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POSITIVE SOLUTIONS FOR A NONLOCAL PROBLEM WITH
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Abstract. In this article we study a nonlocal problem involving singular non-
linearity. Based on the variational and perturbation methods, we obtain the

existence of two positive solutions for this problem.

1. Introduction and statement of main result

In recent years, the problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = h(x, u), in Ω,

u = 0, on ∂Ω,

has received considerable attention, we refer to [2]–[6]. In particular, if h(x, u) =
λu3 + µu−γ (0 < γ < 1), in [10], the existence and multiplicity of solutions for
problem have been considered for this case by using the variational method and
the Nehari manifold. When h(x, u) = f(x)u−γ − λup, in [9], we have studied the
uniqueness of positive solution via the minima method. In addition, in [5], the
existence and multiplicity of positive solutions have been obtained in the cases
when h(x, u) = λu−γ + u5.

In particular, Yin and Liu [17] considered the nonlocal problem

−
(
a− b

∫
Ω

|∇u|2dx
)

∆u = |u|p−2u, in Ω,

u = 0, on ∂Ω,

where 2 < p < 2N
N−2 . By employing the mountain pass lemma, two nontrivial

solutions were obtained.
Recently, in [4], we investigate the existence and multiplicity of positive solutions

to problem

−
(
a− b

∫
Ω

|∇u|2dx
)

∆u = fλ(x)|u|q−2u, in Ω,

u = 0, on ∂Ω,
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where fλ is possibly sign-changing on Ω, 1 < q < 2. Under the previous assump-
tions, we obtain two positive solutions via the variational methods.

Based on our previous work [4, 5, 9], we shall give some multiplicity results for
the nonlocal problem

−
(
a− b

∫
Ω

|∇u|2dx
)

∆u =
λ

uγ
, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in R3, a, b > 0, and λ is positive parameter.
Now we state our main result.

Theorem 1.1. Assume a, b > 0, 0 < γ < 1, there exists λ∗ > 0 such that 0 < λ <
λ∗, then (1.1) has at least two positive solutions.

2. Proof of main theorem

LetH1
0 (Ω) be the usual Sobolev space equipped with the norm ‖u‖2 =

∫
Ω
|∇u|2dx,

denote by Br (respectively, ∂Br) the closed ball (respectively, the sphere) of center
zero and radius r, i.e. Br = {u ∈ H1

0 (Ω) : ‖u‖ ≤ r}, ∂Br = {u ∈ H1
0 (Ω) : ‖u‖ = r}

and C be various positive constant. Let S be the best Sobolev constant, i.e.,

S = inf
{
‖u‖2 : u ∈ H1

0 (Ω),
∫

Ω

|u|6dx = 1
}
.

Consider the energy functional I0 : H1
0 (Ω)→ R given by

I0(u) =
a

2
‖u‖2 − b

4
‖u‖4 − λ

1− γ

∫
Ω

|u|1−γdx.

It is well known that the singular term leads to the non-differentiability of the
functional I0 on H1

0 (Ω), therefore problem (1.1) cannot be considered by using
critical point theory directly. Now, we consider the perturbed equation

−
(
a− b

∫
Ω

|∇u|2dx
)

∆u =
λ

(|u|+ α)γ
, in Ω,

u = 0, on ∂Ω,
(2.1)

where α > 0, the functional associated with (2.1) is

Iα =
a

2
‖u‖2 − b

4
‖u‖4 − λ

1− γ

∫
Ω

[(|u|+ α)1−γ − α1−γ ]dx.

Lemma 2.1. Assume a, b > 0, 0 < γ < 1, then Iα satisfies the (PS)c condition

with c < a2

4b −Dλ, where D = 1
1−γS

− 1−γ
2 |Ω|

5+γ
6
(
a+1
b

) 1−γ
2 .

Proof. Let {un} ⊂ H1
0 (Ω) be a nonnegative (Iα(un) = Iα(|un|)) (PS)c sequence

for Iα, i. e.,
Iα(un)→ c, I ′α(un)→ 0, as n→∞. (2.2)

It follows from (2.2) that

b‖un‖4 = a‖un‖2 −
∫

Ω

un
(un + α)γ

dx+ o(1) ≤ a‖un‖2 + o(1),

so that
‖un‖2 ≤

a+ 1
b

,
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which implies that {un} is bounded in H1
0 (Ω). Therefore, there exist a subsequence

(still denoted by {un}) and u∗ ∈ H1
0 (Ω) such that un ⇀ u∗ weakly in H1

0 (Ω) as
n→∞. It follows easily from the Vitali Convergence Theorem that

lim
n→∞

∫
Ω

un
(un + α)γ

dx =
∫

Ω

u∗
(u∗ + α)γ

dx.

Set wn = un − u∗, then ‖wn‖ → 0. Otherwise, there exists a subsequence (still
denoted by wn) such that limn→∞ ‖wn‖ = l > 0. From (2.2), letting n → ∞, it
holds

(a− bl2 − b‖u∗‖2)
∫

Ω

(∇u∗,∇φ)dx− λ
∫

Ω

φ

(u∗ + α)γ
dx = 0, ∀φ ∈ H1

0 (Ω). (2.3)

Taking the test function φ = u∗ in (2.3), it follows

(a− bl2 − b‖u∗‖2)‖u∗‖2 − λ
∫

Ω

u∗
(u∗ + α)γ

dx = 0. (2.4)

Note that 〈I ′α(un), un〉 → 0 as n→∞, it holds

a‖wn‖2 + a‖u∗‖2 − b‖wn‖4 − 2b‖wn‖2‖u∗‖2 − b‖u∗‖4 − λ
∫

Ω

u∗
(u∗ + α)γ

dx = o(1).

From this and (2.4), it follows

a‖wn‖2 − b‖wn‖4 − b‖wn‖2‖u∗‖2 = o(1). (2.5)

Consequently,
l2 =

a

b
− ‖u∗‖2, l > 0.

Note that the subadditivity of t1−γ , namely

(|v|+ α)1−γ − α1−γ ≤ |v|1−γ . (2.6)

On one hand, recall that ‖un‖2 ≤ a
b , then using (2.4) and (2.6), it follows

Iα(u∗) =
a

2
‖u∗‖2 −

b

4
‖u∗‖4 −

λ

1− γ

∫
Ω

[(u∗ + α)1−γ − α1−γ ]dx

≥ a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 −

λ

1− γ
S−

1−γ
2 |Ω|

5+γ
6

(a+ 1
b

) 1−γ
2

=
a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 −Dλ,

where

D =
1

1− γ
S−

1−γ
2 |Ω|

5+γ
6

(a+ 1
b

) 1−γ
2
.

On the other hand, from (2.2) and (2.5), it holds

Iα(u∗) = Iα(un)− a

2
‖wn‖2 +

b

4
‖wn‖4 +

b

2
‖wn‖2‖u∗‖2 + o(1)

<
a2

4b
−Dλ− a

4

(a
b
− ‖u∗‖2

)
+
b

4
l2‖u∗‖2

=
a

4
‖u∗‖2 +

b

4
l2‖u∗‖2 −Dλ.

This is a contradiction. Therefore, l = 0, it implies that un → u∗ in H1
0 (Ω). The

proof is complete. �
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Lemma 2.2. Assume a, b > 0, there exist Λ0 > 0 and ρ > 0 such that for any
λ ∈ (0,Λ0), it holds

Iα
∣∣
u∈∂Bρ

> 0, inf
u∈Bρ

Iα(u) < 0.

Proof. By Hölder’s inequality and (2.6), one has

Iα(u) =
a

2
‖u‖2 − b

4
‖u‖4 − λ

1− γ

∫
Ω

[(|u|+ α)1−γ − α1−γ ]dx

≥ ‖u‖1−γ
(a

2
‖u‖1+γ − b

4
‖u‖3+γ − λ

1− γ
|Ω|

5+γ
6 S−

1−γ
2

)
,

set h(t) = a
2 t

1+γ − b
4 t

3+γ , we see that there exists a constant ρ =
√

2a(1+γ)
b(3+γ) such

that maxt>0 h(t) = h(ρ) > 0. Let

Λ0 =
(1− γ)S

1−γ
2

2|Ω| 5+γ
6

h(ρ).

Consequently, Iα|‖u‖=ρ ≥ h(ρ)
2 ρ1−γ for any λ ∈ (0,Λ0). Moreover, for u ∈ H1

0 (Ω)\{0}
it holds

lim
t→0+

Iα(tu)
t

= − λ

1− γ
lim
t→0+

1
t

∫
Ω

[(t|u|+ α)1−γ − α1−γ ]dx

= − λ

1− γ
lim
t→0+

∫
Ω

(1− γ)ξ−γt|u|
t

dx (α < ξ < t|u|+ α)

= −λ
∫

Ω

|u|
αγ
dx (as t→ 0+, ξ → α)

< 0.

Thus there exists u small enough such that Iα(u) < 0.

m = inf
u∈Bρ

Iα(u) < 0 < inf
u∈∂Bρ

Iα(u).

�

Lemma 2.3. Assume a, b > 0, 0 < λ < Λ0. Then problem (2.1) has a positive
solution uα ∈ H1

0 (Ω), enjoying Iα(uα) < 0.

Proof. By Lemmas 2.1 and 2.2, similarly to the paper [6], we can prove that problem
(2.1) has a nonzero nonnegative solution uα ∈ Bρ ⊂ H1

0 (Ω) such that Iα(uα) =
m < 0. Note that uα ∈ Bρ, it holds

‖uα‖2 ≤
2a(1 + γ)
b(3 + γ)

<
a

b
,

which implies that a − b‖uα‖2 > 0. Therefore, by using the strong maximum
principle, we obtain uα > 0 in Ω. The proof is complete. �

Remark 2.4. Assume (U1/n) is a positive solution of (2.1), then for every K b Ω,
there are n0 ∈ N and δ > 0 such that

U1/n(x) ≥ δ, ∀x ∈ K and n ≥ n0.

Indeed, consider Ψn ∈ H1
0 (Ω) a weak solution of the problem

−∆Ψn =
λ

a(|Ψn|+ 1)γ
, in Ω,
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Ψn = 0, on ∂Ω.

It is easy to prove that (Ψn) is a bounded sequence in H1
0 (Ω), thus there is Ψ ∈

H1
0 (Ω) such that for some subsequence, still denoted with the same symbol,

Ψn ⇀ Ψ in H1
0 (Ω),

Ψn(x)→ Ψ(x) a.e. in Ω.

Setting

hn(x) =
λ

a(|Ψn(x)|+ 1)γ
,

we see that (hn) is bounded in L∞(Ω), and so, it is bounded in L2(Ω). Then, for
some subsequence, we also have

hn(x)→ h(x) =
λ

a(|Ψ(x)|+ 1)γ
a.e. in Ω,

hn ⇀ h in L2(Ω).

The above information yield

−∆Ψ =
λ

a(|Ψ|+ 1)γ
, in Ω,

Ψ = 0, on ∂Ω,

from where it follows that Ψ ∈ C(Ω) and Ψ(x) > 0 for all x ∈ Ω. Moreover, the
elliptic regularity gives

Ψn → Ψ in C(Ω).
Thereby, fixed a compact set K ⊂ Ω, there are n0 ∈ N and δ > 0 such that

Ψn(x) ≥ δ, ∀x ∈ K and n ≥ n0.

On the other hand, let U1/n be a positive solution of (2.1), we know that

−∆U1/n ≥= −∆Ψn, in Ω,
U1/n = Ψn = 0, on ∂Ω,

and so, by maximum principle,

U1/n(x) ≥ Ψn(x), ∀x ∈ Ω and all n ∈ N.

As a byproduct of above arguments, for each compact set K ⊂ Ω, there are n0 ∈ N
and δ > 0 such that

U1/n(x) ≥ δ, ∀x ∈ Kand all n ≥ n0.

Now, we show that the functional Iα satisfies the mountain-pass lemma.

Lemma 2.5. The functional Iα satisfies the following conditions for any λ ∈ (0,Λ0)
(i) Iα(u) > 0 if ‖u‖ = ρ;

(ii) There exists ζ ∈ H1
0 (Ω) such that Iα(ζ) < 0.

Proof. Conclusion (i) follows from Lemma 2.2. To prove (ii), let u ∈ H1
0 (Ω)\{0}

and t > 0, it follows that

Iα(tu) ≤ at2

2
‖u‖2 − bt4

4
‖u‖4 − λt1−γ

1− γ

∫
Ω

[(|u|+ α)1−γ − α1−γ ]dx

→ −∞
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as t → +∞. Therefore we can easily find ζ ∈ H1
0 (Ω) with ‖ζ‖ > ρ, such that

Iα(ζ) < 0. The proof is complete. �

Now, it is well known that the function

wε(x) =
(3ε2)

1
4

(ε2 + |x|2)1/2
, x ∈ R3, ε > 0

satisfies
−∆wε = w5

ε ]textinR3.

Let η ∈ C∞0 (Ω) be a cut-off function such that 0 ≤ η ≤ 1, |∇η| ≤ C and η(x) = 1
for |x| < R and η(x) = 0 for |x| > 2R, we set uε(x) = η(x)wε(x). Then

‖uε‖2 = S
3
2 +O(ε), |uε|66 = S

3
2 +O(ε3).

Lemma 2.6. Assume a, b > 0 and 0 < γ < 1. Then

sup
t≥0

Iα(uα + tuε) <
a2

4b
−Dλ.

Proof. As uα is a positive solution of (2.1), for each ϕ ∈ H1
0 (Ω), it holds

(a− b‖uα‖2)
∫

Ω

(∇uα,∇ϕ)dx = λ

∫
Ω

ϕ

(uα + α)γ
dx.

In particular, it holds

(a− b‖uα‖2)
∫

Ω

(∇uα,∇uε)dx = λ

∫
Ω

uε
(uα + α)γ

dx.

Recalling that a− b‖uα‖2 > 0, we have∫
Ω

(∇uα,∇uε)dx ≥ 0.

As Iα(uα) < 0, by Remark 2.4, we have

Iα(uα + tuε) =
a

2
‖uα‖2 + at

∫
Ω

(∇uα,∇uε)dx+
at2

2
‖uε‖2 −

b

4
‖uα‖4

− bt4

4
‖uε‖4 − bt‖uα‖2

∫
Ω

(∇uα,∇uε)dx−
bt2

2
‖uα‖2‖uε‖2

− bt2
(∫

Ω

(∇uα,∇uε)dx
)2 − bt3‖uε‖2 ∫

Ω

(∇uα,∇uε)dx

− λ

1− γ

∫
Ω

[(uα + tuε + α)1−γ − α1−γ ]dx

≤ Iα(uα) +
at2

2
‖uε‖2 −

bt4

4
‖uε‖4 −

bt2

2
‖uα‖2‖uε‖2

− λ

1− γ

∫
Ω

[(uα + tuε + α)1−γ − (uα + α)1−γ ]dx

+ λt

∫
Ω

uε
(uα + α)γ

dx

≤ at2

2
‖uε‖2 −

bt4

4
‖uε‖4 −

bt2

2
‖uα‖2‖uε‖2 + δλt

∫
Ω

uεdx.
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Set

g(t) =
at2

2
‖uε‖2 −

bt4

4
‖uε‖4 −

bt2

2
‖uα‖2‖uε‖2 + δλt

∫
Ω

uεdx.

It is similar to the paper [6] that there exist tε > 0 and positive constants t1, t2
independent of ε, λ, such that supt≥0 g(t) = g(tε) and 0 < t1 ≤ tε ≤ t2 <∞.

Note that
∫

Ω
uεdx ≤ O(ε1/2), by Remark 2.4, there exists positive constant c > 0

(independent of λ) such that ‖uα‖2 ≥ c. Then, it holds

sup
t≥0

Iα(uα + tuε) ≤ sup
t≥0

g(t)

≤ sup
t≥0

{at2
2
‖uε‖2 −

bt4

4
‖uε‖4

}
− c‖uε‖2 + λO(ε1/2)

≤ a2

4b
+ c1ε

1/2 − c2S
3
2 , (0 < λ < 1)

where c1, c2 > 0. Let ε = λ2, when 0 < λ < Λ1 ,
c2S

3
2

c1+D , it holds

c1λ− c2S
3
2 < c1λ− (c1 +D)λ = −Dλ.

Consequently, supt≥0 Iα(uα + tuε) < a2

4b −Dλ. The proof is complete. �

Lemma 2.7. Assume a, b > 0 and λ > 0 is sufficiently small, problem (2.1) admits
a solution vα with Iα(vα) > 0.

Proof. Set λ∗ = min{Λ0,Λ1,
a2

4bD , 1}. Then applying the mountain-pass lemma [3],
there exists a sequence {vn} ⊂ H1

0 (Ω), such that

Iα(vn)→ c >
h(ρ)

2
ρ1−γ , and I ′α(vn)→ 0, (2.7)

where

c = inf
γ∈Γ

max
t∈[0,1]

Iα(γ(t)),

Γ =
{
γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = uα, γ(1) = ζ
}
.

By Lemmas 2.1 and 2.6, {vn} ⊂ H1
0 (Ω) has a convergent subsequence, say {vn},

we may assume that vn → vα in H1
0 (Ω) as n→∞. Hence, from (2.7), it holds

Iα(vα) = lim
n→∞

Iα(vn) = c >
h(ρ)

2
ρ1−γ > 0,

this implies that vα 6≡ 0. Furthermore, from the continuity of I ′α, we obtain that
vα is a nonzero nonnegative solution of (2.1). The proof is complete. �

Proof of Theorem 1.1. Let (U1/n) be a solution of (2.1), then we can prove that
(U1/n) is bounded in H1

0 (Ω), then up to a subsequence, there exists u ∈ H1
0 (Ω)

such that

U1/n ⇀ u weakly in H1
0 (Ω), U1/n(x)→ u(x) a.e. in Ω as n→∞.

By Remark 2.4, and similar to [5], for each φ ∈ H1
0 (Ω), it holds

(a− b lim
n→∞

‖U1/n‖2)
∫

Ω

(∇u,∇φ)dx− λ
∫

Ω

φ

uγ
dx = 0. (2.8)

If U1/n = uα, by Lemma 2.1, Lemma 2.3 and (2.8), we conclude that U1/n → u in
H1

0 (Ω), and u is a positive solution of (1.1) with I0(u) = limn→∞ I1/n(U1/n) < 0.
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If U1/n = va, combining Lemma 2.1, Lemma 2.6 and (2.8), we also deduce
that U1/n → u in H1

0 (Ω), and u is a positive solution of (1.1) with I0(u) =
limn→∞ I1/n(U1/n) > 0. Therefore problem (1.1) has at least two different pos-
itive solutions. The proof is complete. �
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