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ABSTRACT

This paper covers the modeling of homogenous liquids adhering to a uniform

solid surface. It is divided into two separate problems: the sessile drop on a

horizontal plane, and the liquid bridge between two horizontal planes held apart

at a fixed distance. We prove a volume formula for both problems. We use

numerical methods to solve the differential equations that describe the surface of

the liquid. We use a model to compute velocity along the contact line, which is

the rate at which the liquid expands along the solid surface. We study the issue

of the receding and advancing along the plate or plates.

x



I. THE STATIC SESSILE DROP
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Figure I.1: A sessile drop with plane P0 and an interfacial boundary Λ.

We consider a drop of liquid on a solid plate. Wente [10] showed that equilibrium

drop shape is symmetric about a vertical axis. Thus, the sessile drop shape can

be described by a radius r and a height u. It has a radius r measured from the

center, where r(0) = 0 at the height of the sessile drop. At distance r, the liquid

forms a contact angle γ between the solid plate and a surrounding fluid, which is

typically air. The curve that forms the interfacial boundary between the sessile

drop and surrounding fluid is parameterized by arc length s. Our construction of

the sessile drop has the following initial conditions:

r(0) = 0 (I.1)

u(0) = u0 (I.2)

ψ(0) = 0 (I.3)

The static sessile drop surface is described by solutions to the following system of
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differential equations with the above initial conditions:

dr

ds
= cosψ, (I.4)

du

ds
= sinψ, (I.5)

dψ

ds
= κu− sinψ

r
+ λ, (I.6)

where u is the height, r is the radius, ψ is the angle the liquid makes with the

horizontal, s is the arc length, λ is a Lagrange multiplier, and κ is a physical

constant of the problem. Here, κ = ρg/σ, and ρ is the density of the liquid, g is a

gravitational constant, and σ is the surface tension of the liquid and air interface.

In the following theorem we prove by construction that the solutions curves to

(I.4) - (I.6) form an inverted sessile drop when we let λ = u(`) in below.

THEOREM 1. Let (r, u) be the generating curve of a sessile drop’s liquid-air

interfacial boundary. Let u = u(s) and r = r(s), where s is the arc length of the

curve and λ is the Lagrange multiplier, then λ = u(`).

Proof. Let (r, u) be such a curve, seen in Fig I.2. Reflect (r, u) over the

horizontal axis, the r-axis. This produces curve (r,−u), seen in Fig I.3. Then, in

order to translate the generating curve vertically so that −u(`) = 0 we add

constant λ to −u(s) in (r,−u), which gives the curve (r,−u+ λ) (Fig I.4). Here

−u(`) + λ = 0 (I.7)

u(`) = λ (I.8)

The figures below show the generating curve and how its reflected over the

r − axis and translated vertically.

2
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Figure I.2: A generating curve (r, u), where u(`) is marked.
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Figure I.3: A generating curve (r, u) and its reflection over the r-axis (r,−u).
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Figure I.4: Generating curve (r, u), its reflection (r,−u), and the vertical translation
(r,−u+ λ).

Volume of a sessile drop

The volume of the sessile drop is derived below using the initial conditions and

definitions given earlier in the chapter.

THEOREM 2. The volume of a sessile drop is

V = πr2u− 2πr

κ
sinψ +

πλr2

κ
, (I.9)

where (r, u) is the drop/air interfacial boundary with angle ψ.

Proof. We first integrate the volume equation by parts

V =

∫ H

0

πr2du

= πr2u− 2π

∫ r

0

ρu dρ.

Repeated integration by parts gives that

∫ r

0

ρu dρ. = ρ sinψ
∣∣∣r
0
− λ

∫ r

0

ρu dρ.
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Then we differentiate ρ sinψ with respect to arc length s:

d

ds
(ρ sinψ) =

dρ

ds
sinψ + ρ cosψ

dψ

ds

=
dρ

ds
sinψ + ρ cosψ

(
κu− sinψ

r
+ λ

)
=

dρ

ds
sinψ + ρ cosψκu− ρ cosψ

sinψ

r
+ ρ cosψλ

= ρ cosψκu+ ρ cosψλ.

The path along the generating curve is monotone, and we integrate with respect

to s on both sides and get the result

∫ `

0

d

ds
(ρ sinψ) ds =

∫ `

0

(κρu cosψ + λρ cosψ) ds

ρ sinψ = κ

∫ `

0

ρu cosψ ds+ λ

∫ `

0

ρ cosψ ds,

where ` = smax. Recall cosψ = dρ/ ds, then

ρ sinψ = κ

∫ `

0

ρu
dρ

ds
ds + λ

∫ `

0

ρ
dρ

ds
ds

= κ

∫ r

0

ρu dρ + λ

∫ r

0

ρ dρ.

Then

κ

∫ r

0

ρu dρ = ρ sinψ − λ
∫ r

0

ρ dρ∫ r

0

ρu dρ =
1

κ

(
ρ sinψ − λ

∫ r

0

ρ dρ

)
=
r sinψ − λr2/2

κ

=
2r sinψ − λr2

2κ
.

5



∴ The volume of a sessile drop is

V = πr2u− 2π

∫ r

0

ρu dρ

= πr2u− 2π

(
2r sinψ − λr2

2κ

)
= πr2u− 2πr

κ
sinψ +

πλr2

κ
.

Numerical Solver

In Equilibrium Capillary Surfaces, Finn [3] holds that volume V is a continuously

differentiable function of energy u0 and proves that there is a unique solution for

a given contact angle γ. The solution to the sessile drop problem is divided into

two approaches. The first approach is when given a fixed volume V0 and contact

angle γ, then one can solve for radius r. Alternatively, when given fixed volume

V0 and fixed radius r, then we calculate the contact angle ψ(`).

In this section we will established that the solution exists for a fixed volume

liquid drop, called a static sessile drop. We will later demonstrate its robustness,

with solutions for any volume, assuming that the radius and contact angle are

selected appropriately. Note that Finn’s theorem guarantees a unique contact

angle 0 < γ < π for some V > 0. For the sessile drop of variable volume over

time, we have similar cases at each time step. Below, we discuss the numerical

methods developed for generating the interfacial boundaries of the sessile drop

and the solutions for a given volume.

We use a shooting method to find solutions to the three differential equations

(I.4) - (I.6). This is a two-point boundary problem with boundary conditions

ψ(0) = γ and ψ(`) = γ. We implement two nested algortihms, an inner

implementation of an adaptive Runge-Kutta-Felberg method and an outer

implention of a multidimensianal root finder as used by Colter and Treinen in

Cylinderical Liquid Bridges [2].

6



Values for either γ or r, along with V and u0 are prescribed for the desired

solution. The initial conditions for the boudnary value problem are given by (I.1)

- (I.3) and our terminating conditions are given below:

r(`) = r (I.10)

u(`) = λ (I.11)

ψ(`) = γ (I.12)

where the ending arc length ` is chosen to terminate at u(`) = λ with the

tangent to the curve forming the angle γ with the solid surface.

The boundary value problem is also solved using a shooting method used by

Colter and Treinen [2]. The solver uses the adaptive Runge-Kutta-Felberg

method for 4th and 5th order, implemented by MATLAB as ODE45. Tolerance

was set to 1e− 8. To begin to solve the problem, reasonable guesses are given for

the free parameters: the radius of our curve r, the arc length `, and the Lagrange

multiplier λ.

We begin by guessing suitable values for unknowns guess = 〈`, uo, λ〉. The guess

parameters are adjusted in the multidimensional root finder in MATLAB called

FSOLVE. We set the tolerances for this portion to 1e− 6. This generates

solutions to our system of differential equations (I.4) - (I.6) with new values of

the parameters r, `, and λ at each step, until (I.10) - (I.12) are satisfied to the

prescribed tolerance. These values are used to generate candidates satisfying the

ODE. Then the solutions to (I.4) - (I.6) with these values of the free parameters

are used to evaluate the equations below:

V = V0, (I.13)

ψ(`) = γ, (I.14)

u0 = λ, (I.15)

7



where V0 is a given volume, and γ is the contact angle for a particular system.

FSOLVE adjusts the parameters r, `, and λ. At each step, new solutions are

generated, which are then evaluated by ODE45. Once the residuals (I.13) - (I.15)

are solved to within our tolerance, then the static problem is solved. We consider

the problem solved when our ending conditions are satisfied.

Note: Capillary_ODE_Solver is our solver. ResFun is our rootfinder, where Res

means residuals.

Sessile Shapes and dependence on γ

There should exist a sessile drop with some γ ∈ (0, π) for every volume V > 0 [3].

Below in Fig. I.5 - Fig. I.7, we see six sessile drops ranging from γ slightly above

zero to γ ≈ π. They are all of the same volume. Uniqueness demands that for a

given prescribed contact angle γ, there should be a unique radius. We see that

there is a solution for the full range of possible angles, and how the radius

changes with γ input as expected.

8
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Figure I.5: Sessile drop examples with volume γ ≈ 0 and γ = 0.19635.
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II. THE DYNAMIC SESSILE DROP

We may allow that the contact angle γ vary over time. For the dynamic problem

we calculate ψ(u, t). In doing so we may or may not find an equilibrium position

for r or ψ, even though theoretically a sessile drop of volume V should exist for

some ψ, when r is free. Our main investigation in this chapter is to calculate the

velocity of the contact line v(t) for different volume inputs. We will vary our

volume equations V (t) (e.g. constant, sinusoidal, logarithmic, or exponential),

and similarly we explore the various friction scenarios along the contact line with

friction coefficient κS.

Accurately describing the friction equation κS is the problem of finding the

coefficients of friction and slip of a liquid moving atop a solid surface and

combining them. This has been a challenge for about a century. In Hydrodynamic

model of steady movement of a solid/liquid/fluid contact line, Huh and Scriven

[7] considered the problem of a liquid drop to be one liquid and a lubricating

medium, a second immiscible fluid in between the first liquid and a solid surface.

Here the drop itself is the lubricating fluid for air (the liquid) in the conventional

model. They concluded that intermolecular forces are the primary driver of

contact line movement. In his paper On the motion of a small viscous droplet

that wets a surface, [5] finds that

κS(h) =
α

3h
, (II.1)

which he derived based on methods used by [7], where α is small to reflect the

small height for Greenspan’s model of a very short yet widespread sheet of

liquid. He found

v(t) = κs(θ − θS), (II.2)
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where θS and θ are the static and dynamic (observed) contact angles,

respectively.

Early on it was believed that the internal flow of the fluid is the primary driver

inside the drop Finn and Shinbrot [4]. However, it was later discovered visually

that movement of the contact line along the solid surface happens in a more

stop-gap manner due to nonconformity at the molecular level. Finn and Shinbrot

explore stick-slip motion and how it describes movement of liquid along a

horizontal plane Finn and Shinbrot [4]. Visual methods were used to precisely

measure the slip coefficient κS, which is function that captures the molecular

forces in between the liquid and the flat solid, as well as at the boundary

between the surface of the liquid, air, and solid.

We assume that friction holds the drop in place for some time, and then sets a

shape with a radius r and contact angle γ. If the sessile drop finds a stable

configuration at this radius, where changes in γ are negligible, then we have an

equilibrium. But, if we are not at an equilibrium contact angle, ψ(`) increases

towards π, and once the contact angle exceeds π, the wetted region no longer

contains the volume, and the wetted area increases. They concluded that

intermolecular forces are the primary drivers of movement.

Huh and Scriven Huh and Scriven [7] call this dynamic wetting. That is to say

wetting with a dynamic contact angle, a problem currently under investigation.

Typically, for a given contact angle γ, there is a wetted region of some area, with

drops wetting that region up to a maximum volume. Once this volume is

exceeded, the wetted region must expand. This forms the basis of a model that is

a hybrid of the static and dynamic problems. The movement of the contact line

is measured by expansion of the wetted region. The velocity of the contact line is

expected to go to zero, and given a static volume the drop settles into an

equilibrium. However, for changing volume, the system will never find an

equilibrium. Further, the velocity of the contact line, as we will show is expected

to be a continuous function of time.
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Velocity

The static velocity equation for the contact line or contact velocity is given by

Guidotti in Equilibria and Their Stability for a Viscous Droplet Model Guidotti

[6] as

v(|∇u|) = |∇u|2 − 1 or v(|∇u|) = |∇u|3 − 1.

This velocity is determined the physical parameters of a static Sessile drop, and

is determined by the type of liquid and solid we have. However, we cannot easily

calculate ∇u. Note that ∇u = tanψ ≈ψ for small ψ, and since ψ, γ > 0, then

|ψ − γ| � π . Note that because limψ→π/2(tanψ) is undefined, we cannot use

tanψ in our velocity function. Thus, we approximate the contact line’s velocity

as

v(ψ, κS, γ) = κS(ψ − γ)2 (II.3)

or

v(ψ, κS, γ) = κS(ψ − γ)3, (II.4)

where κS is a slip function for the interfacial friction between liquid and solid

and γ is the contact angle.

Utilizing the Euler Method, we get the radius r(`, t) as a function of velocity

v(`, t) at time t. This method recalls our previous solver functions, and we

calculate r(s, t) at s = ` and r(t) below

r(0, t) = ∆t

(
d

dt
r(`, t)

)
,

= ∆t [v(ψ(`, t), κs, γ)] ,

= ∆t
(
κS(ψ(`, t)− γ)3)

)
. (II.5)
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The algorithm for the contact velocity shown in Appendix A, and here

∆t = 0.001 for the sessile drop simulations.

Steady state solution

Here we look for a dynamic system that falls into an equilibrium. We consider

the system in equilibrium is when the velocity goes to zero and the contact

radius remains in place. Sufficient conditions in our model are when v(t) < ε and

∆v(t) < ε for some tolerance ε over a given amount of time. Arbitrarily we

choose ε = 5e− 5 over 10 timesteps, ∆t = 0.01.

We calculate the equilibrium γ using the previous method for finding γ, given a

radius r0 with the following ending conditions being met:

V = V0, (II.6)

r(`) = r, (II.7)

u(`) = λ, (II.8)

where r is again calculated using the Euler method, and we generate a new

sessile curve for each time step.
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Figure II.1: Two dynamic sessile drops with constant volume.
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Figure II.2: Two dynamic sessile drops with constant volume.
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Figure II.3: Two sessile drops with velocity heading towards zero.

For a dynamic sessile drop with static volume we expect to find examples where

as v → 0 then ∆r = 0. This is the equilibrium solution for the dynamic model,

where ψ(`) moves towards an equilibrium contact angle for a given volume V and

radius r as seen in Fig. II.1 and Fig. II.2.

Given variable volume we expect the system to fall into a dynamic equilibrium,

where velocity of the contact line does not change. In this state ψ will not change

as seen in Fig. II.3. Consequently, so does the contact angle γ. We conclude that

the dynamic sessile drop with variable volume is computationally the same
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problem, however, the velocity never reaches zero while volume changes.

To test these ideas, we considered a volume function V (t) that does not tend any

value

V (t) = V0
(
1 + sin(πt) + te−t/h

)
, (II.9)

where V0 is the initial volume. The timestep h is set at 0.001 to ensure that

volume does not change to quickly and we get a smooth velocity function, shown

below in Fig. II.4.

Figure II.4: A sessile drop with an increasing volume function and contact angle γ =
2.3562.

Non-equilibrium solution

We also evaluated the problem where volume greatly increases over time t = 1.

We see in Fig. II.5 that velocity does tend towards a value, but since it is

non-zero, the radius expands, and the drop grows continually. This is a

non-equilibrium solution. Another example is the temporary equilibrium that we

see in Fig. II.6. This is when velocity does equal zero after some time, but then

as volume increases, the radius continues to grow. Notice that in Fig. II.6, while
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velocity is near zero that ψ(`) ≈ γ, when t ≈ 0.5. This is due to the rapid rise in

volume, which nearly triples in our timeframe, driving a change in ψ(`), while

∆r ∼ 0 remains relatively unchanged. As expected velocity is positive because

ψ(`) > γ near t = 0.5. In Fig. II.7 we see that the velocity initiates near v ≈ 0 as

ψ(`) ≈ γ at t = 0. However, we see after t > 0, velocity continually increases, and

an no point seems to tend towards any value. This is another example of a

non-equilibrium solution.
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Figure II.5: A dynamic sessile drop run with γ = 0.3927 and logarithmic volume. Velocity
tends to zero, while volume increases.
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Figure II.6: A dynamic sessile drop run with γ = 1.9635 where velocity briefly plateaus
then increases after time, while velocity increases.
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Figure II.7: A dynamic sessile drop run with γ = 0.3927 and logarithmic volume. Velocity
tends to zero, while volume increases.
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III. THE RECEDING AND ADVANCING ANGLES OF THE

SESSILE DROP

From physical observation we know that there is an interval of contact angles

θR ≤ ψ(`) ≤ θA, between which contact angle ψ(`) has solutions to the sessile

drop for radius r. This range determines an equilibrium region (ER) for a given

radius r. [8] assert that this range is actually caused by molecular imperfections

and the friction created though contact line movement at the molecular level,

whereas Finn and Shinbrot Finn and Shinbrot [4] claim that this is actually an

equilibrium region of contact angles, where presumably we could say that

ER = [θA, θR] for a given radius r, where the drop will not change but the

contact angles are not static. When the contact line has velocity v0 6= 0, ∆γ 6= 0

because of velocity equation. However, because of the equilibrium region when

θR ≤ γ ≤ θA, we can expect that ∆r = 0.

In the physical interpretation this means that while ψ(`) ∈ [θR, θA], the radius

will stand still. Then the sessile drop will become more bulbous or more flat

while the contact line remains still, until the angle reaches a critical value its

maximum value for the wetted region. Then the radius will either increase or

decrease to maintain the stability of the drop. The difference between the

advancing and receding angles, H = θR − θA, is called the contact angle

hysteresis. There are inconsistencies in any surface that cause sudden pressure

drops and extreme changes in friction across very short distances. This concept

is more naturally understood while observing a variable volume model, because

the radius would be moving. Thus, the contact line would move across these

pressure gradients and variable friction areas. However, it should also work with

a static volume given a nonzero velocity, even though with static volumes the

sessile drop quickly reaches an equilibrium so that effectively ∆r → 0 after some

time t. We shall model the situation with both static and variable volume below.
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Guidotti gives two possible contact line velocity equations

v = |∇u|3 − 1 or v = |∇u|2 − 1.

We modified the squared and cubed terms to use our unknowns, which are

important positions for ψ(s): (1) ψ, the contact angle, (2) θR, the receding angle,

and (3) θA, the advancing angle, where

v ∼ ±κS(ψ − θ)3, or (III.1)

v ∼ ±κS(ψ − θ)2. (III.2)

While modelling the sessile drop, we found that the cubed velocity equation

(III.1) is preferable. It changes slowly and better ensures smoothly changing

contact angles. Similar to Finn and Shinbrot, we use a stop-and-go velocity, in

the piecewise function below, where velocity is negative when ψ(`) < θR, and we

need the radius to shrink, or velocity is positive and we want radius to grow,

when ψ(`) > θA, otherwise velocity is zero, and given by:

v =



κS(ψ(`)− θA)3 when ψ(`) > θA,

−κS(θR − ψ(`))3 when ψ(`) < θR,

0 when ψ(`) ∈ [θA, θR].

(III.3)

From (III.3), we can see that as ψ(`)→ θA or ψ(`)→ θR, then v → 0, and we

expect that without setting v = 0, we would never reach equilibrium as we saw

often in the dynamic sessile case.
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Analysis of advancing and receding angles on contact line

A sinusoidal volume function is probably the best visual representation of zeroed

velocity as ψ(`)→ θR or ψ(`)→ θA. While ψ(`) ∈ [θA, θR], it is clear that when

v ≡ 0, then r is constant. We see this beow in Fig. III.1.

Figure III.1: An advancing and receding angle model sessile drop with sinusoidal volume.

In Fig. III.2 we see a constant volume function with expected behavior where as

ψ(`) trends toward θR, velocity moves smoothly to zero. Here movement is

mostly determined by the angle dependent velocity term where radius is pushed

out to decrease the contact angle, this is flattening of the drop.
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Figure III.2: A sessile drop with advancing angle θA = 448799 and receding angle θR =
8975979.
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IV. CONCLUSIONS FOR SESSILE DROPS

The observed robustness of the sessile drop is due in part to Finn’s uniqueness

theorem for the sessile drop Finn [3], where a solution should always exists for

any Volume V , and in part to the success of the solver code. As we will see in the

liquid bridge section this is not always a given. We see as ψ(`)→ γ ∈ (0, π] that

solutions always exists, as predicted. However, ubiquitous solutions did not

guarantee an equilibrium solution in the dynamic sessile model. From graphical

analysis from below, velocity seems heavily dependent upon volume, and we can

conclude that any ∆V > 0 creates either a new contact angle γ or new radius r0.

In the advancing and receding angles analysis, this is shown clearly, while v = 0

and ∆r = 0.

Equilibrium contact angle

Observing the sessile drop with constant volume over different values of γ, an

interesting trend emerges in velocity. Velocity goes from negative to nearly zero

to positive.
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Figure IV.1: A dynamic sessile drop with constant volume, with γ = 1.9635.
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Figure IV.2: A dynamic sessile drop with constant volume, with γ = 1.1781.
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Figure IV.3: A dynamic sessile drop with constant volume, with γ = 0.7854.
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Figure IV.4: A dynamic sessile drop with constant volume, withγ = 0.3927.
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Figure IV.5: A dynamic sessile drop with constant volume, with γ = 0.4488.

And, below we see negative velocities.

Figure IV.6: A dynamic sessile drop with constant volume, with γ = 3.1416.
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Figure IV.7: A dynamic sessile drop with constant volume, with γ = 2.7489.

Figure IV.8: γ = 2.3562

From the above, Fig. IV.1 - Fig. IV.8, we might infer that a natural contact

angle for this (V ) = 2 is in between γ = 1.9635 and γ = 2.3562, because the

velocity stays near zero for both, and the velocities are negative for γ ≥ 2.3562.

This could also hint at an equilibrium region ER.
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Advancing and Receding Angles Discussion

Further, comparing ψ(`) behavior to what we calculated in the advancing and

receding angles simulation, we see compelling evidence for heavy volume

dependence of ψ. The graphs below show that ψ(`) changes inside of the

hysteresis region even while velocity v = 0. A sinusoidal volume function on a

dynamic sessile drop simulation demonstrates ψ(`) behavior in Fig. IV.9.

Figure IV.9: An advancing receding angle sessile drop with sinusoidal volume.

One issue with our v = κS(γ − θA)3 and v = −κS(θR − γ)3 velocity functions can

be asymptotic under slowly changing volume. In Fig. IV.10 we see ψ(`) start

below θA. Outside of the hysteresis region, velocity is designed to move the

contact line to get ψ(`) to move into the hysteresis region by either being

positive or negative. This however forms an asymptotic relationship because

θ → γ as (θ − γ)3 = v → 0 faster.
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Figure IV.10: An advancing and receding model sessile drop with log volume where ψ(`)
never crosses θA before v = 0.

Failures

There was really only one consistent source of failure in the sessile advancing and

receding angles model. In instances where the contact angle ψ(`) at t = 0 was

significantly less than θA or when ψ(`) is much lower than θA or much higher

than θR. We see discontinuities in velocity and along the ψ(`) curves.
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V. THE STATIC LIQUID BRIDGE BETWEEN TWO

HORIZONTAL SURFACES

In this chapter we consider the liquid bridge, a radially symmetric volume of

liquid between two horizontal planes, P0 and PH . P0 is at height u(0) = 0. At the

interfaces between the horizontal planes and the liquid both have the same

considerations as the solid in the sessile drop problem Athanassenas [1]. The

fluid is connected and the planes are simply connected inside any wetted regions

Colter and Treinen [2]. The liquid forms a contact line along P0 with contact

angle γ0. Plane PH is at height u(`) = H, with its own contact line and contact

angle γH . At planes P0 and PH are uniform solids that acts as boundary to the

liquid volume.
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Figure V.1: A liquid bridge with boundaries P0, PH and the interfacial boundary Λ.

We prescribe some values on a generating curve (r, u) of a static liquid bridge:

• At arc length s = 0, the height is u(0) = u0 with radius r(0) = r0, and

ψ(0) = ψ0, and the contact angle is ψ(0) = γ0.

33



• At arc length s = `, the height is u(`) = H with radius r(`) = rH , and

ψ(`) = ψH , and the contact angle is ψ(`) = γH .

A solution to any static liquid bridge problem will have the initial and ending

conditions listed below in equations (V.1) - (V.6) at s = 0 (left) and s = ` (right):

u(0) = 0 u(`) = H (V.1)

V = V0 (V.2)

ψ(0) = γ0 ψ(`) = γH , (V.3)

or,

u(0) = 0 u(`) = H (V.4)

V = V0 (V.5)

r(0) = r0 r(`) = rH . (V.6)

Unlike in the sessile drop problem ψ(s) can take any value in [0, 2π]. In our

computation we account for this by subtracting π from the total angle of ψ, and

in our graphs and charts when we display angles on the top plane PH , we are

using the internal angle, where ψ(`) ⊂ [0, π].
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Figure V.2: A liquid bridge where r0, r∗, rH are marked.

The generating curves of the radially symmetric surface satisfy our previous

three differential equations (I.4) - (I.6). Solving the system of equations with the

initial and ending conditions, we derive the volume below.

Volume of a Liquid Bridge

THEOREM 3. The volume of a liquid bridge connecting two horizontal planes

seperated by distance H is

V = πr2H − π

κ

(
2rH sinψH − 2r0 sinψ0 − λ

(
r2H − r20

))
. (V.7)

Proof. Let there be a volume of liquid between two planes separated by distance

H. The volume integral is

V =

∫ H

0

πρ2 du. (V.8)

Since u is a function of arc length s, we note that the path from height u = 0 to

u = H is the path along surface Λ from arc length s = 0 to s = `. Because there
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is often concavity along Λ, we cannot easily integrate along the entire curve, and

we must create regions along the surface that are either strictly monotonically

increasing or strictly decreasing.

We do this by introducing an intermediate height u∗ between planes P0 and PH .

Define r0 as the radial distance of the point on Λ, (r0, 0), where s = 0 and height

u(0) = 0. Define r∗ as the distance of point (r∗, u∗) where 0 < s < ` and

ψ(s) = ±π/2. Define rH as the distance of (rH , uH) where s = ` and u(`) = H.

Since r is a function of s, then we can reorient the path along the curve

according to the relative positions of r0, r∗, and rH . This gives four cases:

1. r∗ is to the left of both r0 and rH

2. r∗ is to the right of both r0 and rH

3. r0 < r∗ < rH ,

4. or rH < r∗ < r0.
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Figure V.3: A liquid bridge where r0, r∗, rH are marked, and the integration areas are
highlighted, demonstrating the monotonic regions along the surface Λ, I1
and 12.
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We begin by integrating by parts over the two regions

V =

∫ H

0

πρ2 du

=

∫ u∗

0

πρ2 du+

∫ H

u∗
πρ2 du

= πρ2u|u∗u=0 − 2π

∫ r0

r∗
ρu dρ+ πρ2u|Hu=u∗ − 2π

∫ rH

r∗
ρu dρ

= πρ2H − 2π

( ∫ r0

r∗
ρu dρ+

∫ rH

r∗
ρu dρ

)
.

Let I1 be the integral from r∗ to r0, and let I2 be the integral from r∗ to rH .

Then the volume equation simplifies to

V = πr2H − 2π(I1 + I2). (V.9)

Recall that by (I.6)

u =
1

κ

(
dψ

ds
+

sinψ

ρ
− λ
)
.

Evaluating I1, gives that

I1 =

∫ r0

r∗
ρu dρ

=
1

κ

∫ r0

r∗
ρ

(
dψ

ds
+

sinψ

ρ
− λ
)
dρ

=
1

κ

[∫ r0

r∗
ρ
dψ

ds
dρ+

∫ r0

r∗
sinψ dρ−

∫ r0

r∗
λρ dρ

]
. (V.10)

Integrating the middle term by parts in (V.10) gives

∫
sinψ dρ = ρ sinψ −

∫
ρ cosψ dψ. (V.11)

So that
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I1 =
1

κ

[∫ r0

r∗
ρ
dψ

ds
dρ+ ρ sinψ −

∫ −π
2

ψ0

ρ cosψ dψ −
∫ r0

r∗
λρ dρ

]

Here, we note that because of (I.4), cosψ = dr/ ds

I1 =
1

κ

[∫ r0

r∗
ρ
dψ

ds
dρ+ ρ sinψ −

∫ −π
2

ψ0

ρ
dρ

ds
dψ − λ

∫ r0

r∗
ρ dρ

]

=
1

κ

[
ρ sinψ − λ

∫ r0

r∗
ρ dρ

]
=

1

κ

[
ρ sinψ − λ

(
ρ2

2

)]r0
r=0

=
2r sinψ − λ r2

2κ

∣∣∣∣∣
r0

r=r∗

. (V.12)

Evaluating I2 is similar. In fact, it’s the same integral up to the values for r. Since

we are operating in Case 1, we can just replace the upper limit r0 with rH to get

I2 =

∫ H

r∗
ρu dρ

=
1

κ

∫ r0

r∗
ρ

[
dψ

ds
+

sinψ

ρ
− λ
]
dρ

=
1

κ

[∫ H

r∗
ρ
dψ

ds
dρ+

∫ H

r∗
sinψ dρ−

∫ H

r∗
λρ dρ

]
=

2r sinψ − λ r2

2κ

∣∣∣∣∣
H

r=r∗

. (V.13)
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Combining (V.12) and (V.13) we get the volume for Case 1 (r0 > r∗, rH > r∗) is

V = πr2H − 2π(I1 + I2)

= πr2H − 2π

([
2r sinψ − λ r2

2κ

]r0
r=r∗

+

[
2r sinψ − λ r2

2κ

]H
r=r∗

)

= πr2H − 2π/2κ([−(2r0 sinψ0 − λr0 − (2r∗ sinψ∗ − λr∗))

+ 2rH sinψH − λrH − (2r∗ sinψ∗ − λr∗)])

= πr2H − π/κ
(
2rH sinψH − 2r0 sinψ0 − λ(r2H − r20)

)
We will use the convention that because r∗ < r0 while u∗ > u0 we must use a

negative sign in the evaluation of the integral. This is because the path is now

vertically downward along the generative curve. We use that convention when

necessary in each case.

The general solution (irrespective of case) for integrals I1 and I2, demonstrated

in Fig. V.3 are identical up to endpoints. But for a proof we must consider the

relative locations of the endpoints, which are shown here

I1 =
2r sinψ − λ r2

2κ

∣∣∣∣∣
r2

r=r1

I2 =
2r sinψ − λ r2

2κ

∣∣∣∣∣
r4

r=r3

,

where in I1 the lower limit r1 is simply the leftmost radius of r0 and r∗, and the

upper limit r2 is the rightmost radius. Similarly, for integral I2, we choose the

lower limit r3 to be the leftmost between rH and r∗, and for the upper limit r4

we choose the rightmost radius. (Note that the limits of integration {r1, r2, r3,

r4} are all irrespective of arc length s. Whereas r0 and rH are located at s = 0

and s = `, respectively, while r∗ is located at s∗, where 0 < s∗ < `.)

Then the general volume formula is given by

V = πr2H − 2π(I1 + I2)

= πr2H − π

κ

[
(2r sinψ − λ r2)

∣∣∣r2
r=r1

+ (2r sinψ − λ r2)
∣∣∣r4
r=r3

)

]
,
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The integrals are solved for each case below:

Case 1 (r∗ < r0 and r∗ < rH), which was shown previously, is the case where

both r0 and rH are greater than r∗. However, it is not determined whether

r0 ≥ rH or r0 ≤ rH . Again, notice that we use the convention of a negative sign

in the expression to denote a downward path along the curve.

V = πr2H − π/κ
[
−
(

2r sinψ − λ r2
)∣∣∣r0

r=r∗
+
(

2r sinψ − λ r2
)∣∣∣rH

r=r∗

]
= πr2H − π/κ[−(2r0 sinψ0 − λr20 − (2r∗ sinψ∗ − λr∗2))

+ 2rH sinψH − λr2H − (2r∗ sinψ∗ − λr∗2)]

= πr2H − π/κ
[
2rH sinψH − 2r0 sinψ0 − λ

(
r2H − r20

)]
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Figure V.4: Case 1: A liquid bridge drop where r∗ is the left of both r0 and rH .

Case 2 (r0 > r∗ > rH) can be thought of as a curved diagonal surface. We have

V = πr2H − π/κ[−(2r0 sinψ0 − λr20 − (2r∗ sinψ∗ − λr∗2))

− (2r∗ sinψ∗ − λr∗2 − (2rH sinψH − λr2H))]

= πr2H − π/κ
[
2rH sinψH − 2r0 sinψ0 − λ

(
r2H − r20

)]
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Figure V.5: Case 2: A liquid bridge drop where r∗ is in between r0 and rH , and r0 > rH .

Case 3 (rH > r∗ > r0) is when the relative positions of r0 and rH are reversed

from Case 2 so that now r0 > r∗ > rH . We have

V = πr2H − π/κ[2r∗ sinψ∗ − λr∗2 − (2r0 sinψ0 − λr20)

+ 2rH sinψH − λr2H + (2r∗ sinψ∗ − λr∗2)]

= πr2H − π/κ
[
2rH sinψH − 2r0 sinψ0 − λ

(
r2H − r20

)]
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Figure V.6: Case 3: A liquid bridge drop where r∗ is in between r0 and rH , and r0 < rH .

Case 4 (r0 < r∗ and rH < r∗) is the reversal of Case 1, and both r0 and rH are
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both less than r∗. We have

V = πr2H − π/κ[2r∗ sinψ∗ − λr∗2 − (2r0 sinψ0 − λr20)

− (2r∗ sinψ∗ − λr∗2 − (2rH sinψH − λr2H))]

V = πr2H − π/κ
[
2rH sinψH − 2r0 sinψ0 − λ

(
r2H − r20

)]
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Figure V.7: Case 4: A liquid bridge drop where r∗ is to right of both r0 and rH .

∴ All cases give the same solution. Therefore, we derive the volume of the

symmetrical liquid bridge

V = πr2H − π

κ

(
2rH sinψH − 2r0 sinψ0 − λ

(
r2H − r20

) )
. (V.14)

Numerical Solver

The solution curves for the static liquid bridge are generated in a similar manner

as the static sessile problem. We integrate our system of differential equations

(I.4) - (I.6) and use FSOLVE and ODE45 to adjust the values of a guess vector,

guess, until we solve for our ending criteria. We have two sets of initial

conditions for the liquid bridge. The first initial conditions are the known contact
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angles on each plane, γ0 and γH , and then the radii r0 and rH are unknown.

Then FSOLVE adjusts the values in guess = 〈r0, `, λ〉. The new ending criteria

are then given by the following:

V (`)− V = 0 (V.15)

u(`)−H = 0 (V.16)

ψ(`)− ψH = 0. (V.17)
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VI. THE DYNAMIC LIQUID BRIDGE

Using similar techniques to calculate contact line velocity that we used in the

dynamic sessile drop problem, we find equilibrium positions for endpoints (r, u)

at (r0, 0) and (rH , H). We also find the intermediate (non-equilibrium) values for

ψ0 and ψH using similar MATLAB codes with the same starting and stopping

conditions as the stationary problem. The main difference is that for the dynamic

bridge, there is a smaller range of solutions. For a given r0 and rH , there will

only be a few solutions for the contact angles γ0 and γH on each plane, and we

see that the solutions are not as robust as the sessile drop. This dependence

makes finding solutions rare. However, with careful selection of parameters we

can find a solution for the variable volume problem. Again, for this chapter

κS = 1 and we assume constant friction over the solid/liquid interface.

Calculating contact velocity along two surfaces

We again implement an Euler method to solve for the radius, and we need to

prescribe radius in our ending condition, giving the dynamic ending conditions as

V − V0 = 0, (VI.1)

u(`)−H = 0, (VI.2)

r(`)− rH = 0, (VI.3)

In the dynamic liquid bridge problem there are two contact lines curves. The

liquid bridge surface satisfies our system of ODEs, (I.4) - (I.6). Thus, the

velocities can be solved with the same methods as the sessile drop, and the

boundary value problem is solved as one system with ODE45 and FSOLVE. In

this case we use a reasonable guess for our unknowns: arc length `, lower contact
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angle ψ(0), and Lagrange multiplier λ. Employing the same convention for

contact line velocity as with the dynamic sessile drop, the velocity for each

contact line v = ṙ(u, t), where either u = 0 or u = H.

v = κS(u)[ψ(u, t)− γ(u)]3 (VI.4)

On the lower plane, where u = 0, the radius function r(0, t) is

r(0, t) = (∆t)[v(ψ(0, t), κS(0), γ)], (VI.5)

= (∆t)κS(0)(ψ(0, t)2 − γ2). (VI.6)

On the upper plane, where u = H, the radius function r(H, t) is

r(H, t) = (∆t)[v(ψ(H, t), κS(H), γ)], (VI.7)

= (∆t)κS(H)(ψ(H, t)2 − γ2). (VI.8)

The mechanics along the top and bottom planes are considered the same as for

the plane beneath a sessile drop, as mentioned in the considerations of a the

solid at P0 and PH . So, we expect contact line behaviors in the liquid bridge

similar to the sessile drop case, shown in Fig. VI.1 and Fig. VI.2. However,

because the entire curve Λ is connected to two independent planes there will be

an fewer solutions where velocity remains smooth. These simulations do not

always begin with a physically relevant configuration. Consequently, they are at

times numerically unstable.

Similar to the sessile drop, we expect with constant and slowly changing volume

that our system will achieve equilibrium if we are within our solvable range for

ψ(s). We see that with reasonable guesses, because of our robust solver, that the

radius will shift with predictable velocity over time, and eventually ψ(0)→ γ0
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and ψ(`)→ γH . We see this trend in the figures below.

We ran simulations where t is 1 second. ψ(0) and ψ(`) took values between 0 and

π, evenly spaced, with intervals of π/14, so that there are 15× 15 inputs on

gamma. Top and bottom plane radius is an input, where r(0, H) ∈ [4, 4.5, 5]. We

set initial volume V0 = 90 and height uH = H = 2. Under these configurations

the liquid bridge simulations produced viable results, when λ ≈ −0.5 in guess.

Note: We define our variable volume functions in Appendix B.
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Figure VI.1: Graph showing behavior on the two contact lines of a liquid bridge t = 0.5
with exponential volume function. ψ(`) is tending towards γH as vH goes
to zero.
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Figure VI.2: Graph showing behavior on the two contact lines of a liquid bridge t = 0.5
seconds with constant volume. ψ(`) is goes towards γH as vH goes to zero.

Receding and advancing angles along two contact lines

When considering advancing and receding angles, our velocity function is

fundamentally different. The v = κS · f(|∇u|k − 1) model, where k = 2, 3, is

replaced with the piecewise function below. Note that for the liquid bridge, we

denote which contact curve is being acted upon by a comma-demarcated

sub-index. Also, we choose the cubed velocity equation once again, and contact
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velocity along the bottom plane is given by

v(t) =



−κS[ψ(0)− θR,0]3 ψ(0) > θR,0

0 θR,0 ≤ ψ(0) ≤ θA,0

κS[ψ(0)− θA,0]3 ψ(0) > θA,0,

(VI.9)

while the contact velocity along the top plane

v(t) =



−κS[ψ(`)− θR,H ]3 ψ(`) > θR,H

0 θR,H ≤ ψ(`) ≤ θA,H

κS[ψ(`)− θA,H ]3 ψ(`) > θA,H .

(VI.10)

The velocity function acts independently on each contact line similarly to the

velocities in previous chapter, dependent only on ψ(0, `) and the arbitrary

constants θA and θR. The friction function κS = 1. What we expect from this is

that the velocity behaves normally, which is to slowly shrink to zero when

volume is slowly changing, until the θA,H threshold is crossed (seen in Fig. VI.3

and Fig. VI.4), where either θA,0 ≤ γ0 ≤ θR,0 or θA,H ≤ γH ≤ θR,H and velocity is

frozen at zero for either contact line. Consequently, the radius remains

unchanged until a contact angle leaves the hysteresis region, where

ψ(0) ∈ [θA,0, θR,H ] and ψ(`) ∈ [θA,H , θR,H ].
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Figure VI.3: A sinusoidal volume shows quicks movement of the contact angle θH towards
γH as velocity vH goes to zero.
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Figure VI.4: A constant volume shows asymptotic behavior of the contact angle θH as
velocity vH goes to zero.
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VII. CONCLUSIONS FOR LIQUID BRIDGES

There is noticeable decrease in the amount of dynamic liquid bridges

configurations that are stable, and even fewer that tend towards equilibrium,

compared to the sessile drop model. The stability of the dynamic liquid bridge is

a problem that by itself warrants more study. Within the scope of this

investigation, the problem came down to optimization of our inputs. The guesses,

which include the unknowns and the prescribed radii needed to be closely

tailored to the volume. During this study, the parameters needed to be changed

until a configuration worked consistently for a given volume, which was V = 90.

One consistent example of a failing configuration occurred when contact angles

γ0 = γH . Having the same contact angles on both planes is rare except when

γ0 = γH = π/2, which [9] asserts should produce a stable liquid bridge in the

static model when volume is large enough, specifically when V > H3/π. This is

an example of a cylindrical liquid bridge, which Colter and Treinen [2] studied,

from which the numerical methods and model are adapted to this paper. There

are however many stable solutions when the radii r0 = rH and ψ(`) 6= ψ(0), when

the volume is appropriate.

In the liquid bridge we see less volume function dependence. This is likely due to

the decrease in degrees of freedom in the liquid bridge problem compared to the

sessile drop problem. For instance both radii and the height needed are inputs

for the dynamic liquid bridge. Since we choose r0, rH , V , u0 = 0, uH = H, and

κS = 1, this leaves only ψ(s) and λ as free parameters. Whereas in the sessile

drop we only predetermine r0 and V , leaving `, λ = u(`), and ψ(s) as free

parameters. The liquid bridge is a much bigger problem, and solving the system

of differential equations outputs less information and requires much more

information. It is highly dependent upon initial conditions to find solutions.

Although there is a theorem, which says a liquid bridge between two planes of a

certain height must exist for some volume, given by [1], we have need a
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physically viable configuration in the initial values.

Because of the dependence upon initial values, no configuration produced a

stable liquid bridge exists for many initial values of the parameters. For instance

when when V0 = 90 and γ0 ≥ 1.6916 there are no solutions, but there are many

solutions when V0 = 90 and γH ≥ 1.6916, altogether this is demonstrated in Fig.

VII.1 - Fig. VII.3. This behavior may suggest something like an upper limit to

an equilibrium range for this volume and height with initial radii r0 = 4, rH = 4.

However, it would be presumptuous to suggest that there an equilibrium range

for the liquid bridge exists in our model due to its dependence on both ψ(0) and

ψ(`).
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Figure VII.1: Two liquid bridges with γH = 1.6916 (on the top plane) and sinusoidal and
logarithmic volumes functions and γ0 = 0.72498.
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Figure VII.2: Two liquid bridges with γH = 1.6916 (on the top plane) and sinusoidal and
logarithmic volumes functions and γ0 = 0.96664.
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Figure VII.3: Two liquid bridges with solutions. γH > 1.6916 (on the top plane) with
γ0 < 1.6916.
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Exploring the optimization of initial conditions and guesses, we saw that using a

highly discretized set of γ’s, θ’s, and guess values left gaps in the data. Finn and

Shinbrot suggest that the hysteresis of the angles, θA − θR, would be spread

agross a continuous range of contact angles, where given a r0 and rH the liquid

bridge should have stable solutions [4]. In fact it was difficult to find solutions

when any parameter was changed in guess = 〈`, u0, λ〉.

Altogether, while the liquid bridge problem relied heavily upon initial conditions,

it remain a problem solvable when given enough volume and flexibility in the

guesses. Particularly troublesome was the Lagrange multiplier λ in the range of

radii, in which were solvable when V0 = 90. λ needed to be exactly −0.5. This

was unexpected because guess is just an initial value, and we employ a shooting

method, which runs through all nearby possible values to find a solution. For

instance ` could take on different values. We looked specifically at ` = 1, 1.5, 2,

and for the liquid bridge problem ` = 2 was the default. Arc length ` = 1 showed

no solutions, and ` = 1.5 showed a limited range of solutions. ` = 1 showed no

solutions, whereas ` = 1.5 showed a different set of contact angles, for which

velocities tended towards equilibrium, than ` = 2.
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APPENDIX SECTION

APPENDIX A

Algorithms

Algorithm 1 Sessile Drop Generator Algorithm
1: Choose guess vector values for unknowns, guess = 〈u0, `, λ〉
2: Run Capillary_ODE_Solver(u0, `, λ)
3: Choose volume V
4: run ODE45 from s = 0 to s = ` return vector out = 〈u, r, ψ〉
5: repeat
6: FSOLVE to solve a residual function ResFun(u0, `, λ)
7: open ODE45 from s = 0 to s = ` return vector out = 〈u, r, ψ〉
8: ` = length(out)
9: V = πr(`)2u(0)− (2πr(`)/κ)(sinψ(`) + πr(0)2)

10:

ResFun
V − V (0) = 0

r(`)− r(0) = 0

u0 − λ(0) = 0

11: until ResFun is minimized
12: close

Algorithm 2 Sessile Drop Contact Line Velocity
1: Choose reasonable guess for r(0, 0)
2: loop:
3: for i = 0, 1, 2, 3... do
4: Solve for r(i)
5: vi = κS[ψ(i)− γ]3

6: r(i+ 1) = r(i) + ∆tjv0(i)
end

7: close
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Algorithm 3 Liquid Bridge Generator Algorithm
1: Choose guess vector values for unknowns, guess = 〈r0, `, λ〉
2: Run Capillary_ODE_Solver(r0, `, λ)
3: Choose volume V
4: run ODE45 from s = 0 to s = ` return vector out = 〈u, r, psi〉
5: repeat
6: FSOLVE to solve a residual function ResFun(r0, `, λ)
7: open ODE45 from s = 0 to s = ` return vector out = 〈u, r, ψ〉
8: ` = length(out)
9: V = πr(`)2u(0)− (π/κ)

[
2 sinψ(0)r(0) + 2 sinψ(`)− λπ

(
r(`)− r(0)2

)]
10:
11:

ResFun
V (`)− V = 0

u(`)−H = 0

ψ(`)− ψH = 0

12: until ResFun is minimized
13: close

Algorithm 4 Liquid Bridge Contact Lines Velocities
1: Choose reasonable guess for r0
2: Choose reasonable guess for rH
3: loop:
4: for i = 0, 1, 2, 3... do
5: Solve for {r0(i), rH(i)}
6: v0(i) = κS[ψ0(i)

3 − γ30 ]
7: v0(i) = κS[ψH(i)3 − γ30 ]
8: r0(i+ 1) = r0(i) + ∆tiv0(i)
9: rH(i+ 1) = rH(i) + ∆tivH(i)

end
10: close
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