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POSITIVE SOLUTIONS TO QUASILINEAR EQUATIONS
INVOLVING CRITICAL EXPONENT ON PERTURBED

ANNULAR DOMAINS

CLAUDIANOR O. ALVES

Abstract. In this paper we study the existence of positive solutions for the

problem

−∆pu = up∗−1 in Ω and u = 0 on ∂Ω

where Ω is a perturbed annular domain (see definition in the introduction) and

N > p ≥ 2. To prove our main results, we use the Concentration-Compactness
Principle and variational techniques.

1. Introduction

Consider the problem

−∆pu = λ|u|p−2u + |u|p
∗−2u, in Ω

u > 0, in Ω
u = 0, on ∂Ω

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, λ ≥ 0, p∗ = Np
N−p ,

N > p ≥ 2 and

∆pu =
N∑

j=1

∂

∂xj

(
|∇u|p−2 ∂u

∂xj

)
.

We recall that the weak solutions of (1.1) are critical points, on W 1,p
0 (Ω), of the

energy functional

Iλ(u) =
1
p

∫
Ω

(|∇u|p − λ(u+)p)dx− 1
p∗

∫
Ω

(u+)p∗dx ,

where u+(x) = max{u(x), 0}. Using Sobolev embedding it follows that Iλ ∈
C1(W 1,p

0 (Ω), R).
An important point related with problem (1.1) it is Pohozaev’s identity (see

[12] and [17]), which implies that (1.1) does not have a solution if Ω is strictly
star-shaped with respect to the origin in RN and λ ≤ 0.
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Since the embedding W 1
0 (Ω) ↪→ Lp∗(Ω) is not compact, we encounter serious

difficulties in applying standard variational techniques to problem (1.1). The lack
of compactness can be understood by the fact that Iλ does not satisfy the so-called
Palais-Smale (PS) condition in the whole R.

Brezis and Nirenberg in [6] studied (1.1) for the case p = 2 and λ > 0,they used
the fact that the (PS) condition holds in some energy range, for example in the
interval (−∞, 1

N SN/2), where S is the best constant of the embedding D1,p(RN ) ↪→
Lp∗(RN ) given by

S = min
u∈D1,p(RN ), u 6=0

∫
RN |∇u|pdx( ∫

RN |u|p∗dx
)p/p∗

.

Using the family of functions

Φδ,y(x) =

[
N

(
N−p
p−1

)
δ
]N−p

p2[
δ + |x− y|

p
p−1

]N−p
p

, x, y ∈ RN , δ > 0

which satisfies
‖Φδ,y(x)‖p

1,p = |Φδ,y(x)|p
∗

p∗ = SN/p

(see Talenti [20]), where

‖u‖1,p =
( ∫

RN

|∇u|pdx
)1/p

and |u|p∗ =
( ∫

RN

|u|p
∗
dx

)1/p∗

,

the authors in [6] showed that the minimization problem

Sλ = min
u∈W 1,p

0 (Ω)

∫
Ω
(|∇u|pdx− λ|u|p)dx

(
∫
Ω
|u|p∗dx)

p
p∗

has a solution, hence (1.1) has a solution.
After the results obtained in [6], several authors have considered (1.1), for in-

stance, Struwe in [18] (see also [19]) studied the behaviour of the Palais-Smale
sequence of Iλ for the case p = 2 showing a result of Global Compactness. In his
arguments, he used strongly some estimates for the Laplacian operator proved by
Lions and Magenes in [14]. In [8], Coron used the study made in [18] and proved
that (P )0 has a solution for a class of annular-shaped domains. In the papers of
Bahri and Coron [4], Benci and Cerami [5] and Willem [24] some results of existence
of solution depending of the topology of Ω were proved.For the case p ≥ 2, Gueda
and Veron [12] and Garcia Azorero and Peral Alonso [11] showed that the results
obtained in [6] are true for p-Laplacian operator. There exists a rich literature
involving the problem (1.1) with p ≥ 2,we refer the reader to Peral Alonso [16] and
references therein.

The main purpose of the present paper is to show that the result proved by
Struwe in [18] holds for the p-Laplacian operator and as a consequence the result
obtained by Coron in [8] is also true for the p-Laplacian operator with p ≥ 2.

To state our main result we need some definitions and notation.
An important problem in this paper is the limit problem in RN given by

−∆pw = wp∗−1 in RN

w > 0 in RN

w ∈ D1,p(RN ).

(1.2)
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Hereafter, let us denote by I∞ : D1,p(RN ) → R the energy functional related to
limit problem, that is

I∞(u) =
1
p

∫
RN

|∇u|pdx− 1
p∗

∫
RN

(u+)p∗dx.

We say that a domain Ω is a Perturbed Annular Domain (PAD) if there exist
R1, R2 > 0 such that

Ω ⊃ {x ∈ RN : R1 < |x| < R2} and Ω 6⊃ {x ∈ RN : |x| < R1}.

Our main results are stated in the following two theorems.

Theorem 1.1. Let {un} be a (PS)c sequence to Iλ with un ⇀ u0 in W 1,p
0 (Ω).

Then, the sequence {un} satisfies either

(a) un → u0 in W 1,p
0 (Ω), or

(b) There exist k ∈ N and non-trivial solutions z1, . . . , zk for the problem (1.2)
such that

‖un‖p → ‖u0‖p +
k∑

j=1

‖zj‖p
1,p ,

Iλ(un) → Iλ(u0) +
k∑

j=1

I∞(zj) .

Theorem 1.2. Let Ω be a (PAD) in RN . Then, if R2
R1

is sufficiently large, problem
(1.1) with λ = 0 has a positive solution u ∈ W 1,p

0 (Ω).

Theorem 1.1 was proved by Struwe in [18] in the particular case p = 2. To prove
Theorem 1.1 in the general case p ≥ 2, we make a similar study to the one found
in [18], because here we also need to understand the behaviour of Palais-Smale
sequence of Iλ. However, we will use different arguments because some estimates
explored in [18] are not clear to hold for p-Laplacian operator. Here, the main
tool employed is the Concentration-Compactness Principle by Lions [13], which
overcome in some sense the lack of estimates of the type Lions and Magenes [14]
to p-Laplacian operator and we also use some arguments explored by the author in
[2, 3].

Theorem 1.2 was studied by Coron in [8] in the case p = 2. In this paper, we
prove Theorem 1.2 as a good application of Theorem 1.1 and in its proof we use
some ideas found in [8] (see also [18]), that is, we use the information obtained
about the behavior of the (PS)c sequences, the deformation lemma on manifolds
and some estimates involving the family of functions related with the best constant
S.

In the what follows, we denote by ‖w‖ the usual norm of a function w ∈ W 1,p
0 (Ω)

and by I ′λ(w,Θ) where Θ is a bounded domain the Frechet Derivative of Iλ on
W 1,p

0 (Θ) at w. Now, if Θ = Ω we will use only I ′λ(w). Moreover, u−(x) =
max{−u(x), 0}, Bs(y) with s > 0 is a ball with center at y ∈ RN and radius s
and Bs = Bs(0). For each a ∈ RN we define the following sets: {xN > a} = {x =
(x1, . . . , xN ) ∈ RN ;xN > a}, {xN = a} = {x = (x1, . . . , xN ) ∈ RN ;xN = a} and
{xN < a} = {x = (x1, . . . , xN ) ∈ RN ;xN < a}.
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2. Preliminary Results

In this section we will recall and show some lemmas that are crucial in the proofs
of Theorems 1.1 and 1.2. We begin by recalling the following Lemma by Lions [13].

Lemma 2.1. Let (un) ⊂ D1,p(RN ) with un ⇀ u in D1,p(RN ). Then, there exist
{yi}i∈Λ ⊂ RN and {νi}i∈Λ ⊂ R, where Λ is at most a countable set such that∫

RN

|un|p
∗
φdx →

∫
RN

|u|p
∗
φdx +

∑
i∈Λ

φ(yi)νi ∀φ ∈ C∞0 (RN ).

The next lemma was proved by Alves [3], using arguments found in Brezis and
Lieb [7].

Lemma 2.2. Let ηn : RN → RK (K ≥ 1) with ηn ⊂ Lp(RN ) × · · · × Lp(RN )
(p ≥ 2), ηn(x) → 0 a.e. in RK and A(y) = |y|p−2y for all y ∈ RK . Then, if
|ηn|Lp(RN ) ≤ C ∀n ∈ N, we have∫

RN

|A(ηn + w)−A(ηn)−A(w)|
p

p−1 dx = on(1)

for each w ∈ Lp(RN )× · · · × Lp(RN ) fixed.

Proposition 2.3. Let v ∈ D1,p
0 ({xN > a}) be a nonnegative solution of the problem

−∆pv = vp∗−1 in {xN > a}
v ≥ 0 in {xN > a}
v = 0 on {xN = a}.

Then v = 0.

Proof. By results showed by Trudinger [22], Guedda and Veron [12], DiBenedetto
[9], and Tolksdorf [23], we have

v ∈ D1,2
0 ({xN > 0}) ∩ C1({xN ≥ 0})

and adapting the ideas explored by Li and Shusen [15]

v(x) → 0 as |x| → ∞.

Moreover, with suitable modifications, the arguments used by Esteban and Lions
[10] and Gueda and Veron [12, Theorem 1.1] show that∫

xN=0

〈x− x0, η〉|vη|pdσ = 0

where x0 is a point fixed in {xN > 0} and η is the forward normal to {xN = 0}.
Hence vη = 0 on {xN = 0} and by a result showed in Vàsquez [21] we have
v ≡ 0. �

Remark 2.4. Proposition 2.3 holds for sets of the form {xN < a} and for more
general half-planes.

Throughout this paper, we assume that all (PS)c sequences of Iλ are nonnegative
functions, since by using the definition of Iλ it follows that I ′λ(un)(un−) → 0, thus
‖un−‖ → 0. Consequently the sequence {un+} is also a (PS)c sequence for Iλ.



EJDE-2005/13 POSITIVE SOLUTIONS TO QUASILINEAR EQUATIONS 5

Lemma 2.5. Suppose {un} is a (PS)c sequence for I0 in W 1,p
0 (Ω) such that un ⇀ 0

weakly. Then there exist a sequence (xn) of points in RN with xn → x0 ∈ Ω, a real
sequence (λn) with λn → 0, a non-trivial solution v0 of (1.2) and a (PS)c sequence
{wn} for I0 in W 1,p

0 (Ω) such that for a subsequence {un} there holds

wn = un − λ
p−N

p
n v0(

1
λn

(.− xn)) + on(1),

where on(1) → 0 in D1,p(RN ) as m →∞. In particular, wn ⇀ 0 weakly. Further-
more,

I0(wn) = I0(un)− I∞(v0) + on(1).

Moreover, 1
λn

dist(xn, ∂Ω) →∞.

Proof. Without loss of generality we will suppose that c ≥ 1
N SN/p, because if

c ∈ (0, 1
N SN/p), un is strongly convergent (see [11]). Let the Lévy concentration

function be

Qn(λ) = sup
y∈RN

∫
Bλ(y)

(un)p∗dx.

Note that there exists (xn, λn) ∈ RN × (0,∞) such that

Qn(λn) =
∫

Bλn (xn)

(un)p∗dx =
1
2
SN/p.

Setting

vn(x) = λ
N−p

p
n un(λnx + xn),

we have

sup
y∈RN

∫
B1(y)

(vn)p∗dx =
∫

B1

(vn)p∗dx =
1
2
SN/p.

Moreover,∫
Ωn

(vn)p∗dx =
∫

Ω

(un)p∗dx and
∫

Ωn

|∇vn|pdx =
∫

Ω

|∇un|pdx

where Ωn = 1
λn

(Ω− xn). Here and in what follows, Ω∞ is the limit set of Ωn when
n goes to infinity. For each {Φn} ⊂ W 1,p

0 (Ωn) with bounded norm in D1,p(RN ), we
get ∫

RN

|∇vn|p−2∇vn∇Φndx−
∫

RN

(vn)p∗−1Φndx = on(1), (2.1)

since by considering the sequence Φn(x) = λ
p−N

p
n Φn( 1

λn
(x−xn)), we have that (2.1)

is equivalent to
I ′0(un)(Φn) = on(1).

Let v0 be the weak limit of {vn} ∈ D1,p(RN ). Now, we will show that v0 6= 0.
Applying Lemma 2.1 for the sequence {vn}, we conclude by arguments explored
in [11],[16],[12] and [2] that there is not yi ∈ Ω∞

c
and Λ is finite or empty. Here,

we have that Λ is empty, because if νi > 0 by well known arguments we get that
νi ≥ SN/p. From the definition of the function vn

1
2
SN/p = sup

y∈RN

∫
B1(y)

(vn)p∗dx ≥
∫

B1(yi)

(vn)p∗dx
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then passing to the limit in the above inequality and using again Lemma 2.1, we
obtain a contradiction. Thus, Λ is empty and∫

RN

(vn)p∗Φdx →
∫

RN

(v0)p∗Φdx ∀Φ ∈ C∞0 (RN ) as n →∞

which implies vn → v0 in Lp∗

loc(RN ), consequently∫
B1

(v0)p∗dx =
1
2
SN/p

and v0 6= 0. Using the fact the v0 is not zero we have that λn → 0, because if there
exists δ > 0 such that λn ≥ δ, we have the following inequality∫

RN

(vn)pdx =
1
λp

n

∫
RN

(un)pdx ≤ C1

∫
Ω

(un)pdx

and by the fact that un → 0 in Lp(Ω) it follows that∫
RN

(v0)pdx = 0,

which is a contradiction. Now, using the fact that λn → 0 we may assume that
there exists x0 ∈ Ω such that xn → x0 ∈ Ω. By weak continuity of vn and (2.1),
the function v0 is a solution of the problem

−∆pv = vp∗−1, in Ω∞
v ≥ 0, v 6≡ 0 in Ω∞
v = 0, on ∂Ω∞.

To determine Ω∞, we have to consider two cases:

(A) 1
λn

dist(xn, ∂Ω) →∞ as n →∞
(B) 1

λn
dist(xn, ∂Ω) ≤ α for all n ∈ N and some α > 0.

Claim: Case (B) above does not hold. In fact, assume by contradiction that
(B) holds and that without loss of generality xn → 0 ∈ ∂Ω. Moreover, we will
suppose also that 0,Ω and ∂Ω are described in the following form (see more details
in Adimurthi, Pacella and Yadava [1]):

There exist δ > 0, an open neighborhood N of 0 and a diffeomor-
phism Ψ : Bδ(0) → N which has a jacobian determinant at 0 equal
to one, with Ψ(B+

δ ) = N ∩ Ω where B+
δ = Bδ(0) ∩ {xN > 0}.

Now, let us define the function ξn ∈ D1,p(RN ) given by

ξn(x) =

λ
N−p

p
n un(Ψ(λnx + Pn))χ(Ψ(λnx + Pn)), x ∈ B δ

λn
(−Pn

λn
)

0, x ∈ RN \B δ
λn

(−Pn

λn
)

where Ψ(Pn) = xn, χ ∈ C∞0 (RN ), 0 ≤ χ(x) ≤ 1 for all x ∈ RN , χ(x) = 1 for all
x ∈ O δ

2
, χ(x) = 0 for all x ∈ O 3δ

4
, O δ

2
= Ψ(B δ

2
), and O 3δ

4
= Ψ(B 3δ

4
). By a simple

computation, it is possible to show that for some subsequence

PN
n

λn
→ α0 for some α0 ≥ 0 as n →∞
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and that there exists a nonnegative function ξ ∈ D1,p
0 ({xN > −α0}) such that

ξn(x) ⇀ ξ in D1,p(RN ) which satisfies

−∆pξ = ξp∗−1 in {xN > −α0}
ξ = 0 on {xN = −α0}.

(2.2)

From Proposition 2.3, we have that ξ ≡ 0. On the other hand,∫
B1

vp
ndx ≤ C

∫
A

ξp
ndx

for all large n where A ⊂ {xN > −α0} is a bounded domain. Since {ξn} is a
bounded sequence in W 1,p(A), we obtain by Sobolev embedding∫

A
ξp
ndx → 0

thus ∫
B1

vp
ndx → 0,

and so v0 ≡ 0 in B1, which is a contradiction. Thus Case (A) holds, so Ω∞ = RN

and v0 is a solution of (1.2).
To conclude, we consider Φ ∈ C∞0 (RN ) verifying 0 ≤ Φ(x) ≤ 1, Φ ≡ 1 in B1 and

Φ = 0 in Bc
2. Let

wn = un(x)− λ
p−N

p
n v0(

1
λn

(x− xn))Φ(
1
λn

(x− xn))

where we choose λn verifying λ̃n = λn

λn
→ 0. Considering

w̃n(x) = λ
N−p

p
n wn(λnx + xn) = vn(x)− v0(x)Φ(λ̃nx)

and by repeating of the same arguments explored by Struwe in [18], we complete
the proof of Lemma 2.5. �

3. Proof of Theorem 1.1

By hypothesis we have un(x) → u0(x) a.e in Ω. Thus using standard arguments
found in [11, 12, 16, 2], we have I ′λ(u0) = 0. Suppose that un does not converge to
u0 in W 1,p

0 (Ω) and let {zn,1} ⊂ W 1,p
0 (Ω) be given by zn,1 = un − u0. Then

zn,1 ⇀ 0 but zn,1 6→ 0 in W 1,p
0 (Ω) .

By Brezis and Lieb [7] and by Lemma 2.2 it follows that

I0(zn,1) = Iλ(un)− Iλ(u0) + on(1) , (3.1)

I ′0(zn,1) = I ′λ(un)− I ′λ(u0) + on(1) . (3.2)

From these two equations, we conclude that {zn,1} is a (PS)c sequence for I0. By
Lemma 2.5, there exist (λn,1) ⊂ R, (xn,1) ⊂ RN , z1 ∈ D1,p(RN ) a non-trivial
solution of (1.2) and a (PS)c sequence {zn,2} in W 1,p

0 (Ω) for I0 given by

zn,2(x) = zn,1(x)− λ
p−N

p

n,1 z1(
1

λn,1
(x− xn,1)) + on(1).

If we define
vn,1(x) = λ

p−N
p

n,1 zn,1(λn,1x + xn,1)
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and {z̃n,2} by
z̃n,2(x) = vn,1(x)− z1(x) + on(1),

we conclude by arguments explored in the proof of Lemma 2.5 that vn,1 ⇀ z1 in
D1,p(RN ),

I∞(vn,1) = I0(zn,1)

and
‖I ′0(vn,1,Ωn,1)‖ = on(1),

where Ωn,1 = 1
λn,1

(Ω− xn,1). Using again [7] and Lemma 2.2, we conclude that

I∞(z̃n,2) = I∞(vn,1)− I∞(z1) + on(1) = Iλ(un)− Iλ(u0)− I∞(z1) + on(1)

and
‖I ′0(z̃n,2,Ωn,1)‖ ≤ ‖I ′0(vn,1,Ωn,1)‖+ ‖I ′∞(z1)‖+ on(1),

consequently ‖I ′0(z̃n,2,Ωn,1)‖ = on(1) and ‖I ′0(zn,2)‖ = on(1). If zn,2 → 0 in
W 1,p

0 (Ω) the theorem finishes. Now, if {zn,2} does not converge to 0 in W 1,p
0 (Ω),

we apply again Lemma 2.5 and find (λn,2) ⊂ R, (xn,2) ⊂ RN , z2 ∈ D1,p(RN ) a
non-trivial solution of (1.2) and a (PS)c sequence {zn,3} in W 1,p

0 (Ω) for I0 given
by

zn,3(x) = z̃n,2(x)− λ
p−N

p

n,2 z2(
1

λn,2
(x− xn,2)) + on(1).

Considering the sequences {vn,2} and {z̃n,3} given by

vn,2(x) = λ
p−N

p

n,2 z̃n,2(λn,2x + xn,2) and z̃n,3(x) = vn,2(x)− z2(x) + on(1)

we have vn,2 ⇀ z2 in D1,p(RN ) and

I∞(z̃n,3) = I∞(z̃n,2)− I∞(z2) + on(1) = Iλ(un)− Iλ(u0)− I∞(z1)− I∞(z2) + on(1)

and
‖I ′0(z̃n,3,Ωn,2)‖ ≤ ‖I ′0(vn,2,Ωn,2)‖+ ‖I ′∞(z2)‖+ on(1),

whence ‖I ′0(z̃n,3,Ωn,2)‖ = on(1) and ‖I ′0(zn,3)‖ = on(1). If zn,3 → 0 the proof
is done, if not, we repeat the arguments used, and then we will find z1, . . . , zk

non-trivial solutions to (1.2) satisfying

‖z̃n,k‖p = ‖un‖p − ‖u0‖p −
k−1∑
j=1

‖zj‖p
1,p + on(1) , (3.3)

I∞(z̃n,k) = Iλ(un)− Iλ(u0)−
k−1∑
j=1

I∞(zj) + on(1) . (3.4)

Now, we recall that
‖zj‖p

1,p ≥ S
N
p j = 1, . . . , k . (3.5)

Combining (3.3) and (3.5),

0 ≤ ‖z̃n,k‖p ≤ ‖un‖p−‖u0‖p−
k−1∑
j=1

S
N
p = ‖un‖p−‖u0‖p−(k−1)S

N
p +on(1). (3.6)

Since {un} is bounded, from (3.6) there exists k ∈ N such that lim supn→∞ ‖z̃n,k‖p ≤
0. Consequently, z̃n,k → 0 in W 1,p

0 (Ω) and this concludes the proof.
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Corollary 3.1. Let {un} be a (PS)c sequence for Iλ with c ∈ (0, 1
N S

N
p ). Then

{un} contains a subsequence strongly convergent in W 1,p
0 (Ω).

Corollary 3.2. The functional Iλ : W 1,p
0 (Ω) → R satisfies the (PS)c condition in

the interval ( 1
N SN/p, 2

N SN/p).

Corollary 3.3. Let {un} be a (PS)c sequence for Iλ with c ∈ ( k
N S

N
p , (k+1)

N SN/p)
and k ∈ N. Then the weak limit u0 of {un} is not zero.

Hereafter we denote by fλ : W 1,p
0 (Ω) → R the functional

fλ(u) =
∫

Ω

(|∇u|p − λ(u+)p)dx

and by M⊂ W 1,p
0 (Ω) the manifold

M = {u ∈ W 1,p
0 (Ω);

∫
Ω

(u+)p∗dx = 1}.

We remark that if {un} ⊂ M satisfies

fλ(un) → c and f ′λ|M(un) → 0

it follows that {vn} = {c
N−p

p2 un} ⊂ W 1,p
0 (Ω) satisfies the limits

Iλ(vn) → 1
N

c
N
p and I ′λ(vn) → 0.

Corollary 3.4. If there exist {un} ⊂ M and c ∈ (S, 2
p
N S) such that fλ(un) → c

and f ′λ|M(un) → 0, then fλ has a critical point u ∈M with fλ(u) = c.

Remark 3.5. Corollary 3.4 implies that (1.1) has at least a positive solution.

4. Proof of Theorem 1.2

Postponing the proof of Theorem 1.2 for a moment, we first fix some notations
and show some technical lemmas. In this section, we assume that R1 = (4R)−1 <
1 < 4R = R2 and denote by Σ the unit sphere on RN ,

Σ = {x ∈ RN : |x| = 1} .

For each σ ∈ Σ and t ∈ [0, 1), we define the function uσ
t ∈ D1,p(RN ) by

uσ
t (x) =

[ 1− t

(1− t)
p

p−1 + |x− tσ|
p

p−1

]N−p
p

.

Using the well known result obtained in [20], it follows that S is attained on any
such function uσ

t .Moreover, letting t → 0 we have

uσ
t → u0 =

[ 1

1 + |x|
p

p−1

]N−p
p

in D1,p(RN )

for any σ ∈ Σ. In the sequel φ ∈ C∞0 (Ω) is a radially symmetric function such that
0 ≤ φ ≤ 1 on Ω, φ ≡ 1 on the annulus {x ∈ RN : 1

2 < |x| < 2} and φ ≡ 0 outside
the annulus {x ∈ RN : 1

4 < |x| < 4}. Let us consider for R ≥ 1 the functions

φR(x) =


φ(Rx), 0 ≤ |x| < R−1

1, R−1 ≤ |x| < R

φ( x
R ), |x| ≥ R .
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and wσ
t = uσ

t φR, w0 = u0φR ∈ W 1,p
0 (Ω).

Lemma 4.1. For each ε > 0 there exists R > 0 such that∫
BR−1

(uσ
t )p∗dx,

∫
BR−1

|∇uσ
t |pdx,

∫
Bc

R

(uσ
t )p∗dx,

∫
Bc

R

|∇uσ
t |pdx < ε

uniformly in σ ∈ Σ and t ∈ [0, 1).

Proof. Using the definition of uσ
t , we obtain∫

BR−1

(uσ
t )p∗dx = (1− t)N

∫
BR−1

dx[
(1− t)

p
p−1 + |x− tσ|

p
p−1

]N

or equivalently∫
BR−1

(uσ
t )p∗dx = (1− t)N

∫
BR−1 (−tσ)

dy[
(1− t)

p
p−1 + |y|

p
p−1

]N
.

Thus given ε > 0, there exists δ > 0 such that for all t ∈ [1 − δ, 1] and for all
R ≥ R0, we have∫

BR−1

(uσ
t )p∗dx ≤ (1− t)N

∫
BR−1 (−tσ)

dy

|y|
Np
p−1

<
ε

2
∀σ ∈ Σ. (4.1)

On the other hand, there exists R0 > 0 such that for all R ≥ R0,∫
B1/(1−t)R(−tσ

1−t )

dw[
1 + |w|

p
p−1

]N
<

ε

2
∀σ ∈ Σ and ∀t ∈ [0, 1− δ] (4.2)

Hence, if R0 is sufficiently large, from (4.1) and (4.2)∫
BR−1

(uσ
t )p∗dx < ε ∀t ∈ [0, 1) and ∀σ ∈ Σ if R ≥ R0 .

Now, we estimate the integral
∫

BR
c (uσ

t )p∗
dx: Note that∫

Bc
R

(uσ
t )p∗dx = (1− t)

N(p−2)
p−1

∫
Θc

t

dy[
1 + |y|

p
p−1

]N
,

where Θt = B R
(1−t)

(−tσ
1−t ); thus∫

Bc
R

(uσ
t )p∗dx ≤ C

∫
Bc

R−1

dy[
1 + |y|

p
p−1

]N

then for R large, ∫
Bc

R

(uσ
t )p∗dx ≤ ε ∀σ ∈ Σ, ∀t ∈ [0, 1).

The estimates for the two integrals involving gradient of uσ
t follow with the same

type of argument. �

As a consequence of the above lemma, we get the following result

Lemma 4.2. The functions {wσ
t } are strongly convergent in D1,p(RN ) to {uσ

t } as
R → ∞ uniformly in σ ∈ Σ and t ∈ [0, 1]. Moreover, for each R > 0 fixed, we
have that {wσ

t } is strongly convergent in D1,p(RN ) to {uσ
t } as t → 1, uniformly in

σ ∈ Σ.
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Remark 4.3. Lemma 4.2 also holds for the normalized functions vσ
t = wσ

t /|wσ
t |p∗ ;

that is, ‖vσ
t −

uσ
t

|uσ
t |p∗

‖1,p → 0 as R →∞ uniformly in σ ∈ Σ and t ∈ [0, 1).

Hereafter we define the function β : M→ RN namely “Barycenter”, by setting

β(u) =
∫

Ω

x(u+)p∗dx.

Proposition 4.4. If (un) ⊂M is such that ‖un‖p → S, then dist(β(un),Ω) → 0.

Proof. Note that the sequence wn = S
N−p

p2 un satisfies

I0(wn) → 1
N

SN/p and I ′0(wn) → 0 .

Using the fact that S is never attained in a bounded domain, we get by Theorem
1.1 that wn ⇀ 0 in W 1,p

0 (Ω) and that there exists (λn) ⊂ R, (xn) ⊂ RN with
xn → x0 ∈ Ω and v0 ∈M such that

un(x) = λ
p−N

p
n v0(

1
λn

(x− xn)) + on(1) .

Then

β(un) =
∫

Ω

x

λN
n

v0(
1
λn

(x− xn))p∗dx + on(1).

If φ ∈ C∞0 (RN , RN ) is a function with φ(x) = x for x ∈ Ω, we get

β(un) =
∫

RN

φ(λnx + xn)vp∗

0 dx + on(1) .

Then by Lebesgue’s Theorem,∫
RN

φ(λnx + xn)vp∗

0 dx →
∫

RN

φ(x0)v
p∗

0 dx = x0 ∈ Ω

whence dist(β(un),Ω) → 0. �

Proof of Theorem 1.2. Observe that by Lemma 4.2 f0(vσ
t ) → S as R → ∞ uni-

formly in σ ∈ Σ and t ∈ [0, 1). In particular, if R ≥ 1 is sufficiently large, we
have

sup
σ∈Σ, t∈[0,1)

f0(vσ
t ) < S1 < 2

p
N S

for some constant S1 ∈ (0,∞). Suppose by contradiction that (P )0 does not admit
a positive solution, this is equivalent to the fact that

I0(u) =
1
p

∫
Ω

|∇u|pdx− 1
p∗

∫
Ω

(u+)p∗dx

does not admit a critical point u > 0. Thus, f0 does not have a critical value in the
interval (S, 2

p
N S). Moreover, by Theorem 1.1, f0 verifies on M the (PS)c condition

in (S, 2
p
N S). Using the same arguments explored in [19], there exist δ > 0 and a

flow Φ : M× [0, 1] →M such that

Φ(MS1 , 1) ⊂MS+δ

where
Mc = {u ∈M : f0(u) ≤ c}, Φ(u, t) = u ∀u ∈MS+ δ

2
.
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Using Proposition 4.4, we can assume that β(MS+δ) ⊂ U , where U is a neighbor-
hood of Ω such that any point p ∈ U has a unique nearest neighbor q = π(p) ∈ Ω
and such that the projection π is continuous .

The map h : Σ× [0, 1] → Ω given by

h(σ, t) =

{
π(β(Φ(vσ

t , 1))), t ∈ [0, 1)
σ, t = 1

is well-defined. Furthermore, h is a continuous function in Σ × [0, 1], which is
obvious for t ∈ [0, 1), now for the case t = 1 we use the following argument: Note
that for each (σn, tn) ∈ Σ× [0, 1], we compute∫

Ω

x(uσn
tn

)p∗dx = (1− tn)
N(p−2)

p−1 tnσn

∫
Ωtn

dx[
1 + |w|

p
p−1

]N

+ (1− tn)
N(p−2)

p−1 (1− tn)
∫

Ωtn

wdx[
1 + |w|

p
p−1

]N
,

where Ωtn = (Ω−tnσn)
1−tn

. Since

|uσn
tn
|p
∗

p∗
= (1− tn)

N(p−2)
p−1

∫
RN

dx[
1 + |w|

p
p−1

]N
,

if (σn, tn) → (σ, 1) as n →∞ we get

β
( uσn

tn

|uσn
tn
|p∗

)
→ σ.

Using the limit above together with Lemma 4.2, we conclude that

lim
n→∞

h(σn, tn) = σ = h(σ, 1) .

Therefore, h is a continuous functions in Σ× [0, 1]. Also observe that

h(σ, 0) = π(β(Φ(v0, 1))) = x0 ∈ Ω, ∀σ ∈ Σ

h(σ, 1) = σ, ∀σ ∈ Σ

hence h is a contraction of Σ in Ω, contradicting the hypotheses on Ω. �
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