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PARAMETRIC BOREL SUMMABILITY FOR LINEAR
SINGULARLY PERTURBED CAUCHY PROBLEMS WITH

LINEAR FRACTIONAL TRANSFORMS

ALBERTO LASTRA, STEPHANE MALEK

ABSTRACT. We consider a family of linear singularly perturbed Cauchy prob-
lems which combines partial differential operators and linear fractional trans-
forms. This work is the sequel of a study initiated in [I7]. We construct a
collection of holomorphic solutions on a full covering by sectors of a neighbor-
hood of the origin in C with respect to the perturbation parameter e. This
set is built up through classical and special Laplace transforms along piece-
wise linear paths of functions which possess exponential or super exponential
growth/decay on horizontal strips. A fine structure which entails two levels
of Gevrey asymptotics of order 1 and so-called order 17 is presented. Fur-
thermore, unicity properties regarding the 17 asymptotic layer are observed
and follow from results on summability with respect to a particular strongly
regular sequence recently obtained in [13].
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1. INTRODUCTION

In this article, we aim attention at a family of linear singularly perturbed equa-
tions that involve linear fractional transforms and partial derivatives of the form

,P(taZ,ev {mk,t,e}kel’at’az)y(taZve) =0 (1'1)

where P(t, z, €, {Ux }ker, V1, V2) is a polynomial in Vi, Vs, linear in Uy, with holo-
morphic coefficients relying on t,z,€ in the vicinity of the origin in C2, where
My, 1,e stands for the Moebius operator acting on the time variable my, ;. y(t, 2, €) =
y(ﬁ, z,€) for k belonging to some finite subset I of N.

More precisely, we assume that the operator P can be factorized in the following
manner P = P; Py where P; and P are linear operators with the specific shapes

Pl (ta Z, €, {mk,t,e}keh 8757 az)

= P(et?9,)97 — Z (2, €)My 1. (t20;) 0Ok
k=(ko,k1,k2)€A
P2(taz,eaataaz) = PB(Gtzat)afB - Z dL(Z,G)thaélaiz.

1=(lo,l1,l2)EB

Here, A and B are finite subsets of N? and S, Sz > 1 are integers that are submitted
to the constraints and together with . Moreover, P(X) and Pg(X)
represent polynomials that are not identically vanishing with complex coeflicients
and suffer the property that their roots belong to the open right plane C; = {z €
C/Re(z) > 0} and avoid a finite set of suitable unbounded sectors Sq, C Cy,
0 < p < —1 with center at 0 with bisecting directions d, € R. The coeflicients
ck(z,€) and dy(z,€) for k € A, I € B define holomorphic functions on some polydisc
centered at the origin in C2. We consider the equation together with a set of
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initial Cauchy data

(@iy)(t,0,¢) =  Liatte) iTRE[=nn] )
Vja,(te) f0<p<i—1
for 0 <j < Sp—1and
te) if k€ [-n,n]
O Py(t, z, €, 0y, 0. £,0,€) = on k(L : L
(0. Pa(t, z,€,0¢, 05)y)(t,0,€) {wh,dp(tm) £0<p<s1 (1.3)

for 0 < h < .S —1 and some integer n > 1. We write [—n,n] for the set of integer
numbers m such that —n < m <n. For 0 < j < Sg—1,0< h < S5 —1, the
functions ;1 (t,€) and @p (t,€) (resp. ¥;q,(t, €) and @p q,(t,€)) are holomorphic
on products T x EﬁJn for k € [-n,n] (resp. on T x Es,, for 0 < p <1 — 1),
where 7T is a fixed open bounded sector centered at 0 with bisecting direction d = 0
and € = {€F; Yref-nn Y {€s., Yo<p<.—1 represents a collection of open bounded
sectors centered at 0 whose union form a covering of U \ {0}, where U stands for
some neighborhood of 0 in C (the complete list of constraints attached to £ is
provided at the beginning of Subsection 3.3).

This work is a continuation of a study harvested in the paper [I7] dealing with
small step size difference-differential Cauchy problems of the form

e@sﬁin(s, z,€) = Q(8,2,6,{Th e ke, 0s, 0.) Xi(s, 2,€) + P(z,¢, Xi(s,2,€)) (1.4)

for given initial Cauchy conditions (97X;)(s,0,€) = z;,(s,€), for 0 < i < v —1,
0<j<S§—1, where v, § > 2 are integers, Q is some differential operator which
is polynomial in time s, holomorphic near the origin in z,e, that includes shift
operators acting on time, Ty X;(s, z,€) = X;(s + ke, z,€) for k € J that represents
a finite subset of N and P is some polynomial. Indeed, by performing the change
of variable ¢t = 1/s, the equation maps into a singularly perturbed linear PDE
combined with small shifts Ty ., k € I. The initial data z,;(s,€) were supposed
to define holomorphic functions on products (S N {|s| > h}) x & C C? for some
h > 0 large enough, where S is a fixed open unbounded sector centered at 0 and
E= {&€i}o<i<y—1 forms a set of sectors which covers a vicinity of the origin. Under
appropriate restrictions regarding the shape of and the inputs x;;(s,€), we
have built up bounded actual holomorphic solutions written as Laplace transforms

Xi(s,2,€) = / Vi(r, 2, €) exp(— T )dr
L €

e

along half lines L., = Rye¥ 1% contained in C, U {0} and, following an approach
by G. Immink (see [9]), written as truncated Laplace transforms
T'; log(Qis/€) ST
Xi(s, z,€) :/ Vi(r, z,€) exp(f?)dT
0

provided that I'; € C_ = {z € C/Re(z) < 0}, for well chosen 2; € C*. In general,
these truncated Laplace transforms do not fulfill the equation but they are
constructed in a way that all differences X;;; — X, define flat functions w.r.t. s on
the intersections &1 N E;. We have shown the existence of a formal power series
X(s,2,€) = >0 (s, z)el with coefficients h; determining bounded holomorphic
functions on (S N {|s| > h}) x D(0,6) for some § > 0, which solves and
represents the 1-Gevrey asymptotic expansion of each X; w.r.t.eon &, 0 <i <v-—1
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(see Definition . Besides a precise hierarchy that involves actually two levels
of asymptotics has been uncovered. Namely, each function X; can be split into a
sum of a convergent series, a piece Xi1 which possesses an asymptotic expansion of
Gevrey order 1 w.r.t. € and a part X? whose asymptotic expansion is of Gevrey
order 1T as € tends to 0 on &; (see Deﬁnition. However two major drawbacks of
this result may be pointed out. Namely, some part of the family {X;}o<;<,—1 do not
define solutions of and no unicity information were obtained concerning the
1*-Gevrey asymptotic expansion (related to so-called 1T-summability as defined in
[9, 10, A10).

In this work, our objective is similar to the former one in [I7]. Namely, we plan
to construct actual holomorphic solutions yy(t, 2, €), k € [-n,n] (resp. yq,(t, 2, €),
0<p<.:—1) to the problem (L.I), (L.2), on domains T x D(0,6) x 5}}%
(resp. T x D(0,0) x &g, ) for some small radius § > 0 and to analyze the nature
of their asymptotic expansions as ¢ approaches 0. The main novelty is that we can
now build solutions to , (1.2), (1.3]) on a full covering £ of a neighborhood of 0
w.r.t. €. Besides, a structure with two levels of Gevrey 1 and 11 asymptotics is also
observed and unicity information leading to 17-summability is achieved according
to a refined version of the Ramis-Sibuya Theorem obtained in [17] and to the recent
progress on so-called summability for a strongly regular sequence obtained by the
authors and Sanz in [I3] and [I8].

The making of the solutions y; and yg, is divided in two main parts and can be
outlined as follows.

We first set the problem

Pi(t, 2, € {mp s, trer, O, 0:)ult, z,€) = 0 (1.5)
for the given Cauchy inputs
t if ke[—
(0 (t,0,0) = { Pk (b6) Tk € [on.n] (1.6)
On,d,(t,e) if0O<p<i—1

for 0 < h < S — 1. Under the restriction (3.3) and suitable control on the initial
data (displayed through (3.10)), (3.11)) and (3.39)), one can build a first collection
of actual solutions to @ , (1.6]) as special Laplace transforms

u, du
t = - ) —
ug(t, 2, €) /Pk wr g, (u, 2, €) exp( et) "
which are bounded holomorphic on 7 x D(0,8) x & 7,» where wp, defines a
holomorphic function on a domain HJ, x D(0,6) x D(0,¢e) \ {0} for some radii
0,69 > 0 and H.J, represents the union of two sets of consecutively overlapping
horizontal strips

Hy ={z € C/ap <Im(z) < b, Re(z) <0},
Jr ={z € C/e, <Im(z) <dj, Re(z) <0}

as described at the beginning of Subsection 3.1 and Py is the union of a segment
joining 0 and some well chosen point Ay € Hj, and the horizontal half line {Aj —
s/s > 0}, for k € [—n,n]. Moreover, wp s, (T, 2, €) has (at most) super exponential
decay w.r.t. 7 on Hj, (see (3.14)) and (at most) super exponential growth w.r.t. 7
along Jj, (see (3.15)), uniformly in z € D(0,d), provided that ¢ € D(0,¢p) \ {0}
(Theorem [3.7)).
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The idea of considering function spaces sharing both super exponential growth
and decay on strips and Laplace transforms along piecewise linear paths departs
from the next example worked out by Braaksma, Faber and Immink in [5] (see also
7),

h(s+1) —as 'h(s) =s* (1.7)

for a real number a > 0, for which solutions are given as special Laplace transforms

hn(s):/c e 5 TeT % dr

for each n € Z, where C,, is a path connecting 0 and +oo + if for some 6 €
(5 + 2n, 37” + 2n7) built up with the help of a segment and a horizontal half line
as above for the path Pj. The function 7 — e™ %% has super exponential decay
(resp. growth) on a set of strips —H}, (resp. —J) as explained in the example after
Definition Furthermore, the functions h,(s) possess an asymptotic expansion
of Gevrey order 1, h(s) = 3,5, lys ™" that formally solves (L7), as s — o0 on C,.

On the other hand, a second set of solutions to , can be found as usual
Laplace transforms

ug, (t, z,€) = / wq, (U, 2, €) eXP(_E)d*u
L

gy e’ u
along half lines L,, = RyeV 14 Sg4, U {0}, that define bounded holomorphic
functions on T x D(0,0) xEg 4, Where wq, (1, 2, €) represents a holomorphic function
on (Sq,UD(0,7))xD(0,) x D(0,€0)\{0} with (at most) exponential growth w.r.t. 7
on Sy, , uniformly in z € D(0, ), whenever € € D(0,¢)\{0},0 < p < t—1 (Theorem

5.

In a second stage, we focus on both problems

Pa(t, z, €, 04,0, )y(t, z,€) = ug(t, z, €) (1.8)
with Cauchy data 4
(01y)(t,0,€) = Yj(t, €) (1.9)
for 0<j<Sg—1, ke [-n,n] and
Po(t, z,€,0¢, 0. )y(t, z,€) = uq,(t, 2, €) (1.10)
under the conditions _
(0Ly)(t,0,€) = 1,4, (L, €) (1.11)

for0 <5< Sp—1,0<p<1—1. We first observe that the coupling of the problems

(1.5), (L.6) together with (1.8]), (1.9) and (1.10]), (1.11)) is equivalent to our initial
question of searching for solutions to (1.1)) under the requirements (|1.2)), (1.3).
The approach which consists on considering equations presented in factorized

form follows from a series of works by the authors [I4], [15], [16]. In our situation,
the operator P; cannot contain arbitrary polynomials in ¢ neither general deriva-
tives 8%1, Iy > 1, since wyy, (T, 2, €) would solve some equation of the form
with exponential coefficients which would also contain convolution operators like
those appearing in equation . But the spaces of functions with super expo-
nential decay are not stable under the action of these integral transforms. Those
specific Banach spaces are however crucial to get bounded (or at least with ex-
ponential growth) solutions wy j, (7, 2, €) to leading to the existence of the
special Laplace transforms wuyg(t,z,€) along the paths P. In order to deal with
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more general sets of equations, we compose P; with suitable differential operators
P2 which do not enmesh Moebius transforms. In this work, we have decided to
focus only on linear problems. We postpone the study of nonlinear equations for
future investigation.

Taking for granted that the constraints (5.3]) and are observed, under ad-
equate handling on the Cauchy inputs 1.11)) (detailed in (5.6), (5.7)), one
can exhibit a foremost set of actual solutions to , as special Laplace
transforms

u, du

yi(t, z,€) = /Pk v, (u, z, €) exp( et) "
that define bounded holomorphic functions on 7 x D(0,8) xEf; ;  where vy, (T, 2, €)
represents a holomorphic function on HJ,, x D(0,6) x D(0, ¢y) \ {0} with (at most)
exponential growth w.r.t. 7 along Hy, (see ) and withstanding (at most) super
exponential growth w.r.t. 7 within Jj, (see ), uniformly in z € D(0,¢) when
e € D(0,¢0) \ {0}, k € [-n,n] (Theorem [5.3)).
Furthermore, a second group of solutions to , is achieved through

usual Laplace transforms

u  du

t7 ) = ) € )
i, (1,26 / 04 (1,2, ) exp(— )

defining holomorphic bounded functions on 7" x D(0,6) x s, , where vg, (T, z,€)
stands for a holomorphic function on (Sq, U D(0,r)) x D(0,6) x D(0, €) \ {0} with
(at most) exponential growth w.r.t. 7 on Sy , uniformly in z € D(0,0), for all
e € D(0,€9) \ {0}, 0 <p <t —1 (Theorem .

As a result, the merged family {yr}re[—n,n] and {yaq, to<p<.—1 defines a set of
solutions on a full covering £ of some neighborhood of 0 w.r.t. . It remains to
describe the structure of their asymptotic expansions as € tend to 0. As in our
previous work, we see that a double layer of Gevrey asymptotics arise. Namely,
each function yx(t,z,€), k € [-n,n] (resp. ya,(t,2,¢), 0 < p < 1+ —1) can be
decomposed as a sum of a convergent power series in €, a term yj (¢, z,€) (resp.
Y (t,z,¢€)) that possesses an asymptotic expansion §'(t,z,€) = 3,50y (£, 2)€’ of
Gevrey order 1 w.r.t. € on £, (resp. on &s,,) and y2(t,z,€) (resp. yflp (t,z,€))
whose asymptotic expansion §2(t,z,€) = ;50 yi (L, 2)€l is of Gevrey order 17 as ¢
becomes close to 0 on £, (resp. on &s,, ). Furthermore, the functions yi,(t, z,€)
and yip (t,z,€) are the restrictions of a common holomorphic function y(, z, €) on
T xD(0,0) x (7 UEF . U;_:%J Sgdp) which is the unique asymptotic expansion of
92(t, z,€) of order 17 called 17-sum in this work that can be reconstructed through
an analog of a Borel/Laplace transform in the framework of M-summability for the
strongly regular sequence M = (M,,),>0 with M,, = (n/log(n + 2))" (Definition
. On the other hand, the functions yép (t,z,€) represent l-sums of §! w.r.t.
e on &g ap whenever its aperture is strictly larger than 7 in the classical sense as
defined in reference books such as [I], [2] or [6] (Theorem [6.6). The information
regarding Gevrey asymptotics complemented by unicity features is achieved through
a refinement of a version of the Ramis-Sibuya theorem obtained in [I7, Prop. 23]

and the flatness properties (5.14), (5.17), (5.18)) and (5.19) for the differences of
neighboring functions among the two families {yx } ke[—n,n] and {Ya, o<p<.—1-
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The article is organized as follows. In Section 2, we consider a first auxiliary
Cauchy problem with exponentially growing coefficients. We construct holomorphic
solutions belonging to the Banach space of functions with super exponential growth
(resp. decay) on horizontal strips and exponential growth on unbounded sectors.
These Banach spaces and their properties under the action of linear continuous
maps are described in Subsections 2.1 and 2.2.

In Section 3, we provide solutions to the problem , with the help of
the problem solved in Section 2. Namely, in Section 3.1, we construct the solutions
ug(t, z, €) as special Laplace transforms, along piecewise linear paths, on the sectors
Elfun w.r.t. €, k € [-n,n]. In Section 3.2, we build up the solutions wug, (t, 2, €) as
usual Laplace transforms along half lines provided that e belongs to the sectors
€s4,» 0 < p <v—1. In Section 3.3, we combine both families {urtre[—n,ny and
{uq, }o<p<,—1 in order to get a set of solutions on a full covering £ of the origin
in C* and we provide bounds for the differences of consecutive solutions (Theorem
57D,

In Section 4, we focus on a second auxiliary convolution Cauchy problem with
polynomial coefficients and forcing term that solves the problem stated in Sec-
tion 2. We establish the existence of holomorphic solutions which are part of the
Banach spaces of functions with super exponential (resp. exponential) growth on
L-shaped domains and exponential growth on unbounded sectors. A description of
these Banach spaces and the action of integral operators on them are provided in
Subsections 4.1, 4.2 and 4.3.

In Section 5, we present solutions for the problems , and ,
displayed as special and usual Laplace transforms forming a collection of functions
on a full covering £ of the origin in C* (Theorem [5.3)).

In Section 6, the structure of the asymptotic expansions of the solutions uy, yx
and ug,, Y4, W.r.t. € (stated in Theorem is described with the help of a version
of Ramis-Sibuya Theorem which entails two Gevrey levels 1 and 17 disclosed in
Subsection 6.1.

2. A FIRST AUXILIARY CAUCHY PROBLEM WITH EXPONENTIAL COEFFICIENTS

2.1. Banach spaces of holomorphic functions with super-exponential de-
cay on horizontal strips. Let D(0,7) be the closed disc centered at 0 and with
radius 7 > 0 and let D(0,¢) = D(0,€) \ {0} be the punctured disc centered at 0
with radius ¢y > 0 in C. We consider a closed horizontal strip H described as

H={ze€C/a<Im(z) <b, Re(z) <0} (2.1)

for some real numbers a < b. For any open set D C C, we denote O(D) the
vector space of holomorphic functions on D. Let b > 1 be a real number, we define
¢(b) = ::8 1/(n+1). Let M be a positive real number such that M > ((b). We

introduce the sequences r,(3) = Zi:o m and sp(8) = M —rp(B) for all 58 > 0.

Definition 2.1. Let ¢ = (01, 09,03) where 01, 02,03 > 0 are positive real numbers
and # > 0 is an integer. Let ¢ € D(0,¢9). We denote SED (34 1, the vector

space of holomorphic functions v(r) on H (which stands for the interior of H) and
continuous on H such that

o510 = s D ex (= Tl + s (3) xploalr)
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is finite. Let 6 > 0 be a real number. SED (4 g, ) stands for the vector space of
all formal series v(7,2) = 355 vg(7)2? /B! with coefficients vg(T) € SED (4,4, 1,e),
for g > 0 and such that -
S8
[ECRIEPEDS ||vﬁ(7—)||(B,g,H,e)E

820

is finite. The set SED (4 ¢ 5) equipped with the norm || - ||, m,e,5) turns out to be
a Banach space.

In the next proposition, we show that the formal series belonging to the latter
Banach spaces define actual holomorphic functions that are convergent on a disc
w.r.t. z and with super exponential decay on the strip H w.r.t. 7.

Proposition 2.2. Let v(7,2) € SED (4 5. Let 0 <61 < 1. Then, there exists
a constant Cy > 0 (depending on ||v||(g,m,e,5y and 01) such that

CO)Irl = o2(M =) exploslr))  (2:2)

[v(T, 2)| < Co|T|exp (%
€

forall T € H, all z € C with % < 1.
Proof. Let v(7,2) = > 55 v3(7)2? /B! € SED(, 1i.c5)- By construction, there
exists a constant ¢y > 0 (depending on ||v[|(¢, f,e,5)) With

01

[ (T)] < col7| exp( |€|7“b(5)IT| — 028p(P) exp(03|T|))B!(§)*3 (2.3)

for all 8 >0, all 7 € H. Take 0 < §; < 1. From the definition of {(b), we deduce
that

[o(r, 2)| < colT] Y exp(%m(ﬁ)lf\ — 0255(B) exp(0s|7))) (61)”
820
o1

i CO)|7] = o2(M = ((b)) eXp(Us|T|))m

for all z € C such that % < 61 < 1, all 7 € H. Therefore (2.2)) is a consequence of
29). O

In the next three propositions, we study the action of linear operators constructed
as multiplication by exponential and polynomial functions and by bounded holo-
morphic functions on the Banach spaces introduced above.

(2.4)
< co|7]exp(

Proposition 2.3. Let kg, ko > 0 and k1 > 1 be integers. Assume that the next
condition

bk
ky > bko + — (2.5)

g3
holds. Then, for all € € D(0,¢p), the operator v(t, z) — 7% exp(—koT)d; ¥ v(T, 2)
is a bounded linear operator from (SED (g f.cs), || - l(o,H,e,6) into itself. Moreover,

there exists a constant Cy > 0 (depending on ko, k1, k2, 0,b), independent of €, such
that
7% exp(=ka) 0 0(7, 2)|| (g, 11.6,6)

< Culel* 6" (7, 2)ll (0, 11,c.6)

for allv € SED (5 p ), all € € D((), €)-

(2.6)
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Proof. Let v(7,2) =3 55 vs(7)2" /B! belonging to SED(, p.c.5)- By definition,

I exp(— ko) o(T, 2)ll 0, 11.c.0)

58 (2.7)

= Y I exp(—kar)vss, (ﬂ”(@gﬂ@@-

B=k1

Lemma 2.4. There exists a constant Cy1 > 0 (depending on ko, k1,ka,0,b) such
that

kob
175 exp(—kam)vp—, (T)|(B0rre) < Cralel™ (B + 1) T lug_, (7) | (5=kr o0
(2.8)
for all B> k.

Proof. First, we perform the factorization

|7'ko exp(—koT)vg_, (T)||—i| exp ( - %rb(ﬂﬂﬂ + o28(8) exp(03|7'|))

= P (D] ey (= Ty (8~ k)i + 020(8 — k) exp(o ) ) 17 expl(—kor)

7] el
o
X eXP(—ﬁ(Tb(B) = 1o(B — k1))|7]) exp(o2(sp(8) — su(8 — k1)) exp(os|7]))
(2.9)
On the other hand, by construction, we observe that
(8) —ry(B— k) > 2 (8) = 5u(8 — k1) < ——1 (2.10)
T — (B8 — —— s —sp(8 — - )
b b 1 _(ﬂ‘i‘l)b, b b 1) > (ﬁ—f—l)b
for all 8 > k1. According to (2.9)) and , we deduce that
177 exp(—ka)vg—k, (T)|(8.0,51.6) < ABN05—rs (T (8- 1,0, 1,0) (2.11)
where
A(B) = sup |7]* exp(kalT]) eXp(—ﬁL\Tl) exp(—azL exp(os|7|))
reH lel (B+1)° (B+1)°
< A1(B)A2(B)
with
A1 (B) = sup zFo exp(fﬂLx)
' 2>0 e[ (B+1)077
k1
As(B) = 21;}8 exp(ka) exp(fagm exp(osx))

for all 8 > k;. In the next step, we provide estimates for A;(5). Namely, from the
classical bounds for exponential functions

sup 2" exp(—mox) < (@)ml exp(—my) (2.12)
x>0 mo
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for any integers m; > 0 and mg > 0, we obtain

R0 sup (ko exp(— TR
A =l o)™ e )

k
< le[*o sup X*0 e —&X 2.13
<[el" sup X' exp(— 55 X) (213)

k
R et 5 1

for all 8 > k;. In the last part, we focus on the sequence Ay(B). First of all, if
ko = 0, we observe that A3(8) < 1 for all 8 > k;. Now, we assume that ko > 1.
Again, we need the help of classical bounds for exponential functions

c c
- < “(log(—) —1
21;[5 cx — aexp(bz) < b( Og(ab) )
for all positive integers a, b, c > 0 provided that ¢ > ab. We deduce that
k ko(B+1)° k k k kb
5(8) < exp(22 (og(2ELE ) 1) _ep(- 22 4 B2y B2 yyp0 0%
o3 030’2](31 g3 g3 0'3(72]€1

whenever 3 > ki and (3+1)° > 0903k; /ko. Besides, we also get a constant C .o > 0
(depending on ko, 09, k1, b, 03) such that

Ax(B) < Cro(B+1)
fE)r all B > ky with (3 + 1)® < 0903k1/ko. In summary, we obtain a constant
C1.0 > 0 (depending on ks, 02, k1, b, 03) with

As(B) < Cro(B+1) (2.14)
for all § > k;. Finally, gathering (2.11)), (2.13) and (2.14) yields (2.8). O

Bearing in mind the definition of the norm (2.7)) and the upper bounds (2.8)), we

deduce that

||7'k° eXp(—kQT)ﬁz_klU(Ta 2)|l(o.H,e.5)

kob
73

kgb
o3

bho+ 22 (B — k1)! , 0k
<) Crale 4 gt (7,”7%7161(T)H(Bfkl,z,H,e)(sk ATk
P 7 (B k)
(2.15)
In accordance with the assumption (2.5)), we obtain a constant C o > 0 (depending
on ko, ]{517 kg, b7 0'3) such that

bk — ky)!
(1+ ﬁ)bkﬁ“i;i(ﬂ 31 1) <Ci2 (2.16)
for all 8 > k. Lastly, clustering (2.15)) and (2.16) furnishes (2.6]). O

Proposition 2.5. Let ko, ko > 0 be integers. Let ¢ = (01,09,03) and o’ =
(01,0%,03) with 0; >0 and 0 >0 for j =1,2,3, such that

o1 >0y, 092<0h, 03=0%5. (2.17)

Then, for all e € D(0,€g), the operator v(t, z) — 7% exp(—ky7)v(T, 2) is a bounded
linear map from (SED(Q’,H,e,Qv ”'”(g’,H,e,é)) into (SED(Q,H,G,é)v ”'”(Q,H,e,é))' More-
over, there exists a constant Cy > 0 (depending on ko, ko, c,0’, M,b) such that

|7% exp(—=kam)o(7, 2) [l (0. 1,c.8) < Calel™ [[0(T, 2)ll (o7, 11,c.8) (2.18)
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for allv € SED (41 g e.5)-

Proof. Take v(7,2) =3 554 vs (T)Zﬁ—? within SED, g 5. From Deﬁnition we
see that

ko ko 5"

1750 exp(—kor)o(7, 2) (0 ey = D IIT exp(=ka7)0s(7)ll (6.0, 1.0 7

B>0 '

Lemma 2.6. There exists a constant C; > 0 (depending on ko, ka,0,0’, M,b) such
that

I7% exp(—k27)vs(7) | (5,0,1.0) < Culel™ v (T) (5,07, 11,0

Proof. We operate the factorization

7 exp(—har)s (D)l exp (= Zera(Alr] + o2s1(5) explosle)

/

= |vﬁ(7')|i exp ( - %lrb(ﬂﬂﬂ + obhsp(B) exp(cré|7'|))

7l

_ !
% |7%0 exp(—ka)| exp(— 221

le]

ro(B)lrl) exp (2 = ob)su(8) explosl]))-
We deduce that

([ 7% exp(—kaT)vg(T) || (5.0 11.0) < AB) V5Tl (507 1.0

where

A(B)

= sup |Tk0 exp(—kaT)| exp(—
TEH |€|

< Ai(B)Az(B)
with

o1 — o}

ro(B)lrl) exp (o2 = ob)su(8) explosi]))

_ !
Ay(B) = sup z¥o exp(— 2L
z>0 |€|

u(B)x),

As(B) = sup exp(kax) exp ((0’2 — ab)sp(B) exp(ogm)).

x>0
Since 15(8) > 1 for all 8 > 0, we deduce from (2.12]) that

. T T koe !
A1(B) < le[* sup()* exp(—(o1 — 07) =) < e*( 7
2>0 € le o1 — 0}

Yho, (2.19)

To handle the sequence Ay (), we observe that s,(8) > M —¢(b) > 0, for all 3 > 0.
Therefore, we see that

/12(6) < sglg exp (kgx + (09 — 05) (M — ¢(b)) exp(a;;x))

which is a finite upper bound for all § > 0. O

As a consequence, Proposition follows directly from Lemma [2.6] (]
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Proposition 2.7. Let ¢(7, 2, €) be a holomorphic function on H x D(0, p)x D(0, ¢5),
continuous on H x D(0,p) x D(0,¢eq), for some p > 0, bounded by a constant
M. >0 on H x D(0,p) x D(0,€p). Let 0 < < p. Then, the linear map v(T,z) —
c(r, z,€)v(T, 2) is bounded from (SED(q m.es), || - l(o,H,e,5)) into itself, for all € €
D(0,€). Furthermore, one can choose a constant Cy > 0 (depending on M,, 6, p)
independent of € such that

(T, 2, €)0(T, 2) (0. 11.0.6) < Cullv(T,2)|(o.1.6.5) (2.20)
Jor allv € SED (5 f cs)-

Proof. We expand ¢(7,z,¢€) = Z,@>o cp(T,€)2P /B! as a convergent Taylor series
w.r.t. z on D(0,p) and we set M, > 0 with
sup le(T, 2, €)| < M,.
TE€EH,2€D(0,p),e€E
Let v(7,2) = > 55 v(7)2? /B! belonging to SED(, . s). By Definition , we
obtain
HC(Tv Z, E)U(Ta Z)”(Q,H,e,é)

Bl 68 2.21
< Z ( Z Hcﬁl (7_’ 6)”52 (T)”(ﬂvszvf)M) ﬁ ( )

B>0  B1+B2=p
Besides, the Cauchy formula implies the next estimates

1
sup [eg(T,€)| < Mc(g)ﬁﬁ!
T€H, ec&

for any 6 < §’ < p, for all 8 > 0. By construction of the norm, since 7,(3) > ry(82)
and sp(8) < sp(B2) whenever 8y < 3, we deduce that

1
llca, (7, €)va, (Tl (8,0, 1,6) < Mcﬂﬂ(g)ﬁlll% (Dl 8.0,1,0)
(2.22)

1
< McBlK?)ﬂl ||UB2 (T)”(ﬁmg,hﬁé)
for all 81, B2 > 0 with 81 + B2 = 5. Gathering (2.21)) and (2.22)) yields the desired

bounds 5
”C(T’ 2, 6)1)(7', Z)||(g,H,e,6) < MC(Z(g)ﬁ)HU(ﬂ Z)”(Q,H,e,&)-
B=0
[l

2.2. Spaces of holomorphic functions with super exponential growth on
horizontal strips and exponential growth on sectors. We keep notations of
the previous subsection 2.1. We consider a closed horizontal strip

J={z€C/ec<Im(z) <d, Re(z) <0} (2.23)
for some real numbers ¢ < d. We denote Sy an unbounded open sector with

bisecting direction d € R centered at 0 such that Sy C Cy = {z € C/Re(z) > 0}.

Definition 2.8. Let ¢ = (01,¢2,¢3) where 01,¢2,53 > 0 be positive real numbers
and 8 > 0 be an integer. Take ¢ € D(0, ¢p). We designate SEG 5., j,¢) as the vector

space of holomorphic functions v(7) on J and continuous on .J such that

o) =510 S exp (= PrB)ir] - ern() explcalr))
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is finite. Similarly, we denote FG 3 4,,5,uD(0,r),c) the vector space of holomorphic
functions v(7) on Sy U D(0,7) and continuous on Sy U D(0,r) such that

v(7)l o1
lo(Mll(8.01.520D0r).0) = sup exp(—==7(B)I7])
TESGUD(0,r) |T| |€|

is finite. Let us choose § > 0 a real number. We define SEG ¢ js) to be the

vector space of all formal series v(7, 2) = Zﬁ>0 vg (T)ZB/B! with coefficients vs (1) €
SEG(B,S,J,E), for 8 > 0 and such that B

58
lo(r, 2)ll (g e) = D ”’Uﬁ(T)”(ﬁ,g,J,e)ﬁ
B>0
is finite. Likewise, we set EG (5, s,0D(0,r),e,5) s the vector space of all formal series
v(T,2) = 550 vg(7)2” /B! with coefficients v3(7) € EG (g,6,,5,0D(0,r),¢)> for f >0
with a
5B
[0(7, )l (o1,84UD O, 1c8) = D ||v5(7—)”(B,Ul,SdUD(O,r),e)ﬁ
B>0 ’
being finite.

These Banach spaces are slight modifications of those introduced in the former
work [I7] of the second author. The next proposition will be stated without proof
since it follows exactly the same steps as in Proposition 2:2] It states that the
formal series appertaining to the latter Banach spaces turn out to be holomorphic
functions on some disc w.r.t. z and with super exponential growth (resp. exponential
growth) w.r.t. 7 on the strip J (resp. on the domain Sg U D(0,7)).

Proposition 2.9. (1) Let v(7,z) € SEG(( jes)- Take some real number 0 < 6; <
1. Then, there exists a constant Cy > 0 depending on ||v||(, 1,5y and 81 such that

CO)Ir] + <C(b) exp(sslr])) (2:24)

01

[o(r.2)] < Calrlexp (73
forall T € J, all z € C with 2 < 6.

(2) Let us take v(7, 2) € EG (4, 5,uD(0,r),e,5)- Choose some real number 0 < §; <

1. Then, there exists a constant C; > 0 depending on ||v||(s,,5,0D(0,r),e,5) and 1

such that o1

lv(, 2)| < Calr|exp(¢(0)|7]) (2.25)

le]
for all 7 € SqU D(0,7), all z € C with 2l < 5,.

In the next propositions, we study the same linear operators as defined in Propo-
sitions and regarding the Banach spaces described in Definition

Proposition 2.10. Let us choose integers ko, ko > 0 and ky > 1.
(1) We take for granted that the constraint

bk
ki > bko + —= (2.26)

S3
holds. Then, for alle € D(0, ), the linear map v(7, z) — 750 exp(—ko7)d; ¥ 0(T, 2)
is bounded from (SEG ¢ j.e.s), | - l(c,7.¢,5)) into itself. Moreover, there exists a con-

stant C5 > 0 (depending on kg, k1,ka,s,b), independent of €, such that
75 exp(— k)0 0(r, Dl e ey < Colel ™ [o(r, ey (2:27)



14 A. LASTRA, S. MALEK EJDE-2019/55

for allv(r,z) € SEG( jes), all € € D(0, ).
(2) We suppose that the restriction

k1 > bko

holds. Then, for alle € D(0, ), the linear map v(t, z) — 7% exp(—koT)0; ¥ 0(7, 2)
is bounded from EG (4, s,0D(0,r),c,5) into itself. Moreover, there exists a constant
C% > 0 (depending on ko, k1,ke,01,7,b), independent of €, such that
7% exp(—ka7)d; 1 o(r, 2)|l(01,54UD(0,7),¢,6) (2.28)
< Chlel* 6™ (7, 2) [l (0, 500D (0,r).6,8)
for all v(t, 2) € EG (5, 5,uD(0,r),¢,5), all e € E.

Proof. We only sketch the proof since the lines of arguments are analogous to those
used in Proposition Part (1) is reduced to the following lemma.

Lemma 2.11. Let vg_y,(7) in SEG(3_k, ¢ 1.6), for all B > ki. There exists a
constant Cs.1 > 0 (depending on ko, k1, ka,s,b) such that
Ko exp(—k < Cyalelto(8 + 1)+ E
|77 exp(—kaT)vg—k, (T)ll(8,5,7.0) < Caalel™(B+1) 3 [[Vg—ky (T) (k1 .5,)
forall B> k.

Proof. We use the factorization

% exp(—har)vs (7)o (= Thrn(B)le] = sar(8) explsal 7))

o ()
7

X eXp(—%(m(ﬁ) = rp(B = k1))|7]) exp(—<2(re(B) — r5(B — k1)) exp(cs|7])).
In accordance with , we obtain

Zory(8 = k)7l = oo (8 — k) explsa| ) ) [ exp(—kzr)|

exp < — |6‘

([ exp(—kam)vg—r, ()l (Brc,0) < BBNg—iey (T) | (8=b 6, 70)

where
B(9) = sl explll]) exp(— T2l exp(—sa o5 explsal )
< Bi(B)B2(B)
with
_ ko _a kli
Bl(ﬁ) - 2;13‘% exp( |€| (ﬁ“‘ 1)b$),
By(B) = ilé% exp(kax) exp(—cg(ﬁf_ill)b exp(s3x))

for all B > k1. From the estimates (2.13)), we deduce that
k
Bi(B) < lel* (=" exp(—ko) (5 + 1)
Ulkl

for all 8 > k;. Bearing in mind the estimates (2.14)), we obtain a constant 6'3,0 >0
(depending on ks, <2, k1, b, ¢3) with

B2(B) < C3.0(B8+ 1)%’
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for all 8 > ki, provided that ko > 1. When ko = 0, it is straight that Bo(8) <1
for all 8 > k1. Then Lemma follows. ([

To explain part (2), we need to check the next lemma.

Lemma 2.12. Let vg_y, (1) in EG(3_k, 0,,5,0D(0,r),¢), Jor all B > k1. There exists
a constant C% 1 > 0 (depending on ko, k1, ke, 01,7,b) such that

||Tk° exp(—kaT)vg_k, (T)||(B,<71,SdUD(O,T)7e)
< Ci11el™ (B4 1) [lvg—k, (T) | (8—1,01,540D(0,1),6)
forall B> k.

Proof. We use the factorization
1 g1
|70 exp(—ka7)vp—t, (T)Im exp(—m%(ﬂ)lﬂ)

_ ogei ()]
]

x exp(—%(rb(ﬂ) —rp(B — k1))|7]).

Since there exists a constant C% , > 0 (depending on ks, ) such that | exp(—ke7)| <
Ct, for all 7 € SqU D(0,r), using (2.10), we obtain

(|77 exp(—kaT)vg—y (T)|(8,01,800D0.).0) < CBMVB=k1 (T (B—tr,00,5a0D(0,0),6)

exp<—‘|’§|rb<5 — k)| 70 exp(—koT)|

where
g1 kl
C(B) =C4 sup 7% exp(— — ————|7]) < C4 ,C1 (B
( ) 3.2TESdUD(O,T‘)| | ( |6‘ (6+1)b| |) 3.2 1( )
with L
C — ko _271
1) = s e (1 )

for all B > ky. Again, in view of the estimates (2.13]), we deduce that
k
C1(B) < e (—-)" exp(—ko) (8 + 1)
o1k
for all 8 > k;. Then Lemma [2.12] follows. (I
O

Proposition 2.13. Let kg, ko > 0 be integers.
(1) We select ¢ = (01,%2,53) and ¢’ = (01,3, 53) with 01,07 > 0, ¢j,6; > 0 for
j =2,3 such that
o1 >0, S2>¢h, 3= (2.29)
Then, for all € € D(0,€y), the map v(t,z) — 75 exp(—koT)v(T,2) is a bounded
linear operator from (SEG(S’J&@’V” N 7.e.8)) into (SEG (¢, 1.e.6), 1 (¢, 5,e,8)) - Fur-
thermore, there exists a constant Cs > 0 (depending on ko, ka,s,<’) such that

|75 exp(—kaT)v(7, 2) || (g, 5,c.6) < Cslel™ |v(T, 2) || (¢, s,c.6) (2.30)

for allv € SEG s jc6)-
(2) Let 01,04 > 0 such that
o1 > 0}, (2.31)
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For all € € D(0,€), the linear map v(r, z) — 75 exp(—kor)v(T, 2) is bounded from
(EG(o1.5:0D0:).6): [ll01.500D(0.0).68)) 10 (EG (01 5,000,000 1l 01,500D(0.0).0.6))-
Also there exists a constant C% > 0 (depending on ko, ka,7, 01,04 ) such that

|75 exp(—kaT)v(T, 2) || (o1,80UD(0,r)6,8) < Calel*[[0(7, 2)|l(01, 520D (0.),e8)  (2-32)
fOT all v € EG(O”l,SdUD(O,7'),e,6)'

Proof. As in Proposition [2.10] we only provide an outline of the proof since it keeps
very close to the one of Proposition Concerning the first item (1), we are scaled
down to show the next lemma

Lemma 2.14. There exists a constant C3 > 0 (depending on ko, ka,s,<’) such that

175 exp(—kam)vs (Tl (5.6,06) < Calel™llvs ()l (5.67,7.0

Proof. We perform the factorization

¥ exp(—kar)us () o ex (= Thrs(B)ir| = arn(8) explsalr))
%L 1,(8) 7| — <hri(8) exp(silr]) )

1
— o (r)| — exp ((—
7] B

o1 — o}

le]

x |7k0 exp(—kyT)| exp(—

r(B)Irl) exp (= (2 = )r(8) exp(salrl))-

We obtain
|| 7Ho exp(—kaT)vg(T)[l(8,,5.0) < B(B)vs(T)ll (8.6, 7.0)

where

B(ﬁ) = SUIJ) |7'\kO exp(ka|T|)
TE

< expl- Tl exp ( - (2 — () explalr))
< B1(B)Ba(8)
with
B1(B) = sup z*° exp(furb(ﬁ)x)
>0 €]

Ba(B) = sup exp(hzr) exp (= (2 = h)ro(B) explssa) ).

x>0

With the help of ([2.19)), we check that

and since 7(8) > 1 for all § > 0, we deduce

Ba(B) < supexp (kaz — (52 — o) explsa)
x>0

which is a finite majorant for all 5 > 0. The lemma follows. O

Regarding the second item (2), we focus on the following result.
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Lemma 2.15. There exists a constant C > 0 (depending on ko, ko, 7, 01,0} ) such
that
750 exp(—kam)vs(T) | (8,01,500D(0,r),6) < Calel™ va(T) (8,01 ,500D(0,16)
Proof. We factorize the expression
1 g1
| ke eXP(—sz)Uﬁ(TNm eXP(—gTb(ﬁﬂTD

o1 — 0}

— ()| exp(= T ()l expl—kar) | exp(~ T T ) ).

By construction, we can select a constant C% ; > 0 (depending on ky,7) such that
|exp(—koT)| < C% 4 for all 7 € S; U D(0,r). We deduce that

).
177 exp(=k2m)vs(7) |l (5.01,500D(0,r),0) < CONVE(T) (8,04, 500D(0,,)  (2-33)

where
o1 — ot

=y (B)IT]) < C3,C1(B)

C(B)<Chy  sup [ exp(~
TESLUD(0,r) e

with
o
C1(8) = supa* exp(— 7L
>0 le

Through (2.19) we notice that

ro(B))-

for all 8 > 0. This yields the lemma. t
O

The next proposition will be stated without proof since it can be disclosed fol-
lowing exactly the same steps and arguments as in Proposition [2.7]

Proposition 2.16. (1) Consider a holomorphic function ¢(t, z,€) on J x D(0, p) x
D(0,¢p), continuous on J x D(0,p) x D(0,€), for some p > 0, bounded by a
constant M. > 0 on J x D(0,p) x D(0,e9). We set 0 < 6 < p. Then, the operator
v(T,2) + (T, 2, €)u(T, 2) is bounded from (SEG ¢ jes), || - ll(c,7.e,6)) into itself, for
all e € D(O, €0). Besides, one can select a constant Cs >0 (depending on M., ¥, p)
such that
||C(T7 2, G)U(Tv Z) H(gJ,e,&) < OS””(T’ Z) ”(S,J,e,é)

Jor allv € SEG e s)-

(2) Let us take a function c¢(t,z €) holomorphic on (Sy U D(0,7)) x D(0,p) x
D(0,¢p), continuous on (Sq U D(0,7)) x D(0,p) x D(0,¢), for some p > 0 and
bounded by a constant M, > 0 on (SqUD(0,7)) x D(0,p) x D(0,€p). Let0 < § < p.
Then, the linear map v(t,z) — (7,2, €)v(T, 2) is bounded from the Banach space
(EG(al7stD(0,T)7E,5), I| - ||(01,SdUD(O,7‘),E,5)) into itself, for all e € D(0,¢p). Further-
more, one can select a constant C’é > 0 (depending on M., 6, p) with

||C(T7 z, E)U(T7 Z) ||(01,SdUD(O,r),e,6) < C’v:/))”v(,]_’ Z) ||(o‘1,SdUD(O,r),e,6)

fO’I" CL” DS EG(al,SdUD(O,T)yﬁ‘S)'
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2.3. An auxiliary Cauchy problem whose coefficients have exponential
growth on strips and polynomial growth on unbounded sectors. We start
this subsection by introducing some notations. Let A be a finite subset of N3. For
all k = (ko, k1,k2) € A, we consider a bounded holomorphic function c(z,€) on a
polydisc D(0, p) x D(0, €) for some radii p,eg > 0. Let S > 1 be an integer and let
P(7) be a polynomial (not identically equal to 0) with complex coefficients whose
roots belong to the open right half plane C; = {z € C: Re(z) > 0}.
We consider the equation

Ow(r, z,€) = Z %P((i’_)e)ek"Tko exp(—koT)OM w(T, 2, €) (2.34)
E:(ko,kl ,kz)eA

Let us now state the main statement of this subsection.

Proposition 2.17. (1) We impose the following two assumptions:
(a) There exist o = (01,09,03) for o1,02,03 > 0 and b > 1 being real numbers
such that for all k = (ko, k1, ke) € A, we have

bk
Szk1+bko+a—2, S >k (2.35)

3
(b) For all0 < j < S—1, we consider a function T — w;(T,€) that belong to the
Banach space SED g 4 1,y for all € € D(0,€q), for some closed horizontal strip H

described in (2.1) and for a triplet o' = (01,04, 0%) with o1 > o] > 0, 02 < 04 and
o3 = 0%.
Then there exist some constants I, R >0 and 0 < 6 < p (independent of €) such
that if one assumes that
S5—1-h 59
Y lwpn(m e mo= <1 (2.36)
i=0 It
for all0 < h < S—1, for all e € D(0,€0), the equation (2.34) with initial data
(0Iw)(7,0,€) = w;(1,€), 0<j<S—1, (2.37)

has a unique solution w(T,z,€) in the space SED (4 g cs), for all € € D(0, ) and
satisfies furthermore the estimates

”w(T’Z7€)”(g,H,e,6) < 5SR+I (238)

for all e € D(0, €).
(2) We assume the following two conditions:
(a) There exist ¢ = (01,%2,$3) where 01,652,653 > 0 and b > 1 are real numbers
taken in such a way that for all k = (ko, k1, k2) € A we have
bko
SZkl"f‘bko-i-?, S > k. (239)
3
(b) For all 0 < j < 8 —1, we choose a function T — w;(T,€) belonging to the
Banach space SEG o o 5. for all € € D(0,¢q), for some closed horizontal strip J
displayed in (2.23)) and for a triplet ' = (04,5, ¢4) with o1 > 0§ >0, &2 > 5 >0
and ¢3 = c}.
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Then, there exist some constants I, R > 0 and 0 < § < p (independent of €) such
that if one takes for granted that

S—1—h 5]
> lwin(r Ollosrgo— < T (2.40)
i=0 I
for all0 < h < S—1, foralle € D(O,eo), the equation (2.34) with initial data
(2.37) has a unique solution w(r,z,€) in the space SEG ¢ j..s), for all e € D(0, o)
and fulfills the constraint

|w(T, 2,€)ll(,7.e,6) < SR+1 (2.41)

for all e € D(0, ).

(3) We assume the following two conditions:

(a) We fiz some real number o1 > 0 and assume the existence of b > 1 a real
number such that for all k = (ko, k1, k2) € A we have

S >k + bko, S > k. (242)

(b) For all0 < j < S — 1, we select a function T — w;(7,€) that belongs to
the Banach space EG (g 51 5,0D(0,r),¢) for all € € D(O, €o), for some open unbounded
sector Sq with bisecting direction d with Sq C C4 and D(0,7) a disc centered at 0
with radius r, for some 0 < 0] < 01. The sector Sq and the disc D(0,7) are chosen
in a way that Sq U D(0,7) does not contain any root of the polynomial P(T).

Then, some constants I, R >0 and 0 < ¢ < p (independent of €) can be selected
if one accepts that

S—1—h 59
> llwjen(r, e)H(O,Ui,SdUD(O,r),e)ﬁ <I (2.43)
§=0
forall0 < h < S—1, foralle € D(O, €0), such that the equation with initial
data has a unique solution w(r,z,€) in the space EG (4, 5,0D(0,r),e,5), for all
e € D(0, ), with the bounds

Hw(T’ Z, 6) ||(U1,SdUD(O,r),e,5) < 6SR + 1 (244)
for all e € D(0, €).

Proof. Within the proof, we only plan to provide a detailed description of part (1)
since the same lines of arguments apply for the parts (2) and (3), by using Propo-
sitions [2.10} 2.13] and [2.16] instead of Propositions and 2.7 We consider the

function

S—1 ;
i
Ws(r,2,€) = Y w;(7, 6)ﬁ
=0
where w;(7, €) is displayed in (1)(b) above. We introduce the map A defined by

A (U(1,2)) = Z 61;3('(2’7,)6) e korho exp(—kor)0M =SU (1, 2)
E:(ko,kl,k‘z)eA

X %13((27")6)6_’%7’“0exp(—sz)aSIWS(T»Z76)'
E:(k(),kl »k2)E‘A

In the forthcoming lemma, we show that A, represents a Lipschitz shrinking map
from and into a small ball centered at the origin in the space SED 4 g ¢ s)-
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Lemma 2.18. Under the constraint (2.35]), let us consider a positive real number

I > 0 such that
S—1—h 59

J
> llwjen(r, €)||(o,g/,H,e)ﬁ <I

§=0
forall0<h<S-—1, foree D(O,eo). Then, for an appropriate choice of I,
(a) There exists a constant R > 0 (independent of €) such that
[A(U(T D (e.rr.e0) < R (2.45)

for all U(r,z) € B(0,R), for all ¢ € D(0,ey), where B(0,R) is the closed ball
centered at 0 with radius R in SED 4 g . s)-
(b) The inequality

[Ac(Ui(7,2)) = Ac(U2(7,2) (0, H,e,6) < %HUl(TyZ) —Ua(1,2) (0, 1rc.0)  (2:46)
holds for all Uy, Uy € B(0,R), all € € D(0, ).
Proof. Since r,(8) > 15(0) and sp(8) < sp(0) for all 5 > 0, we notice that for any
0<h<S—-1land0<j<S—1-h,
Wi (T )l or 1) < Nwjsn(Ts €)ll (0,07 11.)
holds. We deduce that 0"Wg(t, 2, €) belongs to SED (g f,e5) and moreover that

S5—1-h ;
57
102 Ws(r, 2, )l by < D lwjn(T, G)H(O,g’,H,e)ﬁ <I, (2.47)
§=0
for all 0 < h < S — 1. We start by focusing our attention to the estimates (2.45]).
Let U(7,2) be in SED 4 g5y With [|U(7, 2) (o, f,e,5) < R. Assume that 0 < < p.
We put

My - wp |29
 T€H,2€D(0,p),e€D(0,¢0) P(T)

for all k € A. Taking for granted the assumption (2.35]) and according to Propo-
sitions and for all k € A, we obtain two constants C; > 0 (depending on
ko, k1, ke, S,0,b) and Cy > 0 (depending on My, d,p) such that

” CE(Zv 6) e—k(]

P(7)

< CLC16% MU (7, 2) |0, ,e.0)

=065 MR
On the other hand, in agreement with Propositions 2.5 and 2.7] and with the help
of (2.47)), we obtain two constants Cy; > 0 (depending on ko, k2,0, 0’, M,b) and
Cy >0 (depending on My, d, p) with

ho exp(—sz)afl_SU(T, 2) H(Q,H,Eﬁ)

(2.48)

(2, €) —ko ko k
= € 0770 exp(—koT)0  Ws(T, 2, €)|| (0. 1.

< C1C1 |05 Ws(T, 2,€) |l (o 1r.c.6) < C1CAT
Now, we choose §, R, I > 0 in such a way that

Z(élclés_klR + éléll) <R (250)
ke A
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holds. Assembling (2.48]) and (2.49)) under (2.50) we obtain (2.45).
In a second part, we turn to the estimates (2.46). Let R > 0 with Uy, Us

belonging to SED 4 p.c 5y inside the ball B(0, R). By means of (2.48), we see that

‘|%(Z76)
P(T)
< CLC185 MU (7, 2) — Ua(7, 2) || (0. 11.0.6)

e R0k exp(—kyT) 05 (U (7, 2) = Ua(7, 2)) (0.1 c.0) (2.51)

where C1,C; > 0 are given above. We select § > 0 small enough in order that

D iR < 1)2. (2.52)
ke A

Therefore, (2.51) under (2.52)) leads (2.46)).
Lastly, we select §, R, I in a way that both (2.50) and (2.52)) hold at the same

time. Then Lemma 2.18 follows. O

Let constraint be fulfilled. We choose the constants I, R,§ as in Lemma
We select the initial data w;(7,€), 0 < j < S —1 and ¢’ in a way that
the restriction holds. Owing to Lemma and to the classical contrac-
tive mapping theorem on complete metric spaces, we deduce that the map A, has
a unique fixed point called U(7, z,€) (depending analytically on € € D(0,€)) in
the closed ball B(0,R) C SED, p.cs), for all € € D(0,€0). This means that
A(U(r,2,€)) = U(T,2,¢€) with ||[U(7, 2, €)||(s,,e,6) < R. As a result, we obtain that
the next expression

w(T,2,€) = 8Z_SU(T, z,€) + Ws(r, z,€)

solves the equation (2.34) with initial data (2.37)). It remains to show that w(r, z, €)
belongs to SED (4 p,e,5) and to check the bounds (2.38)). By application of Propo-
sition [2.3] for ko = k2 = 0 and k; = S we check that

105U (7, 2, )l (g, 11,c.5) < 6% U (7, 2, )l (0,1,,6) (2.53)

Gathering (2.47) and ({2.53) yields the fact that w(7,z,€) belongs to SED , p ¢ 5)
through the bounds (2.38]). O

3. SECTORIAL ANALYTIC SOLUTIONS IN A COMPLEX PARAMETER OF A SINGULAR
PERTURBED CAUCHY PROBLEM INVOLVING FRACTIONAL LINEAR TRANSFORMS

Let A be a finite subset of N3. For all k = (ko, k1, k2) € A, we denote ci (2, €)
a bounded holomorphic function on a polydisc D(0, p) x D(0,€q) for given radii
pye0 > 0. Let S > 1 be an integer and let P(7) be a polynomial (not identically
equal to 0) with complex coefficients selected in a way that its roots belong to the
open right halfplane C; = {z € C/Re(z) > 0}. We focus on the following singularly
perturbed Cauchy problem that incorporates fractional linear transforms

t
P(et?0,)05u(t, z,€) = Z cﬁ(z,6)((t28t)k°8§1u)(m,z,e) (3.1)
E:(ko,kl,kQ)G.A 2

for given initial data

(09u)(t,0,¢€) = pj(t,e), 0<j<S—1. (3.2)
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We put the next assumption on the set A. There exist two real numbers & > 0 and
b > 1 such that for all k = (ko, k1, k2) € A,

S >k —|—bk‘0+%, S > k. (33)

3.1. Construction of holomorphic solutions on a prescribed sector on Ba-
nach spaces of functions with super exponential growth and decay on
strips. Let n > 1 be an integer. Let [—n,n] be the set of integers {j € N, —n < j <
n}. We consider two sets of closed horizontal strips { Hy }xe[—n,n] and {Jk tre[—n.n]
fulfilling the following conditions. If one define the strips Hy and Jj as follows,

H,={z€C:a, <Im(z) <bg, Re(z) <0},
Jr ={2€C: ¢, <Im(z) <dg, Re(z) <0}
then, the real numbers ag, b, ¢, di. are asked to fulfill the following constraints.
(1) The origin 0 belongs to (cg, do).
(2) We have ¢ < ai, < di, and cgq1 < by < dpg1 for —n < k < n — 1 together
with ¢, < a, < d, and b,, > d,,. In other words, the strips
J—n) H—TL7 J—TL+17 ety Jn—l; Hn—l; Jn) HTL
are consecutively overlapping.
(3) We have agy1 > b and cgqq > dg for —n < k < n — 1. Namely, the strips
Hy, (resp. Ji) are disjoints for k € [—n,n].
We denote HJ,, = {z € C/c_,, < Im(z) < b,,Re(z) < 0}. We notice that H.J,
can be written as the union Uy nj Hi U Ji-

1

AMHERETTRSED

0

SOOI S

3
{Hi, Jitkep 1]

FiGURE 1. Configuration for the sets Hy and Jj

An example of configuration is shown in Figure

Definition 3.1. Let n > 1 be an integer. Let w(7,¢) be a holomorphic function
on HJ, x D(0,¢€) (where HJ,, denotes the interior of H.J,), continuous on H.J,, x
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D(0, €0). Assume that for all € € D(0,¢p), for all k € [—n,n], the function 7 —
w(r,€) belongs to the Banach spaces SED o ¢/, f1,,e) and SEG g, s, j, ) With o’ =
(01,09,03) and ¢ = (01,63,¢3) for some o7 > 0 and of,¢] > 0 for j = 2,3.
Moreover, there exists a constant I, > 0 independent of €, such that

[ (T, )l 0.07 #11cc) < Tws 1w (T, )l 0,7 710) < Tuws (3.4)

for all k € [—n,n] and all e € D(0, €).

Let Epy, be an open sector centered at 0 inside the disc D(0, y) with aperture
strictly less than m and 7 be a bounded open sector centered at 0 with bisecting
direction d = 0 chosen in a way such that

T T
m — arg(t) — arg(e) € (—5 + 6wy, 5~ 0m1,) (3.5)

for some small dg;, >0, for all e € Eyy, and t € T.
We say that the set (w(7,¢€),Eny,,T) is (¢’,¢')-admissible.

As an example, let w(7,€) = 7 exp(aexp(—7)) for some real number ¢ > 0. One
can notice that

[w(r,€)] < |r|exp (@ cos(Im(r)) exp(~ Re(r)))
for all 7 € C, all e € C. For all k € Z, let Hy, be the closed strip defined as
H,={z€C: g—l—n—l—Qk‘ﬂ'SIm(z) < 3%—77—1—21@‘71’, Re(z) < 0}
for some real number n > 0 and let Jj be the closed strip described as
Iy :{ZE(C:3%—77—771+2(k—1)7r§1m(z) < g+n+771+2k‘7r, Re(z) < 0}

for some 77 > 0. Provided that n and n; are small enough, we can check that all
the constraints (1)—(3) listed above are fulfilled for any fixed n > 1, for k € [—n,n].

By construction, we have a constant A, > 0 (depending on 1) with cos(Im(7)) <
—A,, provided that 7 € Hy, for all k € Z. Let m > 0 be a fixed real number. We
first show that there exists K, > 0 (depending on m and k) such that

—Re(1) > K ||
for all Re(7) < —m provided that 7 € Hy. Indeed, if one puts

s 3T
yr = max{|y|/y € [5 + 1+ 2km, 5 0 + 2k~]}

then the next inequality holds

—Re(7) . x
T en @ Kk >0

for all 7 € C such that Re(7) < —m and 7 € Hy. Let Ky = mingep—p n] Km k-
As a result, we deduce the existence of a constant €, > 0 (depending on m, k
and a) such that

[w(T, €)] < Qu k|| exp(—aly exp(Kmin|7]))

for all 7 € H.
On the other hand, we only have the upper bound cos(Im(7)) < 1 when 7 € J,
for all k € Z. Since —Re(7) < |7], for all 7 € C, we deduce that

w(r, €)] < |7 exp(aexp(|r]))
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whenever 7 belongs to Ji, for all € € C. As a result, the function w(r, €) fulfills all
the requirements of Definition for

Ql = (O-/la CLA,,]/(M - 1)7K7n;n)7 S, = (Uivaa 1)

for any given o] > 0.

Let n > 1 be an integer and let us take some integer k € [—n,n]. For each
0 <j<S—1and each integer k € [—n,n], let {w;(r,€),Ef; , T} be a (¢/,¢)-
admissible set. As initial data , we set

u . du

Pies, (€)= /P wj(u, €) exp(——)—= (3.6)

where the integration path Py is built as the union of two paths Py ; and Py
described as follows. Py ; is a segment joining the origin 0 and a prescribed point
Ay, € Hy, and Py is the horizontal line {A; —s/s > 0}. According to (3.5), we
choose the point Ay with | Re(Ay)| suitably large in a way that

arg(Ay) — arg(e) — arg(t) € (fg + Nk, g — k) (3.7)

for some 75 > 0 close to 0, provided that € belongs to the sector £ T

Lemma 3.2. The function Pjek (t,€) defines a bounded holomorphic function on

(TND(0,r7)) x Ef ;. for some well selected radius r1 > 0.

Proof. We set
! _ | _uydu
Yicel, (te) = /Pk ) w; (1, €) exp( et) u
Since the path Py 1 crosses the domains Hy, J, for some ¢ € [—n,n], due to (3.4),
we have the coarse upper bounds
o

/
4(r€)| < Lyl exp (1] + 6 exp(si i)

for all 7 € Py, ;. We deduce the estimate
| u  du

w;(u, €) exp(——)—
Pra I e’ u

Ak ol / / p dp
< / Ly, pexp (mp +¢ exp(§3p)) exp(—H cos(arg(Ay) — arg(et)))?.
0

From the choice of Ay fulfilling (3.7)), we can find some real number §; > 0 with
cos(arg(Ay) —arg(et)) > 6, for all e € £F;; . We choose §; > 0 and take ¢ € T with
[t| < 01/(02 + o}). Then we obtain

[ Akl
p
) e (t)] <o, / exp(sy exp(Q%p))exp(*mf;z)dp
n 0

which implies that go; e (t,€) is bounded holomorphic on (7ND(0, 52‘17101)) xER .
CH I, n

In a second part, we put
. du

ey, 9= [ wilwen(-5) T

HJp et’ u
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Since the path Py o is enclosed in the strip Hy, using the hypothesis (3.4), we check
the estimate
| u . du

w;(u, €) exp(——)—
Pra J et u‘

+o0 /
< / L, | Ay — 5| exp (%mk — 8| — ob(M — 1) exp(o}| Ax — s|)) (3.8)
0

|Ag — s| ds

x exp(— il cos(arg(Ay — s) — arg(e) — arg(t)))m
From the choice of Ay, fulfilling (3.7)), we observe that
T 0
arg(Ay, — s) — arg(e) — arg(t) € (—5 + M, 5 M) (3.9)

for all s > 0, provided that € € 51’3(1”- Consequently, we can select some §; > 0
with cos(arg(Ay — s) — arg(e) — arg(t)) > d1. We select d2 > 0 and take t € T
with [t| < §1/(d2 + of). On the other hand, we may select a constant K4, > 0
(depending on Ay) for which

| A = s| > Ka, (|Ak] + 5)
whenever s > 0. Subsequently, we obtain
i

02)d
e

+oo
ey, (ol <L, [ exp (= o0~ Dexp(ohlde - s))) exp(
n 0

+oe Ka, 0
< Iy, / exp(— Ar72 (|Ak| + 8))ds
0

le]
K4, 62
el

Iy,
J

Ka,

—[efexp(~— 2|4y
2

As a consequence, gp? e (t,¢€) represents a bounded holomorphic function on (7" N
" HJn

D(0,01/(02 4 01))) x £ ;.- Then Lemma [3.2| follows. O

Proposition 3.3. Assume that the real number £ introduced in (3.3)) satisfies in-
equality
¢ < min(0},4). (3.10)
(1) There exist some constants 1,5 > 0 (independent of €) selected in a way that
if one assumes that
S5—1-h ; S—1—h ;
&7 57
Z lwj+n (T, )l (0,0, 0) 77 < 1 Z lwjtn (T Ol 0,57 0.0 77 <1 (3.11)
7=0 J: =0 J:
foral0 <h<S8-1,dleec D(O,eo), all k € [—n,n], then the Cauchy problem
(3.1, (3.2) with initial data given by (3.6 has a solution gk (t, z, €) which turns
out to be bounded and holomorphic on a domain (T N D(0,r7)) x D(0,661) x Ef ;-

for some fized radius r+ >0 and 0 < 61 < 1.
Furthermore, ugk - can be written as a special Laplace transform

u  du

ugy, (t,z,€) = /Pk wp g, (U, 2, €) exp(—g)z (3.12)
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where wyy, (7, z,€) defines a holomorphic function on H.J,, x D(0,861) x D(0, &),
continuous on HJ, x D(0,001) x D(0, €q) that fulfills the following constraints. For
any choice of two triplets o = (01,02,03) and ¢ = (01, %2,3) with

o1 > 01,0 < 09 < 05,03 = 04,5 > $5,63 = G4 (3.13)
there exist a constant Cy, > 0 and Cj, > 0 (independent of €) with

i, (2,6 < Ca |7l exp (TCO)7] = 02(M = CB) exploslr]))  (3.14)

el
for all T € Hy, all z € D(0,561) and
o1

(o)l + sl B explsslr))  (3.15)

for all T € Ji, all z € D(0,80,), provided that € € D(0,€0), for each k € [—n,n].
(2) Let k € [—n,n] with k # n. Then, keeping ¢y and ro small enough, there
exist constants My 1, My 2 > 0 and My, 3 > 1, independent of €, such that

wis, (r.2€)| < Colrlesn (T

M, o ) My 3
og =)
€] el
forallt € TND(0,r7), alle € £, NEGT' #0 and all z € D(0,56,).
Proof. We consider equation (2.34]) for the given initial data
(w)(7,0,€) = wj(r,e), 0<j<S—1 (3.17)
where w; (7, €) are given above in order to construct the functions ¢; ¢ (t,€) in

E9).
In a first step, we check that the problem (2.34), (3.17]) possesses a unique formal
solution

|u811345; (t,z,€) — uey, (t,2z,€)| < My 1exp(— (3.16)

B

z

wp, (T,2,€) = ng(T7 E)ﬁ (3.18)
820

where wg (7, €) are holomorphic on H.J,, x D(0, ), continuous on H.J, x D(0, ).

Namely, if one expands cg(2,€) =35+, cr.p(€)2” /B! as Taylor series at z = 0, the

formal series (3.18) is solution of (2.34)), (3.17) if and only if the next recursion
holds

w5+5(7—7 6)
e korko C, 5, (€) Way 4k, (T €) 3.19
= Z &) exp(—k27)< Z *B ' ﬁ2+ﬂ1' ﬂ!) (3.19)
k=(ko,k1,k2)EA Bi+Be=8 z

for all B > 0. Since the initial data w;(7,¢€), for 0 < j < S — 1 are assumed to
define holomorphic functions on H.J, x D(O7 €0), continuous on H.J,, x D(O, €0), the
recursion implies in particular that all w,, (7, €) for n > S are well defined and
represent holomorphic functions on H.J,, x D(0, €0), continuous on H.J,, x D(0, €0)-

According to the assumption together with and the restriction on the
size of the initial data (3.11]), we notice that the requirements (1)(a-b) and (2)(a-b)
in Proposition are satisifed. We deduce that

(1) The formal solution wg s, (7, 2, €) belongs to the Banach spaces SED 4 1, ¢ 5
for all e € D(0,€), all k € [—n,n], for any triplet ¢ = (01,02, 03) chosen as in
, with an upper bound C'Hk > 0 (independent of €) such that

”wHJn(T’ZaG)H(Q,Hk,e,é) < C'Hka (320)
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for all € € D(0, ).

(2) The formal series wp s, (7, 2, €) belongs to the Banach spaces SEG ¢, j, ¢,
for all e € D(0,€), all & € [—n,n], for any triplet ¢ = (01,,3) selected as in
(3.13)). Besides, we obtain a constant Cj, > 0 (independent of €) with

||wHJn(TaZve)”(g,Jk,e,é) < éJk7 (321)

for all € € D(0, ).

Bearing in mind ((3.20) and (3.21)), the application of Proposition and Propo-
sition (1) yield in particular that the formal series wp s, (7,2, €) actually de-

fines a holomorphic function on H.J, x D(0,461) x D(O7 €0), continuous on H.J, x
D(0,081) x D(0,€p), for some 0 < d; < 1, that satisfies moreover the estimates

and (B15).

Following the same steps as in the proof of Lemma [3.2] one can show that for
each k € [—n,n], the function ugr  defined as a special Laplace transform

n

u . du

ugy,, (t:2,€) = /P wp g, (U, 2, €) exp(—a)f

represents a bounded holomorphic function on (7N D(0,77)) x D(0,618) x Ef ;-
for some fixed radius r+ > 0 and 0 < §; < 1. Besides, by a direct computation, we
can check that ugk (t, z,€) solves the problem , with initial data
on (T ND(0,r7)) x D(0,616) x EF; .

In a second part of the proof, we focus our attention to part (2). Take some
k € [—n,n] with k # n. Let us choose two complex numbers

1 .
hy = —olog(—eXs
a Qog(ete )

for g = k,k+1, where 0 < ¢ < 1 and where x4, € R are directions selected in a way
that

to(arg(t) + arg(e) — xq) € Hy (3.22)

for all € € €Y g, N 52‘51, all t € T. Notice that such directions x, always exist for

some 0 < ¢ < 1 small enough since by definition the aperture of £, N Efﬁl is
strictly less than 7, the aperture of T is close to 0. By construction, we obtain that
hq belongs to H, for ¢ = k, k + 1 since h, can be expressed as

1, .
hq = —olog |5‘ +io(arg(t) + arg(e) — xq)-

From the fact that u +— wpgy, (u,2,€)exp(—%)/u is holomorphic on the strip
HJ,, for any fixed z € D(0,461) and € € gkaJn N Sfﬂi, by means of a path de-
formation argument (according to the classical Cauchy theorem, the integral of a
holomorphic function along a closed path is vanishing) we can rewrite the difference
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Ugh+1 — Ugr  as a sum of three integrals
HJp HJn

d
Ugkt (t,z,€) — ugk (t,z,¢) = — /Lh,k,oo wr g, (u, 2, €) eXP(_%);u

u  du
+ wr, (U, z, € ) exp(=—)-=  (3.23)

Lhkvhkﬂ € u

u ., du

+ wrr g, (u, 2, €) exp(——)—

L - et’ u

k+1»

where Lp, o = {hq —s/s > 0} for ¢ = k,k + 1 are horizontal half lines and
Ly, hyyy = {(1 = 8)hg + shiy1/s € [0,1]} is a segment joining hy, and hyyq. This
situation is shown in Figure

s % P

SN

OO OSSOSO OO ONON

FIGURE 2. Integration path for the difference of solutions

We first find estimates for
u . du
I = | wpy, (u,z,€) exp(——)—|.
Lig .o et u
Since the path Lj, o is contained inside the strip Hj, in accordance with the
bounds (3.14)), we reach the estimates

+o0 o1
1< Oy [ = slesp (el
— 0a(M — (b)) exp(as|hy — s\)) (3.24)
X exp ( _ |hTet—| 5| cos(arg(hy, — s) — arg(e) — arg(t))) |hkd7is|

Provided that ¢y > 0 is chosen small enough, |Re(hy)| = olog(1/|et|) becomes
suitably large and implies the next range

m s
arg(hy, — s) — arg(e) — arg(t) € (—5 e 5 - k)

for some 7 > 0 close to 0, according that e belongs to £F 7, N SZT,}L and ¢ is inside
T, for all s > 0. Consequently, we can select some §; > 0 with

cos(arg(hy — s) — arg(e) — arg(t)) > 01 (3.25)
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forall s >0,t €T and e € £, NESLE. On the other hand, we can rewrite

1/2
= a1 = ((e1om(127) + )7 + ¢ (ars(t) + ar(e) — xe)?)

Lo )+ ar(@) — 3,

= (eloali (0log( ) + )2

provided that |et| < 1 which holds if one assumes that 0 < g < 1 and 0 < ry < 1.
For that reason, we obtain a constant my > 0 (depending on Hj and p) such that

1

foralls > 0,allt €7 and € € 5IIEU ﬂé"”‘l Now we select d5 > 0 and take t € T
with [t| < 61/(01((b) + J2). Then, gathermg and ([3:26) yields

|h. = 5| > my(elog(

+oo ‘hk—S‘
I < -
L < ch/O exp(l | C(b)|hx — | - 61)ds

oo hy — s
<Cu [ oo o yas
0

(3.27)

0 1 +o0 s
< - 2 og(— Y
< Cp, exp ( oMy E og( |€t| )) /0 exp(—damy, el )ds

€0 1
< — 1) 1
>~ CHk 52mk exp ( ka| | Og( ‘€|TT)>

whenever ¢ € TN D(0,61/(01¢(b) +62)) and € € EF; N 5}3‘1’&
Let

u . du
I, = | wp g, (u, 2 e)exp(fg); .

Lhyyq.o0
In a similar manner, we can grab constants d1,d2 > 0 and myy; > 0 (depending on
Hy11 and p) with

L <CH 77—

1
e dam lo 3.28
52mk+1 Xp ( 2ME+1 7 | ‘ g( )) ( )

|elrT

for all t € TN D(0,61/(01((b) + 62)) and e € £, NELHE.
In a final step, we need to show estimates for

u . du
—)

I3 = ‘ wp g, (u, 2, €) exp(—d

s
Lhghgsa

We notice that the vertical segment Ly, p,,, crosses the strips Hk, Ji+1 and Hy4q

and belongs to the union Hy U Jg11 U Hi41. According to ) and (| -7 we
only have the rough upper bounds

wi3, (7.2 €)| S wax(Crny, Cops Con Il exp (70O + 2B explsal)
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for all 7 € Hy U Jy1 U Hpyq, all z € D(0,861), all € € D(0, ey). We deduce that
I3

1
< max(Cry, Coy 1 Cri) / (1 $)hg + shig)
0

x exp (THCOI(1 — s + shipa| + aC() explssl (1 — ) + sheal))

el (3.29)
X exp ( -1 S)TCtIJr e cos(arg((1 — s)hx + shi41) — arg(e)
€
|hiq1 — hal
arg(t))) (1= 8)hn + shiea|

Taking for granted that ¢y > 0 is chosen small enough, the quantity |Re((1 —
$)hi + shi11)| = olog(1/|et|) turns out to be large and leads to the next variation
of arguments

arg((1 — s)hg + shp41) — arg(e) — arg(t) € (—E

™
5 Tkt 5~ Mk, k+1)
for some 7 k1 > 0 close to 0, as € € Ef; N Eﬁ}i, for s € [0,1]. Therefore, one
can find §; > 0 with

cos(arg((1 — s)hy + shiy1) — arg(e) — arg(t)) > 6, (3.30)

forall t € T and € € EI’“{JH N Efﬂi, when s € [0,1]. Besides, we can compute the
modulus

(1 — 8)hyk + shyt1]

1 1/2
= (o108 (7))? + & (arg(t) + () = (1 = ) = sxaea)?)

(arg(t) + arg(e) — (1 — s)xx — 3Xk+1)2)1/2

(log( )2
as long as |et| < 1, which occurs whenever 0 < ¢g < 1 and 0 < r < 1. Then, when
€p is taken small enough, we obtain two constants my, ;41 > 0 and My, 41 > 0 with

1
= glog(H)(l +

1 1
OM; fi4+1 log(@) <|[(1 = s)hg + shita| < oMy k11 log(@) (3.31)

for all s € [0,1], when ¢t € T and € € EIIZ,JH N Ellff,i Moreover, we remark that

|hi+1 — hi| = olxk+1 — Xk|. Bearing in mind (3.30]) together with (3.31)), we deduce
from (3.29) that the next inequality holds

I3 < ma‘X(CHk7CJk+1 ) CHk+1)Q|Xk+1 — Xkl

g

1 1 :
e (T C0D0Mu1Tog( 1) + C(0) expliaeMuss lou( )

1 1
X exp ( — ka,kJrlH log(H)él)

foranyt € T and € € EI;UnOSIIfIf]i. We choose 0 < ¢ < 1in a way that ¢soMj, 41 <
1. Let ¢(z) = cal(b)a2eMrr+1 — omy ;1612 log(x). Then we can check that there
exists B > 0 (depending on {(b), 0,2, 3, M k+1, Mk k+1,01) such that

Y(z) <

oMy k4101

5 xlog(x) + B
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for all z > 1. We deduce that

I3 < maX(OHkaCJk+1aCHk+1)Q|Xk+1 — Xkl

1)+B)

X exp ( ¢(b)oMj; joy1 log(—
le | |et|

e
) my, k+151 log(
let]” 2 |et|

whenever ¢ € T and € € £, N Egﬁl We select 62 > 0 and take t € T with the

constraint [¢t| < dg +1 where

0My k+101/2
01C(b)oMp jy1 + 02

This last choice implies in particular that

di k+1 =

1) 1
I3 < maX(CHkvCJkHvCHkH)Q‘Xk-I—l Xk‘exp( |2| log (|6t|) B)
B 1 (3.32)
< ma'X(CHk’CJk+17CHk+1)Q‘Xk7+1 - X/C‘e eXp ( | | log(| | ))

provided that € € £, N 511?5}1

Finally, starting from the splitting l-i and gathering the upper bounds for
the three pieces of this decomposition (3.27]), and -, we obtain the
anticipated estimates (3.16)). O

3.2. Construction of sectorial holomorphic solutions in the parameter on
Banach spaces with exponential growth on sectors. In the next definition,
we introduce the notion of oj-admissible set in a similar way as in Definition

Definition 3.4. We consider an unbounded sector Sy with bisecting direction
d € R with Sg € C4 and D(0,r) a disc centered at 0 with radius » > 0 with the
property that no root of P(7) belongs to SqUD(0,7). Let w(r,¢) be a holomorphic
function on (S; U D(0,r)) x D(0, &), continuous on (Sg U D(0,7)) x D(0,€). We
assume that for all € € D(0,¢), the function 7 — w(,€) belongs to the Banach
space EG 0,0/ 5,0D(0,r),¢) fOr given ot > 0. Besides, the take for granted that some
constant I, > 0, independent of ¢, exists with the bounds

Jw(r, G)H(OJ ,S4UD(0,r),6) < Lw (3.33)

for all € € D(0, ).
We denote Eg, an open sector centered at 0 within the disc D(0, €p), and let T be
a bounded open sector centered at 0 with bisecting direction d = 0 suitably chosen
in a way that for all t € T, all € € £g,, there exists a direction v4 (depending on
t,e) such that exp(v/—174) € Sq with
Ya - arg(t) - arg(e) € (=3 + 1.5 —n) (3.34)

for some 1 > 0 close to 0.
The data (w(r,¢€),Es,,T) are said to be o}-admissible.

Forall0 <j <S—1,all0<p < -1 for some integer ¢ > 2, we select directions
d, € R, unbounded sectors Sy, and corresponding bounded sectors &g ap T such
that the next given sets (w;(,¢),&s, ,T) are oj-admissible for some o7 > 0. We
assume moreover that for each 0 < j < .S — 1, 7+ w;(7, €) restricted to Sg, is an
analytic continuation of a common holomorphic function 7 +— w;(7,€) on D(0,r),
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for all 0 < p <+ — 1. We adopt the convention that d, < d,+1 and Sq, N Sy,,, =0
for all 0 < p < ¢ — 2. As initial data (3.2), we put
u . du
Pics, (t,e) = /L w;(u, €) exp(—g); (3.35)

’de

where the integration path pr = Ry exp(v/—17vg,) is a half line in direction v,
defined in (3.34).

Lemma 3.5. For all0 <j <S—1,0<p<:—1, the Laplace integral @ e, (t,€)

determines a bounded holomorphic function on (T N D(0,r7)) x &, for some
suitable radius r > 0.

Proof. According to (3.33), each function w;(7,€) has the upper bounds

0_/
()| < L, frlexp (Th171) (3.36)
for some constant I,,, > 0, whenever 7 € Sq, U D(0,7), € € D(0,€p). Also from
(3.34) we can find a constant §; > 0 with

cos(vq, — arg(t) — arg(e)) > 61 (3.37)
forany t € T, e € 5Sdp- We choose d2 > 0 and take ¢t € T with |¢] < 52(1710—;' Then,

collecting (3.36)) and (3.37)) allows us to write
“pjfsdp (t’ 6)|

</+Oof exp(Zhp) exp(— L= cos(ya, — arg(t) — arg(e)) L

pexp(—p) exp(—— —ar — arg(e))—

=, w; P EXP |€|,0 P let] Yd, g g P (3.38)
<1 /+°°e (= L6y)dp = 1, 1

W xp(—-— =1l —

Sy TP T,

which implies in particular that ;e (t,€) is holomorphic and bounded on (7 N
[

D(()’m)) X gsdp. |:|

In the next proposition, we construct actual holomorphic solutions of the problem
(3.1), (3.2) as Laplace transforms along half lines.

Proposition 3.6. (1) There exist two constants I,§ > 0 (independent of €) such
that if

S—1-h 59
Z lwj+n (7, )l (0,01,54,uD(0,m),0) 77 <1 (3.39)
i=0 I
for all0 < h < S—1, all e € D(0,€y), and all 0 < p < v — 1, then the Cauchy
problem (3.1)), (3.2) for initial conditions (3.35) possesses a solution Ugg, (t,z,¢€)
which represents a bounded holomorphic function on a domain (T N D(0,ry)) X
D(0,010) x &s,,, for suitable radius r7 > 0 and with 0 < 01 < 1. Additionally,

ues, turns out to be a Laplace transform

u . du

ues, (t,z,€) = /Lvd ws,, (u,z,€) exp(—&); (3.40)
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where ws, (u,z,€) stands for a holomorphic function on (S, UD(0,7))x D(0,861) %
D(0,¢), continuous on (Sa, UD(0,7)) x D(0,6861) x D(0, €0) which obeys the fol-
lowing restriction: for any choice of o1 > o}, we can find a constant Csdp >0
(independent of €) with

o1

¢(v)I)) (3.41)

|w5dp (1,2,€)] < CSdp |7| exp( le]
for all T € Sq, UD(0,7), all z € D(0,861), whenever e € D(0, ).

(2) Let 0 < p < ¢ — 2. Provided that ry > 0 is taken small enough, there exist
two constants My, 1, Mp o > 0 (independent of €) such that

M,
jues, | (t2.€) —ugg, (t,7.€)] < My exp(——L2) (342)

le]
for allt € TND(0,rr), all € € sy, NEsy, # 0 and all z € D(0,661).

Proof. The first step follows the one performed in Proposition Namely, we can
check that the problem (2.34]) with initial data

(2lw)(7,0,€) = wj(r,€), 0<j<S—1 (3.43)

given above in the of-admissible sets appearing in the Laplace integrals (3.35]), has
a unique formal solution

B
ws, (7, 2,€) = Z wa (T, e)% (3.44)
>0 '

where wg (7, €) define holomorphic functions on (SqUD(0,7)) x D(0, €), continuous
on (SqU D(0,7)) x D(0,€). Namely, the formal expansion solves ([2.34))
together with if and only if the recursion holds. As a result, it implies
that all the coefficients w,(7,€) for n > S represent holomorphic functions on
(Sa,UD(0,7)) x D(0, €), continuous on (Sa,UD(0,7)) x D(0, €o) since this property
already holds for the initial data w;(7,€), 0 < j < .S — 1, under assumption ([3.33).

Assumption and the control on the norm range of the initial data t
us figure out that the demands (3)(a-b) in Proposition are met. In particular,
the formal series wsg, (1,2, €) is located in the Banach space EG(UI7SdpuD(O7T)7675),

for all e € D(0,¢), for any real number o1 > o/, with a constant Cs,, >0
(independent of €) for which

[wsy, (7, 2 )ll(o1.54, UDO.1).c.8) < Csi,

holds for all € € D(0, ). With the help of Proposition ), we notice that the
formal expansion wg ” (1,2,€) turns out to be an actual holomorphic function on

(S4, UD(0,7)) x D(0,351) x D(0, &), continuous on (Sg, U D(0,7)) x D(0,851) x
D(0, &) for some 0 < §; < 1, that satisfies the bounds (3.41).
By proceeding with the same lines of arguments as in Lemma [3.5] one can see

that the function ugy, defined as Laplace transform
P

u . du

t = Bl e
'Ltgsdp( L2, €) /LM ws, (u,z,€) exp( et) "
P

represents a bounded holomorphic function on (7N D(0,77)) x D(0,061) x Es,
for suitably small radius r+ > 0 and given 0 < §; < 1. Furthermore, by direct
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inspection, one can testify that ugs, (t, 2, €) solves problem , for initial
conditions on (TN D(0,r7)) x D(0,061) x Es,, -

In the last part of the proof, we focus on part (2). Let 0 < p <1 —2. We depart
from the observation that the maps u — wsg,, (u, z,€) exp(—%)/u, for g = p,p+1,
represent analytic continuations on the sectors Sy, of a common analytic function
defined on D(0, r) (since ws,, (u, z,€) = ws, ., (u, z,€) for u € D(0,r)), for all fixed
z € D(0,061) and € € &g, ﬂggdpﬂ. Therefore, by carrying out a path deformation
inside the domain Sg, U Sy
as a sum of three paths integrals

u . du
Yesa, (t,2,€) —ueg, (tz,€) =~ /LM y ws,, (u,z,€) exp(—g)?
.

.. UD(0,7), we can recast the difference ugs, | T UEs,

+/ ws, (u,z,€) eXP(—E)d*u (3.45)

e’ u
C’de Ydyy , /2

+/7dp+l,r/ ws, ., (u,z, €) exp(— :t)d?u
where L»de7r/2 = [r/2,+00) exp(\/jl’ydq) are unbounded segments for ¢ = p,p +
1, C, dp V1 72 stands for the arc of circle with radius r/2 joining the points
7exp(\/7fyd ) and fexp(\/ifydpﬂ)

As an initial step, we provide estimates for

u . du
I = ¢/ ws,, (u, 7€) exp(—=) 2.
e’ u
Wd /2
From bounds (3.41)), we check that
oo o d
L< [ Cs,pexp(TrC(b)p) exp(— L cos(ra, — arg(t) — arg(e))) =
r/2 le] |et| P

forallt € T, e € &g i NEs dpir” Also the lower bounds (3.37]) hold for some constant
01 >0 whent € T and € € 5Sd,, N 5Sdp+1~ Hence, if we select do > 0 and choose

t e T with || < 52“‘?71“,)), we obtain
Feo rd
nL<Cs, / exp(—L6)dp = Cs,., I exp(—=——=) (3.46)
r/2 el ? 02 2]e]

for all e € &,  NEs,, . Now, let

u . du

I = |/ wsdHl (u,z,€)exp(——)
Ydpt1

et;'

With a comparable approach, we can obtain two constants d1,ds > 0 with

| | T(SQ
CSd pt1 52 Xp( 2| |) (347)
for t € Tﬂ .D(O7 ($2+g'711C(l7)) and € € 5Sdp+1 ﬂgsdp'
In a closing step, we focus on
u . du
I3 = | / ’U}Sdp (U,Z,E) eXp(—g)Z .
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Again, according to (3.41)), we guarantee that

Tdpt1
1< o, [ Fexn(ThC0)) exp( L5 cosd — nee(t) ~nex(e) b

dp

By construction, we also obtain a constant §; > 0 for which
cos(f — arg(t) — arg(e)) > 01
when € € 5Sdp+1 n 5Sdp7 teT and 0 € (Va,,74,,,)- As a consequence, if one takes

d2 > 0 and selects t € T with [t| < m. Then

7‘62

~510) (3.48)

T
I3 < Usy, (Vi —77a,)5 ex0(

for all e € &,  NEs,,
At last, departing from the decomposition (3.45) and clustering the bounds
(3.46)), (3.47) and (3.48)), we reach our expected estimates (3.42)). |

3.3. Construction of a finite set of holomorphic solutions when the pa-
rameter belongs to a good covering of the origin. Let n > 1 and ¢+ > 2
be integers. We consider two collections of open bounded sectors {SI’?I 7, Yee[=n,n]>
{Ssdp to<p<.—1 and a bounded sector T with bisecting direction d = 0 together with

a family of functions w; (7, €), 0 < j < S—1 for which the data (w;(7,€),Ef;; . T) are
(¢’,¢')-admissible in the sense of Definition for some triplets ¢’ = (01, 0}, 0%)
and ¢’ = (01,63,¢3) (where o7 > 0, 07,67 > 0 for j = 2,3) for k € [-n,n] and
(wj(1,¢€),Es,,,T) are oj-admissible according to Definition for0<p<.—-1
We make the additional assumptions:
(1) For each 0 < j < S — 1, the map 7 + w;(7, €) restricted to Sy,, for 0 < p <
. —1 and to HJ, is the analytic continuation of a common holomorphic function
7 w;(7,€) on D(0,7), for all € € D(0,¢). Moreover, the radius r is taken small
enough such that D(0,7) N {z € C/Re(z) < 0} C Jo.
(2) We assume that d,, < d,41 and Sy, NSq,,, =0 for 0 <p <. —2.
(3) We assume that
(1) SI’fUn ﬁE’;IJ}}L %@ for —-n<k<n-1.
(2) 5Sdp+1 ﬂgsdp #Pfor0<p<i—2.
(3) 5&3” N &gdo # () and gﬁun N 55%71 # ().

(4) We assume that
(Uk=—n€ir,) U (UpZo€s,,) = U\ {0}

where U stands for some neighborhood of 0 in C.

(5) Among the set of sectors £ = {€};; }re[-nn] U {€s., Yo<p<i—1, every triplet
of three sectors has empty intersection.

In the literature, when the requirements (3)—(5) hold, the set £ is called a good
covering in C*, see for instance [I] or [8]. An example of a good covering for n =1
and ¢ = 2 is displayed in Figure [3]

Now we can state the first main result this work.

Theorem 3.7. Under the assumption that the control on the initial data (3.11))
(-3),

in Proposition and (3.39) in Proposition holds with the restrictions
(3.10), the nexat statements hold.

P41
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FI1GURE 3. Good covering, n =1 and ¢ = 2

(1) The Cauchy problem , with initial data given by has a bounded
holomorphic solution g (t,z,€) on a domain (T N D(0,ry)) x D(0,d1) 51’51‘]"
for some radius r4 > 0 taken small enough. Furthermore, Ugk, , can be written as a
special Laplace transform of a function wy j, (T, 2, €) fulfilling bounds ,
. Also the logarithmic constraints hold for all consecutive sectors EI’f”n ,
E’fﬁ,}b for —-n<k<n-1.

(2) The Cauchy problem , for initial conditions owns a solution
ues, (t,z,€) which is bounded and holomorphic on (T ND(0,r7))x D(0,861) x Es,,

for some well chosen radius r+ > 0. Moreover, ugg, can be expressed through a

P
Laplace transform (3.40) of a function ws, (7,z,¢€) that undergoes (3.41). Con-
jointly, the flatness estimates (3.42) occur for any neighboring sectors SS%+1 s 5Sdp ,
0<p<t—2.
(8) Provided that r+ > 0 is close to 0, there exist constants My 1, M, 2 > 0
(independent of €) with

M,
ugzn (t2,€) = ues, (t,2,€)] < My, exp(_T"f) (3.49)
for all e € 5ﬁgn Né&s,, and
M,
|ugan (t,z,€) — Ugs, (t,2,€)| < My, 1 exp(— ‘6,2) (3.50)

foralle € Ef; NEs, | whenevert € TN D(0,r7) and z € D(0,01).

Proof. Statements (1) and (2) merely rephrase the statements already obtained in

Propositionsand It remains to show that the two exponential bounds ([3.49))

and (3.50) hold. We aim our attention only at the first estimates (3.49)), the second
(3.50

ones ([3.50) being of the same nature.
By construction, according to our additional assumption (1) described above, the
functions 7 — wp g, (7, 2,€) on HJ, and 7 — ws,, (7,z,€) on Sy, are the restrictions
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of an holomorphic function denoted 7 — wp , s, (7, 2, €) on HJ,UD(0,r)USy,, for

all z € D(0,001), € € D(0, €0). As a consequence, we can realize a path deformation
within the domain HJ,, U D(0,r) U Sy, and break up the difference Ug—n — Ugs
into a sum of four path integrals

do

u . du
—n (2 — t = — ,Z2,€)€ - )—
u£HJn( 7276) ufsdo( 7275) /LMOYT/2 Wsy, (U < 6) Xp( Gf) “

et” u
’VdO’an,lv"'/2 (351)
u  du
+ wr g, (u, 2, €) exp(—— ) —
P_y1,r/2

+/ wgdo(wz,e) exp(—g)d—u
c

et’ u

u . du

()
v e 57

where L., /2 = [r/2,400) exp(v/—174,) is an unbounded segment, Criy P /2
represents an arc of circle with radius 7 /2 joining the points (r/2) exp(v/—174,) and

(r/2) exp(v—1larg(A_y)), P_y 1,2 is the segment from (r/2)exp(v/—1arg(A_,))
to A_,, and as introduced earlier P_,, » denotes the horizontal line {A_, —s/s > 0}.
An illustrative example is shown in Figure [4]

FIGURE 4. Deformation of the integration path

Let J
u . du
Jl = | deO(U,Z,G) eXp(*g)Z .
In accordance with the bounds (3.46)), we can select do > 0 and find §; > 0 with a
constant Cs, > 0 (independent of ¢) for which
‘€| 7’52
< — - 3.52

‘]1 = Csdo (52 exp( 2|€|) ( )

holds whenever ¢ € T N D(0, 5-2z;) and € € £ N &, -
Now, consider
u, du

Jy = { wsdo(u,z,e)exp(—g)zy
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The function wg, (7,2,€) satisfies both the bounds (3.41)) since Crrag Ponar/2 C
D(0,r) and also (3.15]) when 7 € Clyag Pn1,r/20Jo. We deduce a constant C,,5,, >
0 (independent of €) such that

01

¢(v)I))

|de0 (1, 2,6)] < CJmst || exp( |6|

forall 7€ C,, p /2 2 € D(0,601) and € € D(O,eo). Hence,

Yo
Vo T o T r/2
Jo < Corsu| L exp(Z2¢(5) 5 ) exp(— L2 cos(d — arg(t) — arg(e)))db].
° arg(A_n) 2 ‘€| 2 |€t|
The sectors €57 and &, are suitably chosen in a way that cos(f — arg(t) —
arg(e)) > 01 for some constant d; > 0, when € € £ NE&s, , for t € T and
0 € (arg(A_.), V4, ). As a consequence,

r ré
T2 < Coy s,y = arg(A-n) 5 exp(—5:2) (3.53)
when e € €45 N, , t€TN D(0, m), for some fixed o > 0.
We put
u . du
J3 = |/ wp g, (u,z,€) exp(——)—|.
Pty et u

Owing to the fact that the path P_,, ; . /5 lies across the domains Hg, J, for —n <
q <0, the bounds ({3.14) and (3.15)) entail that

[wits, (7,2,€) < max (Cp,, Co,)|r|exp (TrC0)I7] + c2¢(B) explsslr]))
a€[-n,0] le]

for 7 € P_, 1,2, all z € D(0,66,), all € € D(0, ¢o). Therefore,

Js3 < / max (Cq,,Cy,)pexp (JC (b)p + <2¢(b) exp(csp))
r/2  4€[-n0] €]

d
x exp(— - cos(arg(A_,) — arg(et))) 2.
|et| p
According to (3.7), there exists some ¢; > 0 with cos(arg(A_,) — arg(et)) > d; for
€€ &y NEs, . Let 62 >0 and take t € T with [¢| < ﬁig(b). We obtain

[A_n]
Jy < max (C,,Cy.) / exp(62(b) explsap)) exp(— L 82)dp

aclzn0l /2 el (3.54)

€ r
< max (G, C,) expl(saC(8) exp(sal A D) exp(— o o82)
g€[[—n,0] (52 2|6‘
provided that € € 57 N &g, .
Ultimately, let
d
Jy = | o wp g, (U, 2, €) exp(—%);uy

Because the path P_,, » belongs to the strip H_,,, we can use the estimates (3.14)
to obtain
+o0 o1
e (mabnmn =
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—o9(M — (b)) exp(o3]|A_,, — s|)> exp ( - |A|Zt_8 cos(arg(A_,, — s)
— arg(e) = asg(t) )

From the controlled variation of arguments (3.9)), we can pick up some constant
61 > 0 for which

cos(arg(A_,, — s) — arg(e) — arg(t)) > &1
for € € 5;1!% ﬁ(‘)sdo and t € T. We take d2 > 0 and restrict ¢ inside 7 in a way that
[t] < 52_“‘571((})). Besides, we can find a constant K4_, > 0 (depending on A_,)

such that
|A_, —s|>Ka_, (|JA_n] +9)

for all s > 0. Henceforth, we obtain

Ji<Ch_, /OMo exp ( — 0o (M — ¢(b)) exp(o3|A_r — s|)>

|[A—n — s|
X exp(——————

+oo Ky 6
<Cpy_, / exp ( _ DA 2(|A_n\ + s))ds
0

le]

(52)d8
(3.55)

Ch_,lel exp ( B KA_W,52\A—n|)
€]

foralle € €47 NEs,, -
In conclusion, bearing in mind the splitting (3.51) and collecting the upper
bounds (3.52)), (3.53), (3.54)) and (3.55|) yields the foreseen estimates (3.49). O

4. A SECOND AUXILIARY CONVOLUTION CAUCHY PROBLEM

4.1. Banach spaces of holomorphic functions with exponential growth on
L-shaped domains. We keep the same notations as in Section 3.1. We consider a
closed horizontal strip H as defined in with a # 0 which belongs to the set of
strips { Hy }re[—n,n] described at the beginning of the subsection 3.1 and we single
out a closed rectangle Rg p,. defined as follows: If a > 0, then

Ropo ={z € C/u <Re(z) <0,0 <Im(z) <b}, (4.1)
and if a < 0
Ropn ={2€C/v <Re(z) <0,a <Im(z) <0} (4.2)

for some negative real number v < 0. We denote RH, 3, the L-shaped domain
HURgyp,. See Figure @

Definition 4.1. Let o1 > 0 be a positive real number and 5 > 0 be an integer. Let
e € D(0,€e9). We set EG,6,,RH, ,...c) as the vector space of holomorphic functions

v(7) on the interior domain RDHmbyU, continuous on RH, 3, such that the norm

v(T o1
o it = sup 2D ey (= Thy ()i
TERH, 4,0 ‘Tl
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RHopo b

a RHyp.

FIGURE 5. Sets RHyp0 = HU Ry

is finite. Let us take some positive real number § > 0. We define EG(,, rH, ., .c.5)
as the vector space of all formal series v(7,2) = > 55, vg(7)2P /B! with coefficients
vg(7) inside EG (g 4, rH for all 8 > 0 and for which the norm

a,b,v5€)

S8
HU(T? Z)”(ULRHa,b,'UaeyJ) = Z H”B(T)||(B,01,RHa,b,v,s)7
5!
B>0
is finite. It turns out that EG(,, ra, , .5 endowed with the latter norm defines
a Banach space.

In the next proposition, we show that the formal series belonging to the Banach
space discussed above represent holomorphic functions that are convergent in the
vicinity of 0 w.r.t. z and with exponential growth on RH, 3, regarding 7. Its proof
follows the one of Proposition 2.2)in a straightforward manner.

Proposition 4.2. Let v(7,z) chosen in EG(o, ru, , .5 Take some 0 <&y < 1.
Then, one can get a constant Cy > 0 (depending on ||v|(o, rH y and 61) such
that

a,b,vv€75

[v(r,2)| < Calrlexp (T

¢o)Irl) (4.3)

el

for all T € RHyp ., all z € D(0,619).

In the sequel, through the proposal of the next three propositions, we investi-
gate the action of linear maps built as convolution products and multiplication by
bounded holomorphic functions on the Banach spaces defined above.

For all 7 € RH, 1, we denote L ~ the path formed by the union of the segments
[0, cru (T)] U [cru (T), 7], where crp(7) is chosen in a way that

Lo CRHu b0, cru(T) € Rapw, |cru(T) <|7]| (4.4)
for all 7 € RHg p0.
Proposition 4.3. Let 7,71 > 0 and v2 > 1 be integers, and assume that
Y2 > b(70 + 1 +2) (4.5)

Then, for any € in D(0, ), the map v(t,z) — TfLO (1 —8)70sMO;20(s, 2)ds is a
bounded linear operator from EG , rH, ., .es) tnto itself. Furthermore, we obtain
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a constant Cs > 0 (depending on vo,7v1,v2, 01 and b) independent of €, such that

Ir / (7 — )0 0(s, 2)ds | (or. R 1)
0,7

< Cs e+ 2672 |u(7, 2) (01, R, 0 .6)

(4.6)

for all v(7,2) € EG (5, RH, ;. .e5), ll € € D(O, €)-

Proof. Take v(1,2) = ZBZO vg(7)27 /B! in EG (4, .RH, ,...e5)- In view of Definition
AT
Ir [ =950 (s, )l
Lo~

(4.7)
= HT/ (1 — )8 05, (5)ds[| (8,01, RH, )" /B!

B>72 Lo~

Lemma 4.4. One can choose a constant Cs1 > 0 (depending on vo,7v1,v2 and o1)
such that

Ir / (7 — $)05M 05, ()3 (3rs e 1 o)
0,r

< Csalel 02 (B + 1)P00 A 5 (T)]| (5200, REwp0s6)
for all B> 5.

Proof. By construction of Lo r, we can split the integral in two parts

7'/ (1 —8)"°sMvg_n,(s)ds
Lo,-

(4.8)

cru(T) T
= 7'/ (1 —5)"sMvg_,(s)ds + ’7'/ (T —8)"°sMvg_n,(s)ds
0 c

rH(T)

We first provide estimates for

cru(T)
L= HT/O (1 —5)°8" v, (5)ds (8,01, RH .0 c)-
We carry out the factorization
1 g1 erm(7)
e (= @ )i [ sy
€ 0

7|
cru (1) 1
= (= Tn@)ll)] / (r =™ { g exp (= T8 = )ls]) s ()}
X |s| exp (ﬂrb(ﬁ — ’)/2)|8|)d8‘.

le]

We deduce that

L < 05.1.1(57 5)”“[3772 (T)H(ﬁ—"/zﬁhRHa,b,mf) (4'9)
where
g1 ' Yo Y1+2
Csaa(B) = swp ep (= Zr(@)lrl) [ |7 = cru(r)ul®lenn(r)
TERHq bv |6| 0

1%
x uM T exp (—177,(5 — ’)/2)|CRH(T)U|)du.

el
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As a consequence of the shape of Lo, through (4.4)), according to the inequalities
(2.10), (2.13) and taking account of the estimates |7 — cry (7)ul7 < 270|7|% for
0 <u <1, we obtain

Csaa(B.0) <20 sup |7 2exp (= To(ro(8) — (8 — 1)l )
TERH  b,v | |

g1 V2
< 270 sup pYotrit+2 exp ( _ 771)
lel (B+1)°

x>0 (4.10)
< 200|072 (70 tnt 2)”"”1“
- 0172
x exp(— (70 + 1 +2)) (8 + 1)P0er i+
for all B > 79, all € € D(O,eo).
In a second part, we seek bounds for
L=l [ (=)™ v ()l o it
CRH(T)
As above, we achieve the factorization
1 T
e (= D@l [ =9 v, ()
|7 IE\ cru ()
o1
—exp (= Tn@r)| [ st (e (= (s = )l us-na(2)
cRH(ﬂ s le]
X |s| exp (| (8 = 2)ls \)ds\
It follows that
Ly < C51.2(8, )08 (T) | (83,01, RHa . 00) (4.11)
with
Cs.1.2(8€)
1
= sw o (= Zn@rl) [ I can(Pr - a
TERH b0 |€\ 0

1%
X = wens () ur "+ exp ({28 = 2)|(1 = wenn(r) + url)du.
By construction of the path Lo, by means of (4.4), bearing in mind (2.10)), (2.13)
and owing to the bounds |7 —crpg (7)[70+! < 270H 7ot with |(1—u)cpp (1) +ut| <
|7] for 0 < u < 1, we obtain

Cr12(8,) 20 sup |7 2exp (= T (1(8) - (8 — 12)I7])
TERH b0 | |
< 2’Y0+1|g|’Yo+"/1+2(’yO Tt 2)704_71_‘—2 (4'12)
- 0172

x exp(—(y0 +71 +2)) (8 + 1)b(’Yo+’Y1+2)

for all B > v, all € € D(0,¢). Then Lemma [4.4 follows. O
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Gathering the expansion (4.7 and the upper bounds (4.8)), we obtain

w[lv—@%w@mwawwmﬁmmma
0,7

(B—=2)!
- ﬁ>z Coale 7 42(8 + 1) 0t =gy (4.13)
272
5/3—’Y2
X ||’UB*72 (T)||(B_'Y210'17RHa,b,vve)6’yz (ﬁ _ 72)!

Keeping in mind the guess (4.5), we obtain a constant Cs2 > 0 (depending on
Y0,71, 72 and b) for which

(B + 1)bot7+2) (8 ;'72)! < Cs s (4.14)

holds for all 5 > 9. Piling up (4.13)) and (4.14) gives the result (4.6). O

Proposition 4.5. Let vp,71 > 0 be integers. Let 01,07 > 0 be real numbers
such that o1 > o). Then, for all € € D(0,¢), the linear operator v(r,z)
TfLUYT(T — 8)10sMu(s, z)ds is bounded from (EG(UivRHa,b,U»515)7 Il - ||(01,RHa,b,v,e,6))
into (EG (s, RH, 4...e.6)5 || * (01, RHo 4.0.e,6))- 1 addition, we can select a constant
Cs > 0 (depending on vo,7v1,01 and o)) with

W/(“@WM@WWMMMM
LO,T

< Cslel ™ 2o (7, ) (04 R 0 .0)

(4.15)

for allv(7,2) € EG (o1 RH, .05, for all € € D(0, ).
Proof. Pick some v(7,2) = 5+, vg(7)2# /B! in EG (o) RH, 4. .c.5)- Owing to Defi-
nition [I-1] B

w/<wmm%@WWM%wm
Lo,-

(4.16)
=Zw/ (7 — 55T 03 (8)ds | 3.rs e 0y 5%/ 1.

B>0 Lo,r

Lemma 4.6. One can assign a constant Cs > 0 (depending on vo,v1,01 and o)
such that

wﬁ<ww%wwmmmmmﬂ
0,7

< Cs el 2 g (T) | (801, RHa 0 ve)

(4.17)

for all B > 0.

Proof. As above, we first split the integral into two pieces
CRH(T)
T/ (1 —8)"sMvg(s)ds = T/ (1 —8)"°sMvg(s)ds
Lo,» 0

+ 7'/ (1 —s8)"sMuvg(s)ds

rH(T)
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‘We first obtain estimates for

. CRH(T)
Li=|r / (7 — 505705 (5)dsl| 3.0 e, 0. )
0

‘We factorize

1 91 cnn (1) Y0 ¢M1
(D _ |
e (= Zn@)e| [ - amsatsas

= oo (= Zrn@lel)| [ s e (- Br@ls(s)

€ €]
!

< Islexp (T (B)ls!)ds|

le]
which leads to

Ly < Cs1(8, )los (M| (.04 Ry 0 (4.18)
where
1
S o
Cs.1(B,e) = sup exp ( - er(5)|7—|) / |7 — cru (T)u| ey (7)1 20 1
TE€ERHqa b 0 d o

0_/
X exp (ﬁrb(ﬂﬂcRH(T)uDdu.
From constraints (4.4) and keeping in view the bounds (2.19)), we see that
r()lr)

o1 — o}

05-1(63 6) S 270 sup ‘7—|’YO+’YI+2 exp < .
TERHa b0

el

rb(ﬁ)x) (4.19)

(Yo +71 +2)e”! )vo+v1+2
o1 — o}

o1 — o}

< 270 sup x’yo-‘r’h-‘r? exp ( _

z>0 le]

< 2’YO|€|'YO+'YI+2<

for all B> 0, e € D(0,¢).
Next, we point at

-
Ly = HT/ (7 —5)7°8"v(8)ds|| (8,01, RH. 4.0 6)-
CRH(T)
As before, we accomplish a factorization

1 exp ( — ﬁrl,(ﬁ)|r|> |7] /CTH(T)(T — S)’Yos’ﬂw(s)ds’

l lel

= °XP ( a %Tb(ﬁﬂﬂ) ‘ /C::H(T) (T - S)’YOS%{ﬁ P ( - Uj|7”b(5”5|)v,8(3)}

/

X |s| exp (%rb(ﬁ)|s|)ds)
which entails
Ly < Cs5.2(8,6)lvs(T) (8,04, RH, 4 .0.0) (4.20)
with
~ 0'1 1
Csa(B,e) = sup exp (- drb(ﬂ)h)/o |7 — cra (7)1 (1 — u)

TERH, 4,0
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1= e (r) + ur e (Thra(8)11 = wiemn(r) + )

From assumption (4.4)) and the bounds (2.19)), we deduce

= o1 — o}
CoafBre) <27 sup e R exp (= T ()l
TE b » (4.21)
< Qrotl|¢rotmt2 ( (ho + 71 +2)e >7°+71+2
- o1 — 0}
provided that 8 >0, € € D(O, €0)- The proof is complete. ([l

Finally, according to (4.16)) we notice that Proposition is just a byproduct of
Lemma 0

The proof of the next proposition mirrors the one of Proposition 4.

Proposition 4.7. Let us consider a holomorphic function c(t,z,€) on R(}Ha’b,v X
D(0, p) x D(0, €9), continuous on RHgp, x D(0, p) x D(0,€), for a radius p > 0,
bounded therein by a constant M. > 0. Fixz some 0 < § < p. Then, the linear oper-
ator v(7,2) = (7, 2, €)v(T, 2) is bounded from (EG (4, RH, ,.,.c.5)s II- ||(01,RHa,b,v,e,6))
into itself, provided that € € D(0,ey). Additionally, a constant Cg > 0 (depending
on M., 6, p) independent of € exists in a way that

lle(r, 2, )v(T, 2) (o1, RHa b.0e) < CollV(T: 2) (01, RHa b0 ,6) (4.22)

for allv € EGs, RH, ., .c.6)-

4.2. Spaces of holomorphic functions with super exponential growth on
L-shaped domains. We will refer to the notations of Sections 3.1 and 4.1 within
this subsection. Namely, we set a closed horizontal strip J as defined in
where c is chosen different from 0 among the family of sectors {Jy}re[—n,ny built
up at the onset of the subsection 3.1 and a closed rectangle R, 4, as displayed in
and for some negative v > 0. The set R.J. 4, stands for the L-shaped
domain J U R, q,. See Figure @

RJcaw

FIGURE 6. Examples of sets RJ. 4, = J U Rc a0

Definition 4.8. Let ¢ = (01,¢2,53) where 01,62,63 > 0 are assumed to be pos-
itive real numbers and let 8 > 0 be an integer. For all € € D(0,¢p), we define
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as the vector space of holomorphic functions v(7) on Ri]ad,m

SEG(8.6,RJc..0.0)
continuous on RJ. 4, for which
|v(7)] o1
||U(T)H(,6’,S7RJc,d,m6) = sup W exp ( - Hrb(ﬁ)lfl — () eXP(<3|TD)

TGRJcﬁd,U
is finite. Let § > 0 be some positive number. The set SEG(( ry, , .5 stands for
the vector space of all formal series v(7,2) = > 55, vp(7)27 /B! with coefficients
vg(7) belonging to SEG g ¢ rJ. ,..) and whose norm

&b
||U(T’ Z) ||(£1RJc,d,U 7615) = ||U6 <T) || (ﬂvSvRJc,d,u’E) ar
Z B!

820

is finite. The space SEG (¢ RrJ. , ,..5) €quipped with this norm is a Banach space.
The next statement can be checked exactly in the same manner as in Proposition

59(1).

Proposition 4.9. Let v(7,2) € SEG( Ry, ;.5 Fir some 0 <y <1. Then, we

obtain a constant C7 > 0 (depending on ||v||(¢,rJ. 4.5 and 01) fulfilling

CO)Ir] + <2 (b) exp(sslr])) (4.23)

01

< C =

|v(T, 2)| < C7|7| exp (|6‘
for allT € RJ. 4., all z € D(0,010).

In the next propositions, we analyze the same convolution maps and multiplica-
tion by bounded holomorphic functions as worked out in Propositions and
[47] but operating on the Banach spaces disclosed in Definition As in Section
4.1, Ly » stands for a path defined as a union [0, cgy(7)]U[crs(T), 7], where cry(T)
is selected with the following properties

Lo CRJcdw, Cri(T)€E Redw, |lers(T)] <|7| (4.24)
whenever 7 € RJ; 4.,-
Proposition 4.10. Let vg,71 > 0 and y2 > 1 be integers. We assume that
Y2 > b(y0 + 71 +2). (4.25)
Then, for all e € D(0, ), v(T,2) — TfLO,T (T—s8)1087 0 "20(s, 2)ds is bounded from

SEG (¢ R, 4.,.c08) into itself. In addition, one gets a constant Cg > 0 (depending on
0,71, V2,01 and b) independent of €, such that

WA (7 — 80510 0(s, 2)ds (0 ks, 0
0,7

< 08|€|70+71+25'Y2 llv(r, Z)||(S;RJc,d,v75;5)

for allv(t,2) € SEG( RJ, 4.,.e5), all € € D(0, ).

Proof. Only a brief outline of the proof will be presented since it resembles the one
in Proposition [£.3] Namely, it boils down to show the next lemma.

(4.26)

Lemma 4.11. Take vg_-,(7) € SEG(8—ry,¢,RJcq.0.e) for all B> 7v2. One can
select a constant Cs1 > 0 (depending on yo,7v1,¥2,01) for which

Hjﬁ (7 — $)°5M 05, ()3l g 0o
0,7

< Caale® 2B+ 1)P 00D [y ()] (8—rmss Rt i)

(4.27)
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Proof. As before, we break the convolution product in two pieces
cry(T)
7'/ (1 —8)"°sMvg_n,(s)ds = ’7'/ (1 —8)"°s"vg_n,(s)ds
Lo~ 0

.
+ 7'/ (T —8)"°sMvg_n,(s)ds
cry(T)
We obtain estimates for the first part

cr(T)
LJ, = ”T/ (r— 5)703’““/3—% (S)d8||(ﬁ7S7RJc,d,uaE)'
0

We perform a factorization

1 cr(T)
e (= Tl — (@) esp(alr))irl] [ (7 =yttt (o)

7]

P cry(T)
= exp ( - |—€1|rb(ﬁ)|7\ — aro(B) exp(§3|7'|)) ‘ /0 (1 — s)0sm

1 g1
x e (= 78 = lsl = 2ra(B = ) explsals) Jpna(s) |
01
xIslexp (Fro(8 = lsl +2ru(8 = 2) explsals)) ) ds|.
which induces
LJy < C31.1(B, )1vg—, (T) (82,6, RIevarv0) (4.28)
with
Cs.1.1(B,€)
1
g
— swexp (= Tl - en(8)explalr) [ I cns(ryul
T€R o0 €] 0
g
lens () #2000 exp (738 = ) lens (r)ul

+ s2mp(B —2) eXP(<3|CRJ(T)U|))dU-
According to properties (4.24)), we observe in particular that

— 62rp(B) exp(s3|T|) + 276 (B — 72) exp(sz|cra (T)|u)
< G(ry(B —72) — 1(B)) exp(s3|7]) <0
for all 7 € RJ. 4.0, all 0 < u < 1. In addition, taking into account the bounds

(2.10), (2.13), we obtain in a similar way as in (4.10]) that

(4.29)

Cs.1.1(Bs€)
o
<20 sup |t exp (= T (n(8) — o8 — 72)) )
TERJI: d,v |E|
o1 72
< 270 sup 270 T2 exp ( - —736)
220 el (B+1)°
2\ Yotv1+2
< 2~/o|6|%+71+2<70 +n A+ ) o exp(— (70 + 71 + 2))(B + 1)P0otn+2)

0172

for all 8> o, all e € D(O,eo).
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In the last part, we aim our attention at

Lh=lr [ (=95 v (sl g
c

RrJ(T)

As aforementioned, we achieve a factorization

% exp ( — %rb(ﬂﬂﬂ — () eXP(§3‘T|)> 7|

JANCEDRNETS

Ry (T)
= exp ( - %Tb(ﬂﬂﬂ — sorp(B) eXp(g3|7'D) ‘ / ( )(7— — )M
X {é exp ( - %Tb(ﬂ —72)|s] = Garp (B — 72) exp(cg\s\))vg,vz(s)}

[slexp (708~ 72)lsl + sar(5 = 2) explslsl) ) s

It follows that
Ly < Cs.1.2(8, )|0g—u (T) (82, Rt 0) (4.30)
with

Cuaa(fr) = sw exp (= Tn(B)lrl - en(®) expsir))
10, U
X / |7 — cry(T)[°T (1 —w)|(1 — u)eps(T) + ur|
0
o

P8 = (1L~ wers () + url

X exp (
+ r(B = 72) exp(ssl (1 = w)en, (7) + url) ) du.
Taking a glance at the features (4.24]) of the path Lg ,, we notice that
— arp(B) exp(ss|T]) + 21 (B — 72) exp(ss|(1 — u)ery (T) + url)
< —6(ro(B) — ro(8 — 72)) exp(sa|T]) <0

for all 7 € RJ. g4, all 0 < u < 1. Keeping in mind (2.10)), (2.13)), we obtain as
above

g
Cora(B) <20 _sup P+ exp (= Ty (8) — ru(B — 1))
TERJI: d,v ‘€|

< 270+1|€|70+71+2('70 +7 + 2)’YO+’Y1+2

o172
x exp(— (70 + 71 +2))(8 + )P0 +2)
for all 8> s, all € € D(0,¢). Then Lemma follows. O
O
Proposition 4.12. Take vy and v1 as non negative integers. Let us select ¢ =
(01,%2,63) and ¢' = (07,¢h,<4) two triplets of positive real numbers such that
o1 >0, S2>¢h = (4.31)

Then, for all e € D(0,¢0), the map v(t,z) — TfLO (1 =s)0sM0(s, 2)ds is a linear

bounded operator from SEG (s Rj. ., .5 into SEG(S7RJC’d,U’E75). Besides, one can
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choose a constant Csg > 0 (depending on ~vo,71,01 and o)) independent of €, such
that

||T/ (1= 5)°8" (s, 2)ds| (¢, R g 0 c.0) < C8lel ™2 0(T, 2) (o7 R 0 c8)
Lo, -

. (4.32)
for allv(r,2) € SEG Ry, 4., .e5), all € € D(0,¢).

Proof. As above, we only focus on the main part of the proof since it is very close
to the one of Proposition More precisely, we prove the next lemma.

Lemma 4.13. Let vg(7) belonging to SEG (3.¢ Ry, One can select a constant

c,d,v ,6) :

Cs > 0 (depending on vo,7v1,01 and o)) such that

IIT/L (1= 8)°5M va(s)ds| (g,c. R0 a0.0) < Cslel T2 0s(7) (8,67 R0
0,7

(4.33)
for all B > 0.

Proof. We first split the integral into two:

T

cry(T)
/ (1—5)"sMvg(s)ds = / (T—s)"’os“vg(s)ds—i—/ (T—5)"°sMvg(s)ds
LO,T 0 (&3

RrJ(T)

We ask for bounds regarding

. CRJ(T)
Ll =|r / (7 — 8051 03(8)d3 | (5.c s s )
0

The next factorization holds

cry(T)
e (= Zn@)lr =@ explalr) )i [ (= spesmus s

7l el

cry(T)
= exp (= Zer(@)irl — (@) explsalr))| [ (s

le]
/

Ay exp (= Fro®ls) = () explsals) s )

|s]

/
g
xIsfexp (FEr(8)1s] + sir(6) explsals) ) ds
which induces
LJ1 < Csa(B,)vs(T) (' Re.arns) (4.34)
where
é&l(ﬁve)
_ \ ( o1 ! Y0
= swexp (— (@)l - () exp(sslr)) [ 17— ens(r)ul
TERJ e, lef 0

X |ery (T)| FP2u T exp (ﬁrb(ﬁ)‘CRJ(T)'Ld + 57 (B) eXp(§3|CR](T)UD)dU.

le]
In accordance with the construction of the path Ly , described in (4.24), we have
—<25(8) exp(ss|7|)+<ars(8) exp(sslers (T)|u) < (—c2)re(B) exp(ss|T]) < 0 (4.35)
forall 7 € RJ; g0, all 0 <u < 1.
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Besides, taking into account the bounds (2.19)), we deduce

= o1 — o}
Caa(B.) <2 sup |r[ " 2exp (= E=ln(B)lr])
TERJI: d,v |6‘
o
< 270 gup 20 FNF2 exp ( _a v 7 rb(ﬁ)x> (4.36)

x>0

< 900 |¢[rotmit2 ( (o + 71 +2) )ﬁerﬁ“Jr2
- e(oy — o))

for all 8> 0, e € D(0, ).
In a second part, we focus on

-
LJjs = ||7'/ (7= 5)7°8"vg(8)ds|| (8., R 4.0,)-
cry(T)
Again we use a factorization

1 T
—exp (- Bl = an(s) exp(ss|)) ) 7| /CRJ(T)(T — o) Mug(s)ds

7]

—exp (- %n,(ﬁ)m ) exp(<3|T|))‘/T o
< exp (= Tl = ) ex(cals)) vs(s)

X |s| exp (ﬁrb(ﬁ)|8| + 5rp(B) eXP(§3|5|))dS‘~

le]

which implies

LJa < Cs2(B,)va(T) (. Re.nr) (4.37)
with
é8.2(ﬂa 6)
g
= s exp (= Zn(@)l7l - wr(B) explsslr))
TERT a0 le
1
X / |7 — cra ()T —w)°|(1 — u)ery (T) +ur[ T
0

X exp (Uell|rb(5)|(1 —u)ery(T) +ut| + o (B) explss|(1 — u)ery(T) + u7'|)>du.
The construction of Ly » through entails
— cary(B) exp(ss|7]) + sare () exp(ss| (1 — u)ers (1) + url)
< —(s2 — s3)r(B) exp(ss|T]) < 0
forall 7 € RJ;4.0,all 0 <u < 1.
According to the bounds , we obtain

(4.38)

o1 — 0o}

Csa(B,e) <20 gup |01+ 2exp ( _
TERJ: d,v

< 270+ |10+ +2 (M)WW
< -

for all 8 >0, e € D(0,¢). Then Lemma is proved. O
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d

The proof of the next proposition is a straightforward adaptation of the one in
Proposition [2.7] and will therefore be omitted.

Proposition 4.14. Let us consider a holomorphic function ¢(t, z,€) on ROJC,d,U X
D(0,p) x D(0,¢€p), continuous on RJ.q,. x D(0,p) x D(0,€), for a radius p >
0, bounded therein by a constant M. > 0. Fix some 0 < § < p. Then, the
linear operator v(7,z) = c(T,2,€)v(7,2) is bounded from SEG Ry, .5 into
itself, provided that € € D(O,eo). Additionally, a constant Cyg > 0 (depending on
M., 6, p) independent of € exists in a way that

lle(7, 2, )v(T, 2) | (6. R g0 e8) < Collv(Ty )M (6, R, 40 .6) (4.40)
fO’I“ allv € SEG(SaRJc,d,mE,é)‘

4.3. Continuity bounds for linear convolution operators acting on some
Banach spaces. We keep the notation of Section 3.2. By means of the statement
of the next two propositions, we inspect linear maps constructed as convolution
products acting on the Banach spaces of functions with exponential growth on
sectors mentioned in Definition 2.8 In the sequel, a sector Sy will denote one the
sector Sg,, 0 < p < ¢—1 just introduced after Definition For all 7 € S;UD(0, 1),
Ly r merely denotes the segment [0, 7] which belongs to Sq U D(0,r).

Proposition 4.15. Take vg,v1 > 0 and v2 > 1 among the set of integers. Assume
that

Y2 > (0 +m +2) (4.41)
holds. Then, for alle € D(0,¢p), the map v(t, z) — TfLO_T(T—s)'YOS’“ 07 "2v(s, z)ds
represents a bounded linear operator from EG 4, s,0D(0,r),e,5) into itself. Moreover,

there exists a constant C1g > 0 (depending on ~o,v1,72, 01 and b) independent of
€, for which

I / (7 — $) 05T 20(5, 2)d8| (01 530000
Lo,

S CIO|6"YO+’Y1+26’Y2 ||U(Ta Z) || (1,54UD(0,7),€,6)

provided that v(7,z) € EG (4, s,0D(0,r),e,5) and € € D(O7 €0)-

(4.42)

Proof. Since the proof mirrors the one of Proposition we only focus attention
at the next lemma.

Lemma 4.16. Let vs_+,(7) belonging to EG3_~, 0, ,5,0uD(0,r),e)- Then, one can
select a constant C1p1 > 0 (depending on vo,7v1,v2 and o1) such that

7 [ = 5 05 (515l 5. 500000
Lo.- (4.43)
< Croalel 2B + 1)P0 D lyg ) (T) (5r2.01,540D(0,),6)
for all B> 5.

Proof. We first perform a factorization

%exp (- %rl,(ﬁ)\ﬂ)h\‘ /OT(T = )78 0, (s)ds)

g g

@] [ = spes (e (= (s = )l o-na ()

= exp(
e €]
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X |s|exp (ﬂrb(,b’ Y2)|s \)ds‘
We deduce that
-
I [ 7 =757 (61l a0

< Croa1(B,6)vs—ns, (T)||(5772,01,SdUD(07T),6)
where Cig.1(8, €) fulfills the next bounds, with the help of (2.10)), (2.13),

1
Coos(B) = _swp exp (= Tr(@)lel) [ 1721 —uyrac st
) € 0

TESGUD(0,r

(4.44)

XeXP(H ro(B — '72)|T|u>du

< _swp e (= T (8) (B~ )7

TESGUD(0,r) (445)

< sup o +71+2

exp ( _ ﬂi@
2>0 lel (84 1)
< e[+ (70 +n+ 2)70”1“
o 0172
x exp(— (70 + 7 +2)) (8 + 1)P0eF i+
for all B > 79, all € € D(O, €o). This proves Lemma m O
|

Proposition 4.17. Let vg,71 > 0 chosen among the set of integers. Let 01,07 >0
be real numbers satisfying oy > o). Then, for all € € D(0,¢p), the linear map
(1, 2) = TfLU (T—5)0s"v(s, 2)ds is a bounded operator from EG o1 s,0D(0,r),¢,5)

into EG (5, 5,0D(0,r),e,5)- Furthermore, we obtain a constant Cio >0 (depending
on Yo,v1,01 and o} ) with

Ir / (7 — 8)05M0(5, 2)ds (o1 5u0D (0.
Lo (o1,5a0D0.1),6.0) (4.46)

< Chole ™ 2o (7, 2) [l (0, 500D (0,r).6,8)
for allv(7,z) € EG (o1 5,0D(0,r),e,6), for all € € D(O,eo).
Proof. The proof mimics the one of Proposition and is based on the next lemma.

Lemma 4.18. One can attach a constant Co > 0 (depending on ~o,v1,01 and o)
such that

7 [ = 9505 5l 5. 00
. (8,01,84UD(0,1),¢) (4.47)

< Cholel ™ 2 |ug (7) | (8,01, 500D (0,1),6)
for all B > 0.

Proof. We apply the factorization

%exp( | el )iel] [ (= 575 us(s)as|
= (= Zr(@lel)] [ (e (= Trn(@ls]) (o)
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0_/
x |s] exp (ﬁrb<ﬁ>|s|)ds\.
€
which entails
Ir / (7 — 8057 05 (3)ds | g1 540D (01

< Co(B,)1vs(7)ll8,01,540D(0,1).0)
for C10(B, €) submitted to the next bounds, keeping in mind (2.19)),

(4.48)

1
010(5, 6) = sup exp ( — ﬁm,(ﬁ)\ﬂ) / |T\'V°+'“+2(1 _ u)’You’Yl+1
r€5,UD(0,r) 1d 0
ol
X exp (Trb(6)|7|u)du

le

o1 — 0}

|7-|’>’0+’Y1+2

< swp exp (— 2= ()] (4.49)

TE€S4UD(0,r) le]

rb(,é’)x)

< |e[otm+2 ( (o +7 +2)e! )70”1*2
- o1 — o}

o1 — o}

< sup grotm +2 exp ( _

x>0 |€|

forall >0, €€ D(O, €0). Then Lemma follows. (Il
O

4.4. An accessory convolution problem with rational coefficients. We set
B as a finite subset of N3. For any [ = (lo,l1,l2) € B, we consider a bounded
holomorphic function d;(z, €) on a polydisc D(0, p)x D(0, €y) for some radii p, ¢g > 0.
Let Sp > 1 be an integer and Pg(7) be a polynomial (not identically equal to 0)
with complex coefficients which is either constant or whose roots that are located
in the open right half plane C; = {z € C/Re(z) > 0}. We introduce the following
notations. When [ = (lo,l1,l2) € B, we put dj,;, = lo — 2l; and assume that
diy 1, > 1, we also set A, , as real numbers for all 1 < p <} —1 when [; > 2.
When 7 € C, the symbol L , stands for a path in C joining 0 and 7 as constructed
in the previous subsections.
We focus on the next convolution equation

85311(7',,2,6)

dy(z,€) ( erlor / & —1 1Al ds
= = T—38)%0h T 59 2(s, z,€) —
Z PB(T) {F(dlo,ll) LO,T( ) z ( ) s

1=(lo,l1,l2)EB

Li—lo (4.50)
n Z Alhp € T
P(dlo,ll + (ll _p))

1<p<iy—1

d
. / (r = s)o s D 2 olin(s, 2,0 2 L u(r, 2,0)
LO,T iy

where w(7, z, €) stands for solutions of the equation (2.34) that are constructed in
Propositionsand We use the convention that the sum >, ., _, is reduced
to 0 when [; = 1. T
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In the next assertion, we build solutions to the convolution equation (4.50) within
the three families of Banach spaces described in Definitions and

Proposition 4.19. (1) We ask for the next constraints
(a) There exists a real number b > 1 such that for all I = (lo,l1,12) € B,

Sp > b(lg — 11) +1l, Sp>ly, 1121 (4.51)
holds. (b) For all 0 < j < S — 1, we set T — v;(7,€) as a function that belongs
to the Banach space EG (0,01 RH, ,...c), for all € € D(0,€g), for a L-shaped domain
RH, . displayed at the onset of Subsection 4.1 and some real number o > 0.
Furthermore, we assume the existence of positive real numbers J,d > 0 for which

Sp—1—h 5
> a0t RH, w07 < T (4.52)
i=0 7
for any 0 < h < Sp —1, for e € D(0,€).

Then, for any given o1 > o}, for a suitable choice of constants A > 0 and 0 <

0 < p, the equation (4.50) where the forcing term w(r, z,€) needs to be supplanted
by wy g, (7, 2, €) along with the initial data

(090)(1,0,€) = vj(1,€), 0<j<Sp—1 (4.53)
for all e € D(0,€)

has a unique solution v(, z,€) in the space EG,, pp
and is submitted to the bounds

107 2, )l (01, RHa b e0) S ST5A+ T (4.54)

a,b,v,6,0)7

for all e € D(0, €).

(2) We need the following restrictions to hold
(a) There exists a real number b > 1 for which occurs.

(b) For all 0 < j < Sg — 1, we define 7 — v;(7,€) as a function that belongs
to the Banach space SEG (o ¢ Ry, ,.,.c); for any € € D(O,eo), for some L-shaped
domain RJ. q. described at the beginning of Subsection 4.2 and for some triplet
" = (of,¢5,¢5) with of > 0, ¢4 > 0 and ¢, > 0. Moreover, we can select real
numbers J,§ > 0 with

Sp—1-h 5
Z l|lvjgn (T, €)||(0,5',RJC,d,v,e)ﬁ <J
§=0
forany0 < h<Sg—1, foree D(O,eo),

Then, for any given triplet ¢ = (01,%,53) with o1 > o}, @ > <5 and ¢3 =
¢4, for an appropriate choice of constants A > 0 and 0 < 6 < p, the equation
(4.50) where the forcing term w(t, z,€) must be interchanged with wy 5, (T, 2, €) to-
gether with the initial data possesses a unique solution v(T, z,€) in the space
SEG( R, 4.5 Which satisfies the bounds

HU(T7 Z, 6) H(S,RJC,d,v,e,é) § 5SBA +J (455>
for all e € D(0, ).

(3) We request the next assumptions
(a) For a suitable real number b > 1, the inequalities (4.51]) hold.
(b) For each 0 < j < Sg —1, we single out a function T — v;(,€) belonging to the
Banach space EG 0,4/ 5,0D(0,r),c), for all € € D(0,¢€), where Sy is one of sectors
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Sa,, 0 < p < v~ 1 displayed after Deﬁm'tion for some real number o} > 0.
Furthermore, we assume that no root of Pg(1) is located in SqUD(0,r). We impose
the existence of two real numbers J;§ > 0 in a way that

Sp—1—h s

Z [vj+n (7, €)||(o,a;,sduD(o,r),s).*, <J
j=0 I

holds for any 0 < h < Sz — 1, for e € D(0, ).

Then, for any given o1 > o}, for an adequate guess of constants A > 0 and
0 < d < p, the equation where the forcing term w(r, z, €) shall be replaced by
weg, (T, 2, €) accompanied by the initial data has a unique solution v(r,z,€) in
the space EG (4, 5,0D(0,r),¢,5) Withstanding the bounds

[0(7, 2, )l (01,50UD(0.r)c.) < 07BN+ J (4.56)
for all e € D(0, €).

Proof. The proof will only be concerned with statement (1), since a similar argu-
ment holds for the second (resp. third) statement by merely replacing Propositions
and by Propositions [4.10} [4.12] and [4.14] (resp. [4.15} [4.17| and [2.16]).

We keep the notation of the subsection 3.1 and we depart from a lemma dealing
with the forcing term w(7, z, €) of the equation (4.50).

Lemma 4.20. (1) The formal series wy j, (7, 2, €) built in belongs both to the
spaces EG (4, RH, , ..e,5) and SEG(( RJ, , ,.c,6) for the triplets o,¢ and & considered
m Pmposz'tz'on. 3.5, for any choice of v < 0, provided that the sector H from RH,p .
belongs to the set {Hp}re[—nn) and J out of RJea. appertain to {Jp}re[—nn]-

Moreover, there exist constants CRHa,b, >0 and Cpy > 0 for which

c,d,v

lwe g, (T,2,€)|l(o1, RH. 4 o 6,6 SORHa v
[ — o (4.57)

lwrg, (7,2, €) |l R nres8) < CRIa

for all e € D(0, €).
(2) The formal series ws,, (1,2,€) in (3.44) belongs to EG(017SdpuD(O7T)7€’5). Be-

sides, there exists a constant éSdp > 0 with

stdp (Tv 2 6) || U1,SdeD(O r),6,0) = CSd (458)
whenever € € D(0, €).

Proof. We focus on (1). According to (3.18]), the formal series wy s, (7, 2, €) has the
expansion wy s, (7, 2,€) = 3550 ws(T, €)2 ® /B! where wg (7, €) stand for holomorphic

functions on HJ x D(0, €y), continuous on H.J, x D(0,€y), for all 5 > 0. Also

estimates and (| - ) hold.

We ﬁrst prove that wg s, (7,2, €) belongs to EG (s, rH, ;. .5 We need upper
bounds for the quantity

Rup(B.0) = sup TN oy (L gy1a)).

r€Rapy T el
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Since Ropv C HJy = Uge[—nn)Hr U Jk, we obtain in particular the coarse bounds

RuB.9< Y sp 0oy (LT )

ke[—n.n TERG b,0oNHE |T| ‘6|
el=ronl ws(r. o) (4.59)
wg(T, € o
+ Z sup Biexp(f —17"1,(5)|T\).
ke[—n.n] TERGb,0NJk |T| |€|

The sums above are taken over the integers k for which R, 4, N Hy and Rg 4., N Ji
are not empty. But, we observe that

sup lwa (T, €)] exp ( _ ﬂrb(ﬁ)lﬂ)

TERG b,0oNH |T| ‘€|
wg(T, € o 4.60
< sup 20N oy (= T @) + oas(B)explozfr)) 4O
rel, |7l €]
= llwa(7, )l (8,0, Hy)
and if we set
Capwr = sup  exp (((b) explsslr])),
TGRaﬁb)UﬁJk
we see that
wg (T, € o
sp 18T N ey (= 3)17)
TERG,b,0NJk |T‘ |€|
wg(T, € o
= sup ws (. c)| exp ( - *17“b(/3)\7|>
TERG,b,0NJk ‘T| |6‘ (4 61)
x exp(—c2re () exp(ss|7])) x exp(carsy(B) exp(ss|T])) '
wg(T, € o
< Copiesup 20N ey (= T (8) 7)) exp(—coms(8) expl(slr)
TEJ) ‘T| |6|
= Capvkllws(m, )l (e, 0.0)-
Hence, gathering (4.59)) and (4.60)), (4.61) yields
Rwa,b(ﬁa 6)
< Y s Olpemeo+ Y. Covwnlwsmlpeng (462
ke[—n,n] ke[—n,n]
Now, we note that
lws(7, )l (8,01, RHap.00)
< sup [ws (T )| exp ( - 27‘b(ﬁ)|T|)
rentn, 7] e w6

+ 52}?, |U}ﬁ|(:|’€)| exp ( — %rb(ﬁ)hl + o255(0) eXP(U3|T|))

= Rwap(B,€) + |wp(7, €)ll(5,0,0,6)
Finally, clustering (4.62]) and (4.63]) yields

lwer (7,2, ) (o1, RHq .0 e.8) < Z Cu, + Z CabokC +Cr  (4.64)
ke[—n,n] ke[—n,n]
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for all € € D(0,€y), bearing in mind the notation within the bounds ([3.20) and
(13.21).

In a second step, we show that wg s, (7, 2,€) belongs to SEG( gy, , .5 We
search for upper bounds concerning

wga(T, € o

Riwea(8.0= s 120N ey (- T )| — or(8) explsalr)-
TERc,d,v |T‘ |€|

According to the inclusion R 4., C HJ, = Upe[—n,n)Hr U Ji, we observe that

RJwe,q(0B,¢€)

< ¥ s 0o (- Tl - an(s) explalr)

ke[—n,n] TER: d,0NH |T‘
wel\T, € g
o s O (O )] qany(8) explsalr))-
ke[—n,n] TERc d,oNJg |T‘ |€|

(4.65)
As above, the sums belonging to the latter inequalities are performed over the
integers k for which R 4. N Hy and R; 4. N J are not empty. Furthermore, we
see that

sup 1T o (T By — s (8) o)

TER: q4,oNHy ‘T| |6‘

< sup 8 (= Zhri(8)1] + s (5) ex(oalr))

(4.66)

= lws(T, )l (8., .¢)

and

sup N exp (= Zrn(@)ir] - () explalr))

TERc a,0NJk |T‘

< sup B exp (= Tory(8)r] = ar(3) explalr))

(4.67)

= llws (7, &)ll(s.5,51.0)-
As a result, collecting (4.65)) and (4.66f), (4.67) leads to

Rch,d(B7€) < Z Hwﬁ(77 E)H(ﬁ,g,Hk,é) + Z Hwﬁ(7—7 6)“(&5%@) (4.68)
ke[—n,n] ke[—n,n]

We remark that

ws (7, )l (8.5, R .0 0)

< sup LBEN oy (= Ty (B)1r] - cors(8) explsalr]))
reReg, ] e (4.69)
+ 75—1618 w'8|(:’€)| exp ( — %Tb(ﬂ)h" — §27'b(3) exp(§3|7'\))

= RJwe,a(B€) + lwp(7, )l (5,6,.0)
At last, (4.68) and (4.69) yield the bound

||wHJ(T’Z>E)||(S,RJC,4,U,E,5) < Z éHk + Z éJk + éJ (470)
ke[—n,n] ke[—n,n]
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for all € € D(0, ), in accordance with the bounds (3.20) and (3.21)).
Statement (2) has already been checked in the proof of Proposition ([

Let us introduce the function

Sp—1 :
2

Vg (T, 2,€) = Z v;(T, e)?

7=0
with v;(7,€) defined in (1)(b) above. We set a map B, described as follows
Be(H (T, 2))

111
— Z dL(Z,e){ g1 tor / (T—S)dlﬂ’ll_lsllal2_SBH(S,Z)ﬁ
Lo~ ? S

1=(lo,l1,l2)€B Pp(7) \T'(diy ;)

! 1§;§ll—1 Ay F(dzo,zill:zl: —p)) /Lo,, (1 — §)dton+(L=p)=1gpgla=Ss (g 2)%}
: l—(lonl,:lz)eB (ZZ;G)) {lledzololj) /LO’_,_ (1= 5) Mo Ol Ve, (s, 2, e)%

i 1Sz§l:1—1 All,pr(dlo,lill-klzl: -p)) /LO,, (1 — s)honth=P=lepglayy (s 2, e)%}

+wHy, (T, z, E)
In the next lemma, we explain why B, induces a Lipschitz shrinking map on the

3 /
space EG (o, rH, , . .c5), Or any given o1 > 07.

Lemma 4.21. We assume that the restriction (4.51) hold. Let us choose a positive
real number J and 0 > 0 with (4.52)). Then, if 06 > 0 is close enough to 0, then
(a) We can select a constant A > 0 for which

I1Be(H (7, 2)) (01, RH b0 e0) < A (4.71)

for any H(t,z) € B(0,A), for all e € D((), €o), where B(0,A) stands for the closed
ball centered at 0 with radius A > 0 in EG (5, RH, , ,.c.5)
(b) The map Be is shrinking in the sense that

HB€(H1 (T7 Z)) - B€(H2(T7 Z))H(O'I,RHa’byv,E,(S)
1 (4.72)
< §||H1(Ta 2) = Ha (7, 2)|l (01, RHq p.0.6,6)

occurs whenever Hy, Hy belong to B(0,A), for all € € D(0, ).

Proof. According to the inequality r,(3) > r4(0) for all 8 > 0, we observe that for
al0<h<Sgp—1land 0<j<Sg—1-—h,it holds

105417, Gt RHav,00) < N0540(Ts )l 0,04 RH 010 -
As a consequence, the function 9"V, (7, 2, €) belongs to EG 1 RH, 4. .¢,6), With the
upper estimates

Sp—1—h j

1)
”aiLVSB (Tv 2, e)ll(oﬂ,RHa,b,me,(s) < Z ”UjJrh(Tﬂ E)H(O,ULRHG,M,,e)ﬁ <J (4'73)
j=0 ’
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We first focus on the bounds (4.71). Let H(7,2) in EG (s, ra, .5 Submitted to
IH (T, 2) (01, RHa.p.0e,5) < A. Assume that 0 < 6 < p. We set

di(z,€
Mp; = sup }*)( ) |
TERHa,b,0,e€D(0,€),2€D(0,p) 5(7)

for all [ € B. Under the oversight of (4.51)) and due to Propositions and
we obtain constants C5 > 0 (depending on [, Sg,01,b) and Cs > 0 (depending on
Mg, 9, p) such that

di(z,€) 4 dig.i;—1ol1 gla—8 ds
a7 sy 0 5, Dl 0

< C6055587l2 ”H(T’ Z) ||(0'17RHa,b,va€76)

(4.74)

and

di(z,€) li—1 d li—p)— lo—S8 ds
By 77 [ oo S (5, Pl 0

< 0605655_l2 ||H(T7 Z) ” (01,RHqa b,v,€,0)

(4.75)
for all 1 < p <l; — 1. Besides, keeping in mind Propositions and [£.7] with the
help of , two constants Cs > 0 (depending on [, 01, ¢}) and Cg > 0 (depending
on Mg, 0, p) are obtained for which

di(z,€) | _ _ ds
H;EII 107./ (T _ S)dzo,ll 18l13i2VSB(8, 2, 6)?”(01’RH%M7675)
Lo,r

Pp(7) (4.76)
< CsCs |02 Vs, (7, 2, (o1, RHa p.016,8) < CsCsJ
and
dl(zvg) li—1 / d Iy —p)— ds
— T LehrTtlor T—38) to.1 T (l1=p) 18”8?1/5 $,2,6)— || (o .5
ynes LO,T( s 5 o1 R e (4.77)

< C6Cs |02 Vs (7, 2, (o1, RH Q. 0,6,8) < CsC5.J

forall1<p<il; -1

At last, from Lemma [4.20((1), one can select a constant éRHa,b,U > 0 for which
the first inequality of (4.57)) holds. We choose 6 > 0 small enough and A > 0
sufficiently large such that

CoC50°5 12 CC5055 12
— A+ Ay,
Z F(dlo,ll) Z | : ,pl F(dl07ll + (ll - p))

1=(lo,l1,l2)€B 1<p<ii—1
CsCs CsCs = (4.78)
+ Z w7 T Z |A117p| J+CRHO/,1),’U
1=(lo,l1,l2)EB F(dlo’ll) 1<p<ii—1 I‘(dlo7l1 + (li —p))

<

holds. Finally, gathering (4.74), (4.75)), (4.76), (4.77) and (4.78) implies (4.71)).
In a second phase, we show that B, represents a shrinking map on the ball
B(0,A). Namely, let Hy, Hy be taken in the ball B(0,A). The bounds (4.74) and
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(4.75) entail

di(z,€) ; dio 1, —1 11 ala—S, ds
H PB(T) et OT/LOT(T_S) lo:l1 7 g 18z2 B(Hl(S,Z) _H2(S’Z))?H(al,RHa,b,,,,e,é)
< 060565'87[2”1'{1(7-7 Z) - HQ(Ta Z)”((H,RHa,b’U,e,é)
(4.79)
and (5.6)
di(z,€) 4 / d —p)— -
T hi=lo g F—s 1g,11 +(1—p) 1spalzz Ss(H s,z
Bty L T9) (H1 (5. 2)
ds (4.80)
— Hy(s,z)) ?H((,I’RHW‘M,(;)
< CsCs6°5 2| Hy (1, 2) — Ha (T, 2) || (01, R 0.68)
forall 1 <p <1l —1. We take § > 0 small scaled in order that
CeCs  g._; CsCs Sml 1
P T SN VZ P 69571 < — (4.81)
Il T ta)cB D(dig 1) \ndl1 D(dig1, + (I — p)) 2

As a result, we obtain (4.72)). In conclusion, we set § > 0 and A > 0 in a way that
(4.78) and (4.81) are concurrently fulfilled. Then Lemma follows. O

Assume the restriction holds. Take the constants J, A and ¢ as in Lemma
The initial data v;(7,€), 0 < j < Sg — 1 and o} are chosen in a way that
[4.52)) occurs. In view of statements (a) and (b) of Lemma[4.21]and according to the
classical contractive mapping theorem on complete metric spaces, we notice that the
map B, carries a unique fixed point named H (7, z, €) (that relies analytically upon
€€ D(O, €0)) inside the closed ball B(0,A) C EG (s, rH, ,.,.cs) for all e € D(0, €0)-
In other words, B(H (7, z,€)) equates H(7, z,¢) with | H(7, 2, €)|/(o,,RH, ,...e.6) < A
As a consequence, the expression

v(T,2,€) = 0758 H (T, 2, €) + Vi, (7, 2, €)
fulfills the convolution equation with initial data . In the last step, we
explain the reason why v(7, z, €) shall belong to EG (6, RH, y..,,5)- Indeed, if one
expands H(7,z,¢€) into a formal series in z, H(7,2,€) = 355 Ha(T, €)2? /B!, one
checks that

||8;SBH(T7Zae)”(ohRHa,b’v,eﬁ) = Z ||H,3—SB(Tv 6)H(,@,Ul,RHa’b’v,e)dﬁ/ﬂ!
B>Ss

From ry(8) > rp(8 — Sg), we notice that

Hp—55(T: )l (8,01.RHu b0re) < 1Ha—55(T:€)l(5-55.01,RHq 40 .0)
for all § > Si. Hence,

|‘8;SBH(7-7 2 e)||(Ul7RHa,b,v,€76)
(B-S8)! s 6P s
< > (FEE) I Hpsu(m - swonmtran g (482
B;B 31 B—Sgs (B—SB,01 b, )(B—SB>! ( )
< 658 ||H(7—a 2, €)||(0'1’RHa,b‘1u656)

From (4.73)) and (4.82), it follows that v(7, z,€) belongs to EG s, ru, . .5 With
the upper bounds (4.54)). a
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5. SECTORIAL ANALYTIC SOLUTIONS IN A COMPLEX PARAMETER FOR A
SINGULARLY PERTURBED DIFFERENTIAL CAUCHY PROBLEM

Let B be a finite set in N3. For all [ = (ly,l1,l2) € B, we set dj(z, €) as a bounded
holomorphic function on a polydisc D(0, p) x D(0, eq) for given radii p, ey > 0. Let
S > 1 be an integer and let Pg(7) be a polynomial (not identically equal to 0)
with complex coefficients which is either constant or whose complex roots that are
asked to lie in the open right halfplane C; and are imposed to avoid all the closed
sets Sg, UD(0,r), for 0 < p < ¢ — 1, where the sectors Sy, and the disc D(0,r) are
introduced just after Definition[3.4 We aim attention at the next partial differential
Cauchy problem

Pa(et?0)055y(t, z,6) = > di(z, )t 0 02y(t, 2, €) + ult, z,¢)  (5.1)
1=(lo,l1,l2)€B
for given initial data
(01y)(t,0,¢) = ¥;(t,€) (5.2)
for 0 < j < Sg — 1, where u(t, z,€) belongs to the sets of solutions to the Cauchy
problem (3.1]), (3.2) constructed in Section 3.3 and displayed as {u(gI;IJ Yee[-n,n]
or {ueg, Yo<p<i-1-
We require the forthcoming constraints on the set B to hold. There exists a real
number b > 1 such that

SB > b(lo — ll) + 1y, Sp> ZQ, 1 >1 (53)

holds for all [ = (lg,l1,l2) € B and we assume the existence of an integer d;, ;, > 1
for which
lo =201 +diy 1y, (5.4)

for all I = (lp,11,1l2) € B. With the help of (5.4]), according to [19, (8.7) p. 3630],
one can expand the differential operators

tloﬁil:tdloh(tzllail):tdlo=ll((t28t)ll+ > All,,,t(h*m(t?at)?) (5.5)

1<p<l1—1

for suitable real numbers A;, ,, with 1 <p <1l; —1 for [ > 1 (with the convention
that the sum Zlgpglﬁl is reduced to 0 when I; = 1).

In the sequel, we explain how we build up the initial data ;(t,€), 0 < j < Sp—1.
We take for granted that all the constraints disclosed at the beginning of Subsection
3.3 hold. We depart from a family of functions 7+ v;(7,€), 0 < j < Sg — 1, which
are holomorphic on the disc D(0,7), on each sector Sg,, 0 < p <:—1 and on the
interior of the domain H J,, defined at the onset of the Section 3.1 for some integer
n > 1 and relies analytically on € over D(O, €o). Furthermore, we require the next
additional properties.

(a) Forall0 < j < Sg—1, all k € [—n,n], the function 7 — v;(7, €) belongs to the
Banach spaces EG (0,0, rH y and SEG(O)S/)RJ%%% o forall e € D(0, €),
where o} > 0 and the triplet ¢’ = (o],¢%,¢5) satisfies ¢4 > 0,¢4 > 0, the real
numbers ag, bx, ¢, di. are defined at the outstart of Subsection 3.1 and v, > 0 is a
real number suitably chosen in a way that v, < Re(Ay), where Ay is a point inside
the strip Hj, defined through and (3.7). Besides, for any 0 < j < Sg—1, there
exists a constant .J,, > 0 (independent of €) such that

ag b v 1€

[0 (75 0,07, REap by o) < Joso 05T 0,67, R,y 0 o6) < T (5.6)
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for all k € [—n,n], all e € D(0, ).

(b) Forall0 < j < Sg—1,all0 < p < :—1, the map 7 — v;(7, €) appertains to the
Banach space EG(O,U’17SdeD(O7r),e) for all € € D(0, €y), where ¢ > 0. Furthermore,
for each 0 < j < S — 1, we have a constant Jy; >0 (independent of €) for which

[[v; (7, €)||(o,a;,sdpup(o,r),e) < Jy, (5.7)

forall 0 <p<.—1,all e € D(0,¢).
(1) We construct a first set of initial data

u . du

Vrep,, (60 = [ il e (58)

P et’ u

for all k € [—n,n], where the integration path is the same as the one involved in
(3.6). The same proof as the one presented in Lemma justifies the following
statement.

Lemma 5.1. The Laplace transform '@[Jj’gll?'lj (t,€) represents a bounded holomorphic

function on (TN D(0,r7)) X Ef ;. for a suitable radius r > 0, where T and £} ;-
are bounded open sectors described in Definition[3.1).

(2) For any 0 < j < Sg — 1, we set up a second family of initial data

d
bjgs, (t:€) = /L vj(u, €) eXp(—E%);u (5.9)

where the integration path is a half line with direction 74 described in (3.34]) and
(3-35). Following similar lines of arguments as in Lemma we observe that

Lemma 5.2. The Laplace integral ¢; e (t,€) defines a bounded holomorphic func-

tion on (T N D(0,rr)) x Es,, for a convenient radius r > 0, where T and &g,
are bounded open sectors defined in Definition 3.

We are now in position to set forth the second main result of our work.

Theorem 5.3. Under all the restrictions assumed above till the unfolding of Section
5, provided that the real number 6 > 0 is chosen close enough to 0, the following
statements arise.

(1.1) The Cauchy problem where u(t, z,€) stands for gl (t,z,€) with
initial data given by has a bounded holomorphic solution Yek, (t,z,¢€)
on a domain (TND(0,r7)) x D(0,661) x Ef; ;  for some radius r7 > 0 chosen close
to 0 and 0 < §; < 1. Besides, Yer - can be expressed through a special Laplace
transform !

u . du

vey,, (659 = [ s, o (= ) (5.10)

where vy g, (7, 2, €) determines a holomorphic function on H.J,xD(0,861)xD(0, ),
continuous on HJ, x D(0,8d1) x D(0,¢ep), submitted to the next restrictions. For
any choice of o1 > 0 and a triplet ¢ = (01,%2,53) with

01> 0, ©>¢, 3=q (5.11)
one obtains constants C, >0 and CY_> 0 (independent of €) with
v !
vrg, (7 2,€)| < Ch || exp(—=C(0)]7]) (5.12)

le]
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for all T € Hy, all z € D(0,861) and

01

i, (7,2, €)] < Cf, 7] exp(=C(b)|7] + 62 (b) exp(ss|T])) (5.13)

€]
for all T € Ji, all z € D(0,80,), whenever e € D(0, ), for all k € [—n,n].

(1.2) Let k € [—n,n] with k # n. Then, there exist constants My 1, My 2 > 0
and My 3 > 1 independent of €, such that

My, o My, 3
|y51k4"",il (t,z,€) — yg’;”n (t,z,6)] < My exp(_W log |6‘ ) (5.14)
forallt € TND(0,ry), all e € SI’“{JW N Efﬁi # 0 and all z € D(0,667).

(2.1) The Cauchy problem (5.1)) where u(t, z, €) must be replaced by Ugg, (t, z,€)
along with initial data (5.2) given by (5.9) possesses a bounded holomorphic solution
Yes, (t,z,€) on a domain (T ND(0,r7)) x D(0,001) x Es,  for some radius r7 >0
chosen small enough and 0 < 61 < 1. Moreover, Yes, appears to be a Laplace

transform

. du
Yes, (t2,€) :/ Vs, (U, 2, €) exp(——)— (5.15)
» L

et’ u
’de

where vs, (7,z,€) represents a holomorphic function on (Sa,UD(0,r))x D(0,561) %
D(0,€), continuous on (Sa, UD(0,7)) x D(0,01) x D(0,¢0) that satisfies the next
demand: For any choice of o1 > a7, one can select a constant C§, > 0 (indepen-

dent of €) with
91

(b)) (5.16)

‘Usdp (T7 2, 6)| < Cg'dp |T| eXp( |€|

for all T € S4, UD(0,7), all z € D(0,601), all e € D(O7 €0)-
(2.2) Let 0 < p <t —2. We can find two constants M, 1, M, 2 > 0 independent

of €, such that

M, 2

le]

|yfsdp+1 (t,Z,G) _ygsdp (t,Z,€>| < My, exp(— ) (5-17)

for allt € TN D(0,ry), all e € é’s%ﬂ NEs,, # 0 and all z € D(0,861).
(3) The next additional bounds hold among the two families described above:
There exist constants My 1, M, 2 > 0 (independent of €) with

M,
e n (t.2,€) = yes, (12,€)] < My exp(——"2) (5.18)

foralle € &y NEs, and

M,
ey, (62,0) = yes, (2,6 < My exp(—="2) (5.19)
foralle € Ef; NEs, . whenevert € TN D(0,r7) and z € D(0,301).

Proof. We consider the convolution equation (4.50) with forcing term w(r, z,¢€) =
wp g, (T, 2, €) for given initial data

(agv)(Tvov 6) = vj(Ta 5)7 0<y< Sp— 1. (520)
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We certify that the problem (4.50)) along with ([5.20)) carries a unique formal solution
B
z

vir g, (T,2,€) = Z’UB(T, €)— (5.21)

1
B>0 p
where vg(T, €) are holomorphic on HJ, x D(0,€), continuous on HJ, x D(0, ).

Indeed, if one develops d;(z,¢) = 26>0 d; 5(€)z? /B! as Taylor expansion at z = 0,

the formal series ((5.21)) solves (4.50)), (5.20)) if and only if the next recursion formula
holds

Vg+55 (T €)

-y ehlor 3 dy,p, (€)

o ]
1=(lo,l1,l2)EB F(leJl)PB(T) B1+p2=pB Pl

diy 1, —1 0 UBZJFZZ (87 E) dS |
X T—§) Mo Tigh 2R Bl A
/Lo,ﬂ.( ) Bl s 2 2 A (5.22)

I1=(lo,l1,l2)€B 1<p<l; —1

6l1—l07— dlﬁ (6) / d
X E Sl T — 38 10711+(l1—p)—15p
Dldig 0, + (b =p)Ps(7) , &=, B! LO,,( )
1+02=

VByti, (S, €) ds
% 52+é;§ > )?ﬁ' +w[3(7, 6)

for all 8 > 0, where wg(T, €) are the Taylor coefficients of the forcing term wg s, (7, 2, €)
in the variable z which solve the recursion . Since the initial data v;(7,€),
0 < j < Sg—1 and all the functions wg(7,€), § > 0, define holomorphic functions
on HJ, x D(O, €o), continuous on HJ, X D(O, €o), the recursion is well de-
fined provided that Ly , stands for any path joining 0 and 7 that remains inside the
domain HJ,,. Furthermore, all v, (7, €) for n > Sp represent holomorphic functions
on HJ, x D(O,eo), continuous on H.J, X D(O, €0)-

Bearing in mind all the assumptions set above since the beginning of Section 5,
we observe in particular that the conditions (1)(a-b) and (2)(a-b) of Proposition
[4.19] are satisfied. Therefore, the next features hold:

(1) The formal series vy s, (7, 2, €) belongs to the space EG 5, ru,

g bprvg1€:0)9 for

all € € D(0,€), all k € [-n,n], for any ¢; > ¢} and one can select a constant
Ch,, > 0 for which

1087, (T, 2 )l (01, RHup by 0 00) < Chiy (5.23)

for all € € D(0, ¢).
(2) The formal series vgy, (7, 2,€) belongs to the space SEG(S’RJ%@WWE,(;),

whenever € € D(0,¢y) and k € [—n,n], provided that < is chosen as in (5.11).
Furthermore, one can get a constant Cj > 0 with

Ve, (7,2, )l (6, Ry a0 8) < CF (5.24)

for all e € D(0,¢). As a consequence of , , with the help of Proposition
and we deduce that wvp, (7,2, €) represents a holomorphic function on
HJ, x D(0,88,) x D(0,e), continuous on H.J,, x D(0,88;) x D(0,¢) for some
0 < 41 < 1, that withstands the bounds and (5.13). By application of

a similar proof as in Lemma one can show that for each k € [—n,n], the
function Yer | (t, z,€) defined as (5.10]) represents a bounded holomorphic function
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on (TN D(0,r7)) x D(0,016) x Ef;; , for some fixed radius 7 > 0 and 0 < §; < 1.
In addition, following exactly the same reasoning as in Proposition 2), one can

obtain the estimates

It remains to show that Yek (t z, €) actually solves the problem (5.1] . In
accordance with the expansmn , we are scaled down to prove that
Lemma 5.4. The equality

tho.n (£29,) 1y, Lo (2,

e (dig.1 ) 5 1 ds u . du
= oot " s g g (8, 2,€)— exp(——)—
dlo,ll Pk L0u S et’ u

holds for all t € T N D(0,rr), € € EHJn, all given positive integers dy, 1., > 1.
We recall that the path Py, is the union of a segment Py 1 joining 0 and a prescribed
point Ay € Hy and of a horizontal half line Py o = {Ayr — s/s > 0} and here Ly,
stands for the union [0, crm (u)] U [crm (u), u] where crp(u) is chosen in a way that

L0>U« C RHllk,bk,Uk’ CRH(U) € Rak,bk,vk’ ‘CRH(U)I < ‘u|

for alluw € P, C RHg, p, v, (Notice that this last inclusion stems from the assump-
tion v, < Re(Ag)).

(5.25)

Proof. We first specify an appropriate choice for the points cgy (u) that will simplify
the computations, namely

(1) When u belongs to Px1 C Ra, b, .0, then we select cppy (u) somewhere inside
the segment [0, u], in that case Lg ., = [0, u].

(2) For u € Py 2, we choose cry(u) = Ag. Hence Lg,, becomes the union of the
segments [0, Ax] and [Ag, u].

As a result, the right-hand side of can be written as

—(diy,1,+01) d
R=S{ ] / (1= 50 sl (5,2,6) %) exp(~ L) du
Pk 1 [O u] S et

dlo,ll

ds
/ / dlo b lsllvHJ (s,2z,6)—
P2 [0,A] S

d
/ (u — s) B0 ~Lshyy; (s, 2, e)—s> exp(—g)du}
[Ak,u] S et

forallt € TND(0,rr), € € ‘SIk{Jn' Now, with the help of the Fubini theorem and
a path deformation argument, we can express each piece of R as some truncated
Laplace transforms of vy s, (7, 2, €). Namely,

d
/ (/ (u— s)dlo 1 1sl1vHJ (s, z, 6)—8) exp(—g)du
Py 1 [Ou S et

d
/ (u — s)%on—1 exp(—g)du)sllvHJn(s z,€)— i
3 Ak] €t S

!
:/ / w) oL exp(—)du! ) up, (5,2, €) exp(— )%
0,A Ak S] Gt

et’ s

and

[ (] st tston, (5,2, ) exp( 2 )du
Pk,2 [OyAk] S et
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d
[ (] st o) s, (55,0
[0,A] Py 2 et 8
s . ds

/
’U/ dzo,zl—lex _l du/)sllv . s, 2,€) exp(——)—
/M( / G b(—) (5,2, exp(— )

where Py o — s denotes the path {A; —h — s/h > 0}, together with

d
/ (/ (U — S)dlo,llflsllvHJn (5’ z, E)j) eXp(iﬂ)du
Pk,2 [Ak,u] S €t
d
:/ (/ (U—s)dzo,zl—l eXp(_E)du)sthJn(s,z,e)j
Py 2 P2 et s
/
= Ndig,1, —1 *Ed/)ll 7&@
\/Pk,2 </]R,(U) o exp( Gt) w)s UHJTL(S,Z,E)GXP( Et) S

where Pyo = {s — h/h > 0} and R_ stands for the path {—h/h > 0}, for all
te TND,rr), €€ Sllfun. On the other hand, a path deformation argument and
the very definition of the Gamma function yields

/

li
/ ()0t~ exp(— = )du' + / (o~ exp(— = )dul
[07Ak*5] et et

Pk1275

€

_ ndy 1, —1 u’ /
= [ wytenexp(-2)au

= F(dl07l1 ) (Et)dlah

forall s € [0, Ag], allt € TND(0,rr), € € EJIEIJ,,; By clustering the above estimates,
we can rewrite the quantity R as

d

R =thoneh / sty (s, 2,€) exp(—i)—s = thon (120, yer  (t,2,€) (5.26)
Py et’ s Hin
forall t € TN D(0,r7), € € 5’;1Jn. Then Lcmma follows. a
To discuss (2) of the statement, let us focus on the equation (4.50) equipped
with the forcing term w(r, z,€) = ws,, (7, 2,€) for given initial data (5.20). We
must check that problem (4.50), (5.20) has a unique formal series solution
B
z

vs,, (T, 2,€) = Z va(T, E)ﬁ (5.27)

B>0

where v3(7, €) are holomorphic on (Sg, U D(0,7)) x D(0, ), continuous on (Sq, U
D(0,7)) x D(0, €). Indeed, the formal expansion solves ([4.50)), (5.20) if and
only if vg(r,€) fulfills the recursion for all § > 0, where wg(r,€) represent
the Taylor coefficients of the forcing term wg - (7, €) which are implemented by the
recursion . As a consequence, all the coefficients v, (7, €) for n > S define
holomorphic functions on (4, UD(0,7)) % D(0, ), continuous on (Sa, UD(0,7)) x
D(O7 €0) in view of the fact that it is already the case for wg(7,€), 8 > 0 and the
initial conditions ({5.20)).

In accordance with the whole set of requirements made since the onset of Section
5, we can see that the constraints (3)(a-b) imposed in Proposition are satisfied.



EJDE-2019/55 BOREL SUMMABILITY FOR LINEAR FRACTIONAL TRANSFORMS 67

Hence, the formal series vs, (1,2, €) belongs to the spaces EG([,l)gdp UD(0,r),e,5) Tor
all € € D(0, ), for any oy > o} and a constant Cg, > 0is given for which
P

[vsa, (7,2, €)ll(01,54,UD(0.1).c.0) < C8,

foralle € D(O7 €0). As a byproduct, bearing in mind Proposition 2), Vs, (7, 2,€)
defines a holomorphic function on (Sq, UD(0,7)) x D(0, 1) x D(0, ), continuous
on (Sg, UD(0,7)) x D(0,861) x D(0, ), for some 0 < &, < 1 that satisfies (5.16).
By application of the same arguments as in Lemma [3.5] one can prove that the
function Yes,, (t,z,¢€) defined as induces a bounded holomorphic function on

(T'ND(0,r7)) x D(0,661) x Es, . Moreover, an analogous reasoning as the one in

Proposition [3.6/(2) leads to the bounds (5.17).
Lastly, we notice that ye,, (t, z, €) shall solve the problem (5.1)), (5.2]). Bearing

in mind the operators unfoldings (5.5)), this follows from the observation that the
following equality holds

dig,1y ($29. )01 ~ (o, LI—HI) dz ! sl
%ot ($20y) Yes,, (t,z,€) = T ). (u — s)o-t1™
ot1) vd (5.28)

u . du
X vg, (8,2 e)? exp(—g);

forall t €e TN D(0,r7), € € &s,, all given positive integers dy,1,, {1 > 1. Its proof
remains a straightforward adaptation of the one of Lemma and is therefore
omitted.

Ultimately, we are left to testify the estimates and . Again, this
follows from paths deformations methods which mirrors the lines of arguments
detailed in the proof of Theorem [3.7] (3). O

Since the forcing term u(t,z,e) in the equation in particular solves the
Cauchy problem (3.I)), (3.2), we deduce that Yek (t z, e) and ye,, (t z,€) them-

selves solve a Cauchy problem with holomorphic coefficients in the v1cm1ty of the
origin in C3. Namely,

Corollary 5.5. Let us introduce the next differential and linear fractional operators
7)1 (ta Z, €, {mk}ﬂf,e}kEIA’ at, 8z>

= P(et?0,)97 — Z (2, €)My 1. (t20;) 0Ok
k=(ko,k1,k2)EA
Pa(t,2,€,00,0:) = Pg(et®0,)05% — > di(z,e)t°0; 0"

1=(lo,l1,l2)EB
where My, 1. stands for the Moebius operator my, ¢.(u(t, z,€)) = u(#ﬂ, z,€).
Then, the functions Yek (t,z,€), for k € [-n,n] and Yes,, (t,z,€) for0 <p<
t — 1 are actual holomorphic solutions to the Cauchy problem

Pl (tv Z, €, {mk,t,e}kGIAa at; az)PZ(tv Z, €, atv az)y(tv Z, 6) =0

whose coefficients are holomorphic w.r.t. z and € near on a neighborhood of the
origin and polynomial in t, under the constraints

(97y)(t,0,¢) = ¥;(te), 0<j<Sp—1
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(QZPQ(tvZveﬁatvaz)y)(taoae) = @j(tve)a 0 <j< S—1

6. PARAMETRIC GEVREY ASYMPTOTIC EXPANSIONS IN TWO LEVELS FOR THE
ANALYTIC SOLUTIONS TO THE CAUCHY PROBLEMS DISPLAYED IN SECTIONS 3
AND 5

6.1. A version of the Ramis-Sibuya Theorem involving two levels. Within
this section we state a version of a variant of a classical cohomological criterion in
the framework of Gevrey asymptotics known as the Ramis-Sibuya Theorem (see [§],
Theorem XI-2-3) obtained by the first author in the work [I7]. In view of the recent
results on so-called M-summability for strongly regular sequences M = (M,,)n>0
obtained by the authors and J. Sanz, we can provide sufficient conditions which
gives rise to the special situation that involves both 1 and 1+ summability.

We analyze the definitions of Gevrey 1 and 17 asymptotics. Let (F, | - |r) be
a Banach space over C. The set F[[e]] stands for the space of all formal series
Zk>0 are® with coefficients ay, belonging to F for all integers k£ > 0. We consider
f : F — F be a holomorphic function on a bounded open sector F centered at 0
and f(€) = 3,50 are® € F[[¢]] be a formal series.

Definition 6.1. The function f is said to possess the formal series f as 1-Gevrey
asymptotic expansion if, for any closed proper subsector W C F centered at 0,
there exist C, M > 0 such that

N-1

1£6) = 3 axeblle < CMN(N/e)¥ [N (6.1)

k=0
for all N > 1, all e € WW. When the aperture of F is slightly larger than m, then
according to Watson’s lemma (see [2, Proposition 11]), f is the unique holomorphic
function on F satisfying . The function f is then called the 1-sum of f on
F and can be reconstructed from f using Borel/Laplace transforms as detailed in
Chapter 3 of [I].

Definition 6.2. We say that f has the formal series f as 17-Gevrey asymptotic
expansion if, for any closed proper subsector W C F centered at 0, there exist
C, M > 0 such that
N—1
1£(e) = D are|lz < CMN(N/log N)Ne|Y (6.2)
k=0
for all N > 2, all e € W. In particular, the formal series f is itself of 1T-Gevrey
type, i.e. there exist two constants C', M’ > 0 such that ||ax||p < C'M'*(k/logk)*
for all k > 2. Provided that the aperture of F is slightly larger than m, [I3, Theorem
3.1] ensures the unicity of the analytic function f fulfilling the estimates on F
(see the next remark). In that case, f is named M-summable on F for the strongly
reqular sequence M = (M,)n>0 where M, = (m)" and f denotes the M-sum

off on F. For brevity of notation, we will call it also 17 -sum. As explained in [13],
the 1T-sum f can be recovered from the formal expansions f with the help of an
analog of a Borel/Laplace procedure. It is worthwhile noting that this notion of 17 -
summability has to be distinguished from the notion of 17 -summability introduced in
the papers of G. Immink whose sums are defined on domains which are not sectors,

see [9],[10],[11].
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The strongly regular sequences M stated above are equivalent, in the sense that
the functional spaces associated to them coincide with

Mg 5 = (n!® H log” (e + m))n>0s

m=0

for « = 1,8 = —1. In this case, one has w(M) = 1, meaning that unicity of the sum
fin is guaranteed, for a prescribed asymptotic expansion, when departing
from a sector of opening larger than w. The criteria leans on the divergence of a
series of positive real numbers, see [12].

Now we consider the set of sectors £ = {Ef;; }re[—n,n) U {€s., Yo<p<i—1 con-
structed in Section 3.3 that fulfills the constraints (3)—(5). The set £ forms a
so-called good covering in C* as given in [I7, Definition 3].

We rephrase the version of the Ramis-Sibuya which entails both 1-Gevrey and
1*-Gevrey asymptotics displayed in [17] for the specific covering £ with additional
information concerning 1 and 11 summability.

Proposition 6.3. Let (F,| - ||r) be a Banach space over C. For all k € [—n,n]
and 0 < p <1 —1, let Gy be a holomorphic function from Ef;; into (F, | - ||¢) and

G, be a holomorphic function from &s,, nto (F, [ - |[r)-

We consider a cocycle A(e) defined as the set of functions A, = Gpi1(€) — Gp(€)
for0 <p<.1—2whene € 554p+1 ﬂgsdp, Ag(e) = Gg(€)—Gry1(€) for —n < k <n-1

and € € gIkiJn N SI’?Ji together with A_, o(€) = Go(e) — G_,(€) on Esyy NERYT, and
A, 1n(€) =Gn(e) = G 1(€) on Exy, NEs,

We make the following assumptions:

(1) The functions G and ép are bounded as € tends to 0 on their domains of
definition.

(2) For all0 < p <1 —2, Ay(€) and both A_,, o(€), A,_1.n(€) are exponentially
flat. This means that one can select constants K,, M, > 0 and K_p, 0, M_, 9 > 0
with K,_1 n, M,—1,n, > 0 such that

L

I185(0lle < Kpexp(~ ) forc € s, NEs,

M, n
7’0) foree &y N&s, (6.3)

el

ML* n n
||AL—177L(€)||F < KL_17n exp(f |6‘17 ) fOT €€ SHJW, N 5Sd,,_1 '
(8) For —n < k < n —1, Ag(e) are super-exponentially flat on Elkﬁl NEL, .
This signifies that one can pick up constants Ky, My > 0 and L > 1 such that
M L
[Ak(e)llr < Kk exp(—ﬁk log TGIIC) (6.4)

[A_n0(6)|lr < K_pnoexp(—

for alle € EF N &R, .

Then, there exist a convergent power series a(e) € F{e} near e = 0 and two
formal series G'(€), G2 () € F|[e] with the property that Gi(€) and ép(e) admit the
next decomposition

v

Gr(e) = ale) + Gi(e) + Gi(e),  Gple) =ale) + G(e) + Go(e)  (6.5)
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Jork € [-n,n], 0 <p<.—1, where Gi.(¢) (resp. Gi(€)) are holomorphic on £} ;
and have G () (resp. G2(€)) as 1-Gevrey (resp. 11 -Gevrey) asymptotic expansion
on EEJIL and where G, (resp. G3(€)) are holomorphic on &s,, and possesses Gl(e)
(resp. G%(€) ) as 1-Geuvrey (resp. 11 -Gevrey) asymptotic expansion on &s,, - Besides,
the functions G2, (€),G?(¢) and C?% (€) for 0 < h < 1—1 turn out to be the restriction
of a common holomorphic function denoted G*(€) on the large sector Egs = Exy U
UZ_:lo‘SSdh U &g, which dcitermines the 1t -sum of G2(€) on Exs. Moreover, G;})(e)
represents the 1-sum of G(e) on &s,, whenever the aperture of Es, s strictly
larger than .

Proof. Since the notation used here are rather different from the ones within the
result stated in [I7] and in order to explain the part of the proposition concerning
1 and 17 summability which is not mentioned in our previous work [I7], we have
decided to present a sketch of proof of the statement.

We consider a first cocycle A (€) defined by the next family of functions

Azl,(e) =Ay(e) for0<p<i:—2on ESapiy NESu,
Al,n)o(e) =A_,0(e) on Es4y N Eny. s

1 n (6.6)
AL—l,n(e) = Ab—l,n(g) on gHJn n ESd,/_N
Aj(e)=0 for —-n<k<mn-—1on Sﬁﬂi ﬂSI’f”n,
and a second cocycle A%(¢) described by the forthcoming set of functions
Ag(e) =0 for0<p<:—2onés,  NEs,,
A%, o(6)=0 oné&s, NELY 67
A2, =0, on&h, NEs, . '

AR(e) =Ap(e) for —n<k<n-—1lon &G NER, .
The next lemma restates [I7, Lemma 14].

Lemma 6.4. For allk € [—n,n], all0 < p < 1—1, there exist bounded holomorphic
functions G}, : 51]::[(]71, — C and G}D : Sgdp — C that satisfy the properties

o

A;(e) = ézlﬂrl(e) — ézl)(e) forO<p<i:—2onés, NE&s,,
Al,n’o(e) = Cuv'(l)(e) —GL, (e) on Es4y NERT s
A () =Gl(e) — Gl i(e) on Efg, NEsa s
A(e) = Gil€) — Giyr(e) for -n<k<n-—1on S’fﬁ,}b OSIIEUTL.
Furthermore, one can get coefficients oL € F, for m > 0 such that:

(1) For all k € [—n,n], any closed proper subsector W C 51’3]”, centered at 0,
there exist constants Ky, My > 0 with

N-1 N
1Gk() = D ome™ e < Ki(Mi)™ () Vel (6.9)

m=0

forallee W, all N > 1.
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(2) For 0 <p <.:—1, any closed proper subsector W C Egdp , centered at 0, one

can grab constants Ky, M, > 0 with
N—-1
N
)V el (6.10)

636 = 3 @bl < Fp(M)V (S
=0
foralle e W, all N > 1.
Likewise, the next lemma restates [I7, Lemma 15].
Lemma 6.5. For allk € [-n,n], all0 <p <:—1, one can find bounded holomor-
phic functions G3 : Ellf”n — C and ég : Egdp — C that obey to the next demand

Ag():éQH(e)—ég(e) foro<p<.:-2 onfsdﬁlﬂgsdp,
A%, (€)= G2e) —G?,(e) on&s, NEL" ,
o(€) = Gg(e) () a0 VEm1J, (6.11)

ATy ,(0) =Ghle) = GPy(e) on &y, NEs,

Aj(e) = Gile) — Giyi(e) for—n<k<n-—1on 5113*‘}711 NEL .

Moreover, one can obtain coefficients p2, € F, for m > 0 such that:
(1) For all k € [—n,n], any closed proper subsector VW C 51’3]”, centered at 0,

one can find constants Ky, My > 0 with

N-1
m N
G = 3 @l < (M) (1) el (6.12)
m=0

forallee W, all N > 2.
(2) For 0 <p <:—1, any closed proper subsector W C Ssdp, centered at 0, one

can grasp constants K,, M, > 0 with

N-1
N N
G306 = 37 el < Kp(My) (5N Iel (6.13)
m=0

forallee W, all N > 2.
We introduce the bounded holomorphic functions
ai(e) = Grle) — Gile) = Gile) €€ &y,
ap(e) = ép(e) — é;(e) — éf,(e), €€ 5Sdp-
for k € [-n,n] and 0 < p < ¢ — 1. By construction, we notice that
ar(€) — ar+1(€) = Gr(e) — Gi(e) = Gi(€) = Grr(e) + Gl (€) + Giy ()
= Gi(€) = Grri(e) — Agle) — AR(e)
= Grle) — Gry1(e) — Ak(e) =0

for —-n<k<n-—1on Sﬁ,ﬂl N EI’?Un together with
lip1(€) = iip(€) = Cipia(€) = Cpaa(e) — AL(e) — A2(e)
= Gpia(6) = Gpra(6) = By(e) = 0
for0<p<:—2on Ssdp+1 N 5Sdp- Furthermore,
do(€) — a_n(€) = Gole) — Gi(e) — G2(e) — G_n(€) + G-, (e) + G2, ()
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Go(e) — G_n(e) — AL, o(e) — A2, o(e)
Go(€) = G_p(€) = A o(e) =

for e € £y NEs,, and

an(€) — i—1(€) = Gnle) — Ghle) — G2(e) — G.—1(e) + Gi_1(€) + G7_, (e)

whenever € € £, NEs, -
As a result, the functions ax(€) on £, and d,(e) on &s,, are the restriction
of a common holomorphic bounded function a(e) on D(0,¢) \ {0}. The origin
is therefore a removable singularity and a(e) defines a convergent power series on
D(O, 60) .
As a consequence, one can write

Grle) = a(e) + Gi(e) + Gi(e) on Ellfun,
Gple) = ale) + Ghe) + G2(e) on &,

for all & € [-n,n], 0 < p <t — 1. Moreover, GL(¢) (resp. G3(e)) have G (e)
> s0 P €e™ (resp. G2(e) = > s0 PLE™) as 1-Gevrey (resp. 17-Gevrey) asymp-
totic expansion on £} ; and va",llj (resp. éf,(e)) possesses G1(e) (resp. G2(e)) as
1-Gevrey (resp. 1T-Gevrey) asymptotic expansion on Eg iy

By the definition of the cocycles A'(e) and A%(e) given by and (6.7)), in
accordance with constraints and ([6.11]), we obtain in particular that

Gl(e) =GP (e) on&s,  NERy,
G (€)= Gi(e) on&s, NEYY
Gri(6) =Gyle) on&s,  NEs,

for all 0 < p < — 2. For that reason, we see that G2, (¢), G2 (¢) and éi(e) are the
restrictions of a common holomorphic function denoted G2(¢) on the large sector
Ens =&y U U;;loé'sdh U &g with aperture larger than 7. In addition, from the
expansions and we deduce that G2(e) defines the 1t-sum of G2(¢) on

Eps. Finally, when the aperture of £g 4, is strictly larger than 7, in view of the
expansion (247) it turns out that G1' defines the 1-sum of G*(¢) on s, - O

6.2. Existence of multiscale parametric Gevrey asymptotic expansions
for the analytic solutions to the problems , and , . We
are now ready to state the third main result of this work, which reveals a fine
structure of two Gevrey orders 1 and 1% for the solutions gt and ues, (resp.

Yk, and ygsdp) regarding the parameter e.

Theorem 6.6. Let us assume that all the requirements of Theorem (resp.
Theorem are fulfilled. Then, there exist:

A holomorphic function a(t, z,€) (resp. b(t, z,€) ) on the domain (T ND(0,r1)) X
D(0,861) x D(0,ég) for some 0 < éy < €o,
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Two formal series

I(t,z,€) Zuktze eF[le]], i=1,2
k>0
(resp.
I(t,2,€) Zyktze eFle]], j7=1,2)
k>0

whose coefficients ul(t, z) (resp. yi(t,z)) belong to the Banach space F = O((T N
D(0,77)) x D(0,661)) of bounded holomorphic functions on the set (T ND(0, 7)) x
D(0,661) endowed with the supremum norm, which satisfies to the next features:
(A) For each k € [—n,n], the function ugr (L, 2,€) (resp. yex (t,2,¢€)) admits

a decomposition

ugr (t,z,€) = alt,z,€) + ué,;” (t,z,€) + ui};f” (t, z,€)
(resp.

Yek (t,z,€) = b(t,z,€) + yé,;” (t,z,¢) + yg,;”’ (t,z,€))
where uy, (t,z,€) (resp. yg..  (t,2,€)) is bounded holomorphic on (TND(0,77)) X
HJn HJn

D(0,661) x 51’3]” and possesses U (t, z,€) (resp. §*(t, z,€)) as 1-Gevrey asymptotic
expansion on Ef; , meaning that for any closed subsector W C €}, there eist
two constants C, M > 0 with

2

-1

N
sup |u}3k (t, z,€) Z up(t, 2)e¥| < CMN (— )N|€‘N
teTND(0,r1),zED(0,5651) k=0
(resp.
N—1 N
sup |y‘1€k (tz,6) = > yh(t,2)e¥| < OMN( )Mel™)
teTND(0,r7),2€D(0,65,) 77 k=0

forall N > 1, alle € W and UEZJ (t,z,¢€) (resp. ygﬁ.zn (t,z,¢€)) is bounded holomor-

phic on (T ND(0,r7)) x D(0,661) x £, and carries 42 (t, z,€) (resp. §°(t, z,€)) as
1*-Gevrey asymptotic expansion on 51’3.]”, in other words, for any closed subsector
W C Ef ;. one can get two constants C, M > 0 with

N-1
2 2 k N N|_|N
sup luge (t,z,6) = ) up(t, 2)e| < CM™ (—)" el
teTND(0,r7),2€D(0,661) Eitr, kZ:O k log N
(resp.
N-1
2 2 k N N |N
sup lee  (Lz,6) = ) yilt,2)e"| < OMT (-——=)"[€e]™)
teTND(0,r1),2€D(0,661) g o b log N

forall N > 2, alle e W.
(B) For each 0 < p < .—1, the function ues, (t,z,€) (resp. Yes,, (t,z,€)) can be
split into three pieces

ues, (t,z,€) = a(t, z,€) + uésdp (t,2,€) + u%sdp (t,z,€)

(resp.
ves,, (62,€) = bt 2,0) + g, (62,6 + 92, (12,6))
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where u};sd (t,z,€) (resp. yi«sd (t,z,€)) is bounded holomorphic on (T ND(0, 1)) x
P P
D(0,661) x Es,, and has al(t,z,€) (resp. §i(t,z,€)) as 1-Gevrey asymptotic ex-
pansion on Esdp and u%sd (t,z,€) (resp. ygsd (t,z,€)) is bounded holomorphic on
P p

(T N D(0,r7)) x D(0,661) x Es,, and possesses 2 (t, z,€) (resp. 9(t,z,€)) as 17 -
Gevrey asymptotic expansion on &gd

Furthermore, the functions ui_ (t z,€) (resp. yg_ (t,z,€)), ugn (t z,€) (resp.

y%zjn (t,z,€)) and all u%sd (t,z e) (resp ygs (t, = e)) for 0 < h <.—1, are the

restrictions of a common holomorphic functwn u?(t, z,€) (resp. y*(t, 2 e)) deﬁned
on the large domain (T N D(0,r7)) x D(0,801) x Ens, where Egs = Efy Uj_ 5
Es,, U Efy, which represents the 17 -sum of 4 2(t,z,€) (resp. §3(t,z,€)) on Eys
w.r.t. €. Beside, uésdp (t,z,€) (resp. y};sdp (t,2,€)) is the 1-sum of 4'(t,z,€) (resp.

91(t, z,€)) on each €5dp w.r.t. € whenever its aperture is strictly larger than .

Proof. For all k € [—n,n], we set forth a holomorphic function G described as
Gr(e) == (t,2) — uel, (t,z,€) (resp. Gi(e) :== (t,2) — Yek,, (t,z,€)) which de-
fines, by construction, a bounded and holomorphic function from &£ 7, nto the
Banach space F = O((T N D(0,77)) x D(0,38d;) equipped with the supremum
norm. For all 0 < p < ¢ — 1, we set up a holomorphic function ép given by
Gp(e) := (t,2) — ues, (t,z,€) (resp. Gp(e) := (t,2) Yes,, (t,z,€)) which yields a
bounded holomorphic function from &g 4, into F. We deduce that the assumption
(1) of Proposition is satisfied.

Furthermore, according to the bounds (3.42)), (3.49) and (3.50|) concerning the
functions ues, ,0<p<:—2and Ugom s Ugy, s Ugs, (resp. to the bounds

in a row Wlth - ) and (| - deahng Wlth the functlons ygs ,0<p <1 —2
and Yeon s Yep, > Yes, ), we observe that the bounds are fulfilled for the
n n ‘v—1

functions A, (e) = Gpi1(e) — Gp(e), 0 < p <1 —2 and A_n,o(e) = Gole) = G_p(e),
A, 1n(€) = Gp(e) —G,_1(e). As aresult, Asbumption (2) of Propositionholds.

At last, keeping in mind the estimates ) for the maps ugr 5 ,ke[-n n]]
k # n (resp. the estimates ) for the maps yer , k € [-n n]] k #n), w
conclude that the upper bounds are justified for the functions Ay (e) = Gi(e )—
Grt1(e), n<k<n-—1. Hence, Assumptlon (3) of Proposition [6.3] holds.

Accordingly, proposition gives rise to the existence of:

e A convergent series (t,z) — a(t, z,€) := a(e) (resp. (¢, z) — b(t, z,€) := a(e))
belonging to F{e}.

e Two formal series (t,z) — @/ (t,z,€) == GIi(e) (resp. (t,2) — §7(L,2,€) :=
Gi(e)) in Flle], j = 1,2,

bullet F—valued holomorphic functions (t,z) — u!

et (t,z,€) :== GI(€) (resp.

(t,2) — yék (t,2,€) == GI(€)) on gk, forallk e [[—n,n]], j=12,
HJy,

9

bullet F—valued holomorphic functions (¢, z) — ujésdp (t,z,€) := GJ(e) (resp.
(¢, z)r—>y€ (t,z,€) := éj( ))onés, foral0<p<.—1,j=1,2,
that accomphsh the statement of Theorem [6.6] O
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