A COMPUTER PROGRAM
 FOR
 PREDICTION OF TIDES

THESIS

Presented to the Graduate Council of Southwest Texas State University
in Partial Fulfillment of
the Requirements

For the Degree of

MASTER OF SCIENCE

By

RUSSELL LOYD DOESCHER, B.S.
 San Marcos, Texas
 April, 1992

ALBERT B. ALKEK UBRARY
Southest Texas State Unversity
San Marcos, Texas 78666-4604

EPIGRAPH

```
Discimus hinc tandem qua causa argentea Phoebe
Passibus haud aequis graditur; cur subdita nulli
Hactenus astronomo numerorum fraena recuset:
Cur remeant nodi, curque auges progrediuntur.
Discimus & quantis refluum vaga Cynthia pontum
Viribus impellit, fessis dum fluctibus ulvam
Deserit, ac nautis suspectas nudat arenas;
Alternis vicibus suprema ad littora pulsans.
At last we learn the reason why the silver Moon
Travels with unequal steps; and why she
Has refused to be subdued and has been subject to
The numbers of no astronomer until now.
And why the nodes regress, and why the apsides progress.
We learn also how the wandering Moon sets the tides into
motion,
Whereby the surf now deserts the kelp along the shore,
Exposing shoals of sand suspected by sailors;
And then alternately drives the waves high upon the beach.
from the "Ode to Newton" by Edmond Halley, published in the preface to the Principia by Isaac Newton (1687)
translated by Donald Olson (1992)
```

The author is grateful to the staff of the National Ocean Survey, in particular, T. J. Kendrick (Oceanographer, NOS), E. Long (NOS), and J. French (Programmer, NOS), for their assistance in obtaining station sheets for various ports. The NOS also provided a copy of Special Publication No. 98. ${ }^{1}$ The astronomical basis of the present program comes primarily from the theoretical equations in Special Publication No. 98.

The author is also grateful to Ed Wallner (Wayland, Massachusetts) for assistance in obtaining harmonic constants for Boston and other ports. Certain parts of the present computer program are derived following the theoretical methods advocated by Wallner, in cases for which the author judges them to be superior to the methods employed by the NOS.

TABLE OF CONTENTS

I. INTRODUCTION 1
II. INTRODUCTION TO CELESTIAL MOTIONS WHICH AFFECT THE TIDES 2
LUNAR ORBIT 4
SOLAR ORBIT 5
LUNAR ORBIT RELATED TO SOLAR ORBIT (ECLIPTIC) 5
ANOTHER METHOD OF DESCRIBING POSITION 7
III. HISTORY OF TIDE THEORIES AND PREDICTION 7
HARMONIC ANALYSIS 8
IV. HARMONIC ANALYSIS AND HARMONIC PREDICTION OF THE TIDES 10
V. ASTRONOMICAL FACTORS 15
VI. THE 37 HARMONICS USED IN TIDE PREDICTION 21
PROPERTIES OF THE 37 HARMONICS USED IN TIDE PREDICTION 22
HARMONIC CONSTITUENTS 27
VII. COMPUTER PROGRAM 65
VIII. CHECKING THE COMPUTER PROGRAM 65
COMPARISON OF PROGRAM PREDICTIONS WITH NOS TIDE TABLE 66
IX. APPLICATION 67
X. CONCLUSION 68
APPENDIX A
Program Listing: TIDES 69
APPENDIX B
STATION SHEETS 81
APPENDIX C
SAMPLE OUTPUT FROM COMPUTER PROGRAM 88
APPENDIX D
"PAUL REVERE'S MIDNIGHT RIDE" 109
REFERENCES 121
I. INTRODUCTION

The ocean tides have been associated with the motion of the moon for a long time. The history of tidal observations has been traced back at least to Posidonius (135 B.C. - $51 \mathrm{~B} . \mathrm{C}$.): "Posidonius says that the movement of the ocean observes a regular series like a heavenly body, there being a daily, monthly, and yearly movement according to the influence of the moon." 2

The moon's apparent influence upon the tides was explained in many ways in the centuries between Posidonius and Isaac Newton. It was Newton who, in his Principia, first provided a scientific basis for understanding the connection between the moon and the tides. ${ }^{3}$ In order to begin to apply his theory of gravitation to an analysis of the tides he made the simplifying assumption that the surface of the earth was entirely covered by water, that is, there were no land masses (Figure 1). To avoid the complications of tidal currents, he assumed that the earth and moon, moving with their correct relative speeds, yet moved with indefinite slowness when compared

Figure 1 to the ocean. Therefore, the ocean remained always in equilibrium and the tidal bulges remained beneath the moon. This theory is known as the Equilibrium Theory of Tides. ${ }^{4}$
II. INTRODUCTION TO CELESTIAL MOTIONS WHICH AFFECT THE TIDES As the height of the tide depends on the positions of the moon and sun it is required to describe those positions. The moon has an elliptical orbit about the earth, as does the earth about the sun. From a more convenient viewpoint, the geocentric point of view, the sun appears to orbit the earth in an elliptical orbit. A geocentric coordinate system defines the origin to be the center of the earth. For strictly positional astronomy, coordinate systems are used which project the orbital positions of bodies onto the socalled celestial sphere, which is considered to be at an infinite distance from the origin.

One such coordinate system, the equatorial coordinate system (Figure 2) ${ }^{5}$, is defined as: ...[an] astronomical coordinate system in which the fundamental reference circle is the celestial equator and the zero point is the vernal equinox, \uparrow. The coordinates are right ascension, α,

Celestial south pole
Figure 2 directions equivalent to those of terrestrial longitude and latitude, respectively. ${ }^{6}$

LUNAR ORBIT
The orbit of the moon about the earth is an ellipse having a very nearly constant eccentricity of $0.054900489{ }^{9}$ The mean distance of the moon from the earth is given by the semi-major axis $\left(384,400 \times 10^{3} \mathrm{~m}\right)^{10}$. However, since the orbit is an ellipse the moon-earth distance varies during each monthly orbit from a minimum (perigee) of about $360,000 \mathrm{~km}$ to a maximum (apogee) of about $410,000 \mathrm{~km}$. The tide generating force due to gravity depends on distance and thus on where the moon is relative to perigee.

The position of lunar perigee relative to the vernal equinox changes with time. It has long been known that the apsides have a progressive motion. ${ }^{11}$ Apsides are the two points in an orbit that lie closest to (periapsis) and farthest from (apoapsis) the center of gravitational attraction. The prefixes peri- and apo- are used in describing the apsides of specific orbits. The line of apsides is the straight line connecting the two apsides and is the major axis of an elliptical orbit. ${ }^{12}$

The eccentricity of the lunar orbit, while being very nearly constant, does alternately increase and decrease, being a maximum when the sun passes the moon's line of apsides and a minimim when the sun is at right angles to it. ${ }^{13}$ This leads to a perturbation of the lunar orbit called evection.

SOLAR ORBIT
The sun's orbit about the earth has an eccentricity of 0.01675104^{14} and a semi-major axis (mean distance) of 149,597,870 km. ${ }^{15}$ The small eccentricity of this orbit makes for a small fractional variation in sun-earth distance. However, it must be taken into account for precision in the tide calculation.

The projection on the celestial sphere of the apparent orbit of the sun, called the ecliptic, is not co-planar with the celestial equator, but is at an inclination of about 23.5° relative to it. The two points at which the orbit of a celestial body intersects a reference plane, usually the plane of the ecliptic or celestial equator, are called nodes. When the body, such as the sun, moon, or a planet, crosses the reference plane from south to north it passes through the ascending node; crossing from north to south the body passes through its descending node. The line joining these two nodes is the line of nodes. ${ }^{16}$

LUNAR ORBIT RELATED TO SOLAR ORBIT (ECLIPTIC)
The lunar orbit has an almost constant inclination, i, of 5.1453964° relative to the ecliptic. ${ }^{17}$ (Figure 4$)^{18}$ Therefore, during a draconic month (which is the time interval of mean length 27.2212 days between two successive passages of the moon through the ascending node) the moon's latitude ranges from about $+5^{\circ}$ to -5°.

Figure 4

The line of nodes of the moon's orbit has a westward motion of about 19° per year. Therefore, in approximately 18.6 years the lunar line of nodes regresses completely one time around the ecliptic. At some point in this 18.6 year cycle the ascending node passes through the vernal equinox and then the moon's obliquity, its orbital inclination relative to the celestial equator, is a maximum. So, the range of declinations of the moon is maximized, having extreme values of $+28^{\circ}\left(+23^{\circ}+5^{\circ}\right)$ and $-28^{\circ}\left(-23^{\circ}-5^{\circ}\right)$. Approximately 9.3 years later, the node passes the autumnal equinox and the range of declinations of the moon is minimized, having extreme values of $+18^{\circ}\left(+23^{\circ}-5^{\circ}\right)$ and $-18^{\circ}\left(-23^{\circ}+5^{\circ}\right)$. This variation in the obliquity of the moon's orbit introduces an
important inequality in the tidal movement which must be taken into account. ${ }^{19}$

ANOTHER METHOD OF DESCRIBING POSITION
The local hour angle of a celestial body is the angle measured westwards along the celestial equator from an observer's meridian to the hour circle of the celestial body. It is usually expressed in hours, minutes, and seconds from oh to 24 h . It is thus measured in the same units but in the opposite direction to right ascension which it can replace in the equatorial coordinate system. The angle measured eastwards along the equator from the meridian is sometimes called the meridian angle. Due to the daily apparent rotation of the celestial sphere, a star's hour angle increases continuously from oh at the meridian; after six hours the hour angle is 6 h and after 24 hours the star again crosses the meridian. ${ }^{20}$
III. HISTORY OF TIDE THEORIES AND PREDICTION

Before the 1860 s tide prediction was done with simple methods involving lunitidal intervals. The mean high-water lunitidal interval is defined as the average time interval between the transit of the moon across the meridian of the place and the following high water. ${ }^{21}$ It is an easy matter to estimate the time of moon's passage across the meridian.

Then, a crude estimate of the time of high tide can be done by setting
(time of high water) $=$ (time of lunar transit) + (lunitidal interval).

Such methods were in use in the 1700 s and 1800s. Popular almanacs of the day listed the time of lunar transit ("southing of the moon") and estimates of the time of high water. ${ }^{22}$ This crude technique was only roughly accurate, since it did not take into account effects of lunar distance (perigee and apogee), lunar declination (moon north or south of the celestial equator), solar distance (perihelion or aphelion), and solar declination (sun north or south of the celestial equator).

HARMONIC ANALYSIS
The principles of harmonic analysis of the tides were actually first developed in 1773 by Pierre Simon Laplace and were published in his Mécanique Celeste. However, no widespread practical use was made at that time. Some studies were made of high and low waters, to compare theory with observation, but there was no attempt at general tide prediction or production of tide tables. ${ }^{23}$

William Thomson (Lord Kelvin) devised a method of harmonic analysis about 1867. The theory was further developed by G. H. Darwin and J. C. Adams and took a final
form by 1883. The terminology developed then is still in use today with regard to the naming of the tide components, their theoretical forms, and the various quantities used in the analysis: node factors, equilibrium arguments, phases, and speeds. These quantities will be described in detail below for the harmonics used in the present program.

The first tide-prediction machine was constructed under the direction of William Thomson (Lord Kelvin) in 1873. This machine employed 10 harmonics and produced an analog curve of tide height versus time.

The United States Coast and Geodetic Survey built a tideprediction machine in 1882. This analog machine was designed by William Ferrel and accounted for 19 harmonics. This mechanical device had dials from which times of high and low water could be read off, but no tide curve of height versus time was produced. The Ferrel machine was used for all Tide Tables produced from 1885 through $1911 .{ }^{24}$

An improved mechanical tide-prediction machine, employing 37 harmonics, was developed by R. A. Harris and E. G. Fischer of the U. S. Coast and Geodetic Survey in 1910. This machine produced an analog graph of tide height versus time and also could give figures for high and low waters. The machine stopped when the pen reached an extreme, and an operator could manually read the time of high or low water from dials on the side of the machine. An intricate gear system was required to mechanically sum 37 harmonics, each with a different
amplitude, frequency, and phase angle. The Harris-Fischer machine produced all tide predictions in the United States for the period 1912 until 1965. ${ }^{25}$ It has been stated that, during World War II, armed guards were placed in force around the machine, since it was irreplaceable to the war effort. ${ }^{26}$ Manual summing of 37 harmonics, with pencil and paper and logarithm tables, was prohibitively time-consuming.

The first computer programs for tide prediction were developed in 1956. These codes, in machine language, were developed for the IBM 701, then for the IBM 704, and finally for the IBM 7094 mainframe computers. ${ }^{27}$ An improved computer program was developed in 1966 in the FORTRAN IV language for the IBM 7094 mainframe. ${ }^{28}$ Computer methods have been used for tide prediction in the Tide Tables from 1966 to the present.
IV. HARMONIC ANALYSIS AND HARMONIC PREDICTION OF THE TIDES In the harmonic analysis method, the complicated behavior of the actual tide, due to the complicated motions of the moon and sun, is regarded as being made up of a combination of simple tides, each of which is due to a hypothetical tide-producing body which moves at a constant speed in a circular orbit in the plane of the equator.

In Newton's equilibrium tide, the tidal bulges follow the moon. Thus, to a first approximation, the principal hypothetical body moves along the equator at a constant rate which follows the actual moon. The daily motion of the actual
moon is a combination of the rotation of the earth and the orbital motion of the moon around the earth. This results in a "tidal day" of 24 hours 50 minutes. This gives a period of 12 hours 25 minutes for the principal hypothetical body since there are two tidal bulges. ${ }^{29}$ The tide due to this hypothetical body is a simple tide having only one high water and one low water per period. The range of this tide as well as the time interval between the meridian passage of this body and high water vary from place to place and can only be determined from actual tidal measurements.

However, actual tidal measurements are a combination of all the different tides due to different hypothetical bodies. For instance, since tides are a gravitational effect there must be a hypothetical body which makes a tide reflecting the elliptical nature of the orbit of the moon, that is reflecting the varying distance between the earth and moon. This body would cause a high water when the moon is at perigee, and a low water when the moon is at apogee. When the moon is at perigee, the high water would be in phase with the high water of the tide due to the principal hypothetical body. Likewise, when the moon is at apogee the low water would be in phase with the high water of the tide due to the principal hypothetical body. Therefore the so-called elliptic hypothetical body must have a period such that in an anomalistic month, the time interval from perigee to perigee of mean length 27.55 days, it loses one complete revolution on
the principle hypothetical body.
Since 12 hours 25 minutes $=12.42$ hours, then in 27.55 days or 661 hours the principal body will complete $661 \div 12.42$ $=53.25$ revolutions. So the elliptic body must complete 52.25 revolutions in 661 hours which means its period must be 12.65 hours or 12 hours 39 minutes. ${ }^{30}$

Since these are hypothetical bodies, it is not required to calculate the tide-producing forces due to these bodies, or to explain how these bodies could maintain stable orbits, but only to consider the constituent effect upon the tide due to each hypothetical body. This is called harmonic analysis, an explanation of which is beyond the scope of this paper, but the results of which will be used for tide prediction.

For the harmonic prediction of the tide it is necessary to calculate the sum of the constituent tides. The tide height at any time is given by the superposition of 37 constituents which represent periodic variations in the relative positions of the sun, moon, and earth. ${ }^{31}$

Thus, the height of the tide at any time is represented by the equation

$$
h=Z_{0}+\sum_{n=1}^{37} f_{n} H_{n} \cos \left(V_{n}+u_{n}-\kappa_{n}\right)
$$

where

```
    \(h=h e i g h t\) of the tide at time \(t\)
\(Z_{0}=\) mean height of water level above local chart datum
\(f_{n}=\) node factor in the 18.6 year lunar nodal cycle
\(H_{n}=\) mean amplitude of the constituent \(n\)
\(V_{n}=\) argument of the constituent \(n\)
\(u_{n}=\) argument of the constituent \(n\)
\(\mathbf{k}_{n}=\) epoch (phase) of the constituent \(n\)
```

Certain quantities $\left(f_{n}, V_{n}, u_{n}\right)$ are determined astronomically and are therefore the same for every port and place in the world. These variables depend only on the position of the sun and the moon. The effect of the declination of the moon upon the tide is accounted for by the nodal factors (f_{n}) of the constituents. The factor f_{n} depends upon the longitude of the moon's ascending node and is introduced in order to reduce the mean amplitude of the constituent, H_{n}, to the true amplitude on the date used for the tide prediction. ${ }^{32} \quad V_{n}$ and u_{n} are arguments which taken together give the theoretical phase of the constituent in the equilibrium tide. $\quad V_{n}$ is an angular quantity which involves multiples of the hour angle of the mean sun, the mean longitudes of the moon and sun, and the mean longitude of the
lunar or solar perigee. u_{n} is an angle which depends upon the longitude of the moon's ascending node. ${ }^{33}$ The equations for such quantities involve only astronomical variables.

Other variables $\left(Z_{0}, H_{n}, \kappa_{n}\right)$ are port-dependent. They are determined by empirical observation of tide levels in the port. In principle, observations of the water level are made hourly for as long a period as is practicable. For the highest accuracy, measurements should extend for at least one 18.6 year nodal cycle. Within this period, all significant astronomical modifications of tides will occur. ${ }^{34}$ Therefore, nearly all possible configurations of the moon have been sampled if observations are made for the full 18.6 years. Such a situation is considered optimal for estimating the station constants for a port.

In practice, observations often are restricted to shorter time periods. There are methods for deriving estimates of the station constants (reference level Z_{0}, amplitudes H_{n}, and phases κ_{n}) from observations over time periods of: 14, 15, 29, 58, $87,105,134,163,192,221,250,279,297,326,355$, and 369 days. These periods are related to astronomical periods. For example, the shortest periods (14 or 15 days) are such that tide ranges at a new moon or a full moon, and at a perigee or an apogee will be observed.

During World War II, the station constants for Tarawa (Gilbert Islands) given in Appendix B were derived from a 134day series of observations beginning on December 1, 1943.

At other more established ports, of course, observations over the full 18.6-year period have been performed.

V. ASTRONOMICAL FACTORS

Any tidal constituent must have a frequency which is simply derived from six fundamental frequencies, which are the inverses of the following periods:

1 mean solar day
(period of the earth's rotation relative to the mean sun, an abstract reference point that follows a circular orbit around the celestial equator moving eastward at a constant speed and completes one circuit in the same time, one tropical year, as the apparent sun takes to orbit the ecliptic.) ${ }^{35}$

1 tropical month
(period of the moon's orbital motion around the earth)
1 tropical year
(period of the earth's orbital motion around the sun)
8.85 years
(period for the progression of the lunar line of apsides)
18.6 years
(period for the regression of the lunar line of nodes) 20900 years
(period for the progression of the line of apsides of the earth's orbit around the sun)

Every tide component has a characteristic frequency and
period, which must be a simple combination of these six basic frequencies.

To make this more precise, the equations will be given for the six fundamental astronomical variables. These equations are taken from Jean Meeus' Astronomical Formulae for Calculators. ${ }^{36}$

The mean longitude of the sun can be given by

$$
h=279.69668+36000.76892 T+0.0003025 T^{2},
$$

where T here represents the number of Julian centuries reckoned from 12 h ET on December 31, 1899, that is:

$$
T=\frac{J D-2415020.0}{36525},
$$

where JD is the Julian date, the number of days and fractions of a day that have elapsed since noon Greenwich Mean Time on Jan 1, 4713 BC . (The consecutive numbering of days makes the system independent of the length of month or year and the JD is thus used to calculate the frequency of occurrence or the periodicity of phenomena over long periods. The system was devised in 1582 by the French scholar Joseph Scalinger.) ${ }^{37}$

The mean longitude of the solar perigee can be given by

$$
p_{1}=h-M,
$$

where h is the mean longitude of the sun (given above) and M is the sun's mean anomaly which can be given by

$$
M=358.47583+35999.04975 T-0.00015 T^{2}-0.0000033 T^{3} .
$$

The mean longitude of the moon can be given by

$$
S=270.434164+481267.8831 T-0.001133 T^{2}+0.0000019 T^{3} .
$$

The mean longitude of the lunar perigee, derived in analogy to the mean longitude of the solar perigee, can be given by

$$
p=334.329556+4069.034 T-0.010325 T^{2}-0.0000125 T^{3} .
$$

The longitude of the lunar ascending node can be given by $N=259.183275-1934.142 T+0.002078 T^{2}+0.0000022 T^{3}$.

In addition to the primary variables listed above, several additional quantities are needed.

One of these is the obliquity of the ecliptic, ω, which can be given by

$$
\omega=23.452294-0.0130125 T-0.00000164 T^{2}+0.000000503 T^{3} .
$$

Certain intermediate angles must be defined to generate the correct node factors f_{n} and the arguments V_{n} and u_{n}. The equations are from USCGS Special Publication No. 98. Using the standard notation, we define the following angles: ν, the right ascension of the intersection, and ξ, the longitude in orbit of the intersection, are given by

$$
\begin{aligned}
& v=A X-A Y \\
& \xi=N-A X-A Y
\end{aligned}
$$

$$
A X=\tan ^{-1} \frac{\cos \frac{(\omega-i)}{2}}{\cos \frac{(\omega+i)}{2}} \tan \frac{N}{2}
$$

where

$$
\begin{aligned}
A Y & =\tan ^{-1} \frac{\sin \frac{(\omega-i)}{2}}{\sin \frac{(\omega+i)}{2}} \tan \frac{N}{2} \\
N & =\text { the mean longitude of the Iunar node }
\end{aligned}
$$

The obliquity of the lunar orbit, I, can be found from the equation

$$
\cos I=\cos i \cos \omega-\sin i \sin \omega \cos N
$$

P, the mean longitude of the lunar perigee as measured from the intersection, is simply

$$
P=p-\xi
$$

A term, ν^{\prime}, which is in the argument of the K_{1} constituent, can be given by

$$
v^{\prime}=\tan ^{-1} \frac{\sin 2 I \sin v}{\sin 2 I \cos v+0.3347},
$$

and $\nu^{\prime \prime}$, which is a term in the argument of the K_{2} constituent, can be given by

$$
v^{\prime \prime}=\frac{1}{2} \tan ^{-1} \frac{\sin ^{2} I \sin 2 v}{\sin ^{2} I \cos 2 v+0.0727}
$$

The I_{2} constituent includes two intermediate variables, an amplitude factor, R_{a}, and a term in the argument, R, which can be given by

$$
\begin{aligned}
& R_{a}=\frac{1}{\sqrt{1-12 \tan ^{2} \frac{I}{2} \cos 2 P+36 \tan ^{4} \frac{I}{2}}} \\
& R=\tan ^{-1}\left[\frac{\sin 2 P}{\left(\frac{1}{6 \tan ^{2} \frac{I}{2}}\right)-\cos 2 P}\right]
\end{aligned}
$$

The M_{1} constituent also includes two intermediate variables, an amplitude factor, Q_{a}, and a term in the argument, Q_{u}, which can be given by

$$
\begin{aligned}
& Q_{a}=\frac{1}{\sqrt{\frac{1}{4}+\frac{3 \cos I \cos 2 P}{2 \cos ^{2} \frac{I}{2}}+\frac{9 \cos ^{2} I}{4 \cos ^{4} \frac{I}{2}}}} \\
& Q_{u}=\tan ^{-1}\left[\frac{\sin 2 P}{\left(\frac{3 \cos I}{\cos ^{2} \frac{I}{2}}\right)-\cos 2 P}\right]
\end{aligned}
$$

Related to Q_{u} is another intermediate variable, Q, such that

$$
\begin{gathered}
Q_{u}+Q=P \\
\text { where } \\
Q=\tan ^{-1}\left[\frac{5 \cos I-1}{7 \cos I+1}\right] \tan P .
\end{gathered}
$$

These angles will be incorporated into the equations of the astronomical factors for the harmonics used in the computer program. The following section tabulates and describes these harmonics.
VI. THE 37 HARMONICS USED IN TIDE PREDICTION

In theory, an infinite number of terms should be retained in the cosine expansion of the tide height versus time. In practice, only a finite number are retained. For most ports, it is standard in the system developed by the U. S. Coast and Geodetic Survey to tabulate 37 harmonics.

The 37 harmonics used in the USCGS system are listed on the "Form C\&GS-444" for the port being studied. For the present study, copies of this form were obtained from the National Ocean Survey for the ports of Boston (Massachusetts), Los Angeles (California), San Diego (California), San Francisco (California), and Tarawa (Gilbert Islands).

Copies of the "Form C\&GS-444" for Boston and several other ports will be given in Appendix B.

PROPERTIES OF THE 37 HARMONICS USED IN TIDE PREDICTION
The purpose of the next section is to explain in more detail each of the 37 harmonics used in the computer tide prediction program. For each of the harmonics, eight properties will be given, as follows.

1. NUMBER

The number of the constituent will be given, as an integer from 1 to 37 . This number corresponds to the position on the rows of "Form C\&GS-444," which contains 37 rows from \#1, the M_{2} tide, to \#37, the $(\mathrm{MS})_{4}$ tide.

2. COMMON NAME

These well-known common names, which were originally assigned in the 1800s, are as given on "Form C\&GS-444." The name can indicate properties of the tide, for example the M_{2} tide is the principal lunar semidiurnal (2 high waters per day) tide. The S_{2} tide is the principal solar semidiurnal tide.
3. NAME IN SPECIAL PUBLICATION NO. 98

These names are taken from Table 2 and Table 2 a of Special Publication No. 98. In this system, tides are assigned to the A-series, the B-series, or to the "shallowwater constituent" series.
4. COMMENTS

For each of the 37 tide components, comments are provided. Definitions presented are those given in the
standard Tide and Current Glossary published by the National Ocean Survey.

Some tides are related to the moon (lunar tides), some to the sun (solar tides), some are combinations (lunisolar tides), or they can have other causes (shallow-water overtides and meteorological tides). A constituent tide can be classified based on its speed. It can be diurnal (one high water and one low water per tidal day), or semidiurnal (two high waters and two low waters per tidal day), or terdiurnal (three high waters and three low waters per day), or it can have a different period.

Comments will also indicate the physical significance of the component. For example, some tides express the effects of the varying lunar distance, as the moon moves through perigee and apogee. Other tides represent declinational effects, as the moon or sun moves north or south of the celestial equator.

Indicated in the comments will be the "shallow-water constituents." These result from the fact that when a wave moves into shallow water near shore, the wave loses its simple harmonic form. Some of these components are called "overtides" by analogy with overtones in acoustics. These components have speeds which are exact multiples of one of the elementary constituents. For example, the principal lunar and solar tides are M_{2} and S_{2}. The lunar overtides are called M_{4}, M_{6}, and M_{8}, while the solar overtides are denoted by S_{4}, S_{6}, and S_{8}. Their arguments and speeds are exact multiples of those
of the fundamental tides.
Also worth mentioning are the "meteorological" tides. These include the tides called Sa (solar annual), ssa (solar semi-annual), and S_{1} (solar diurnal), with periods corresponding to the tropical year, the half tropical year, and the solar day. These constituents appear in the cosine series expansion of the tide height versus time. However, their effects cannot be separated from the general seasonal effects of the weather, seasonal variations in temperature, barometric pressure, direction and force of the wind, and other meteorological effects. All such effects with long time-scales are allowed for in the Sa and ssa constituents. The S_{1} tide (solar diurnal) also includes some meteorological effects, particularly in places where periodic land and sea breezes occur in different directions during the day and the night.
5. NODE FACTORS

For each tide component, the node factors are taken from the equations given in the text of Special Publication No. 98. The node factors are slowly changing periodic functions which modify the amplitudes of the constituents which depend on the longitude of the moon's node. ${ }^{38}$

Note that the exact formulae from Special Publication No. 98 are used in the present work and in the computer program given here. This represents one of the significant improvements of the present program, compared to the computer
programs used by the NOS for tide prediction.
In the NOS computer programs, the node factors are evaluated only one time per year. The same node factor is used for every day of that year. The NOS programs were based on methods that pre-date the 1950 s and the computer age and much of the NOS programming retains the philosophy of "look-up tables." In the early 1900s, the node factors were tabulated for the middle of every year from 1850 to 1999. These same tables are still used in the modern NOS program.

In the program developed here, the node factors are computed from the exact formulae, 1440 times per day. Even on a personal computer this computation runs very quickly, with an entire day's tide curve produced in less than 15 seconds on a PC 386-class computer.

In summary, our program computes node factors from exact formulae and makes no use of the simplified tables in special Publication No. 98.
6. EQUILIBRIUM ARGUMENTS u

The equations for the arguments u are taken from the text of Special Publication No. 98 and from Table 2 and Table 2 a in Special Publication No. 98. Again, our program makes use of the exact formulae and makes no use of simplified look-up tables.
7. EQUILIBRIUM ARGUMENTS V

The equations for the arguments V are also taken from the text of Special Publication No. 98 and from Table 2 and Table

2a in Special Publication No. 98. Again, the exact formulae are used.
8. SPEED

The constituent speeds are taken from Table 2 and Table 2a in Special Publication No. 98.

Any tides with speeds equal or nearly equal to 15 degrees per hour are considered "diurnal" in type. Such harmonics describe tidal bulges which travel around the earth at the cited speed and cause one high water and one low water per day.

Those tides with speeds equal or nearly equal to 30 degrees per hour are considered "semidiurnal" in type. Such harmonics describe tidal bulges which travel around the earth at the cited speed and cause two high waters and two low waters per day.

Any tides with speeds equal or nearly equal to 45 degrees per hour are considered "terdiurnal" in type. Such harmonics describe tidal bulges which travel around the earth at the cited speed and cause three high waters and three low waters per day.

HARMONIC
CONSTITUENTS

Name: $\quad M_{2}$ tide

Designation in USCGS Special Publication No. 98: A_{39}

The M_{2} tide is the principal lunar semidiurnal constituent. It represents the rotation of the earth with respect to the moon.

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(1)=2 \mathrm{~T}-2 \mathrm{~s}+2 \mathrm{~h} \\
& \mathrm{u}(1)=2 \xi-2 \nu
\end{aligned}
$$

speed:

$$
a(1)=28.9841042 \circ / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(1)=\frac{\cos ^{4} \frac{I}{2}}{0.9154}
$$

Name: $\quad S_{2}$ tide

Designation in USCGS Special Publication No. 98: B_{39}

The S_{2} tide is the principal solar semidiurnal constituent. It represents the rotation of the earth with respect to the sun.

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(2)=2 \mathrm{~T} \\
& \mathrm{u}(2)=0
\end{aligned}
$$

Speed:

$$
a(2)=30.0000000 \% \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(2)=1
$$

Name: $\quad \mathrm{N}_{2}$ tide

Designation in USCGS Special Publication No. 98: A_{40}

The N_{2} tide is the larger lunar elliptic semidiurnal constituent. This constituent, along with L_{2} (\#33 of 37), modulates the amplitude and frequency of M_{2} for the effect of variation in the moon's orbital speed due to its elliptical orbit.

Equilibrium arguments:

$$
\begin{aligned}
& V(3)=2 T-3 s+2 h+p \\
& u(3)=2 \xi-2 \nu
\end{aligned}
$$

Speed:

$$
a(3)=28.4397295 \circ / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(3)=f(1)
$$

Name: $\quad \mathrm{K}_{1}$ tide

Designation in USCGS Special Publication No. 98: A_{22} and B_{22}

The K_{1} tide is the lunisolar diurnal constituent. This constituent, with O_{1} (\#6 of 37), expresses the effect of the moon's declination; they account for the diurnal inequality, which is the difference in height of the two high waters or of the two low waters of each day. In extreme cases, they can change tides which are normally semidiurnal (two high waters and two low waters each day) into diurnal tides (one high water and one low water each day). Also, K_{1}, taken together with P_{1} (\#30 of 37), expresses the effect of the sun's declination.

Equilibrium arguments:

$$
\begin{aligned}
& V(4)=T+h-90^{\circ} \\
& u(4)=-\nu^{\prime}
\end{aligned}
$$

Speed:

$$
a(4)=15.0410686 \% / \text { hour } \quad(\text { diurnal })
$$

Node factor:

$$
f(4)=\frac{C_{1}}{\left\langle C_{1}\right\rangle}=\frac{\sqrt{A^{2}+2 A B \cos v+B^{2}}}{\left(.5+.75 e^{2}\right) \sin (2 \omega)\left(1-1.5 \sin ^{2} i\right)+B}
$$

where

$$
\begin{aligned}
& A=\left(.5+.75 e^{2}\right) \sin 2 I \\
& B=\left(.5+.75 e_{1}^{2}\right) S^{\prime} \sin (2 \omega) \\
& e=0.054900489 \quad \text { (eccentricity of moon's orbit) } \\
& e_{1}=0.01675104 \quad \text { (eccentricity of sun-earth orbit) } \\
& S^{\prime}=0.4602
\end{aligned}
$$

Name: $\quad M_{4}$ tide

Designation in USCGS Special Publication No. 98: Shallow
Water Constituent

The M_{4} tide is a shallow water overtide of the principal lunar constituent M_{2}. Therefore, its speed is exactly twice as fast and its node factor is the square of the node factor of the M_{2} tide. The equilibrium arguments are also exactly twice those of the M_{2} tide.

Equilibrium arguments:

$$
\begin{aligned}
& V(5)=4 T-4 s+4 h \\
& u(5)=4 \xi-4 \nu
\end{aligned}
$$

Speed:

$$
a(5)=57.9682084 \text { o/hour }
$$

Node factor:

$$
f(5)=[f(1)]^{2}
$$

Name: $\quad O_{1}$ tide

Designation in USCGS Special Publication No. 98: A_{14}

The O_{1} tide is a lunar diurnal constituent. Along with K_{1} (\#4 of 37) it expresses the effects of the moon's declination. They account for the diurnal inequality.

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(6)=\mathrm{T}-2 \mathrm{~s}+\mathrm{h}+90^{\circ} \\
& \mathrm{u}(6)=2 \xi-\nu
\end{aligned}
$$

speed:

$$
a(6)=13.9430356 \text { \%/hour } \quad(\text { diurnal })
$$

Node factor:

$$
f(6)=\frac{\sin I \cos ^{2} \frac{I}{2}}{0.3800}
$$

Name: M_{6} tide

Designation in USCGS Special Publication No. 98: Shallow Water Constituent

The M_{6} tide is a shallow water overtide of the principal lunar constituent M_{2}. Therefore, its speed is exactly three times as fast and its node factor is the cube of the node factor of the M_{2} tide. The equilibrium arguments are also exactly three times those of the M_{2} tide.

Equilibrium arguments:

$$
\begin{aligned}
& v(7)=6 T-6 s+6 h \\
& u(7)=6 \xi-6 \nu
\end{aligned}
$$

Speed:

$$
a(7)=86.9523127 \circ / \text { hour }
$$

Node factor:

$$
f(7)=[f(1)]^{3}
$$

Name: $(\mathrm{MK})_{3}$ tide

Designation in USCGS special Publication No. 98: Shallow Water Constituent

```
The (MK)}3\mathrm{ tide is a terdiurnal compound tide formulated by
M
arguments of the }\mp@subsup{M}{2}{}\mathrm{ and }\mp@subsup{K}{1}{}\mathrm{ constituents. Note that its
node factor is the product of the node factors of }\mp@subsup{M}{2}{}\mathrm{ and
K
```

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(8)=3 T-2 \mathrm{~S}+3 \mathrm{~h}-90^{\circ} \\
& \mathrm{u}(8)=2 \xi-2 \nu-\nu^{\prime}
\end{aligned}
$$

Speed:

$$
a(8)=44.0251729 \text { o/hour } \quad \text { (terdiurnal) }
$$

Node factor:

$$
f(8)=f(1) \times f(4)
$$

Name: $\quad S_{4}$ tide

S_{4} is a shallow water overtide of the principal solar semidiurnal constituent. Its equilibrium arguments and its speed are exactly twice those of the S_{2} constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(9)=4 \mathrm{~T} \\
& u(9)=0
\end{aligned}
$$

Speed:

$$
a(9)=60.0000000 \% / \text { hour }
$$

Node factor:

$$
f(9)=1
$$

Name: $(\mathrm{MN})_{4}$ tide

Designation in USCGS Special Publication No. 98: Shallow
Water Constituent
$(\mathrm{MN})_{4}$ is a quarter diurnal compound tide originating from $M_{2}+N_{2}$.

Equilibrium arguments:

$$
\begin{aligned}
& V(10)=4 T-5 s+4 h+p \\
& u(10)=4 \xi-4 \nu
\end{aligned}
$$

Speed:

$$
a(10)=57.4238337 \circ / \text { hour }
$$

Node factor:

$$
f(10)=[f(1)]^{2}
$$

Name: $\quad \nu_{2}$ tide

Designation in USCGS Special Publication No. 98: A_{43}
ν_{2} is the larger lunar evectional constituent. With λ_{2} (\#16 of 37), μ_{2} (\#13 of 37), and (S_{2}), this constituent modulates the amplitude and frequency of the principal lunar constituent, M_{2}, to account for the variation in solar attraction of the moon. This attraction results in a slightly pear-shaped lunar ellipse and a difference in lunar orbital speed between motion toward and away from the sun. Although $\left(S_{2}\right)$ has the same speed as S_{2}, its amplitude is extremely small.

Equilibrium arguments:

$$
\begin{aligned}
& V(11)=2 T-3 s+4 h-p \\
& u(11)=2 \xi-2 \nu
\end{aligned}
$$

Speed:

$$
a(11)=28.5125831 \circ / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(11)=f(1)
$$

Name: $\quad S_{6}$ tide

$$
\text { Designation in USCGS Special Publication No. } 98: \begin{gathered}
\text { Shallow } \\
\text { Water } \\
\text { Constituent }
\end{gathered}
$$

S_{6} is a shallow water overtide of the principal solar constituent, S_{2}, thus its equilibrium arguments and its speed are three times those of S_{2}.

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(12)=6 \mathrm{~T} \\
& \mathrm{u}(12)=0
\end{aligned}
$$

Speed:

$$
a(12)=90.0000000 \% / \text { hour }
$$

Node factor:

$$
f(12)=1
$$

Name: $\quad \mu_{2}$ tide

Designation in USCGS Special Publication No. 98: A_{45}

The μ_{2} tide is a variational constituent. Along with λ_{2} and ν_{2} it modulates M_{2} for the effects of evection.

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(13)=2 T-4 s+4 h \\
& \mathrm{u}(13)=2 \xi-2 v
\end{aligned}
$$

speed:

$$
a(13)=27.96820844^{\circ} / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(13)=f(1)
$$

Name: $(2 N)_{2}$ tide

Designation in USCGS Special Publication No. 98: A_{42}

The $(2 \mathrm{~N})_{2}$ tide is a lunar elliptic semidiurnal constituent. It is a second-order constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(14)=2 T-4 S+2 h+2 p \\
& u(14)=2 \xi-2 \nu
\end{aligned}
$$

Speed:

$$
a(14)=27.8953548 \circ / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(14)=f(1)
$$

Name: (OO), tide

Designation in USCGS Special Publication No. 98: A_{31}
$(00)_{1}$ is a lunar diurnal constituent. It is a second-order constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(15)=T-2 s+h-90^{\circ} \\
& u(15)=-2 \xi-\nu
\end{aligned}
$$

speed:

$$
a(15)=16.1391017 \text { \%/hour } \quad(\text { diurnal })
$$

Node factor:

$$
f(15)=\frac{\sin I \sin ^{2} \frac{I}{2}}{0.0164}
$$

Name: $\quad \lambda_{2}$ tide

Designation in USCGS Special Publication No. 98: A_{44}

The λ_{2} tide is the smaller lunar evectional constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(16)=2 T-s+p+180^{\circ} \\
& u(16)=2 \xi-2 \nu
\end{aligned}
$$

Speed:

$$
a(16)=29.4556253 \text { o/hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(16)=f(1)
$$

Name: $\quad S_{1}$ tide

Designation in USCGS Special Publication No. 98: B_{71}

The S_{1} tide is a solar diurnal constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(17)=T \\
& u(17)=0
\end{aligned}
$$

Speed:

$$
a(17)=15.0000000 \text { o/hour } \quad(\text { diurnal })
$$

Node factor:

$$
f(17)=1
$$

Name: M_{1} tide

Designation in USCGS Special Publication No. 98: A_{16} and A_{23}

The M_{1} tide is the smaller lunar elliptic diurnal constituent. This constituent, with J_{1} (\#19 of 37), modulates the amplitude of the declinational K_{1} for the effect of the moon's elliptical orbit. A slightly slower constituent, designated $\left(M_{1}\right)$, with Q_{1} (\#26 of 37), modulates the amplitude and frequency of the declinational O_{1} for the same effect.

Equilibrium arguments:

$$
\begin{aligned}
& V(18)=T-s+h+p-90^{\circ} \\
& u(18)=-\nu-Q_{u}
\end{aligned}
$$

speed:

$$
a(18)=14.4966939 \circ / \text { hour } \quad(\text { diurnal })
$$

Node factor:

$$
f(18)=\frac{f(6)}{Q_{a}}
$$

where

$$
Q_{a}=\frac{1}{\sqrt{\frac{1}{4}+\frac{3 \cos I \cos 2 P}{2 \cos ^{2} \frac{I}{2}}+\frac{9 \cos ^{2} I}{4 \cos ^{4} \frac{I}{2}}}}
$$

$$
\text { and } \quad P=p-\xi
$$

Name: J_{1} tide

Designation in USCGS Special Publication No. 98: A_{24}

```
The }\mp@subsup{J}{1}{}\mathrm{ tide is the smaller lunar elliptic diurnal
constituent. This constituent, with M, modulates the
amplitude of the declinational }\mp@subsup{K}{1}{}\mathrm{ for the effect of the
moon's elliptical orbit.
```

Equilibrium arguments:

$$
\begin{aligned}
& V(19)=T+s+h-p-90^{\circ} \\
& u(19)=-\nu
\end{aligned}
$$

speed:

$$
a(19)=15.5854433 \text { o/hour } \quad \text { (diurnal) }
$$

Node factor:

$$
f(19)=\frac{\sin 2 I}{0.7214}
$$

Name: Mm tide

Designation in USCGS Special Publication No. 98: A_{2}

The Mm tide is the lunar monthly constituent. It expresses the effect of irregularities in the moon's rate of change of distance and speed in orbit.

Equilibrium arguments:

$$
\begin{aligned}
& V(20)=s-p \\
& u(20)=0
\end{aligned}
$$

speed:

$$
a(20)=0.5443747 \text { o/hour }
$$

Node factor:

$$
f(20)=\frac{\frac{2}{3}-\sin ^{2} I}{0.5021}
$$

Name: Ssa tide

Designation in USCGS Special Publication No. 98: B_{6}

The Ssa tide is the solar semiannual constituent. This constituent, along with the sa constituent (\#22 of 37), accounts for the nonuniform changes in the sun's declination and distance. In actuality, they mostly reflect yearly meteorological variations influencing sea level.

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(21)=2 \mathrm{~h} \\
& \mathrm{u}(21)=0
\end{aligned}
$$

Speed:

$$
a(21)=0.0821373 \circ / \text { hour }
$$

Node factor:

$$
f(21)=1
$$

Name: Sa tide

Designation in USCGS Special Publication No. 98: B_{64}

The Sa tide is the solar annual constituent. (see \#21 of 37, the Ssa constituent)

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(22)=\mathrm{h} \\
& \mathrm{u}(22)=0
\end{aligned}
$$

Speed:

$$
a(22)=0.0410686 \% / \text { hour }
$$

Node factor:

$$
f(22)=1
$$

Name: MSf tide

Designation in USCGS Special Publication No. 98: A_{5}

```
The MSf tide is the lunisolar synodic fortnightly
constituent.
```

Equilibrium arguments:

$$
\begin{aligned}
& V(23)=2 s-2 h \\
& u(23)=0
\end{aligned}
$$

Speed:

$$
a(23)=1.0158958 \circ / \text { hour }
$$

Node factor:

$$
f(23)=f(20)
$$

Name: Mf tide

Designation in USCGS Special Publication No. 98: A_{6}

The Mf tide is the lunar fortnightly constituent. This constituent expresses the effect of departure from a sinusoidal declinational motion.

Equilibrium arguments:

$$
\begin{aligned}
& V(24)=2 s \\
& u(24)=-2 \xi
\end{aligned}
$$

Speed:

$$
a(24)=1.0980331 \circ / \text { hour }
$$

Node factor:

$$
f(24)=\frac{\sin ^{2} \frac{I}{2}}{0.1578}
$$

Name: ρ_{1} tide

Designation in USCGS Special Publication No. 98: A_{18}

The ρ_{1} tide is the larger lunar evectional diurnal constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(25)=T-3 s+3 h-p+90^{\circ} \\
& u(25)=2 \xi-\nu
\end{aligned}
$$

Speed:

$$
a(25)=13.4715145 \text { \%/hour (diurnal) }
$$

Node factor:

$$
f(25)=f(6)
$$

Name: $\quad Q_{1}$ tide

Designation in USCGS Special Publication No. 98: A_{15}

The Q_{1} tide is the larger lunar elliptic diurnal constituent. (see the M_{1} constituent, \#18 of 37)

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(26)=\mathrm{T}-3 \mathrm{~s}+\mathrm{h}+\mathrm{p}+90^{\circ} \\
& \mathrm{u}(26)=2 \xi-\nu
\end{aligned}
$$

speed:

$$
a(26)=13.3986609 \circ / \text { hour } \quad(\text { diurnal })
$$

Node factor:

$$
f(26)=f(6)
$$

Name: T_{2} tide

Designation in USCGS Special Publication No. 98: B_{40}

The T_{2} tide is the larger solar elliptic constituent. This constituent, along with R_{2} (\#28 of 37), modulates the amplitude and frequency of S_{2} for the effect of variation in the earth's orbital speed due to its elliptical orbit.

Equilibrium arguments:

$$
\begin{aligned}
& V(27)=2 T-h+p_{1} \\
& u(27)=0
\end{aligned}
$$

Speed:

$$
a(27)=29.9589333 \text { \%/hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(27)=1
$$

Name: $\quad R_{2}$ tide

Designation in USCGS Special Publication No. 98: B_{41}

The R_{2} tide is the smaller solar elliptic constituent. (see the T_{2} constituent, \#27 of 37)

Equilibrium arguments:

$$
\begin{aligned}
& V(28)=2 T+h-p_{1}+180^{\circ} \\
& u(28)=0
\end{aligned}
$$

Speed:

$$
a(28)=30.0410667 \% / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(28)=1
$$

Name: (2Q) tide

Designation in USCGS Special Publication No. 98: A_{17}

The (2Q) tide is a lunar elliptic, second-order, diurnal constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(29)=T-4 s+h+2 p+90^{\circ} \\
& u(29)=2 \xi-\nu
\end{aligned}
$$

speed:

$$
a(29)=12.8542862 \text { o/hour (diurnal) }
$$

Node factor:

$$
f(29)=f(6)
$$

Name: $\quad P_{1}$ tide

Designation in USCGS special Publication No. 98: B_{14}

The P_{1} tide is a solar diurnal constituent. (see the K_{1} constituent, \#4 of 37)

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(30)=\mathrm{T}-\mathrm{h}+90^{\circ} \\
& \mathrm{u}(30)=0
\end{aligned}
$$

Speed:

$$
a(30)=14.9589314 \text { o/hour } \quad(\text { diurnal })
$$

Node factor:

$$
f(30)=1
$$

Name: $(2 S M)_{2}$ tide

Designation in USCGS Special publication No. 98: Shallow
 Water Constituent

```
The (2SM)}\mp@subsup{)}{2}{}\mathrm{ tide is a compound semidiurnal constituent. Its
origin is given by the formula 2S - M M
Note that V(31) = 2 V(2) - V(1) and
u(31) = 2 u(2) - u(1)
```

Equilibrium arguments:

$$
\begin{aligned}
& \mathrm{V}(31)=2 \mathrm{~T}+2 \mathrm{~s}-2 \mathrm{~h} \\
& \mathrm{u}(31)=-2 \xi+2 v
\end{aligned}
$$

Speed:

$$
a(31)=31.0158958 \circ / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(31)=f(1)
$$

Name: $\quad M_{3}$ tide

Designation in USCGS Special Publication No. 98: A_{82}

The M_{3} tide is a lunar terdiurnal constituent.

Equilibrium arguments:

$$
\begin{aligned}
& V(32)=3 T-3 s+3 h \\
& u(32)=3 \xi-3 \nu
\end{aligned}
$$

Speed:

$$
a(32)=43.4761563 \% / \text { hour } \quad(\text { terdiurnal })
$$

Node factor:

$$
f(32)=[f(1)]^{\frac{3}{2}}=\frac{\cos ^{6} \frac{I}{2}}{0.8758}
$$

Name: $\quad L_{2}$ tide

Designation in USCGS Special Publication No. 98: A_{41} and A_{48}

The I_{2} tide is the smaller lunar elliptic semidiurnal constituent. This constituent, along with constituent N_{2} (\#3 of 37), modulates the amplitude and frequency of M_{2} for the effect of variation in the moon's orbital speed due to its elliptical orbit.

Equilibrium arguments:

$$
\begin{aligned}
& V(33)=2 T-s+2 h-p+180^{\circ} \\
& u(33)=2 \xi-2 \nu-R
\end{aligned}
$$

Speed:

$$
a(33)=29.5284789{ }^{\circ} / \text { hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(33)=\frac{f(1)}{R_{a}}
$$

where

$$
R_{a}=\frac{1}{\sqrt{1-12 \tan ^{2} \frac{I}{2} \cos 2 P+36 \tan ^{4} \frac{I}{2}}}
$$

and

$$
P=p-\xi
$$

Name: $(2 \mathrm{MK})_{3}$ tide

Designation in USCGS Special Publication No. 98: Shallow Water Constituent

```
The (2MK)}3\mathrm{ tide is a shallow water terdiurnal compound
constituent. It is compounded according to the formula
    2M
```

Equilibrium arguments:

$$
\begin{aligned}
& V(34)=3 T-4 s+3 h+90^{\circ} \\
& u(34)=4 \xi-4 \nu+\nu^{\prime}
\end{aligned}
$$

Speed:

$$
a(34)=42.9271398 \circ / \text { hour } \quad(\text { terdiurnal })
$$

Node factor:

$$
f(34)=[f(1)]^{2} \times f(4)
$$

Name: K_{2} tide

Designation in USCGS Special Publication No. 98: A_{47} and B_{47}

The K_{2} tide is a lunisolar semidiurnal constituent. This constituent modulates the amplitude and frequency of M_{2} and S_{2} for the declinational effect of the moon and sun respectively.

Equilibrium arguments:

$$
\begin{aligned}
& V(35)=2 T+2 \mathrm{~h} \\
& u(35)=-2 \nu^{\prime \prime}
\end{aligned}
$$

Speed:

$$
a(35)=30.0821373 \text { \%/hour } \quad(\text { semidiurnal })
$$

Node factor:

$$
f(35)=\frac{C_{2}}{\left\langle C_{2}\right\rangle}=\frac{\sqrt{A^{2}+2 A B \cos 2 v+B^{2}}}{\left(.5+.75 e^{2}\right) \sin ^{2} \omega\left(1-1.5 \sin ^{2} i\right)+B}
$$

where

$$
\begin{aligned}
& A=\left(.5+.75 e^{2}\right) \sin ^{2} I \\
& B=\left(.5+.75 e_{1}^{2}\right) S^{\prime} \sin ^{2} \omega \\
& e=0.054900489 \quad(\text { eccentricity of moon's orbit) } \\
& e_{1}=0.01675104 \quad \text { (eccentricity of sun-earth orbit) } \\
& S^{\prime}=0.4602
\end{aligned}
$$

Name: $\quad M_{8}$ tide

Designation in USCGS Special Publication No. 98: Shallow Water Constituent

The M_{8} tide is a shallow water overtide of the principal lunar semidiurnal constituent, M_{2}. Its equilibrium arguments and its speed are four times those of M_{2}.

Equilibrium arguments:

$$
\begin{aligned}
& V(36)=8 T-8 S+8 h \\
& u(36)=8 \xi-8 \nu
\end{aligned}
$$

speed:

$$
a(36)=115.9364169 \circ / \text { hour }
$$

Node factor:

$$
f(36)=[f(1)]^{4}
$$

Name: (MS) 4 tide

Designation in USCGS Special Publication No. 98: Shallow Water Constituent

The (MS) ${ }_{4}$ tide is a quarter diurnal shallow water compound constituent. Its origin is given by $M_{2}+S_{2}$.

Equilibrium arguments:

$$
\begin{aligned}
& V(37)=4 T-2 s+2 h \\
& u(37)=2 \xi-2 \nu
\end{aligned}
$$

Speed:

$$
a(37)=58.9841042 \circ / \text { hour }
$$

Node factor:

$$
f(37)=f(1)
$$

VII. COMPUTER PROGRAM

The computer program used in this thesis was written in the language of Microsoft Quickbasic 4.5. The code was developed to run on IBM-PC and compatible machines.

Quickbasic 4.5 automatically compiles before running the source code.

The compiled code runs efficiently, producing an entire tide curve for a day in a few seconds on a 386 machine with math coprocessor. The tide height is calculated for every minute of the day, producing $24 \times 60=1440$ points on a day's graph.

The complete program listing is given in Appendix A.
VIII. CHECKING THE COMPUTER PROGRAM

The expected accuracy is plus or minus 5 minutes, or better, in the time of high or low water. The expected accuracy in tide height is plus or minus about 0.2 foot, formally. However, the actual tide height on any given day can differ from prediction because of the effects of wind, barometric pressure, and other meteorological variables.

The program was checked against the published tide tables of the NOS, as shown in the following table. Note that the present program evaluates astronomical factors 1440 times per day, while the NOS program evaluates certain factors (in particular, the nodal factors) only once per year, and uses
those values for the entire year. Therefore, the present program should be as accurate, or more accurate, than the NOS program. Slight differences (plus or minus a few minutes, and plus or minus a few tenths of a foot) in the following table are attributable to the different algorithms.

COMPARISON OF PROGRAM PREDICTIONS WITH NOS TIDE TABLE (for Boston, Massachusetts)

Date	Thesis Program		NOS Tide Table		
	Time	Height	Time	Height	
	hr min	feet	hr min	feet	
1/1/1992	01:59	1.233	01:59	1.2	Low Water
	08:22	10.048	08:22	10.1	High Water
	14:50	0.355	14:50	0.3	Low Water
	21:04	8.627	21:02	8.6	High Water
1/2/1992	02:50	1.265	02:50	1.2	Low Water
	09:11	10.095	09:09	10.1	High Water
	15:39	0.238	15:37	0.2	Low Water
	21:52	8.685	21:51	8.7	High Water
1/3/1992	03:37	1.222	03:36	1.2	Low Water
	09:56	10.153	09:55	10.2	High Water
	16:22	0.142	16:21	0.1	Low Water
	22:35	8.769	22:36	8.8	High Water
1/4/1992	04:21	1.141	04:20	1.1	Low Water
	10:38	10.203	10:37	10.2	High Water
	17:01	0.072	17:00	0.1	Low Water
	23:15	8.861	23:14	8.9	High Water
1/5/1992	05:02	1.055	05:01	1.0	Low Water
	11:17	10.221	11:17	10.2	High Water
	17:39	0.035	17:39	0.0	Low Water
	23:53	8.949	23:53	8.9	High Water
1/6/1992	05:43	0.990	05:43	1.0	Low Water
	11:56	10.184	11:55	10.2	High Water
	18:16	0.040	18:16	0.1	Low Water
1/7/1992	00:30	9.027	00:29	9.0	High Water
	06:23	0.963	06:23	1.0	Low Water
	12:34	10.072	12:34	10.1	High Water
	18:53	0.098	18:53	0.1	Low water

IX. APPLICATION

The motivation for the present program was to produce tide calculations for use in several other projects at SWTSU.

Results from this program have already been used to calculate the time of high and low waters in Boston Harbor on April 18 and 19, 1775. April 18 was the night on which Paul Revere began his famous ride, and April 19 was the date of the battles at Lexington and concord, which began the American Revolution.

Graphs of the Boston tides on those days and a preprint of a published article which included results from this program are included in Appendix D. The article appeared as "Paul Revere's Midnight Ride" in the April 1992 issue of Sky \& Telescope magazine. ${ }^{39}$

X. CONCLUSION

A computer program was written based on the theoretical foundation delineated in Special Publication No. 98. The program's precision was enhanced by application of the techniques of Wallner. Careful verification of tide calculations from the program indicate that tide predictions can be extended, without appreciable accumulation of error, over a time interval of 2000 years.

The use of harmonic analysis in tide prediction is an excellent example of using astronomical theory and mathematical physics to produce results of interest.

APPENDIX A

Program Listing: TIDES
Microsoft QUICKBASIC 4.5
for IBM PC (or compatible)Abvagl

```
, TIDES
- based on
, MANUAL OF HARMONIC ANALYSIS AND PREDICTION OF TIDES
, Special Publication No. }9
- Coast and Geodetic Survey
, Revised (1940) edition
    DEFDBL A-Z
    DIM AMPL(37), KAPPA(37), NAMECONSTIT$(37)
    DIM F(37), V(37), U(37)
    SCREEN 9: CLS
    PI = 4#* ATN(1#)
    TWOPI =2#* PI
100 'READ IN PORT AND STATION CONSTANTS
    READ CITYNAMES
    READ LONGITUDEDEG, LONGITUDEMIN, LONGITUDEEWS
    READ LATITUDEDEG, LATITUDEMIN, LATITUDENS$
    READ TIMEMERIDIAN, TIMEMERIDIANEW$
    READ ZO, HTMIN, HTMAX
    FOR J = 1 TO 37
    READ AX, NAMECONSTIT$(J), AMPL(J), KAPPA(J)
    KAPPA(J) = KAPPA(J) * PI / 180#
    LONGITUDE = LONGITUDEDEG + LONGITUDEMIN / }6
    IF LONGITUDEEW$ = "E" THEN LONGITUDE = -LONGITUDE
    IF TIMEMERIDIAN$ = "E" THEN TIMEMERIDIAN = -TIMEMERIDIAN
    NEXT J
* INCREASE CONSTITUENT AMPLITUDES FOR 1987 TIDE TABLES
, (EXCEPT Sa and Ssa)
    FORJ=1 TO 37
    IF J <> 21 AND J <> 22 THEN AMPL(J) = AMPL(J) * 1.024
    NEXT J
200 'INPUT Y/M/D FROM KEYBOARD
    GOSUB 10000 ' CALENDAR TO JD
    JDUTOHUT = JD
    TAPPROX = (Y-1900)/100
    DELT = (.4# + 1.2053# * TAPPROX + .5# * TAPPROX * TAPPROX) / 1440#
    JDETOHUT = JDUTOHUT + DELT
300 'ASTRONOMICAL DATA
    JDET = JDETOHUT
    T = (JDET - 2415020H)/36525H
    GOSUB 20000 'COMPUTE S, H, P, P1, N
    GOSUB 30000 'COMPUTE N, I, NU, XI, ..., Q
        CLS
        PRINT "ASTRONOMICAL DATA"
        PRINT MO; "/"; DA; "/"; IY;
        PRINT TAB(50); USING "JDUT #######.####"; JDUTOHUT
        PRINT USING "TIME T = ###.########"; T;
        PRINT TAB(50); USING "JDET #######.H###"; JDETOHUT
        PRINT USING " MEAN LONG. OF MOON (s) ###.#### "; S * 180# / PI
        PRINT USING " MEAN LONG. OF SUN (h) ###.#### '; H * 180# / PI
        PRINT USING "MEAN LONG. OF LUNAR PERIGEE (p) ###.####"; P * 180# / PI
```

```
        PRINT USING "MEAN LONG. OF SOLAR PERIGEE (p1) ###.#### "; P1 * 180# / PI
        PRINT USING " LONG. OF LUNAR ASC. NODE (N) ###.#### "; N * 180# / PI
        PRINT
        PRINT USING " OBLIQUITY OF LUNAR ORBIT (I) ###.#### "; I * 180# / PI
        PRINT USING " OBLIQUITY OF ECLIPTIC (OMEGA) ###.#### ";OMEGA * 180#/PI
        PRINT USING " INCLINATION OF LUNAR ORBIT (INCL) ###.#### ";INCL * 180#/ PI
        PRINT USING " RT. ASCENSION OF INTERSECTION (NU) ###.#### "; NU * 180# / PI
        PRINT USING " LONG. IN ORBIT OF INTERSECTION (XI) ###.#### "; XI * 180# / PI
        PRINT USING "TERM IN ARGUMENT OF K1 CONSTITUENT (NUP) ###.#### "; NUP * 180#/PI
        PRINT USING "TERM IN ARGUMENT OF K2 CONSTITUENT (NUPP) ###.#### "; NUPP * 180#/PI
        PRINT USING "MEAN LONG. LUNAR PERIGEE FROM INT. (CP) ###.#### "; CP * 180# / PI
        PRINT USING "FACTOR IN AMPL. OF L2 CONSTITUENT (RA) ###.#### "; RA
        PRINT USING "TERM IN ARGUMENT OF L2 CONSTITUENT(R) ###.####"; R * 180# / PI
        PRINT USING "FACTOR IN AMPL. OF M1 CONSTITUENT (QA) ###.####"; QA
        PRINT USING "TERM IN ARGUMENT OF M1 CONSTITUENT (QU) ###.#### "; QU * 180# / PI
        PRINT USING "TERM IN ARGUMENT OF M1 CONSTITUENT (Q) ###.#### '; Q * 180# / PI
330 LOCATE 24, 1: PRINT "HARD COPY ASTRONOMICAL DATA ? (Y/N)";
    WHILE INKEY$ < > ""; WEND
340 HCADS = INKEY$
    IF HCADS = " THEN GOTO 340
    IF HCADS = "Y" OR HCAD$ = "y" THEN
        LPRINT "ASTRONOMICAL DATA"
        LPRINT MO; "/"; DA; "/"; IY;
        LPRINT TAB(50); USING "JDUT #######.####"; JDUT0HUT
        LPRINT USING "TIME T = ###.########"; T;
        LPRINT TAB(50); USING "JDET #######.####"; JDETOHUT
        LPRINT USING " MEAN LONG. OF MOON (s) ###.#### "; S * 180# / PI
        LPRINT USING " MEAN LONG. OF SUN (h) ###.#### "; H * 180# / PI
        LPRINT USING "MEAN LONG. OF LUNAR PERIGEE (p) ###.#### "; P * 180# / PI
        LPRINT USING "MEAN LONG. OF SOLAR PERIGEE (pl) ###.#### "; P1 * 180# / PI
        LPRINT USING " LONG. OF LUNAR ASC. NODE (N) ###.#### "; N * 180# / PI
        LPRINT
        LPRINT USING" OBLIQUITY OF LUNAR ORBIT (I) ###.#### "; I * 180# / PI
        LPRINT USING " OBLIQUITY OF ECLIPTIC (OMEGA) ###.#### ";OMEGA* 180#/PI
        LPRINT USING " INCLINATION OF LUNAR ORBIT (INCL) ###.#### ";INCL * 180#/PI
        LPRINT USING " RT. ASCENSION OF INTERSECTION (NU) ###.#### ";NU * 180#/PI
        LPRINT USING " LONG. IN ORBIT OF INTERSECTION (XI) ###.#### ";XI * 180#/PI
        LPRINT USING "TERM IN ARGUMENT OF K1 CONSTITUENT (NUP) ###.#### ";NUP * 180#/PI
        LPRINT USING "TERM IN ARGUMENT OF K2 CONSTITUENT (NUPP) ###.#### ";NUPP * 180#/PI
        LPRINT USING "MEAN LONG. LUNAR PERIGEE FROM INT. (CP) ###.#### ";CP * 180# / PI
        LPRINT USING "FACTOR IN AMPL. OF L2 CONSTITUENT (RA) ###.#### ";RA
        LPRINT USING "TERM IN ARGUMENT OF L2 CONSTITUENT (R) ###.#### ";R * 180# / PI
        LPRINT USING "FACTOR IN AMPL. OF M1 CONSTITUENT (QA) ###.####";QA
        LPRINT USING "TERM IN ARGUMENT OF M1 CONSTITUENT (QU) ###.#### ";QU * 180# / PI
        LPRINT USING "TERM IN ARGUMENT OF M1 CONSTITUENT (Q) ###.#### "; Q * 180# / PI
        LPRINT CHR$(12)
        GOTO }33
    END IF
```

500 'NODE FACTORS AND ARGUMENTS
THA $=\mathrm{PI}-$ LONGITUDE * PI / 180\#
GOSUB 40000 'COMPUTE NODE FACTORS F(J), ARGUMENTS U(J)
GOSUB 50000 'COMPUTE ARGUMENTS V(J)

```
5 5 0
    CLS
    LL = 1: UL = 13
    PRINT "NODE FACTORS AND ARGUMENTS"
    PRINT CITYNAME$; " ";
    PRINT LONGITUDEDEG; CHR$(248); LONGITUDEMIN; "'"; LONGITUDEEW$; " ";
    PRINT LATITUDEDEG; CHR$(248); LATITUDEMIN; "`; LATITUDENS$
    PRINT MO; "/"; DA; "/"; IY; " Oh UT"
    PRINT USING "JDUT #######.####"; JDUTOHUT
    PRINT USING "JDET #######.####"; JDETOHUT
    PRINT USING "LONG. OF LUNAR ASC. NODE (N) ###.####"; N * 180# / PI
    PRINT
    PRINT "J CONSTIT F AMPL F*AMPL V U V+U KAPPA V+U-K"
    FOR J = LL TO UL
    PRINT USING "##"; J;
    PRINT NAMECONSTIT$(J);
    PRINT USING "###.###"; F(J);
    PRINT USING "###.###"; AMPL(J);
    PRINT USING "###.####"; F(J) * AMPL(J);
    PRINT USING "####.##"; V(J) * 180 / PI;
    PRINT USING "####.##"; U(J) * 180 / PI;
    VPLUSU = V(J)}+\textrm{U}(\textrm{J}
    VPLUSU = VPLUSU - TWOPI * INT(VPLUSU / TWOPI)
    PRINT USING "####.##"; VPLUSU * 180 / PI;
    PRINT USING "####.##"; KAPPA(J) * 180 / PI;
    VUKAPPA = V(J) +U(J)-KAPPA(J)
    VUKAPPA = VUKAPPA - TWOPI * INT(VUKAPPA / TWOPI)
    PRINT USING "####.##"; VUKAPPA * 180 / Pl
    NEXT J
    WHILE INKEY$ <> "": WEND
    PRINT : PRINT "(HIT SPACE BAR TO CONTINUE)";
    WHILE INKEY$ < > CHR$(32): WEND
    IF UL = 13 THEN LL = 14: UL = 26: GOTO 550
    IF UL = 26 THEN LL = 27: UL = 37: GOTO 550
560 LOCATE 23, 1: PRINT "HARD COPY NODE FACTORS AND ARGUMENTS? (Y/N)";
    WHILE INKEYS < > "": WEND
570 HCNFA$ = INKEY$
    IF HCNFAS = "" THEN GOTO 570
    IF HCNFAS = "Y" OR HCNFAS = " y" THEN
        LPRINT "NODE FACTORS AND ARGUMENTS"
        LPRINT CITYNAMES;" ";
        LPRINT LONGITUDEDEG; CHR$(248); LONGITUDEMIN; ""; LONGITUDEEW$; " ";
        LPRINT LATITUDEDEG; CHR$(248); LATITUDEMIN; "'"; LATITUDENS$
        LPRINT MO; "/"; DA; "/"; IY; " Oh UT"
        LPRINT USING "JDUT #######.####"; JDUTOHUT
        LPRINT USING "JDET #######.####"; JDETOHUT
        LPRINT USING "LONG. OF LUNAR ASC. NODE (N) ###.#### "; N * 180# / PI
        LPRINT
        LPRINT "J CONSTIT F AMPL F*AMPL V U V U K KAPPA V+U-K"
        FOR J = 1 TO 37
        LPRINT USING "## "; J;
        LPRINT NAMECONSTIT$(J);
            LPRINT USING "###.###"; F(J);
            LPRINT USING "###.###"; AMPL(J);
            LPRINT USING "###.###"; F(J) * AMPL(J);
            LPRINT USING "####.##"; V(J)* 180 / PI;
```

```
        LPRINT USING "####.##"; U(J) * 180 / PI;
        VPLUSU = V(J)}+\textrm{U}(\textrm{J}
        VPLUSU = VPLUSU - TWOPI * INT(VPLUSU / TWOPI)
        LPRINT USING "####.##"; VPLUSU* 180 / PI;
        LPRINT USING "####.##"; KAPPA(J) * 180 / PI;
        VUKAPPA = V(J) + U(J)-KAPPA(J)
        VUKAPPA = VUKAPPA - TWOPI *INT(VUKAPPA / TWOPI)
        LPRINT USING "####.H#"; VUKAPPA * 180 / PI
        NEXT J
        LPRINT CHR$(12)
        GOTO 560
    END IF
'MENU FOR OUTPUT OF TIDE HEIGHTS
CLS : HCHILOS = "N": HCTHVSTS = "N"
LOCATE 15, 1
PRINT "SPACEBAR.....GRAPH ONLY"
PRINT : PRINT " 1 ....GRAPH \& HARD COPY HIGH AND LOW WATERS"
PRINT : PRINT " 2 .....GRAPH \& HARD COPY TIDE HEIGHT vs. TIME"
PRINT " AND HIGH AND LOW WATERS"
PRINT : PRINT " 3 ....ANOTHER DATE"
WHILE INKEYS < > "": WEND
A \(\$=\) INKEY \(\$\)
IF A \(\$=\) CHR \(\$(32)\) THEN GOTO 700
IF A \(\$=\) " 1 " THEN HCHILO \(\$=\) " \(Y\) ": GOTO 680
IF AS = "2" THEN HCTHVSTS = "Y": GOTO 650
IF AS = "3" THEN
CLS
LOCATE 15, 1
PRINT "LAST DATE WAS: ";
PRINT MO; "/"; DA; "/"; IY
PRINT
GOTO 200
END IF
GOTO 620
PRINT : INPUT "TIME STEP (in minutes) \(=\) "; TIMESTEP
'HEADER FOR HARD COPY OUTPUT (either 1 or 2 )
LPRINT : LPRINT MO; "/"; DA; "/"; IY;
LPRINT CITYNAMES; " ";
LPRINT "(TIME MERIDIAN "; TIMEMERIDIAN; CHRS(248); TIMEMERIDIANEW\$; ")";
LPRINT" (Z0"; : LPRINT USING "\#\#.\#\#"; Z0; : LPRINT ")"
700 'DRAW GRAPH
'DRAW FRAME AND LABELS
CLS
\(X L=100: X R=400: Y T=25: Y B=215: L T=4: E X T R C O L=55\)
LINE (XL, YT)-(XR, YB), , B
FOR J \(=0\) TO 24
\(\mathrm{XP}=\mathrm{XL}+(\mathrm{XR}-\mathrm{XL}) *(\mathrm{~J} / 24)\)
LINE (XP, YB)-(XP, YB - LT): LINE (XP, YT)-(XP, YT + LT)
IF J / \(6=\operatorname{INT}(\mathrm{J} / 6) \mathrm{THEN}\)
\[
\mathrm{AX}=2^{*} \mathrm{LT}
\]
LINE (XP, YB)-(XP, YB - AX): LINE (XP, YT)-(XP, YT + AX)
\(\mathrm{XC}=80 *(\mathrm{XL} / 640)+(\mathrm{J} / 24) *(\mathrm{XR}-\mathrm{XL}) *(80 / 640)\)
\(\mathrm{YC}=25 *(\mathrm{YB} / 350)\)
LOCATE YC + 2, XC - 1
```

PRINT J; "h";
END IF
NEXT J
FOR J $=$ HTMIN TO HTMAX
$\mathrm{YP}=\mathrm{YB}-(\mathrm{YB}-\mathrm{YT}) *(\mathrm{~J}-\mathrm{HTMIN}) /($ HTMAX -HTMIN$)$
LINE (XL, YP)-(XL + LT, YP): LINE (XR, YP)-(XR - LT, YP)
$\operatorname{IF}(\mathrm{J} / 5)=\operatorname{INT}(\mathrm{J} / 5)$ THEN

$$
\mathrm{AX}=2 * \mathrm{LT}
$$

LINE (XL, YP)-(XL + AX, YP): LINE (XR, YP)-(XR - AX, YP)
$\mathrm{XC}=80 * \mathrm{XL} / 640$
$\mathrm{YC}=25 * \mathrm{YB} / 350-25 *((\mathrm{YB}-\mathrm{YT}) / 350) *(\mathrm{~J}-\mathrm{HTMIN}) /(\mathrm{HTMAX}-\mathrm{HTMIN})$
LOCATE YC + .5, XC - 5
PRINT J;
END IF
NEXT J
LOCATE 1, 24
PRINT MO; "/"; DA; "/"; IY;
LOCATE 21, 1
PRINT CITYNAMES;" ";
PRINT LONGITUDEDEG; CHR\$(248); LONGITUDEMIN; "'"; LONGITUDEEW\$; " ";
PRINT LATITUDEDEG; CHR\$(248); LATITUDEMIN; "'"; LATITUDENS\$;
PRINT " (TIME MERIDIAN "; TIMEMERIDIAN; CHR\$(248); TIMEMERIDIANEWS; ")";
PRINT " (ZO"; : PRINT USING "\#\#.\#\#"; ZO; : PRINT ")"
'HIGH AND LOW WATERS TO SCREEN
$\mathrm{AY}=.5+.5 *(\mathrm{YT}+\mathrm{YB}) * 25 / 350$
$\mathrm{AX}=\mathrm{XL} * 80 / 640$
LOCATE AY, 2 * AX
PRINT "ft";
$\mathrm{AY}=\mathrm{YT} * 25 / 350$
LOCATE AY + 2, EXTRCOL
PRINT "HIGH AND LOW WATERS";
LOCATE AY + 4, EXTRCOL
PRINT " h m ft";
1000 'TIDE HEIGHT VS. TIME
HTPP $=0: \mathrm{HTP}=0$
$\mathrm{LL}=-1: \mathrm{UL}=1441$
FLAGMAX $=$ TIMESTEP
FLAG $=$ FLAGMAX +LL
JDUTOHLOCAL = JDUTOHUT + TIMEMERIDIAN / 360
FOR MINUTEOFDAY = LL TO UL STEP 1
JDUT $=$ JDUTOHLOCAL + MINUTEOFDAY $/ 1440 H$
JDET = JDUT + DELT
$\mathrm{T}=$ (JDET $-2415020 \#$) $/ 36525 \#$
GOSUB 20000 'GIVEN: TIME T COMPUTE: S, H, P, P1, N

GOSUB 50000 'GIVEN: THA,S,H,P,P1 COMPUTE: V(J)
'COMPUTE TIDE HEIGHT
$\mathrm{HT}=\mathrm{ZO}$
FOR J = 1 TO 37
$\mathrm{HT}=\mathrm{HT}+\mathrm{F}(\mathrm{J}) * \operatorname{AMPL}(\mathrm{~J}) * \operatorname{COS}(\mathrm{~V}(\mathrm{~J})+\mathrm{U}(\mathrm{J})-\mathrm{KAPPA}(\mathrm{J}))$
NEXT J
'PLOT POINT ON GRAPH
$\mathrm{XP}=\mathrm{XL}+(\mathrm{XR}-\mathrm{XL})^{*}($ MINUTEOFDAY / 1440H)
$\mathrm{YP}=\mathrm{YB}-(\mathrm{YB}-\mathrm{YT}) *(\mathrm{HT}-\mathrm{HTMIN}) /(\mathrm{HTMAX}-\mathrm{HTMIN})$

PSET (XP, YP)
MINEXTR $=$ MINUTEOFDAY $-60 \# *$ HOUREXTR -1
$\mathrm{HTEXTR}=\mathrm{HTP}$
HR $\$=$ RIGHT\$(STR\$(HOUREXTR), 2)
IF HOUREXTR <10 THEN HRS $=" 0 "+$ RIGHTS(HRS, 1)
MN $\$=$ RIGHTS(STR\$(MINEXTR), 2)
IF MINEXTR < 10 THEN MN\$ $=" 0 "+$ RIGHT\$(MN\$, 1)
$Y=$ CSRLIN: LOCATE $Y+2$, EXTRCOL
PRINT HR\$; ":"; MN\$;
PRINT USING "\#\#\#\#.\#"; HTEXTR;
'LPRINT TIDE HEIGHT AND/OR HIGH AND L.OW WATERS
IF HCHILO $=$ " Y " OR HCTHVST $\$=$ "Y" THEN
LPRINT HR\$; ":"; MNS;
LPRINT USING "\#\#\#\#.H\#\#"; HTEXTR;
LPRINT" <-"; EXTR\$
END IF
1600 IF FLAG $=$ FLAGMAX AND HCTHVST\$ $=$ "Y" THEN
HOUR $=\operatorname{INT}(.0001 \#+($ MINUTEOFDAY $) / 60 \#)$
MIN $=$ MINUTEOFDAY $-60 \# *$ HOUR
HR\$ $=$ RIGHT\$(STR\$(HOUR), 2)
IF HOUR <10 THEN HR $\$=" 0 "+$ RIGHT\$(HR\$, 1)
MN\$ $=$ RIGHT\$(STR\$(MIN), 2)
IF MIN <10 THEN MNS $=" 0 "+\operatorname{RIGHTS}(M N \$, 1)$
LPRINT HRS; ":"; MN\$;
LPRINT USING "\#\#\#\#.\#\#\#"; HT
FLAG $=0$
END IF
1980
$\mathrm{HTPP}=\mathrm{HTP}: \mathrm{HTP}=\mathrm{HT}$
FLAG $=$ FLAG +1
1990 NEXT MINUTEOFDAY
LOCATE 23, 1, 0
WHILE INKEY\$ < > "": WEND
2000 AS = INKEY\$
IF A\$ $=\mathrm{CHR} \$(32)$ THEN GOTO 2100
GOTO 2000
2100 PRINT "Press D for another date or ESC to quit";
2200 A $\$=$ INKEY\$
IF A\$ $=$ CHR\$(27) THEN GOTO 9000
IF AS = "D" THEN
CLS
LOCATE 15, 1
PRINT "LAST DATE WAS: ";
PRINT MO; " ${ }^{\prime \prime}$; DA; " $/$ "; IY
PRINT
GOTO 200

END IF
GOTO 2200

```
9000
    END
```

10000 'CALENDAR TO JD
PRINT "INPUT CALENDAR DATE"
WHILE INKEYS <> "": WEND
PRINT : INPUT "YEAR = "; A\$
$I Y=\mathrm{VAL}(\mathrm{A} S)$
IF IY $<>$ INT(IY) THEN 10000
PRINT : INPUT "MONTH (1-12) $=$ "; A\$: MO $=\operatorname{VAL}(A \$)$
IF MO < > INT(MO) THEN 10000
PRINT : INPUT "DAY = "; A\$: DA = VAL(A\$)
IF DA $<>$ INT(DA) THEN 10000
$D=0$, ZERO HOURS, MINUTES, AND SECONDS
IF MO $=1$ OR MO $=2$ THEN $Y=I Y-1: M=M O+12$
IF MO >2 THEN $Y=I Y: M=M O$
$C=0$
IF $\mathrm{Y}<0$ THEN $\mathrm{C}=-.75$
$\mathrm{A}=\operatorname{INT}(.001+\mathrm{Y} / 100 \mathrm{H})$
$B=2 \#-A+\operatorname{INT}(.001+\mathrm{A} / 4 H)$
IF IY <1582 THEN B $=0$
IF IY $=1582$ AND MO <10 THEN $B=0$
IF IY $=1582$ AND MO $=10$ AND DA <10 THEN $B=0$
$\mathrm{AX}=365.25 \# * \mathrm{Y}+\mathrm{C}$
IF $\mathrm{AX}>=0$ THEN ID $=\operatorname{INT}(\mathrm{AX}+.01 \#)$
IF AX <0 THEN JD $=\operatorname{INT}(\mathrm{AX}-.01 \#)$
$\mathrm{JD}=\mathrm{JD}+\mathrm{INT}(30.6001 \# *(\mathrm{M}+1))$
$\mathrm{JD}=\mathrm{JD}+\mathrm{DA}+\mathrm{D}+1720994.5 \#+\mathrm{B}$
WHILE INKEY\$ < > "": WEND
RETURN
20000 'GIVEN: TIME T COMPUTE: $\mathrm{S}, \mathrm{H}, \mathrm{P}, \mathrm{P} 1, \mathrm{~N}$
(ASTRONOMICAL FACTORS)
$\mathrm{S}=270.434164 \#+481267.8831 \# * \mathrm{~T}-.001133 \# * \mathrm{~T} * \mathrm{~T}+.0000019 \# * \mathrm{~T} * \mathrm{~T} * \mathrm{~T}$
S = S * PI / 180\#
$\mathrm{S}=\mathrm{S}-\mathrm{TWOPI} * \operatorname{INT}(\mathrm{~S} / \mathrm{TWOPI})$
$\mathrm{H}=279.69668 \#+36000.76892 \# * T+.0003025 \# * T * T$
$\mathrm{H}=\mathrm{H} * \mathrm{PI} / 180 \mathrm{H}$
$\mathrm{H}=\mathrm{H}-$ TWOPI $*$ INT(H / TWOPI)
$\mathrm{P}=334.329556 \#+4069.034 \# * \mathrm{~T}-.010325 \# * \mathrm{~T} * \mathrm{~T}-.0000125 \# * \mathrm{~T} * \mathrm{~T} * \mathrm{~T}$
$\mathrm{P}=\mathrm{P} * \mathrm{PI} / 180 \#$
$\mathrm{P}=\mathrm{P}-\mathrm{TWOPI} * \operatorname{INT}(\mathrm{P} / \mathrm{TWOPI})$
$\mathrm{M}=358.47583 \#+35999.04975 \# * \mathrm{~T}-.00015 \# * \mathrm{~T} * \mathrm{~T}-.0000033 \# * \mathrm{~T} * \mathrm{~T} * \mathrm{~T}$
$\mathrm{M}=\mathrm{M} * \mathrm{PI} / 180 \#$
$\mathrm{M}=\mathrm{M}-\mathrm{TWOPI} * \operatorname{INT}(\mathrm{M} / \mathrm{TWOPI})$
$\mathrm{P}_{1}=\mathrm{H}-\mathrm{M}$
$\mathrm{Pl}=\mathrm{Pl}-\mathrm{TWOPI} * \operatorname{INT}(\mathrm{PI} / \mathrm{TWOPI})$
$\mathrm{N}=259.183275 \#-1934.142 \# * \mathrm{~T}+.002078 \# * \mathrm{~T} * \mathrm{~T}+.0000022 \# * \mathrm{~T} * \mathrm{~T} * \mathrm{~T}$
$\mathrm{N}=\mathrm{N} * \mathrm{Pl} / 180 \mathrm{H}$
$\mathrm{N}=\mathrm{N}-\mathrm{TWOPI} * \operatorname{INT}(\mathrm{~N} / \mathrm{TWOPI})$
RETURN
30000 'GIVEN: TIME T COMPUTE: $N, I, N U, X I, \ldots, Q$
(ASTRONOMICAL FACTORS)

```
    \(\mathrm{N}=259.183275 \#-1934.142 \# * \mathrm{~T}+.002078 \# * \mathrm{~T} * \mathrm{~T}+.0000022 \# * \mathrm{~T} * \mathrm{~T} * \mathrm{~T}\)
    \(\mathrm{N}=\mathrm{N} * \mathrm{PI} / 180 \mathrm{H}\)
    \(\mathrm{N}=\mathrm{N}-\mathrm{TWOPI} * \operatorname{INT}(\mathrm{~N} / \mathrm{TWOPI})\)
    OMEGA \(=23.452294 \#-.0130125 \# * \mathrm{~T}-.00000164 \# * \mathrm{~T} * \mathrm{~T}+.000000503 \# * \mathrm{~T} * \mathrm{~T} * \mathrm{~T}\)
    \(\mathrm{INCL}=5.1453964 \#\)
    OMEGA \(=\) OMEGA \(*\) PI / 180\#: \(\mathrm{INCL}=\mathrm{INCL} * \mathrm{PI} / 180 \#\)
    \(\mathrm{CI}=\operatorname{COS}(\mathrm{INCL}) * \operatorname{COS}(\mathrm{OMEGA})-\operatorname{SIN}(\mathrm{INCL}) * \operatorname{SIN}(O M E G A) * \operatorname{COS}(\mathrm{~N})\)
    \(\mathrm{SI}=\mathrm{SQR}(\mathrm{I}-\mathrm{CI} * \mathrm{Cl})\)
    \(\mathrm{I}=\mathrm{ATN}(\mathrm{SI} / \mathrm{CI})\)
    \(\mathrm{AX}=\mathrm{ATN}(\operatorname{COS}(.5 \# *(\mathrm{OMEGA}-\mathrm{INCL})) * \operatorname{TAN}(\mathrm{~N} / 2 \#) / \operatorname{COS}(.5 \# *(\mathrm{OMEGA}+\mathrm{INCL})))\)
    \(\mathrm{AY}=\operatorname{ATN}(\operatorname{SIN}(.5 \# *(\mathrm{OMEGA}-\operatorname{INCL})) * \operatorname{TAN}(\mathrm{~N} / 2 \not 2) / \operatorname{SIN}(.5 \# *(\mathrm{OMEGA}+\operatorname{INCL})))\)
    \(N U=A X-A Y\)
    \(\mathrm{XI}=\mathrm{N}-\mathrm{AX}-\mathrm{AY}\)
    IF \(\operatorname{SIN}(\mathrm{N})<0\) THEN XI \(=\mathrm{XI}-\mathrm{TWOPI}\)
    \(\operatorname{NUP}=\operatorname{ATN}((\operatorname{SIN}(2 \# * I) * \operatorname{SIN}(N U)) /((\operatorname{SIN}(2 \# * I) * \operatorname{COS}(N U))+.3347 \#))\)
    \(\mathrm{NUPP}=.5 \# * \operatorname{ATN}(\operatorname{SIN}(\mathrm{I}) \wedge 2 * \operatorname{SIN}(2 \# * N U) /(\operatorname{SIN}(\mathrm{I}) \wedge 2 * \operatorname{COS}(2 \# * N U)+.0727 \#))\)
    \(\mathrm{P}=334.329556 \#+4069.034 \# * \mathrm{~T}-.010325 \# * \mathrm{~T} * \mathrm{~T}-.0000125 \# * \mathrm{~T} * \mathrm{~T} * \mathrm{~T}\)
    \(\mathrm{P}=\mathrm{P}\) * PI / 180\#
    \(\mathrm{P}=\mathrm{P}\) - TWOPI * \(\operatorname{INT}(\mathrm{P} / \mathrm{TWOPI})\)
    \(\mathrm{CP}=\mathrm{P}-\mathrm{XI}\)
    \(\mathrm{CP}=\mathrm{CP}-\mathrm{TWOPI} * \operatorname{INT}(\mathrm{CP} / \mathrm{TWOPI})\)
    \(\mathrm{RA}=1 \# / \operatorname{SQR}\left(1 \#-12 \# * \operatorname{TAN}(\mathrm{I} / 2 \#) * \operatorname{TAN}(\mathrm{I} / 2 \#) * \operatorname{COS}(2 \# * \mathrm{CP})+36 \# * \operatorname{TAN}(\mathrm{I} / 2 \#)^{\wedge} 4\right)\)
    \(\mathrm{R}=\operatorname{ATN}\left(\operatorname{SIN}(2 \# * \operatorname{CP}) /\left(\left(1 \# /\left(6 \# * \operatorname{TAN}(1 / 2 \#)^{\wedge} 2\right)-\operatorname{COS}(2 \# * \operatorname{CP})\right)\right)\right)\)
    \(\mathrm{QA}=1 \# / \mathrm{SQR}\left(.25 \#+1.5 \# * \operatorname{Cos}(\mathrm{I})^{*} \operatorname{Cos}(2 \# * \mathrm{CP}) /\left(\operatorname{COS}(\mathrm{I} / 2 \#)^{\wedge} 2\right)+2.25 \# * \operatorname{Cos}(\mathrm{I})^{\wedge} 2 /\left(\operatorname{COS}(\mathrm{I} / 2 \pi)^{\wedge} 4\right)\right.\)
    \(\mathrm{QU}=\operatorname{ATN}\left(\mathrm{SIN}(2 \# * \mathrm{CP}) /\left(3 \# * \operatorname{COS}(\mathrm{I}) /\left(\operatorname{COS}(\mathrm{I} / 2 \not 2){ }^{\wedge} 2\right)+\operatorname{COS}(2 \# * \operatorname{CP})\right)\right)\)
    \(\mathrm{Q}=\operatorname{ATN}((5 \# * \operatorname{Cos}(\mathrm{I})-1 \#) * \operatorname{TAN}(\mathrm{CP}) /(7 \# * \operatorname{COS}(\mathrm{I})+1 \#))\)
    \(\mathrm{IF} \cos (\mathrm{CP})<0\) THEN \(\mathrm{Q}=\mathrm{Q}+\mathrm{PI}\)
    \(\mathrm{Q}=\mathrm{Q} \cdot \mathrm{TWOPI} * \operatorname{INT}(\mathrm{Q} / \mathrm{TWOPI})\)
    RETURN
40000 ' GIVEN: \(\mathrm{N}, \mathrm{I}, \mathrm{NU}, \mathrm{XI}, \ldots, \mathrm{Q}\) COMPUTE: NODE FACTORS F(J), ARGUMENTS U(J)
    \(\mathrm{F}(1)=(\operatorname{COS}(\mathrm{I} / 2 \#) /(\operatorname{COS}(\mathrm{OMEGA} / 2 \#) * \operatorname{COS}(\mathrm{INCL} / 2 \#)))^{\wedge} 4\)
    \(F(2)=1 \#\)
    \(F(3)=F(1)\)
    SPRIME \(=.4602 \#: \mathrm{ECCM}=.054900489 \#: \mathrm{ECCS}=.01675104 \#\)
    \(\mathrm{AK} 1=\left(.5 \#+.75 \# * \mathrm{ECCM}^{\wedge} 2\right)\) * \(\operatorname{SIN}(2 \#\) * I\()\)
    \(\mathrm{BK1}=\left(.5 \#+.75 \# * \operatorname{ECCS}{ }^{\wedge} 2\right) * \operatorname{SPRIME} * \operatorname{SIN}(2 \# * \mathrm{OMEGA})\)
    \(\mathrm{CK} 1=\mathrm{SQR}\left(\mathrm{AK} 1^{\wedge} 2+2 \#^{*} \mathrm{AK}^{*} * \mathrm{BK} 1 * \operatorname{COS}(\mathrm{NU})+\mathrm{BK} 1{ }^{\wedge} 2\right)\)
    AVGCK1 \(=\left(.5 \#+.75 * \operatorname{ECCM}^{\wedge} 2\right) * \operatorname{SIN}\left(2 \# * \mathrm{OMEGA}^{2} *\left(1 \#-1.5 \# * \operatorname{SIN}(\mathrm{INCL})^{\wedge} 2\right)+\mathrm{BK} 1\right.\)
    \(F(4)=\) CK1 / AVGCK1
    \(F(5)=F(1) * F(1)\)
    \(\mathrm{F}(6)=\operatorname{SIN}(\mathrm{I}) * \operatorname{COS}(\mathrm{I} / 2 \#)^{\wedge} 2 /\left(\operatorname{SIN}(\mathrm{OMEGA}) * \operatorname{COS}(\mathrm{OMEGA} / 2 \#)^{\wedge} 2 * \operatorname{COS}(\operatorname{INCL} / 2 \#)^{\wedge} 4\right)\)
    \(F(7)=F(1)^{\wedge} 3\)
    \(F(8)=F(1) * F(4)\)
    \(F(9)=1 \#\)
    \(\mathrm{F}(10)=\mathrm{F}(1) * \mathrm{~F}(1)\)
    \(F(11)=F(1)\)
    \(\mathrm{F}(12)=1 H\)
    \(F(13)=F(1)\)
    \(F(14)=F(1)\)
    \(\mathrm{F}(15)=\operatorname{SIN}(\mathrm{I}) * \operatorname{SIN}(\mathrm{I} / 2 \#)^{\wedge} 2 /\left(\operatorname{SIN}(\mathrm{OMEGA}) * \operatorname{SIN}(\mathrm{OMEGA} / 2 \#)^{\wedge} 2 * \operatorname{COS}(\mathrm{INCL} / 2)^{\wedge} 4\right)\)
    \(F(16)=F(1)\)
    \(F(17)=1 \#\)
    \(F(18)=F(6) / Q A\)
    \(\mathrm{F}(19)=\operatorname{SIN}(2 \# * \mathrm{I}) /\left(\operatorname{SIN}(2 \# * \operatorname{OMEGA}) *\left(1 \#-1.5 \# * \operatorname{SIN}(\mathrm{INCL})^{\wedge} 2\right)\right)\)
    \(\mathrm{F}(20)=\left(2 \# / 3 \#-\operatorname{SIN}(\mathrm{I})^{\wedge} 2\right) /\left(\left(2 \# / 3 \#-\operatorname{SIN}(\mathrm{OMEGA})^{\wedge} 2\right)^{*}\left(1 \#-1.5 \# * \operatorname{SIN}(\mathrm{INCL})^{\wedge} 2\right)\right)\)
```

```
F(21)=1H
F(22) = 1#
F(23) = F(20)
F(24)=SIN(I)^2/(SIN(OMEGA)^ 2* COS(INCL / 2H)^ 4)
F(25) = F(6)
F(26)=F(6)
F(27) = 1#
F(28) = 1H
F(29) = F(6)
F(30) = 1#
F(31) = F(1)
F(32) = F(1)^1.5
F(33) = F(1)/RA
F(34)=F(1) *F(1) *F(4)
SPRIME =.4602#: ECCM = .054900489#: ECCS = .01675104#
AK2 = (.5# + .75# * ECCM^ ^2)* SIN(l) ^2
BK2 = (.5# + .75#* ECCS ^ 2) * SPRIME * SIN(OMEGA) ^ 2
CK2 = SQR(AK2 ^2 + 2#* AK2 * BK2 * COS(2#*NU) + BK2^ 2)
AVGCK2 = (.5# +.75*ECCM^2) * SIN(OMEGA)^2 * (1#-1.5#* SIN(INCL) ^ 2) + BK2
F(35) = CK2 / AVGCK2
F(36) =F(1) ^ 4
F(37) = F(1)
U(1) =2#*XI-2#*NU
U(2) = 0#
U(3)=2#*XI-2#*NU
U(4) = -NUP
U(5) = 4#* XI-4#*NU
U(6) =2#*XI NU
U(7) = 6#* XI-6#*NU
U(8) = 2#*XI-2#*NU - NUP
U(9) = 0#
U(10) = 4#* XI -4#*NU
U(11) =2#* XI -2#*NU
U(12) = OH
U(13) = 2#* XI - 2#*NU
U(14) =2#*XI-2#*NU
U(15) = -2#* XI -NU
U(16) =2#*XI-2#*NU
U(17) = 0#
U(18) =-NU-QU
U(19) = -NU
U(20) = OH
U(21)=0#
U(22) = OH
U(23) = OH
U(24) =-2#* XI
U(25) =2#* XI -NU
U(26) =2#*XI-NU
U(27) = O#
U(28) = OH
U(29) =2#*XI-NU
U(30) = 0#
U(31) = -2#*XI +2#*NU
U(32) = 3H*XI-3#*NU
U(33) =2#*XI-2#*NU-R
U(34)=4#*XI-4#*NU + NUP
```

```
    U(35) =-2#* NUPP
    U(36) = 8# * XI - 8# * NU
    U(37) =2#*XI-2#*NU
    RETURN
50000 ' GIVEN: THA,S,H,P,P1 COMPUTE: ARGUMENTS V(J)
    V(1)=2#*THA - 2#*S + 2#*H
    V(2) =2#*THA
    V(3) =2#*THA - 3#*S + 2#*H + P
    V(4) = THA + H-PI/2H
    V(5) = 4#*THA - 4#*S + 4#*H
    V(6) = THA - 2H*S + H + PI/2H
    V(7) = 6#*THA - 6#*S +6#*H
    V(8) = 3#*THA - 2#*S + 3#*H-PI/2#
    V(9) = 4# * THA
    V(10) = 4#* THA - 5#*S + 4#* H + P
    V(11) = 2#*THA - 3#*S + 4#*H-P
    V(12) = 6#* THA
    V(13) = 2#*THA - 4#*S + 4H*H
    V(14) =2#*THA -4#*S + 2#*H +2#*P
    V(15) = THA + 2H*S + H-PI/2H
    V(16) =2#*THA - S + P + PI
    V(17) = THA
    V(18) = THA - S + H + P-PI /2H
    V(19) = THA + S + H-P - PI /2#
    V(20) =S - P
    V(21) =2#* H
    V(22) = H
    V(23) =2#*S-2#*H
    V(24)=2#*S
    V(25) = THA - 3#*S + 3#*H-P + PI /2#
    V(26) = THA - 3#*S + H + P + Pl / 2#
    V(27) =2#*THA - H + Pl
    V(28) =2#*THA + H-PI}+\textrm{PI
    V(29) = THA - 4#*S + H + 2#* P + PI/2#
    V(30) = THA - H + PI/2H
    V(31) = 2H*THA + 2H*S - 2H*H
    V(32) = 3#*THA-3#*S + 3#*H
    V(33) =2#*THA - S + 2#* H - P + PI
    V(34) = 3#*THA - 4#*S + 3#* H + PI/2#
    V(35) =2#*THA + 2#*H
    V(36) = 8#*THA - 8#*S + 8#*H
    V(37) = 4#*THA - 2#*S + 2#*H
    FORJ = 1 TO 37
    V(J) = V(J) - TWOPI * INT(V(J) / TWOPI)
    NEXT J
    RETURN
60000 DATA "BOSTON"
    DATA 71,3,"W"
    DATA 42,21.3,"N"
    DATA 75,"W"
    DATA 5.22,-4,14
    DATA 1,"M2 ",4.470,327.6
    DATA 2,"S2 ",.704,3.8
    DATA 3,"N2 ",.984,295.5
```

```
DATA 4,"K1 ",.480,134.8
DATA 5,"M4 ",.072,101.0
DATA 6,"O1 ",.,380,115.3
DATA 7,"M6 ",.110,219.0
DATA 8,"(MK)2 ",.019,14.4
DATA 9,"S4 ",0,0
DATA 10,"(MN)4 ",.033,90.6
DATA 11,"NU2 ",.217,304.9
DATA 12,"S6 ",0,0
DATA 13,"MU2 ",.036,258.6
DATA 14,"(2N)2 ",.133,275.2
DATA 15,"(OO)1 ",.016,154.3
DATA 16,"LMBDA2",.068,4.3
DATA 17,"S1 ",0,0
DATA 18,"M1 ",.027,125.0
DATA 19,"J1 ",.031,140.3
DATA 20,"Mm ",0,0
DATA 21,"Ssa ",.054,96.2
DATA 22,"Sa ",.085,142.6
DATA 23,"MSf ",0,0
DATA 24,"MF ",0,0
DATA 25,"Rho1 ",.014,106.9
DATA 26,"Q1 ",.067,95.4
DATA 27,"T2 ",.063,337.1
DATA 28,"R2 ",.006,3.8
DATA 29,"(2Q)1 ",.010,95.8
DATA 30,"P1 ",.153,133.1
DATA 31,"(2SM)2",0,0
DATA 32,"M3 ",0,0
DATA 33,"L2 ",.190,18.8
DATA 34,"(2MK)2",.023,354.0
DATA 35,"K2 ",.,202,5.9
DATA 36,"M8 ",.019,29.9
DATA 37,"(MS)4 ",.029,148.6
```


APPENDIX B

STATION SHEETS

BOSTON (MASSACHUSETTS)
AND
OTHER PORTS

TIDES CURREHEG STANDARD HARMONIC CONSTANTS FOR PREDICTION

Stution 844-3970 Boston MA
Lat $42 \cdot 21.3 . N$
Lonr $77^{\circ} 30.6$

Source al contantu prean of six NOS Dore rear C.S.AA feim 1979-1983.
Sa and Ss from Renxeacs moothy mSLe(1964-13)
Coupiled by GF $21 / 5 / 8$.
veriked by ... $4\{1$
$2 / 7 / 85$

IIDES STANDARD HARMONIC CONSTANTS FOR PREDICTION

Stition Los Angeles (Outher Harbar), Califarnia $\left\lvert\, \begin{aligned} & \text { Lat } 33^{\circ}-43^{\prime} \quad N \\ & \text { Lonr. } 118^{\circ}-16^{\prime} \\ & \text { Long } 119^{\circ}-2 Z \quad K\end{aligned}\right.$

Station San Dieqa, Califumaia
LaL JI. $23: 0$ N

(1, lon_{7}
 Starion San Eranciscor (Go Catiforina STATrex Let 37. 48.40. N a Lous $122: 2750 \mathrm{~K}$

-1
-1
-1
-1

 $\cdots+1 \times 1,=1$ -人ия

 $-266=$

Mex 1960-78 Z ficstosed In 1985π

\qquad

STATION TARAKA, Gilbert Zshexees
Lat. $102 R^{\circ} \times 10$

Source of constants Chafreas ot obserxictions by dinsory.

TIDES: STANDARD HARIOONIC CONSTANTS FOR PREDICTION

APPENDIX C

SAMPLE OUTPUT FROM COMPUTER PROGRAM

WITH GRAPHICAL RESULTS

In this section are some examples of the output of the computer program. The output includes graphs of the daily tide curve with a listing of high and low waters, listings of astronomical data, node factors and arguments, and times and tide heights (with high and low waters indicated).

The examples are chosen to elucidate the effects on the tide of different astronomical configurations. Also included is a one-month tide curve. In addition, the responses of different ports to the same astronomical configuration are shown.

The last illustration of this appendix is taken from the NOS publication Our Restless Tides. It shows some of the individual main semidiurnal and diurnal tidal constituents which combine to form the complete tidal prediction.

```
Output From Computer Program
PLACE: Boston Harbor
DATE: January 19, 1992
COMMENTS: Note that an augmented tide range
    [ (+11.8) - (-1.6) = 13.4 feet ] occurs
    because both a full moon and a lunar perigee
    fall on this date.
```


NODE FACTORS AND ARGUMENTS
BOSTON $71 \cdot 3{ }^{\prime} \mathrm{H} 42 \cdot 21.3{ }^{\prime} \mathrm{N}$ 1/1 1911992 Oh UT
JDUT 2448640.5000
JDET 2448640.5013
LONG. OF LUNAR ASC. NODE (N) 278.8476

J	CO	F	AMPL	F*AMPL	V	U	$\mathrm{V}+\mathrm{U}$	A	$\mathrm{V}+\mathrm{U}$
1	M2	0.994	4.577	4.552	238.23	2.11	240.34	327.60	272.
	S 2	1.000	0.721	0.721	217.90	0.00	217.90		214.10
3	N	0.994	1.008	1.002	250.52	2.11	252.63	295.50	317.13
4	K1	1.032	0.492	0.507	316.60	8.50	325.10	134.80	190.30
5	M4	0.989	0.074	0.073	116.46	4.23	120.69	101.00	19.69
6	01	1.051	0.389	0.409	281.62	-10.12	271.51	115.30	156.21
7	M6	0.983	0.113	0.111	354.69	6.34	1.03	219.00	142.03
8	(MK) 2	1.026	0.019	0.020	194.83	10.61	205.45	14.40	191.05
)	S 4	1.000	0.000	0.000	75.80	0.00	75.80	0.00	75.80
0	(MN)	0.989	0.034	0.033	128.75	4.23	132.98	90.60	42.38
1	NU2	0.994	0.222	0.221	246.27	2.11	248.38	304.90	303.48
	S6	1.000	0.000	0.000	293.70	0.00	293.70	0.00	293.70
3	MU2	0.994	0.037	0.037	258.56	2.11	260.67	258.60	2.07
4	(2N) 2	0.994	0.136	0.135	262.81	2.11	264.93	275.20	349.73
5	(OO) 1	1.173	0.016	0.019	171.58	34.57	206.16	154.30	51.86
6	LMBDA2	0.994	0.070	0.069	50.19	2.11	52.31	4.30	48.0
17	S 1	1.000	0.000	0.000	108.95	0.00	108.95	0.00	108.95
18	M1	1. 518	0.028	0.042	328.90	32.26	1.16	125.00	236.16
19	J 1	1.054	0.032	0.033	304.31	12.23	316.54	140.30	176.24
20	Mm	0.979	0.000	0.000	347.71	0.00	347.71	0.00	347.71
1	Ssa	1.000	0.054	0.054	235.31	0.00	235.31	96.20	139.11
2	Sa	1.000	0.085	0.085	297.65	0.00	297.65	142.60	155.05
3	MS f	0.979	0.000	0.000	339.67	0.00	339.67		339.67
24	Mf	1.110	0.000	0.000	214.98	22.35	237.33	0.00	237.33
5	Rhol	1.051	0.014	0.015	289.66	-10.12	279.55	106.90	172.65
6	Q1	1.051	0.069	0.072	293.92	-10.12	283.80	95.40	188.40
7	T2	1.000	0.065	0.065	203.05	0.00	203.05	33710	225.95
8	R2	1.000	0.006	0.006	52.75	0.00	52.75	3.80	48.95
9	(2Q) 1	1.051	0.010	0.011	306.21	-10.12	296.09	95.80	200.29
30	P1	1.000	0.157	0.157	261.30	0.00	261.30	133.10	128.20
31	(2SM) 2	0.994	0.000	0.000	197.57	-2.11	195.46	0.00	195.46
32	M3	0.992	0.000	0.000	177.34		180.51	0.00	180.51
33	L2	1.073	0.195	0.209	45.94	17.46	63.39	18.80	44.59
34	(2MK) 2	1.020	0.024	0.024	159.85	-4.27	155.58	354.00	04
35	K2	1.061	0.207	0.220	93.21	17.35	110.55		7
36	M8	0.978	0.019	0.019	232.92	8.46	48.34	28.90	211.47
37	(MS) 4	0.994	0.030	0.030	96.13	2.11	98.24	48.	9

```
1/19/1992 BOSTON (TIME MERIDIAN 75 *}W\mathrm{ (T) (20 5.22)
00:00 7.247
01:00 4.940
02:00 2.475
03:00 0.436
03:54 -0.293 <-- LOW WATER
04:00 -0.284
05:00 0.753
06:00
07:00
08:00
09:00
10:00
10:08
11:00
12:00
13:00
14:00
15:00
16:00
16:37
17:00
18:00
19:00
20:00
21:00
22:00
22.49
23:00 10.207
24:00 9.281
```

Output From Computer Program
PLACE: Boston Harbor
DATE: December 1, 1992
COMMENTS: Note that a decreased tide range
$[(+8.8)-(+1.8)=7.0$ feet $]$ occurs because a first-quarter moon and a lunar apogee fall near this date.

	CONSTIT	F	A	F*AMPL	V	U	$\mathrm{V}+\mathrm{U}$	KAPPA	
	M2	1.005	4.577	4.602	69.29	2.11	71.41	327.60	103
2	S2	1.000	0.721	0.721	217.90	0.00	217.90		214
3	N2	1.005	1.008	1.013	259.98	2.11	262.10	295.50	326.
4	K1	0.999	0.492	0.491	269.05	8.90	277.96	134.80	143.
5	M4	1.011	0.074	0.075	138.59	4.23	142.81	101.00	41.
6	01	0.997	0.389	0.388	160.24	-10.88	149.35	115.30	34
7	M6	1.016	0.113	0.114	207.88	6.34	214.22	219.00	355.
8	(MK) 2	1.004	0.019	0.020	338.35	11.02	349.36	14.40	334.
9	S 4	1.000	0.000	0.000	75.80	0.00	75.80	0.00	75.
0	(MN)	1.011	0.034	0.034	329.28	4.23	333.50	90.60	242
	NU2	1.005	0.222	0.223	90.00	2.11	92.11	304.90	147.
2	S 6	1.000	0.000	0.000	293.70	0.00	293.70	0.00	293.
3	MU2	1.005	0.037	0.037	280.69	2.11	282.80	258.60	24
	(2N) 2	1.005	0.136	0.137	90.67	2.11	92.78	275.20	177
15	(00) 1	0.982	0.016	0.016	197.87	36.88	234.75	154.30	80
16	LMBDA2	1.005	0.070	0.070	228.59	2.11	230.70		22
17	S1	1.000	0.000	0.000	108.95	0.00	108.95	0.00	108
18	M1	1.894	0.028	0.052	99.74	19.61	119.35	125.00	
19	J 1	1.006	0.032	0.032	78.37	13.00	91.36	40.30	
20	Mm	1.017	0.000	0.000	169.31	0.00	169.31		
21	Ssa	1.000	0.054	0.054	140.21	0.00	140.21	96.20 142	
22	Sa	1.000	0.085	0.085	250.10	0.00	250.10	142.60	
23	MSf	1.017	0.000	0.000	148.61	0.00	148.61		
24	Mf	0.990	0.000	0.000	288.82	23.88	312.70		
25	Rhol	0.997	0.014	0.014	180.94	-10.88	170.06	106.90	
26	Q1	0.997	0.069	0.068	350.93	-10.88	340.04	3	
27	T2	1.000	0.065	0.065	250.61	0. 00	50.61	337.10 3	
28	R2	1.000	0.006	0.006	5.19				
29	(2Q) 1	0.997	0.010	0.010	181.62	-10.88	8. 85		
30	P1	1.000	0.157	0.157	308.85		4.89	0	
31	(2SM) 2	1.005	0.000	0.000	6.51	-2			
32	M3	1.008	0.000	0.000	103.94	O	68.92		
3	L2	0.783	0.195	0.152	58.60	0	68.92 224		
5	(2MK) 2	1.009	0.024	0.024	229.53	17.80	224.85 15.91		
5	K2	0.976	0.207	0.202	358.11	17.80 8.45			
	M8	1.021	0.019	0.020	277.17		285.63		140
7	(MS) 4	1.005	0.030	0.030	287.19	2.11	289.31	148.60	40

$12 /$	1 / 1992	BOSTON	(TIME MERIDIAN	$75 \cdot \mathrm{~W})(\mathrm{ZO} 5.22)$
00:00	3.437			
01:00	5.148			
02:00	6.989			
03:00	8.363			
03:53	8.776	$<-$ HIGH	WATER	
04:00	8.769			
05:00	8.206			
06:00	6.977			
07:00	5.409			
08:00	3.717			
09:00	2.292			
09:53	1.803	<-- LOW	HATER	
10:00	1.810			
11:00	2.466			
12:00	3.730			
13:00	5.229			
14:00	6.910			
15:00	8.363			
16:00	8.985			
16:06	8.990	<-- HIGH	WATER	
17:00	8.592			
18:00	7.421			
19:00	5.830			
20:00	4.067			
21:00	2.376			
22:00	1.344			
22:23	1.254	<-- LOW	WATER	
23:00	1.475			
24:00	2.490			

Output From Computer Program
PLACE: Boston Harbor

DATE: January 1,1992
COMMENTS: This, the first day of 1992, was run simply to check that the program was operating correctly. Good agreement with the published NOS tide tables for 1992 was obtained.


```
NODE FACTORS AND ARGUMENTS
BOSTON 71 • 3 'W \(42 \cdot 21.3\) 'N
    \(1 / 1 / 1992\) Oh UT
JDUT 2448622.5000
JDET 2448622.5013
LONG. OF LUNAR ASC. NODE (N) 279.8008
```

	CON	F	AMPL	F*AMPL	V	,	$\mathrm{V}+\mathrm{U}$	KAPPA	$\mathrm{V}+\mathrm{U}-\mathrm{K}$
1	M2	0.994	4.577	4.549	317.10	2.11	319.20	327.60	351.60
2	S2	1.000	0.721	0.721	217.90	0.00	217.90	3.80	214.10
3	N2	0.994	1.008	1.001	204.56	2.11	206.67	295.50	271
	K1	1.034	0.492	0.508	298.86	8.45	307.32	134.80	172
	M4	0.988	0.074	0.073	274.19	4.22	278.41	101.00	177
6	01	1.054	0.389	0.410	18.23	-10.05	8.18	115.30	252
7	M6	0.982	0.113	111	231.29	6.33	237	219.00	
8	(MK) 2	1.027	0.019	0.020	255.96	10.5	266.	14.40	252.12
9	S 4	1.000	0.000	0.000	75.80	0.00	75		
10	(MN)	0.988	0.03 .4	0.033	161.65	4.22	165	0	
11	NU2	0.994	0.222	0.22	168.	2.1	170.9	304.90	226.04
12	S6	1.000	0.000	0.000	293.70	0.00	293.70	0.00	93
13	MU2	0.994	0.037	0.037	56.29	2.11	58.40	258.60	159
14	(2N) 2	0.994	0.136	0.135	92.02	2.11	94.13	275.20	178
15	(00)	1.184	0.016	0.019	39.49	34.37	73.86	154.30	279.56
16	LMBDA2	0.994	0.070	0.069	285.36	2.1	287.47	4.30	283
17	S 1	1.000	0.000	0.000	108.95	0.00	108.95	0	108
18	M1	1.485	0.028	0.041	186.32	32.45	218.78	125.00	93.78
9	J1	056	0.032	0.034	51.40	12.16	63.56	140.30	83
20	M	0.977	0.	0.000	112.54	0.00	112.54	0.00	112.54
21	Ssa	00	0	0.054	199.83	0.00	199.83	96.20	103.63
2	S	000	0	0.085	279.91	0.00	279.91	142.60	137
3	MSf	0.977	0.00	0.000	260.80	0.00	260.80	0.00	260
4	Mf	1.117	0.000	0.000	100.63	22.21	122.84	0.00	122.84
5	Rho	1.054	0.014	0.015	229.97	-10.05	219.92	106.90	113.02
6	Q1	1.054	0.069	0.072	265.69	-10.05	255.64	95.40	160
	T2	1.000	0.065	0.065	220.79	0.00	220.79	337.10	243.69
	R2	1.000	0.006	0.006	35.01	0.00	35.01	3.80	
29	(2Q) 1	1.054	0.010	0.011	153.16	-10.05	143.11	95.80	
30	P1	1.000	0.157	0.157	279.04	0.00	279.04	133.10	145
31	(2SM) 2	0.994	0.000	0.000	118.70	-2.11	116.60	0.00	16
32	M3	0.991	0.000	0.000	115.64	3.16	118.81	0.00	118
33	L2	1.092	0.195	0.212	249.63	17.07	266.70	18.80	247.9
34	(2MK) 2	1.021	0.024	0.024	335.33	-4.24	331.09	354.00	337
35	K2	1.066	0.207	0.221	57.73	17.27	75.00	5.90	69
36	M8	0.976	0.019	0.019	188.38	8.43	196.82	29.90	66
	(MS) 4	0.994	0.030	0.030	175.00	2.	177	14	8

```
    1/1/1992 BOSTON (TIME MERIDIAN 75 *}W) (20 5.22)
00:00 3.545
01:00 1.835
01:59 1.233 <-- LOW WATER
02:00 1.233
03:00 1.745
04:00 3.009
05:00 4.922
06:00 7.187
07:00 9.062
08:00 9.979
08:22 10.048<-- HIGH WATER
09:00 9.851
10:00 8.837
11:00 7.095
12:00 4.761
13:00 2.348
14:00 0.746
14:50 0.355 <-- LOW WATER
15:00 0.368
16:00 0.951
17:00 2.330
18:00 4.406
19:00 6.574
20:00 8.085
21:00 8.625
21:04 8.627 <-- HIGH WATER
22:00 8.252
23:00 7.131
24:00 5.380
```


ONE-MONTH TIDE CURVE for January 1992

at
BOSTON, MASSACHUSETTS

constituent K_{2} curye

consmuent of curye

APPENDIX D
"PAUL REVERE'S MIDNIGHT RIDE"

This appendix contains, in addition to a pre-print of a published article ${ }^{40}$, two tide curve graphs illustrating the tide of Boston Harbor on April 18, 1775 and April 19, 1775.

Paul Revere crossed the harbor in a small rowboat at about 10:30 p.m. on April 18, 1775. Note on the graph that the tide was rising at this time. The historical significance of this rising tide is discussed in the article.

Also note, on the graph for April 19, 1775, that high tide occurred at about 1:26 a.m. At this time British troops were in the final stages of their disembarkation from small boats onto the marshes on the Cambridge side of Boston Harbor. The historical significance of this high water is explained in the article.

```
    4/18/1775
    10
    ft 5
                                    HIGH AND LOW WATERS
```


10

0
5
$\mathrm{h} m \mathrm{ft}$ 80:26 11.1 86:47-8.9 $12: 58 \quad 18.3$ $19: 82-8.1$

```
BOSTON \(71^{\circ} 3^{\prime} \mathrm{W} 42^{\circ} 21.3^{\prime} \mathrm{N}\) (TIME MERIDIAN \(75^{\circ} \mathrm{W}\) ) (28 5.22)
\(4 / 19 / 1775\)
```



```
HIGH AND LOW WATERS \(h \mathrm{~m} f\)
01:10 11.2
87:33-0.9
\(13: 45 \quad 10.1\)
19:49 0.0 24 h
BOSTON \(71^{\circ} 3\) 'W \(42^{\circ} 21.3^{\prime} \mathrm{N}\) (TIME MERIDIAN \(75^{\circ} \mathrm{W}\) ) (Z8 5.22)
```

Donald W. Olson and Russell L. Doescher, Department of Physics Southwest Texas State University, San Marcos, Texas 78666

Henry Wadsworth Longfellow, in his Tales of a Wayside Inn (1863), began the landlord's tale with the stirring lines:
"Listen, my children, and you shall hear Of the midnight ride of Paul Revere, On the eighteenth of April, in Seventy-five; Hardly a man is now alive Who remembers that famous day and year."

The poem refers to the spring of 1775 , when General Thomas Gage, British commander in Boston, received information that a considerable quantity of provincial military stores were concealed in Concord, a town about 18 miles west of Boston. On the night of April 18, Gage ordered a detachment of grenadiers and light infantry to proceed to Concord and destroy the depot. Boats began ferrying the troops from Boston to Cambridge across the tidal backwash of the Charles River, leading to the famous two-lantern signal ("two if by sea") from 0ld North Church. Paul Revere himself crossed the harbor sometime between 10 p.m. and 11 p.m. in a rowboat from Boston to Charlestown, from where he began his famous midnight ride towards Lexington and Concord, It has long been recognized that Longfellow's poem has several historical errors. For example, the poem puts Revere on the wrong side of the harbor; actually, Revere was involved in sending the two-lantern signal and did not receive it. Also, the poem has Revere reach Concord; in reality, he was stopped just past Lexington, and it was another rider, Samuel Prescott, who reached Concord.

```
        Longfellow's poem contains astronomical references; in particular, he
mentions the Moon five times:
    "...he...Silently rowed to the Charlestown shore,
        Just as the moon rose over the bay..."
    "...The Somerset, British man-of-war;
        A phantom ship, with each mast and spar
        Across the moon like a prison bar..."
    "...he paused to listen and look down
        A moment on the roofs of the town,
        And the moonlight flowing over all..."
    "...A hurry of hoofs in a village street,
        A shape in the moonlight, a bulk in the dark..."
    "...He saw the gilded weathercock
        Swim in the moonlight as he passed..."
Are these astronomical references accurate, or do they contain errors like the
historical errors which Longfellow made? Specifically, was the Moon rising as
Revere crossed the river? Was there bright moonlight throughout the midnight
ride?
MOON ON APRIL 18-19, 1775
Following the methods of Jean Meeus' Astronomical Formulae for
Calculators (Willmann-Bell, 1982), we obtained the following lunar phases:
April 15, 1775 Full Moon (22h UT)
April 22, 1775 Last quarter Moon (20h UT)
In Boston on the night of April 18, 1775 , there was indeed a bright waning gibbous Moon, 87 percent sunlit. Moonrise occurred at about 9:37 p.m. Eastern Standard Time. This corresponds to \(9: 52 \mathrm{p} . \mathrm{m}\). in local mean time for the meridian of Boston ( 71 degrees 3 minutes west longitude, or 4 h 44 m west of Greenwich) and to 9:53 p.m. in apparent solar time. Apparent solar time is obtained from local mean time by making a correction called the equation of
```

time, which was +1 minute on April 18 and varied between extreme values of about -15 minutes to +16 minutes over the course of 1775 . Many astronomers are familiar with the equation of time as the difference between the time on a sundial (solar time) and the time on a clock (mean time). Regardless of how the time is expressed, it is clear that there was a bright Moon rising as Paul Revere crossed the harbor between $10 \mathrm{p} . \mathrm{m}$. and $11 \mathrm{p} . \mathrm{m}$.

We were able to locate several different colonial almanacs published in Boston for 1775 , including those of Nathaniel Low, Isaac Bickerstaff, Isaiah Thomas, and Nathaniel Ames. Moonrise on April 18 was given as $9: 45$ p.m. (Low, Ames), 9:46 p.m. (Thomas), and 9:53 p.m. (Bickerstaff). These almanacs did not use standard time, as modern almanacs do, since the United States did not adopt standard time zones until 1883. But did the colonial almanacs use local mean time or apparent solar time? From a comparison of the almanac tables to computer calculations of sunrise for all 365 days of 1775 , it became obvious that the colonial almanacs used apparent solar time.

PAUL REVERE'S ACCOUNTS

Paul Revere left three first-person accounts of the famous night. Two are in the Revere family papers; both describe how "the Moon shone bright." His third account, a letter sent in 1798 to Jeremy Belknap of the Massachusetts Historical Society, contains the following often-quoted lines:
...went to the north part of the town, where I had kept a boat; two friends rowed me across Charles River, a little to the eastward where the Somerset man-of-war lay. It was then young flood, the ship was winding, and the moon was rising.

It seems hard to understand how Paul Revere could have passed the Somerset man-of-war without being detected. If he was to the east of the ship, why didn't the British see his rowboat silhouetted against the rising Moon?

The computer simulation provides the answer. The Moon that night had a southern declination (-18 degrees) which, combined with Boston's northern latitude (42 degrees 22 minutes north), caused the Moon to rise considerably south of east. When Revere crossed the harbor, roughly 45 minutes after moonrise, the Moon was low (altitude 6 degrees) in the southeast (azimuth 121 degrees). As shown in the accompanying map, a sentinel on the Somerset would have seen the Moon rising over the city of Boston, not over the open water of the bay, and therefore he would not have seen the rowboat against the rising Moon. This calculation helps to explain why Revere was successful in reaching his horse on the opposite shore!

TIDES
In addition to Revere's reference to a "young flood" as he was crossing the harbor, Longfellow's poem mentions tides three times, including a description of the ferrying of the soldiers on "the rising tide, like a bridge of boats." We can check these statements with computer programs based on harmonic analysis of the tides. Our program (S\&T: November, 1987, page 526) calculates the tide curve as the sum of 37 periodic constituents, with amplitudes and phases tabulated as the "station constants" for the port. Boston Harbor: Tide calculations (times are apparent solar time)

April 18, 1775 1:14 p.m. high water
April 18, 1775 7:19 p.m. low water
April 19, 1775 1:26 a.m. high water
So, Revere's letter and Longfellow's poem are again both correct - there was a rising tide between 10 p.m. and 11 p.m. as Revere passed the Somerset.

> Contemporary accounts also recorded the effects of the following high water which occurred early on April 19 and flooded the marshes on the Cambridge side of the river. A report by an anonymous British officer, recorded by Lieutenant Frederick Mackenzie of the Royal Welch Fusiliers, describes the events:
> The Grenadier \& Light Companies of the Regiments in Boston were ordered to assemble on the Beach near the Magazine at lo o'Clock last night...embarked, and landed at Phipps's farm. The boats then returned for the remainder, and it was near One oClock in the Morning before the whole were landed on the opposite shore...it was 2 oclock before they marched off. Their march across the marshes into the high road, was hasty and fatiguing, and they were obliged to wade, halfway up their thighs, through two Inlets, the tide being by that time, up. This should have been avoided if possible, as the troops had a long march to perform....

Lieutenant William Sutherland of the 38th Regiment described how he:
...embarked at the Magazine Guard \& landed near Cambridge....here we remained for two long hours, partly waiting for the rest of the Detachment \& for provisions, About 2 in the Morning on the 19 th we marched...the Tide being in we were up to our Middles before we got into the road....

Colonial almanacs gave the time of morning high water, or "full sea", for April 19 as 2:34 a.m. (Low), 2:36 a.m. (Thomas), and 2:39 a.m. (Bickerstaff, Ames). All of these are somewhat later than the $1: 26$ a.m. computed here for that high water. Part of this difference could be explained by changes in the shoreline and the depths in Boston harbor through dredging and landfill.

However, there is reason to believe that our computed times may be fairly accurate, even when projected back to 1775 , since we can show that a certain time constant for the port has not changed much in the last two centuries.

The "high water lunitidal interval" is defined as the time interval between the Moon's transit across the meridian of the place and the following high water. A related quantity, called "High Water Full \& Change," is the average value of the high water lunitidal interval on the days of full Moon or
new Moon ("change"). We have located two series of navigation guides from the late 1700 s ; both state that HWF\&C equals 11 h 30 m for Boston harbor. For comparison, we computed the times of high waters and then subtracted the times of the preceding lunar transits on the days of the 25 new and full Moons in 1992; the average difference, or $H W F \& C$, is 11 h 24 m in 1992, in good agreement with the colonial value. This indicates that the harbor has not changed significantly, at least insofar as the times of high waters are concerned. For the time of the high water on April 19, the colonial almanacs may be in error because of the relatively crude methods available then for tide prediction. The makers of colonial almanacs generally did not reveal their methods, but certain clues can be found in their tide tables. For example, on the full Moon day of April 15, 1775, our computer program gives a high water at 11:06 a.m., exactly the time listed in Nathaniel Low's almanac. However, Low gives the times of high waters as 8:06 on April 11th, 8:51 on the 12 th, 9:36 on the 13 th, $10: 21$ on the 14 th, $11: 06$ on the 15 th (ful1 Moon), 11:58 on the 16 th, $12: 50$ on the 17 th, $1: 42$ on the 18 th, and $2: 34$ on the 19 th. Inspection of the differences in these numbers shows that Low is simply giving the tides later by 45 minutes per day before the 15 th and by 52 minutes per day after the 15 th. Similar patterns are seen in his almanac throughout 1775 , with the sudden discontinuities in the time difference generally occurring on the days of new Moon, first quarter, full Moon, and last quarter. This suggests that Low computed tide times in detail on only a few days each month, and he obtained the other times by simple "uniform differencing," equivalent to linear interpolation. The large errors possible in such crude methods were noted in 1802 in the first edition of The New American Practical Navigator by the famous navigation expert Nathaniel Bowditch, who criticized rules "in
which the tide is supposed to be uniformly retarded every day." Bowditch gave improved rules, but more accurate harmonic methods were not generally applied to ocean tides until the 1860 s.

RELATION TO APRIL 18, 1992
On April 18, 1775, the Moon rose at about 9:37 p.m. EST, and 45 minutes later it stood 6 degrees above the southeastern horizon at azimuth 121 degrees. The Moon was in the waning gibbous phase and 87 percent sunlit.

On April 18, 1992, the Moon will rise at about 9:38 p.m. EDT, and 45 minutes later it will stand 6 degrees above the southeastern horizon at azimuth 128 degrees. The Moon will be in the waning gibbous phase and 96 percent sunlit. While the Moon in 1992 is somewhat closer to full, the expected difference in rise time is almost exactly cancelled by our use of daylight time.

If the sky is clear, the bright moonlight in 1992 will angle across Boston harbor, shine down the country roads, and illuminate Lexington Green and Concord Bridge, just as it did over two centuries ago, on the night before the first day of the American Revolution.

This page for April is from "An Astronomical Diary; Or, Almanack For the Year of Christian Era, 1775," written by Nathaniel Low and published in Boston by John Kneeland.

Paul Revere passed east of the H.M.S. Somerset shortly after monrise on April 18, 1775. However, sentinels on the man-of-war would not have seen the rowboat silhouetted against the rising Moon, since the Moon rose considerably south of east that night.

REFERENCES

1. Paul Schureman, Manual of Harmonic Analysis and Prediction of Tides, Special Publication No. 98, Revised (1940) Edition (Washington, D.C. United States Government Printing Office, 1958, reprinted 1971)
2. George Howard Darwin, The Tides and Kindred Phenomena in the Solar System (San Francisco, W.H. Freeman and Co., 1962) p. 81
3. Harry Aaron Marmer, The Tide (New York, D. Appleton and Co., 1926) p. 20
4. Darwin, Tides and Kindred Phenomena, pp. 149 - 150
5. John M.A. Danby, Fundamentals of Celestial Mechanics (New York, The Macmillan Company, 1962), p. 9
6. Valerie Illingworth, editor, The Facts on File Dictionary of Astronomy (New York, Facts on File, Inc., 1979) p. 108
7. Danby, Celestial Mechanics, p. 10
8. Illingworth, Facts on File Dictionary, p. 98
9. The Astronomical Almanac for the Year 1986 (Washington, D.C., United States Naval Observatory, U.S. Government Printing Office, 1985) p. F2
10. The American Ephemeris and Nautical Almanac for the Year 1978 (Washington,D.C., U.S. Government Printing Office, 1976) p. 531
11. Isaac Newton, A Treatise of the System of the World, translated by I. Bernard Cohen (London, Dawsons of Pall Mall, 1969) p. 54
12. Illingworth, Facts on File Dictionary, p. 19
13. Paul Schureman (revised by Steacy D. Hicks), Tide and Current Glossary (Washington,D.C., U.S. Government Printing Office, 1975) p. 7
14. The American Ephemeris and Nautical Almanac for the Year 1979 (Washington,D.C., U.S. Government Printing Office, 1977) p. 540
15. Roy L. Bishop, Observer's Handbook 1992 (Canada, University of Toronto Press, 1991) p. 14
16. Illingworth, Facts on File Dictionary, p. 221
17. The Astronomical Almanac, 1986, p. D2
18. Schureman, Manual of Harmonic Analysis, p. 6
19. Ibid.
20. Illingworth, Facts on File Dictionary, p. 153
21. Schureman, Tide and Current Glossary, p. 12
22. Donald W. Olson and Russell L. Doescher, "Lincoln and the Almanac Trial", Sky \& Telescope 80 (No. 2), p. 184 (1990)
23. Fergus J. Wood, The Strategic Role of Perigean Spring Tides (Washington, D.C., U.S. Department of Commerce, National Oceanic and Atmospheric Administration, 1976) p. 111
24. Schureman, Tide and Current Glossary, p. 7
25. Ibid., p. 9
26. Donald W. Olson, 1992, private communication
27. D.L. Harris, N.A. Pore, and R.A. Cummings, "Tide and Tidal Current Prediction by High Speed Digital Computer," International Hydrographic Review, Vol. XIII, No. 1, Jan. 1965, pp. 95-103
28. N.A. Pore and R.A. Cummings, A FORTRAN Program for the Calculation of Hourly Values of Astronomical Tide and Time and Height of High and Low Water, Weather Bureau Technical Memorandum TDL-6 (Silver Spring,MD, Systems Development Office, 1975) p. 1
29. Marmer, The Tide, p. 181
30. Ibid., p. 183
31. Schureman, Tide and Current Glossary, p. 3
32. Schureman, Manual of Harmonic Analysis, p. 124
33. Schureman, Tide and current Glossary, p. 7
34. Our Restless Tides, (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, n.d.) n.p.
35. Illingworth, Facts on File Dictionary, p. 199
36. Jean Meeus, Astronomic Formulae for Calculators, Third edition (Richmond,Virginia, Willmann-Bell,Inc., 1985)
37. Illingworth, Facts on File Dictionary, p. 169
38. Schureman, Manual of Harmonic Analysis, p. 25
39. Donald W. Olson and Russell L. Doescher, "Paul Revere's Midnight Ride", Sky \& Telescope 83 (No. 4), p. 437 (1992)
40. Ibid.
