + el 5 uilz < (24 |e] ) wle-
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Then
_/T(“" = Uy Uy — U )L < 2(2+ | \z)Qlwlz(l + l)
0 k ms Yk m — € 2 2 k m .
This together with (3.8)) shows that
T
T 11
| = P < 22+ el B+ 7o) (39)

Thus there exists u € K with uy — v in K. From , letting m — oo we have
o '3 < 22+ [el 5 . (310)

Now we show that u is the solution of . Since (u}) is bounded in L?*(0,T; E)
and (u}) converges to w’ = u” in D’'(0,T; F), we may conclude that

ufl — u”  weakly in L*(0,T; F). (3.11)
Let A be the realization of A in L*(0,T; E), i.e., A: L*(0,T; E) — 2L2(0’T?E),

Au = {v € L*(0,T;E) : v(t) € Au(t) a.e. on [0,T]}.
Then (Agu)(t) = Agu(t) a.e. on [0,T], so that implies that
Arup — —u” —eu' —w weakly in L?(0,T; E).

Since u, — u strongly in L?(0,T; E) and A is m-dissipative in L?(0,T; E), this
implies (see Barbu [5], Proposition II. 3.5) u € D(A) and [u, —u” — v’ — w] € A.
Thus, u is the solution of (3.2), i.e., u = S(w). Now from we see that for
each bounded set M C L?(0,T; E) and every € > 0, there exists a ko such that

ISk (w) = S(w)|| <e forall k > kg and w € M. (3.12)

Hence Si, (M) is an e-net for S(M).

(3) Now we consider a compact convex subset C' of E and a countable set M C
L?(0,T;C). We shall prove that for each n, the set S, (M) is relatively compact
in K, equivalently, the set S, (M)’ is relatively compact in L?(0,T; E). Then, also
taking into account , by Hausdorff’s Theorem we shall deduce that S(M)
is relatively compact in K as desired. We shall apply Theorem to Sp(M)'.
From and assumption (S1) we see that for each n and any bounded M C
L?(0,T; E), the set S, (M) is bounded in K. In addition, using

T
() = /O G(t, ) [ Antin(s) + w(s)|ds

and the Lipschitz property of A,,, we obtain
T T 5
i, ~ i< [ ([ 16+ bs) = Gutts)2nlun(9)] + (o) ds) e
0 0

T T
< (2nlunls + |w|2)2/ / IGo(t + b, 5) — Gt )|2dsdL.
0 0

This implies

sup |45 (w)" — Sp(w)'|L2(0,7—npy = 0 as h — 0. (3.13)
weM
We claim that S, (M)'(t) is relatively compact in E for every t € [0, T]. Indeed, for
any w € M, the unique solution u,, = S, (w) of (3.6]) satisfies

" !
—u, — €U, + nu, =nJyu, +w a.e. on [0,7T].
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If we denote by G the Green function of the operator —u” — eu’ 4+ nu corresponding
to the boundary conditions u(0) = —u(T), v/(0) = —u/(T), then

T ~
() = /0 Gt 8)[nTwun(s) + w(s)|ds. (3.14)

Using a result by Heinz, the nonexpansivity of J,, and the inclusion M (s) C C a.e.
on [0,T], from ([3.14]), we obtain

Bo(Sn(M)(1)) < n/o G(t, 5)B0(Sn(M)(s))ds. (3.15)

Here [y is the ball measure of non-compactness corresponding to a suitable sepa-
rable closed subspace of E. Let

ot) = Bo(Su(M)(1)), v(t) = /0 G(t, 5)o(s)ds.

We have

—" —ev' +nv=¢p, v(0)=—-v(T), v'(0)=—v(T).
According to , ¢ < nv. Hence —v"” — ev’ < 0. Also since v > 0 we have
v(0) = v(T') = 0. The maximum principle for the operator —u" — v’ implies v < 0
on [0,7]. Hence v = 0. Thus Go(S,(M)(t)) =0 for all ¢ € [0,T7], that is S, (M)(t)
is relatively compact in E. As a result, S, (M) is relatively compact in C([0,T]; E).

Next from (3.14) we have
T
ul, () = / Gi(t, 8)[ndpun(s) + w(s)]ds,
0

whence S, (M)’ (t) is relatively compact in E. This together with (3.13) via Theorem
implies that S, (M)’ is relatively compact in L?(0,T; E). O

4. SUPERLINEAR INCLUSIONS
In this section we establish an existence result for the anti-periodic problem
—u" —eu' — s(u) € Au+ h(t,u,u') ae. on [0,7]

u(0) = —u(T), ' (0)=—u/(T) (4.1)

in the Hilbert space E, where ¢ > 0, A : D(A) ¢ E — 2F\ {0} is odd m-
dissipative, s : E — FE is continuous with a possible superlinear growth, and A :
0,7] x E2 = 2. Let G : H'(0,T; E) — 2L°(0.T:E) he the Nemytskii set-valued
operator associated with ¢(t, z,y) = s(z) + h(t, z,y), that is

G(u)={v e L*(0,T;E) : v =s(u) + w, w € sel r2h(.,u,u’)},

and let S be the anti-periodic solution operator associated to A and e, already
defined in Section 3.

The next result concerns condition (H3) and gives sufficient conditions to obtain
a priori bounds of solutions.

Theorem 4.1. Assume that the following conditions hold:

(i) There exist two even real functions ¢, ¥ such that ¢» € C1(E;R) and A =
—0¢ and s =)', where O¢ stands for the subdifferential of ¢
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(ii) There are a,b € Ry and a,y € [1,2[, 8 € [0,2] with B+ v < 2 such that

~(2,y) < aly|* + blz|’|y|” (4.2)

for allz,y € E, z € h(t,z,y), and for a.e. t € [0,T].
Then there exists a constant R > 0 such that ||u| = |u'|2 < R for any solution u of
u € ASG(u) (4.3)

and every A €]0,1].

Proof. Let u be any non-zero solution of li for some A €]0,1[. Let uy := %u
Then u = Au)y, and
uy = S(w), we G(u)

that is
—uly —eu\ € Auy +w,
w = s(u) + v,
v € sel p2h(.,u,u’).
Hence

—uy — s(u) — eu\ — v € Au,.
Multiplying by v’ = A} and using the formula (Auy,u)) = —(¢(uyr))" (see [ p.
189]), we obtain

P+ () + S+ (0, 0) = M)
Thus,
(S AP + () = Ad(un) + S =~ (v, ).

By integration from 0 to 7' and taking into account the anti-periodic boundary
conditions and the fact that ¢ and i are even, we deduce

it < S = [ oo
Now using and we obtain
elu'|3 < alu'|* + b/T |u|® || dt
0
<alulz o1 [ o

1
= alu'|§ + bz |71 [}-

Since a, v € [1, 2] there are constants ¢y, co such that |u'|, < T w| and |u'|, <
T%|u’|2. In addition |u/|; < T2|u/|. Consequently, one has
elu'[3 < Cul'|5 + Calu|57,

where the constants C1,Cs (independent of u and \) are:

2+8—y

2—a 1
Ciy=al 2 s C2:b27,8T N

Now the conclusion follows since o < 2 and g+ v < 2. (]
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Remark 4.2. The above result is also true if « = 2 or § 4+ v = 2 provided that a,
respectively b, is sufficiently small.

Now we are ready to state the main result of this section.

Theorem 4.3. Let E be a Hilbert space, ¢ > 0, s : E — E, A: E — 2F and
h:[0,T] x E? — 2E. Assume:
(i) s =4 for some even function ¢p € C*(E;R), and s sends bounded sets into
bounded sets
(ii) A is an m-dissipative mapping with A = —9¢ for some even real function
¢
(iii) h : [0,T] x E? — Pi(E), h(.,2) has a strongly measurable selection on
[0,T] for every z € E?, h(t,.) is upper semicontinuous for a.e. t € [0,T],
and for each T > 0 there ezists v € L?(0,T) with |h(t,2)| < v(t) for a.e.
t € [0,T] and all z = (21,22) € E? with |z1| < 7; in addition there are
a,b € Ry and a,y € [1,2] and B € [0, 00[ such that

—(z,y) < aly|* + blz|’|y|”

forallxz,y € E, z € h(t,x,y), and for a.e. t € [0,T]
(iv) There exists R > 0 with

245

—a 1 -
eR? > aT 7 R* + bagT™ = R (4.4)

such that for every separable closed subspace Ey of E, there exists a (1,00)-
Carathéodory function w : [0,T] x Ry — Ry such that for almost every
tel0,T],

ﬂEU (g(t7 M7 EO) N EO) < (.«J(t, BEU (M>)
(where g(t,x,y) = s(x) + h(t,x,y)) for every bounded set M C Ey, and
» =0 is the unique solution in L*°(0,T;Ry) to the inequality

T
p(t) < m/O w(s,(s))ds a.e. on [0,T] (4.5)

(v) SG has acyclic values.
Then (A1) has at least one solution u € H*(0,T; E) N CL with ||ul| < R.

Remark 4.4. (a) Note that we do not assume § + v < 2, so the perturbation
term h(t,u,u’) can have a superlinear growth in u; inequality guarantees that
|lu]] # R for each solution of and A €]0,1[. This does not exclude the existence
of solutions with ||u| > R.

(b) However, according to Theorem [4.1} if S+~ < 2, then there exists a sufficiently
large constant Ry > 0 such that holds with equality. In this case Ry is a
bound for all solutions to .

(c) Sufficient conditions for (v) can be found in [I0]. For example (v) always holds
if A is single-valued.

5. APPLICATIONS

In this section we are concerned with two applications of Theorem [.3] to partial
differential inclusions.



14 J.-F. COUCHOURON, R. PRECUP EJDE-2004/124

(I) First we look for a function u = u(t,z) = u(t)(x) solving the problem
—ug — eug + oA (JuP2u) +u € h(t,u,us) a.e. on [0,7]
u(t,.) € HY(Q) for ae. t €[0,T] (5.1)
u(0,2) = —u(T,x), u(0,z) = —us(T,z) ae. on Q.

Here Q is a bounded domain of R, n > 3,2 < p < 2* = %, e>0,0€Rand
A, 2 H}(Q) — H71(Q) is the Laplacian. Also by |- | we mean here the absolute
value of a real number.

In this setting we let £ = H}(Q) with the inner product (u,v) g1 () = Jo Vu-
Vudz and norm |ulpiq) = (Jq |Vul2dz)z, A(u) = —u with D(A) = HL(Q) and
s(u) = —oA 1 (Ju|P~2u). Note that the conditions (i) and (ii) in Theorem [4.3| hold
with

o

1
d(u) = = [ |Vul’dz and (u) = — [ |ulPdx.
2 Ja pJa

Also note that for any bounded M C H}(Q) the set s(M) is relatively compact
in H}(Q), that is By (s(M)) = 0. Here By (q) is the ball measure of non-
compactness in Hg (). Indeed, since p < 2* we may choose an 6 > 0 with p <
2% — %, where (2*) = nz—_f_g This guarantees that (2*) < %. Next the
embedding of H}(Q) into L? ~?(Q2) being compact, we have that M is relatively
compact in L2 ~%(Q). Then the set M, := {|u|?~2u : u € M} is relatively compact

in L5 (©2) and using the continuous embeddings
2*—9 Y
L1 (Q)c L®)(Q)c H YD)

we find that M, is relatively compact in H~!(Q2). Thus, s(M) = —ocA;}(M,) is
relatively compact in H}(2) as desired.
From Theorem [.3] one obtains the following result.

Theorem 5.1. Let h: [0,T] x H}(Q) x HY(Q) — Pre(HE(Q)) be such that h(.,u,v)
has a strongly measurable selection on [0,T] for every u,v € H}(Q), h(t,.) is upper
semicontinuous for a.e. t € [0,T], and for each 7 > 0 there exists v € L*(0,T)
such that [h(t,u,v)|gi) < v(t) for a.e. t € [0,T] and all u,v € H} () with
[ulmi) < 7. Assume there are a,b,ao € Ry and o,y € [1,2[ and B € [0, 00[ such
that

—(w,v) (o) < alvlfq) + b|u|gg(m|v|zg(m
for allu,v € H}(Q), w € h(t,u,v) and for a.e. t € [0,T], and that for each bounded
M C Hy(Q),

Bz q)(h(t, M, Hy () < aoBpz () (M).

In addition assume that there exists R > 0 with

245

. 1 .
eR>>aT2 R*+ b2—ﬁT > R,

Then for ag < ==, (5.1)) has at least one solution v € H?(0,T; H}(Q)) with

T
wh=([ WO <k
0
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Proof. For any bounded M, since Bp1(q)(s(M)) = 0, one has

B ) (9(t, M, Hg (Q))) < aoBaz o) (M).
Recall that the space H () is separable. It follows that the unique solution ¢ €
L>(0,T;Ry) of with w(t,7) = ao7 is ¢ = 0 provided that agmT < 1. Thus
Theorem [.3] applies. O
Corollary 5.2. For every f € L°°(0,T; H}(Q)) the problem

—ug —eup + oA (JuP2u) Fu = f(t,x) a.e. on[0,T] x Q
u(t,.) € HY () for a.e. t €[0,T]
u(0,2) = —u(T,x), u(0,2) = —u(T,z) a.e. on Q.

has at least one solution u € H?(0,T; Hi(Q)) with
VT

||
€
Here | floo = esssup,ejo 1y |f ()| m1(0)-
Proof. In this case h(t,u,v) = f(t) := f(t,.). Consequently all the assumptions
of Theorem are satisfied for a = 0, b = |floo, a =1, 8 =0, v = 1, ag = 0,

v(t) = (1) 1 (@ and R = L=VT O

(IT) For the next application we look for a function v = u(t, x) solving the problem

—Upp — EUt + a\u|’£§(29)u — Ayu € h(t,u,us) a.e. on [0,T] x Q
u(t,.) € Hy(Q) forae. t €0,T) (5.2)
u(0,2) = —u(T,x), u(0,z) =—u(T,z) ae. on .
Here again 2 is a bounded domain of R™, p > 2, ¢ > 0 and o € R, but we need no
upper bound for p. Now we let E = L?(Q2), A = A, be the Laplace operator with
D(A) = H2(Q) N H(Q) and s(u) = —0|u|’£§(2mu. We note that the conditions (i)
and (ii) in Theorem hold with

o) = {§ Jo IVul?dz, e HY(Q)

400, otherwise.

and Y (u) = f%|u|’£2 (q)- From Theorem H one obtains the following result.

Theorem 5.3. Let h: [0,T] x L?>(Q) x L?(2) — Py.(L?(2)) be such that h(.,u,v)
has a strongly measurable selection on [0,T] for every u,v € L?(S2), h(t,.) is upper
semicontinuous for a.e. t € [0,T), and for every T > 0 there exists v € L?(0,T) such
that [h(t,u,v)|r2(q) < v(t) for a.e. t € [0,T] and all u,v € L?(Q) with [ul 20 < 7.
Assume there are a,b,ag € Ry and o,y € [1,2[ and B € [0, 00[ such that

—(w,v)r2(0) < alv[72q) + b|u|§2(9)‘”|z2(9)
for all u,v € L*(Q), w € h(t,u,v) and for a.e. t € [0,T], and that for each bounded
M C L*(Q),

Bra ) (h(t, M, L*(2))) < aoB2 ) (M).

In addition assume that there exists R > 0 with

2+B—v

a 1
eR? > aT 3" R™ + bagT = RO,
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Then for sufficiently small |o| and ag (5.2) has a solution v € H*(0,T; L*(Q)) with

T 1/2
/ / 2
Ul = u (t dt < R.
= ([ WOR:)

Proof. For any u,v € L?(f2) with [ul22(0), [V|L2(0) < 1, We have
Is(u) = s(v)|L2) = |U|||U|IE(QQ)U - |U|I;(QQ)U|L2(Q)
< ol (Ifulf 2 (u = )2 () + |([ulf2(g) = [0172())olL2@)
< |o|(n"~|u— V]2 + (p— 2)n" % u — v[r2(0))
=lol(p — P2 u — v 20
Hence for any bounded M C L?() one has
B9t M, L2(9))) < [lol(p — DIMP + ao)a(y (M)

where, as above, g(t,u,v) = s(u) + h(t,u,v), and |[M| = sup,, ,eps v — v[z2(Q). It
is easily seen that the unique solution ¢ € L*°(0,T;R ) of (4.5)) with

w(t,7) = [lo|(p— n* > + ao)7

where 7 = Rmax{1,v/T/2}, is ¢ = 0 provided that |o| and aq are small enough.
Thus Theorem applies. O

Corollary 5.4. For every f € L>(0,T;L?(Q)), if |o| is sufficiently small the
problem

—uy — eug + U|u|1£§(2mu —Ayu= f(t,z) a.e. on[0,T] xQ
u(t,.) € HY(Q) for a.e. t €[0,T]
w(0,2) = —u(T,z), u(0,2)=—u(T,x) a.e. onfl.

has at least one solution u € HQ(O,T; Lz(Q)) with [u'lz < M Here |fleo =
esssupyeo,7) |.f ()| L2(0)-
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