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Introduction
Cancer is a leading cause of death. In 2019, there will be an 
estimated 1 762 450 new cancer cases diagnosed and 606 880 
cancer deaths in the United States, according to the American 
Cancer Society Cancer Facts and Figures 2019. Among differ-
ent types of cancer, about 62 930 new cases of breast carcinoma 
in situ are expected to be diagnosed in 2019.1 Medical research-
ers have developed many methods to fight this disease, and 
early detection has become a key factor. A Surveillance, 
Epidemiology, and End Results (SEER) review of breast can-
cer cases in the United State has found that patients diagnosed 
in the earlier stages of the disease have a significantly higher 
chance of survival.2 Common detection methods like self or 
clinical breast exams and mammograms are fairly successful 
means of detecting tumors once they have developed. However, 
by the time a tumor has grown large enough to be identified by 
these methods, the patient may already be in a late stage of the 
disease. Thus, methods of detecting breast cancer at earlier 
stages have become progressively important. Genetic and epi-
genetic biomarkers are especially important and may serve as 
early indicators of tumor growth in many cancers including 
breast cancer.

Epigenetics is a relatively new field of biology that examines 
how gene activity is affected by external modifications to DNA 
and not by changes to the DNA sequence itself.3 One signifi-
cant epigenetic mechanism is DNA methylation, a biological 

process in which a methyl group (CH3) is added to the fifth 
carbon of a cytosine-guanine dinucleotide (CG or CpG site) 
on a DNA molecule in a mammalian cell. It is a natural and 
essential process associated with DNA replication and cell dif-
ferentiation. DNA methylation is facilitated by a group of 
DNA methyltransferases (DNMTs) and comes in 2 forms: de 
novo methylation and maintenance methylation.3 In de novo 
methylation, bare DNA is methylated in a tissue-specific pat-
tern as shown in Figure 1A. During maintenance methylation, 
the new DNA strand formed during DNA replication becomes 
methylated at the same CpG sites as the first strand,4 as shown 
in Figure 1B.

Previous researchers have used microarray technologies to 
study DNA methylation. Although these technologies allow 
researchers to study expression levels of numerous genes, all 
microarray technologies (except for the Illumina microarray) 
cannot generate methylation signals at the single CpG site 
level. In addition, microarray technologies lack the ability to 
separate strands of DNA. As a result of these weaknesses, many 
early studies assume symmetric methylation of CpG sites, or 
methylation of a CpG site on both the forward and reverse 
strands.5,6 Within the last decade, next-generation sequencing 
(NGS) technologies have filled these gaps by combining 
bisulfite treatment with parallel DNA sequencing processes.5-7 
On a single strand of DNA, with bisulfite treatment, unmeth-
ylated cytosines are converted to uracils while methylated 
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cytosines remain unchanged. After amplification, the modified 
DNA is sequenced with one of several advanced sequencing 
machines available today.8 We can then obtain the methylation 
signals on the forward and reverse strands allowing us to inves-
tigate asymmetric methylation, or hemimethylation (HM), 
which does exist and has been reported in several studies.9-13 
To clarify, we emphasize that HM in this article means that 
DNA methylation at a CpG site only occurs on one strand, not 
on the other strand. It is not allele-specific methylation that is 
common in imprinting, and it is not partial methylation either.

Shao et  al10 report the existence of hemimethylated CpG 
sites in both carcinomas and controls when studying CpG sites 
of the Sat2 gene. They show that HM exists in both singletons 
and clusters. Singletons are the hemimethylated CpG sites that 
are not formed a cluster with other consecutive CpG sites. 
Hemimethylation is significantly more likely to occur in clus-
ters in ovarian cancerous cells than in control or normal cells. 
The HM clusters reported in their previous studies exist in 2 
forms: regular (or consecutive) and polarity (or reverse) pat-
terns.9,10 Regular (or consecutive) HM clusters occur when 
successive CpG sites are hemimethylated on the same strand, 
either the forward or the reverse strand as shown in Figure 2A. 
For example, “MMM-UUU” is an HM cluster of 3 CpG sites 
with “MMM” on the forward/F strand and “UUU” on the 
reverse/R strand; “MM-UU” is an HM cluster of 2 CpG sites 
with “MM” on the forward/F strand and “UU” on the reverse/R 
strand. On the contrary, polarity (or reverse) clusters arise when 
consecutive CpG sites are hemimethylated on opposite strands 
as shown in Figure 2B. For example, “MU-UM” is a polarity 
HM cluster of 2 CpG sites with “MU” on the forward/F strand 
and “UM” on the reverse/R strand; “UM-MU” is an HM clus-
ter of 2 CpG sites with “UM” on the forward/F strand and 
“MU” on the reverse/R strand. Both these 2 types of HM clus-
ters have been found and reported in literature.9,10 HM clusters 
may indicate different methylation events and may have a more 
substantial impact on the function of a particular gene. In addi-
tion to HM clusters, there are also individual or singleton HM 
CpG sites that are not in a cluster with other CpG sites.10,12

It is both useful and important to study HM. First, a recent 
study by Xu and Corces shows that hemimethylated CpG sites 
are inherited over several cell divisions.11,13 This finding chal-
lenges the previous understanding and model of methylation 
and HM, in which HM was thought to be transient. Second, 
the identification of HM patterns is crucial for understanding 
different methylation events (eg, methylation maintenance and 

de novo methylation) and the establishment of different meth-
ylation patterns (eg, hypomethylation and hypermethylation).12 
For example, previous studies suggest that hemimethylated 
CpG sites are intermediates in active demethylation during car-
cinogenesis and not just due to a failure of maintenance meth-
ylation during replicative DNA synthesis. Hemimethylation 
can help researchers trace the footprints of DNA methylation 
in cancer.9,10 Third, a recent publication shows that stably inher-
ited HM regulates chromatin interaction and transcription.13 
Therefore, it is very likely that HM affects gene expression in 
cancer cells significantly. Before studying the function or role of 
HM patterns in cancers, we should first identify them in a 
whole genome. Therefore, the identification of hemimethylated 
sites is the focus of our current article.

The goal of our research is to use publicly available bisulfite-
sequencing data to study HM in breast cancer cell lines across 
the entire genome. The HM sites or patterns we want to iden-
tify are singleton HM CpG sites and 2 types of HM clusters as 
shown in Figure 2. We obtain publicly available reduced repre-
sentation bisulfite-sequencing (RRBS) data (GSE27003) of 7 
breast cancer cell lines (BT20, BT474, MCF7, MDAMB231, 
MDAMB468, T47D, and ZR751).14 We then identify hemi-
methylated CpG sites using Wilcoxon signed rank tests and 
study the genes and promoters that contain these CpG sites.

Methodology
Data preparation

We use the hg19 version of the human genome as a reference 
to align raw sequencing reads. All data sets in our project have 
been processed and analyzed using publicly available software 
packages: BRAT-bw,15 Perl,16,17 and R.18 The preprocessed 
methylation sequencing data sets consist of all CpG base pairs 
found on the forward and reverse strand for each cell line. In 
total, there are 27 999 103 applicable CpG sites in the whole 
genome. For these 28 million CpG sites, we choose to further 

Figure 1.  Two types of methylation: (A) Example of de novo methylation; (B) Example of maintenance methylation. “F” and “R” mean forward (or “+ ”) 

and reverse (or “− ”) stands, respectively. “CG” on the F and R strands means a CG site is not methylated; “CmG” on the F or R strand means a CG site is 

methylated.

Figure 2.  Two hemimethylation clusters (regular and polarity clusters). 

“F” and “R” mean forward (or “+ ”) and reverse (or “− ”) stands, 

respectively. “M” means methylation and “U” means unmethylation.
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analyze those with at least 4 methylation signals among 7 cell 
lines on each strand (forward and reverse). There are 464 674 
CpG sites (ie, 1.6% of all CpG sites in a human genome) pass-
ing these criteria.

Statistical and bioinformatic analysis

To identify HM CpG sites, we analyze the RRBS data of 7 
breast cancer cell lines using the Wilcoxon signed rank test. 
This statistical test is used when the normality (normal distri-
bution) assumption is violated and the sample size is small. It is 
often used to determine whether the centers of 2 sets of data 
are significantly different from each other. To ensure quality 
data, Wilcoxon signed rank tests are performed on CpG sites 
that have at most 3 missing observation values in the cancer 
forward and reverse data. At each CpG site, we use Wilcoxon 
signed rank tests to compare the methylation signals of the 
forward and reverse strands of 7 breast cancer cell lines. The 
Wilcoxon test is a rank-based test, and there are different 
methods of dealing with tied data and zero values including the 
“Wilcoxon” and “Pratt” methods.19 The “Pratt” method first 
ranks absolute differences including zeros and then discards all 
the ranks corresponding to the zero-differences, whereas the 
“Wilcoxon” method first deals with the zero-differences and 
then ranks the remaining absolute differences. The “Pratt” and 
“Wilcoxon” methods produce similar results for all CpG sites 
and the same results for CpG sites with P value < .05 for our 
data. For our study, we choose to use “Wilcoxon” to deal with 
tied data. Once we get the output of the Wilcoxon signed rank 
tests and the P value for each CpG site, we calculate and report 
the absolute mean difference of the forward and the reverse 
strand methylation signals.

We use the mean difference and P value to select HM CpG 
sites. The mean difference at each CpG site is the difference 
between the mean/average methylation signals of the forward 
and reverse strands. It tells us whether the cancer cell lines 
show biologically significant HM signals at a CpG site. We 
look for CpG sites whose absolute mean differences are greater 
than a cutoff value in cancer cell lines. The P value will tell us 
whether a CpG site has statistically significant HM signals. As 
we are looking for CpG sites that are hemimethylated in can-
cer, we select CpG sites with P value < .05 and forward and 
reverse strand methylation mean difference (absolute value) 

d ⩾ 0.4, 0.6, and 0.8. Then, we identify HM patterns that meet 
both biological and statistical significance criteria by extracting 
consecutive HM CpG sites based on their methylation states 
and further study these HM patterns.

For bioinformatic analysis, we provide annotations for all 
HM CpG sites by finding which genes have HM sites in their 
gene body or promoter regions using the R code written by 
ourselves. We then use the GeneCards (a gene database)20 and 
the Molecular Signatures Database (MSigDB)21 to study these 
genes’ functions. We use the ConsensusPathDB (CPDB)22-25 
to conduct pathway analyses. More detailed information about 
these databases and related results will be shown in the Results 
section.

Results
Hemimethylated CpG sites and clusters

Using Wilcoxon signed rank tests on cancer cell lines and 
applying stringent cutoff values, we have identified HM CpG 
sites as those with P value < .05 and an absolute mean differ-
ence d ⩾ 0.4, 0.6, and 0.8 (see Table 1). This table shows the 
summary for the number and percentage of HM CpG sites 
that form clusters. The HM CpG sites that are not in a cluster 
are called singletons. Table 1 shows that the number of HM 
CpG sites belonging to clusters decreases as the mean differ-
ence cutoff value increases. When the cutoff value increases, 
the number of HM clusters decreases too (see Table 2). 
However, for the 3 cutoff values, the percentages of HM CpG 
sites belonging to clusters are relatively consistent (about 13%-
17% as shown in Table 1). This consistency implies that breast 
cancer samples may contain a certain number of HM clusters. 
A more detailed summary of 2 types of HM clusters (regular 
and polarity clusters) is shown in Table 2. Table 2 shows the 
number and percentage of regular HM clusters and polarity 
clusters.

Although we have applied different cutoff values, we will 
conduct a more detailed analysis for HM sites obtained based 
on absolute value of mean difference d ⩾ 0.4. Next, we zoom in 
to summarize the HM clusters with the forward and reverse 
strand methylation mean difference (absolute value) d ⩾ 0.4 
(see Table 3). Among the total 1719 clusters in Table 3, 1558 
are polarity clusters and 161 are regular clusters. Among the 
1558 polarity clusters, 1534 are MU-UM and 24 are UM-MU 

Table 1.  HM CpG sites and percentage of HM sites that form clusters.

Mean difference HM sites HM sites in clusters Percentage

|Mean difference| ⩾ 0.4 19 736 3492 17.69%

|Mean difference| ⩾ 0.6 15 526 2526 16.27%

|Mean difference| ⩾ 0.8 10 136 1382 13.63%

Abbreviation: HM, hemimethylation.
The first column is the mean difference cutoff values. The second column shows the total number of identified HM CpG sites. The third column is the number of HM sites 
that form or belong to a cluster with at least 2 consecutive HM sites.
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clusters (see Tables 2 and 3). Among the 161 regular clusters, 
most of them are short 2-CpG clusters, including 69 MM-UU 
and 56 UU-MM (see Table 2). The patterns observed in  
Table 3 are similar to the previous finding regarding the HM 
patterns of the breast cancer cell line MCF7 (see Table 4 of 
Sun and Li12). In addition, if we summarize the clusters for 
d ⩾ 0.6 and d ⩾ 0.8, we get similar patterns for the count/fre-
quency of different clusters (data not shown).

We calculate the length of HM clusters using the physical 
distance between the first and the last CpG site in a cluster (see 
Figure 3). For regular HM clusters, 154 of 161 clusters (ie, 
95.65%) are less than or equal to 40 base pairs; 101 of 161 (ie, 
62.73%) are just about 10 base long. For polarity clusters, 1506 
of 1558 (ie, 96.66%) are about 40 to 50 base long. The cluster 
size or length patterns may show that when CpG sites are very 
close to each other (eg, less than 50 bases), they are likely to 
hemimethylate together. In addition, the chromosomal loca-
tions of hemimethylated clusters span the entire genome (see 
Figure 4).

Gene annotation

We have mapped the 19 736 HM sites in the cancer cell lines 
to their corresponding genes and promoters and have found 
that 6831 genes and 1399 promoter regions contain HM sites. 
A more detailed summary of the HM site distribution for 
genes and promoter regions is shown in Table 4. This table 
shows that 2194 genes have only 1 HM CpG site in their gene 
bodies; 1875 genes have 2 HM CpG sites; 885 genes have 3 
CpG sites, and so on. Approximately 93% of the identified 
genes have at most 9 HM CpG sites (see Table 4). Even though 
most of the identified genes have no more than 9 HM sites, 
there are 319 genes that have 10 or more hemimethylated CpG 
sites (see Table 4). In addition, almost all the identified pro-
moter regions have less than 5 HM sites (see Table 4).

Table 2.  Summary of hemimethylation clusters.

|Mean difference| ⩾ 0.4 |Mean difference| ⩾ 0.6 |Mean difference| ⩾ 0.8

Regular HM cluster Regular HM cluster Regular HM cluster

MM-UU UU-MM Length > 2 MM-UU UU-MM Length > 2 MM-UU UU-MM Length > 2

69 56 36 42 34 12 15 10 6

42.86% 34.78% 22.36% 47.73% 38.64% 13.64% 48.39% 32.26% 19.35%

|Mean difference| ⩾ 0.4 |Mean difference| ⩾ 0.6 |Mean difference| ⩾ 0.8

Polarity cluster Polarity cluster Polarity cluster

MU-UM UM-MU MU-UM UM-MU MU-UM UM-MU  

1534 24 1160 7 652 4  

98.46% 1.54% 99.40% 0.60% 99.39% 0.61%  

Abbreviation: HM, hemimethylation.
The Table shows regular HM clusters with 2 or more CpG sites and polarity clusters with only 2 CpG sites. The number of clusters and percentage of each type are 
calculated based on each mean difference cutoff value.

Table 3.  Frequency or count of HM clusters with d ⩾ 0.4.

HM clusters Frequency/Count Polarity 
or not

MMMMM-UUUUU 1 Regular

MMMM-UUUU 3 Regular

MMM-UUU 12 Regular

MMMU-UUUM 1 Regular

MM-UU 69 Regular

MMU-UUM 2 Regular*

MUM-UMU 1 Regular*

MU-UM 1534 Polarity

MUU-UMM 1 Regular*

UM-MU 24 Polarity

UMU-MUM 1 Regular*

UU-MM 56 Regular

UUU-MMM 7 Regular

UUUU-MMMM 4 Regular

UUUUU-MMMMM 2 Regular

UUUUUUU-MMMMMMM 1 Regular

  Total: 1719  

Abbreviation: HM, hemimethylation.
The first and second columns of Table 3 are cluster patterns and counts. The 
third column indicates whether an HM pattern is a regular or polarity cluster. 
Four regular clusters are labeled as “Regular*.” These clusters are classified as 
regular clusters with more than 2 CpG sites, but each of them has at least 1 pair 
of polarity CpG sites that are embedded in this regular cluster. For example, 
“MMU-UUM” is a regular cluster, but its last 2 CpG sites have the “MU-UM” 
polarity pattern. Because only 4 of the 1719 clusters are like this, we consider 
them as regular clusters and define that a polarity cluster consists of only 2 
CpG sites to simplify our definition. We point these 4 clusters out using the label 
“Regular*” to show the complexity of hemimethylation clusters.
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Significant genes

The 7 breast cancer cell lines that we use to perform Wilcoxon 
signed rank tests are generated using the RRBS technique, 
which only sequences a small percentage of all CpG sites in a 
genome dependent on the insert size and alignment rate.26 
However, we do identify hemimethylated sites on each 

chromosome as shown in Figure 4. Therefore, we can say that 
HM in breast cancer spans the entire genome based on our 
results. After identifying genes with HM CpG sites, we have 
researched the functions of all genes with at least 25 HM sites 
and detailed them in Table 5.27 The third column is some 

Figure 3.  The length of HM clusters. HM indicates hemimethylation.
The left plot in Figure 3 is the histogram of the regular HM cluster length; the right plot is the histogram of the polarity cluster length.

Figure 4.  Hemimethylated CpG sites by chromosome. HM indicates hemimethylation.
The horizontal axis corresponds to the 23 pairs of chromosomes; 1 stacked bar represents each chromosome. The vertical axis corresponds to the number of HM 
clusters; 1 color corresponds to each type. For example, in the left plot, red is for “MM-UU,” orange is for “UU-MM,” and green is for clusters with more than 2 CpG sites 
(ie, length > 2).
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general description for each gene. In addition, we have also 
done some further research to find which of these 45 genes are 
involved in breast cancer (see Table 6). This further research is 
conducted using the GeneCards Batch Queries based on 
molecular function, phenotype, and genetic variants.20 Our 
results show that 14 of these 45 genes are closely related to 
breast cancer, and in the second column of Table 6, we briefly 
summarize our findings based on the GeneCards Batch 
Queries.

Hemimethylation of hypermethylated breast cancer 
genes

Previous studies have identified tumor suppressor genes that 
exhibit hypermethylation in breast cancer cells.4,28-31 Several of 
the hypermethylated tumor suppressor genes also have HM 
CpG sites as demonstrated in our analysis. Thirty-five genes 
hypermethylated in breast cancer are shown in Table 7. Most of 
the matched genes have at most 6 HM CpG sites except TP73 
and TERT. It is very likely that there are more HM CpG sites 
located in these genes because the RRBS protocol can only 
sequence a small number of CpG sites in the genome. Different 
from the majority of the above genes, TP73 and TERT have 
12 and 35 sites, respectively. Mutations of the TERT gene are 
associated with elongated telomere length commonly found in 
cancer cells such as breast cancer.32 Furthermore, methylation 
of TP73 is associated with an increase in the malignancy and 
abnormality of breast cancer cells.33 Hemimethylation of these 
genes may indicate important changes regarding the methyla-
tion events in breast cancer cells.

Table 7 shows that only 40% (14 genes out of 35) of known 
hypermethylated genes are hemimethylated (or have HM CpG 
sites in their gene body or promoter regions). The possible rea-
son is that the RRBS protocol can only sequence a small num-
ber of CpG sites, about 3% to 6% of all CpG sites in a human 
genome, dependent on the insert size and alignment rate (see 
Table 1 of Doherty and Couldrey26). It is likely that the other 
CpG sites located in these hypermethylated genes (gene bodies 
or promoter regions) are hemimethylated, but the RRBS pro-
tocol does not generate data for these CpG sites, so we cannot 
determine the HM patterns for them. If possible, whole 
genome bisulfite sequencing (WGBS) may be a better option 

because it uses similar bisulfite-sequencing techniques but 
generates data for more than 99% of CpG sites. 
Hemimethylation analysis based on the WGBS data can give a 
better answer.

Hemimethylation of oncogenes and tumor 
suppressor genes

The Molecular Signatures Database (MSigDB) is created 
based on Gene Set Enrichment Analysis (GSEA).21,34 It pro-
vides lists of genes that fit into certain gene sets such as onco-
genes, tumor suppressors, and transcription factors. We 
compare our list of hemimethylated genes (each of which has 
one or more hemimethylated CpG sites) with the MSigDB list 
of oncogenes and tumor suppressors and find 157 oncogenes 
and 32 tumor suppressors have hemimethylated CpG sites. 
Because the MSigDB provides lists of oncogenes and tumor 
suppressor genes for all types of cancers, our finding is based on 
a large database, not on a database only for breast cancer. Table 
8 lists the genes in these groups with the most HM sites. 
Among the genes listed in Table 8, 6 of them are closely related 
to breast cancer according to the GeneCards Batch Queries.20 
They are CBFA2T3, CRTC1, GNAS, SEPT9, APC, and 
FANCA. The HM of oncogenes (which are overexpressed in 
cancer cells) and tumor suppressors (which are silenced in can-
cer cells) may indicate complex methylation pattern changes 
and the instability of cancer DNA.

Gene pathways

ConsensusPathDB (or CPDB) is a database-type software 
package that integrates different types of functional interac-
tions between physical entities like genes, RNA, proteins, pro-
tein complexes, and metabolites.22-25 It provides different types 
of biological interaction analyses for a given set of genes. For 
the 45 genes that have at least 25 HM CpG sites, we use the 
CPDB to identify induced network modules. Even though the 
user provides a long list of genes as the input file, the CPDB 
produces a network with only the significantly enriched/repre-
sented genes. In our analysis, we focus on finding networks 
including genes with significant protein interaction and genetic 
interaction (see Figure 5). In this figure, 14 black-colored genes 

Table 4.  Summary of HM CpG site distribution.

Summary of HM sites

No. of HM CpG site per gene (n) 1 2 3 4 5 6 7 8 9 ⩾10

No. of genes with n HM CpG sites 2194 1875 885 581 335 277 172 101 92 319

Summary of HM sites on promoter regions

No. of HM CpG sites per promoter region (n) 1 2 3 4 5  

No. of promoter regions with n HM CpG sites 849 373 105 50 22  

Abbreviation: HM, hemimethylation.
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Table 5.  Forty-five genes with at least 25 hemimethylated CpG sites.

Gene Hemimethylation sites Description

PTPRN2 90 Member of the protein tyrosine phosphatase (PTP) family that regulates a variety of cellular 
processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation.

MAD1L1 87 Mitotic spindle-assembly checkpoint component that prevents the onset of anaphase until all 
chromosome are properly aligned at the metaphase plate. May play a role in cell cycle control 
and tumor suppression.

PRDM16 72 Zinc finger transcription factor. Translocation results in overexpression, which plays a role in 
myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).

DIP2C 48 Encodes a member of the disco interacting protein homolog 2 family expressed in the nervous 
system.

CBFA2T3 44 Encodes a member of the myeloid translocation gene family, which interacts with DNA-bound 
transcription factors. Also known to be a putative breast tumor suppressor.

PRKAR1B 40 Encodes protein kinase A (PKA) enzyme that assists cell in regulation of metabolism, ion 
transport, and gene transcription.

KDM4B 39 Regulates gene expression by demethylating histone. Known to bind to ESR1 leading to 
tumorigenesis of various cancers.

KCNT1 37 Member of potassium sodium-activated channel subfamily T member 1.

SORCS2 36 Containing receptor for sortilin-related VPS10 domain.

KCNQ1 35 Encodes a voltage-gated potassium channel required for repolarization phase of the cardiac 
action potential.

MACROD1 35 Estrogen and androgen-responsive gene; known to have higher expression in hormone-
dependent cancer cells such as MCF7.

TERT 35 Ribonucleoprotein polymerase that maintains telomere ends by addition of telomere repeats. 
Deregulation of telomerase expression in somatic cells may be involved in oncogenesis.

EXD3 35 Protein required for 3’-end trimming of AGO1-bound miRNAs.

NCOR2 34 Mediates transcriptional silencing of certain target genes. Aberrant expression of this gene is 
associated with certain cancers.

RPTOR 34 Component of a signaling pathway that regulates cell growth in response to nutrient and insulin levels.

C7orf50 34 Chromosome 7 open reading frame 50, poly(A) RNA binding is related to GO annotations.

TRAPPC9 34 Encodes a protein that likely plays a role in NF-kappa-B signaling.

CACNA1 H 33 Encodes a protein in the voltage-dependent calcium channel complex.

HDAC4 33 Histone deacetylase; plays a critical role in transcriptional regulation, cell cycle progression, and 
developmental events. Affects transcription factor access to DNA.

ADAMTS2 33 Responsible for the degradation of a major proteoglycan of cartilage, leading to arthritic disease.

SEPT9 32 Involved in cytokinesis and cell cycle control. Candidate for ovarian tumor suppressor gene.

NOTCH1 30 GO annotations include transcription factor activity and sequence-specific DNA binding.

VAV2 30 Second member of the VAV guanine nucleotide exchange factor family of oncogenes.

MOB2 29 MOB kinase activator 2.

FBRSL1 29 Fibrosin-line 1 protein.

GNAS 29 GNAS complex locus protein.

FAM20C 29 Encodes a protein that binds calcium and phosphorylates proteins involved in bone 
mineralization. Mutations in this gene are associated with Raine syndrome.

COL18A1 28 Collagen type XVIII alpha 1 chain protein.

CUX1 28 Member of the homeodomain family of DNA binding proteins. May regulate gene expression, 
morphogenesis, differentiation, and cell cycle progression.

 (Continued)
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Gene Hemimethylation sites Description

MEGF6 27 Multiple EGF like domains 6 protein.

OBSCN 27 Obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF protein.

SHANK2 27 Encodes synaptic proteins that may function as molecular scaffolds in the postsynaptic density 
of excitatory synapses. Alterations of the protein may be associated with susceptibility to autism 
spectrum disorder.

RASA3 27 Member of the GAP1 family of GTPase-activating proteins.

SOLH 27 Calpain 15 protein.

BAIAP2 27 BAI1 associated protein 2 protein.

AGAP1 27 Member of an ADP-ribosylation factor involved in membrane trafficking and cytoskeleton 
dynamics.

CDH4 27 Cadherin 4 protein.

COL5A1 27 Collagen type V alpha 1 chain protein.

PRKCZ 26 Protein kinase C Zeta protein.

ASPSCR1 26 UBX domain containing tether for SLC2A4 protein, related pathways are transcriptional 
misregulation in cancer.

KCNQ2 26 Potassium voltage-gated channel subfamily Q member 2 protein.

ZC3H3 26 Zinc finger CCCH type containing 3.

LMF1 25 Lipase maturation factor 1 protein.

RBFOX3 25 RNA binding protein.

IQSEC1 25 Promotes binding of GTP and is particularly important in regulating cell adhesion. Highly 
expressed in the prefrontal cortex.

Table 5. (Continued)

are from our provided seed gene list (ie, about one third of the 
45 genes in Table 5). Purple-colored genes are the intermediate 
nodes that are not from our provided seed gene list. However, 
these intermediate genes associate 2 or more seed genes with 
each other and overall have significantly many connections 
within the induced network module. These black and purple 
genes are significantly enriched/represented ones, and the sig-
nificance is determined based on the Genes2Networks 
approach.35 In particular, intermediate genes are ranked and 
selected according to the significance of association with the 
seed gene list. The association is quantified by a z-score calcu-
lated for each intermediate node based on the binomial pro-
portion test. The default z-score in the CPDB is used for our 
analysis.

In Figure 5, TERT is a hub gene that has many genetic inter-
actions with other genes; see the blue lines/connections with 
other purple-colored genes. Among these purple genes, estrogen 
receptor alpha (ERα or ESR1) is a typical breast cancer gene. 
ERα displays gene regulatory interaction with TERT, which is 
abnormally active in most cancer cells for its trait of dividing 
uncontrollably. Over the years, estrogens have been recognized as 
an important factor associated with breast cancers; more than 
half of all breast cancers overexpress ERα, and 70% of them 

respond to estrogen hormone therapy.36 HDAC4 has protein 
interactions with a few genes; see the yellow lines connecting 
HDAC4 with related genes (the left side of Figure 5). This gene 
is said to be involved in the MTA1-mediated epigenetics regula-
tion of ESR1 expression in breast cancer.37 MTA1 is a transcrip-
tional coregulator that can perform as a transcriptional 
corepressor, and with the combination of other components of 
NuRD, MTA1 acts as a transcriptional corepressor of BRCA1 
and ESR1.20 BRCA1 is a tumor suppressor gene that helps pre-
vent cells from growing rapidly, and its expression is impeded by 
MTA1. The biological connections among genes with at least 25 
hemimethylated CpG sites imply that the genes associated with 
breast cancer may also be hemimethylated.

Discussion
In this article, we analyze the HM patterns in 7 breast cancer 
cell lines. The novel contribution of this article lies in that this 
is the first-ever thorough analysis of breast cancer HM. Both 
HM clusters and singleton sites are identified. On the contrary, 
our article has certain limitations. First, there is no statistical 
analysis done on a number of control or normal breast samples 
to compare with breast cancer cell lines. This is because so far 
we could not find suitable normal breast sample sequencing 
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data, except a WGBS data set discussed below. Second, we 
mainly focus on using the statistical and bioinformatic data 
analysis to identify HM sites. It would be more meaningful to 
further investigate the genes with a large number of hemi-
methylated sites, for example, the methylation events in their 
gene bodies, promoters, and enhancer regions. This type of 
research would require the wet lab work, which is beyond our 
capacity. Third, it is also meaningful to study hemimethylated 
genes’ expression levels and how these levels are related to the 
methylation and HM patterns of these genes. This research is 
beyond the scope of this article as new gene expression data of 
these genes should be generated for further studies. Fourth, 
even though RRBS data analysis shows the existence of HM in 
various genes, it does not paint the entire picture for us. This is 
because RRBS mainly captures CpG rich sections of DNA, 
leaving out regions with scattered CpG sites. In fact, for the 
RRBS cancer cell lines we analyze, there are less than 2% of the 
CpG sites with at least 3× coverage in each of the breast can-
cer cell lines. With regards to our project, if we had the WGBS 
data for cancer cell lines, we would see a better picture of the 
HM patterns in breast cancer data.

Our focus of this article is to find significant HM CpG 
sites between breast cancer forward and reverse strands. In 
addition, we have compared the 7 breast cancer cell lines 
(RRBS data) with a WGBS data set generated from the 
human mammary epithelial cell (HMEC), which is consid-
ered as a normal breast sample (GSE29127).38 As we have 
only 1 normal breast sample to compare, we do not apply the 
Wilcoxon signed rank test to analyze the HMEC. Instead, we 
filter out the data by selecting both forward and reverse 
strands with at least 3× coverage. In addition, we let the 
absolute mean difference between the forward and reverse 
strand methylation signals be greater than 0.4, 0.6, and 0.8 to 
identify hemimethylated CpG sites. To find the most signifi-
cant HM sites, absolute mean difference greater than 0.8 is 
used on both 7 breast cancer cell lines and the single normal 
sample (HMEC). Only 2 hemimethylated CpG sites are 
identified both in cancer and normal sample as shown in 
Figure 6. However, 9477 CpG sites are hemimethylated in 
cancer cell lines. We choose to show Figure 6 and related 
results in the Discussion section rather than the Results sec-
tion as this comparison is only based on 1 normal sample. 

Table 6.  Fourteen genes involved in breast cancer.

Gene Involvement in breast or breast cancer

PTPRN2 Related to increased cell death in breast cancer cell line MDA-MB-435

MAD1L1 1. Related to increased cell death in breast cancer cell line MDA-MB-435
2. Genetic variants (VAR_019714,VAR_019718) of this gene are found in a breast cancer cell line.

DIP2C Genetic variants (VAR_035905, VAR_035907) are found in this gene (found in a breast cancer sample)

CBFA2T3 This gene is a putative breast tumor suppressor. Alternative splicing results in transcript variants.

MACROD1 Overexpressed by estrogens in breast cancer MCF-7 cells, probably via an activation of nuclear receptors for steroids (ESR1 
but not ESR2)

TERT Related to an anomaly of the structure of the breast and the abnormal growth of breast tissue

CACNA1H Related to ductal breast carcinoma, and a single nucleotide polymorphism (SNP) (rs761025927) found in this gene (uncertain-
significance)

HDAC4 1. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer.
2. Related to increased cell death in breast cancer cell line MDA-MB-435
3. A genetic variant (VAR_036042) of this gene was reported in a breast cancer sample
4. Related to the anomaly of the structure of the breast.

NOTCH1 NOTCH1 is 1 of 4 known genes encoding the NOTCH family of proteins, a group of receptors involved in the Notch signaling 
pathway. Activation of Notch has been shown to be correlative with mammary tumorigenesis in mice and increased expression 
of Notch receptors has been observed in a variety of cancer types including cervical, colon, head and neck, lung, renal, 
pancreatic, leukemia, and breast cancer. A number of treatment modalities have been explored related to Notch inhibition 
especially in breast cancer with mixed results.

GNAS 1. Related to the abnormal growth of breast tissue and neoplasm of breast.
2. Two SNPs (rs11554273 and rs121913495) are found in this gene.
3. �Related to the presence of abnormally increased levels of prolactin in the blood (prolactin is a peptide hormone produced by 

the anterior pituitary gland that plays a role in breast development and lactation during pregnancy).

FAM20C Related to an anomaly of the sternum, also known as the breastbone.

CUX1 A genetic variant (VAR_036285) is found in this gene (found in a breast cancer sample)

OBSCN Genetic variants (VAR_035534, VAR_035537, VAR_035538) of this gene are found in a breast cancer sample

COL5A1 Related to an anomaly of the sternum, also known as the breastbone.
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This simple comparison result may not be generalized or 
comparable with the comparison results based on multiple 
normal breast samples.

Our method uses the Wilcoxon signed rank test with a sig-
nificance level of .05 on each base position listed. The more 
tests we perform with this significance level, the higher the 
chance we have of performing a type I error, also known as a 
false positive. For our study, this means the possibility that we 
have identified an HM CpG site incorrectly is higher if we 
keep the significance level the same for each test. Theoretically, 
we should do a multiple testing correction. However, this is a 
challenging task for this type of large genome data with com-
plex features. To address this issue, we have used both the P 
value and the mean difference value to select the HM sites. 
This selection will help us to avoid a high false positive rate and 
also make sure the selected sites are both statistically and bio-
logically significant.

Although DNA methylation plays an important role in 
gene regulation by affecting gene expression, the relationship 
of HM patterns and gene expression in cancer are not well 
studied yet. To the best of our knowledge, so far only Xu and 
Corces report some related research work.11,13 They find that 
hemimethylated sites are inherited over several cell divisions; 
stably inherited HM may regulate chromatin interaction. They 
also show that gene body HM is associated with increased 
transcription. According to these findings, it is important to 
study the relationship between HM patterns and gene expres-
sion in cancers.

In the past, many studies are conducted to address impor-
tant questions related to methylation. These studies include 
different topics of methylation pattern analysis and identifica-
tion, such as integrative data analysis for methylation and other 
data (eg, gene expression),39-41 methylation patterns for non-
coding RNA,42 and pan cancer data analysis.43,44 Many of the 
previous methylation studies are conducted by assuming sym-
metric methylation (ie, not considering HM). Because of the 
existence of HM and its impact on transcription, it is favorable 
if a research article states which DNA strand is analyzed after 
bisulfite conversion. In the future, it would be optimal if a 
methylation analysis is conducted on 2 DNA strands sepa-
rately as suggested by Naue and Lee.45

The 7 breast cancer cell lines we analyzed have their own 
unique characteristics or belong to different subtypes.46 For 
example, 4 (BT474, ZR751, MCF7 and T47D) are ER+, and 
3 (BT20, MDAMB231, and MDAMB468) are ER−; BT474 
is luminal B; MCF7, T47D, and ZR751 are luminal A. 
Therefore, it is likely that they have different methylation and 
HM profiles. Our analysis can identify the hemimethylated 
sites that are common among these 7 cell lines, but it does not 
identify the HM profile for each single cell line or each breast 
cancer subtype. With technical replicates of the sequencing 
data for each cell line, identifying the HM profile for each sub-
type can be done in the future.

Conclusion
In this article, we have conducted the first-ever research work 
on identifying HM in breast cancer cell lines. Our statistical 
analysis of RRBS data has shown the existence of genome-wide 

Table 7.  Genes known to be hypermethylated in breast cancer.

APAF1 CDKN1*(1) EPM2AIP1 GPC3 MYOD1*(1) TERT*(35) WDR79

IKIP CDKN2A MLH1 GSTP1*(2) PGR TGFBR1*(2) TP73*(12)

CCND2*(2) CDKN2B ESR1*(6) HOXA5*(1) SOCS1*(1) THBS1 TWIST1

CDH1 CST6*(1) FHIT HOXA6 STAT1 TIMP3*(2) WT1*(5)

CDH13*(5) DAPK2 GJB2 HSD17B4 SYK TP53 WIT1

The genes with asterisks and highlighted in bold are found to have HM CpG sites as noted in the parentheses. For example, “TERT*(35)” means the gene TERT is a 
hypermethylated gene, and it covers 35 HM CpG sites.

Table 8.  Oncogenes and tumor suppressors with HM sites.

Oncogenes Tumor suppressors 

Gene No. of HM sites Gene No. of HM sites

ASPSCR1 26 APC 3

BCL11B 13 CBLC 3

BCR 17 FANCA 6

CARD11 13 FANCC 3

CBFA2T3 44 PTCH1 4

CRTC1 11 SMARCA4 7

GNAS 29 STK11 5

MN1 10 TSC1 3

NOTCH1 30 TSC2 14

NTRK1 11 WT1 5

PDE4DIP 10  

PRDM16 72  

SEPT9 32  

Abbreviation: HM, hemimethylation.
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HM in breast cancer cell lines. Some of the genes that contain 
hemimethylated CpG sites may play a role in tumor growth or 
suppression. In addition, some of the hemimethylated genes 
associated with breast cancer are connected through biological 
pathways. Several of the hemimethylated genes are also known 
to be hypermethylated in breast cancer. In conclusion, these 
results suggest that certain genes in breast cancer cells undergo 
active methylation or demethylation, which results in genome-
wide HM and may indicate a transition between different stages 
of breast cancer. This transition may occur before tumors 
develop. Thus, further study of HM may serve as a method to 
identify breast cancer in earlier stages and increase the chances 
of patient survival.

Acknowledgements
This project was completed with the use of Texas State 
University facilities and resources. The authors are grateful for 
the 3 reviewers, whose questions and comments help us improve 
this article greatly.

Author Contributions
S.S. initiated the project, suggested all key original ideas, and 
oversaw the whole process. Y.L. and B.E. conducted the main 
data analysis. All 3 authors contributed to the interpretation of 
data analysis and the writing of this article. S.S. gave sugges-
tions over the course of the project and extensively reviewed 
and revised the final article. All authors contributed expertise 
and edits. All authors have read and approved the final article.

Availability of data and material
Data sets used in this article are publicly available. R code files 
are available upon request.

ORCID iD
Shuying Sun  https://orcid.org/0000-0003-3974-6996

References
	 1.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 

2019;69:7-34.
	 2.	 Howlader N, Noone AM, Krapcho M, et al. SEER Cancer Statistics Review, 

1975-2016. Bethesda, MD: National Cancer Institute. https://seer.cancer.gov/
csr/1975_2016/. Updated April 2019.

	 3.	 Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsycho-
pharmacology. 2013;38:23-38.

	 4.	 Yang X, Yan L, Davidson NE. DNA methylation in breast cancer. Endocr Relat 
Cancer. 2001;8:115-127.

Figure 5.  Relationships of 45 genes with at least 25 hemimethylated CpG sites.

Figure 6.  Comparing HM CpG sites in the HMEC and 7 breast cancer 

cell lines. HM indicates hemimethylation; HMEC, human mammary 

epithelial cell.
In total, 10 136 HM CpG sites are hemimethylated in breast cancer cell lines (ie, 
with the Wilcoxon test P value < .05 and absolute mean difference at least 0.8 as 
shown in Table 1). About 657 of these 10 136 CpG sites are hemimethylated in 
breast cancer cell lines, but there are no data in the HMEC sample. “No data in 
HMEC” means there are no sequencing reads or not enough sequencing reads 
covering those CpG sites (ie, <3× coverage). 9477 of these 10 136 CpG sites 
are hemimethylated in breast cancer, but not in HMEC. Only 2 of these 10 136 
CpG sites are hemimethylated in both breast cancer cell lines and HMEC.

https://orcid.org/0000-0003-3974-6996
https://seer.cancer.gov/csr/1975_2016/
https://seer.cancer.gov/csr/1975_2016/


12	 Cancer Informatics ﻿

	 5.	 Beck S, Rakyan VK. The methylome: approaches for global DNA methylation 
profiling. Trends Genet. 2008;24:231-237.

	 6.	 Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the 
microarray in epigenetic research. Brief Funct Genomic Proteomic. 2009;8: 
174-183.

	 7.	 Li Y, Tollefsbol TO. DNA methylation detection: bisulfite genomic sequencing 
analysis. Methods Mol Biol. 2011;791:11-21.

	 8.	 Li N, Ye M, Li Y, et al. Whole genome DNA methylation analysis based on high 
throughput sequencing technology. Methods. 2010;52:203-212.

	 9.	 Ehrlich M, Lacey M. DNA hypomethylation and hemimethylation in cancer. 
Adv Exp Med Biol. 2013;754:31-56.

	10.	 Shao C, Lacey M, Dubeau L, Ehrlich M. Hemimethylation footprints of DNA 
demethylation in cancer. Epigenetics. 2009;4:165-175.

	11.	 Sharif J, Koseki H. Hemimethylation: DNA’s lasting odd couple. Science. 
2018;359:1102-1103.

	12.	 Sun S, Li P. HMPL: a pipeline for identifying hemimethylation patterns by 
comparing two samples. Cancer Inform. 2015;14:235-245.

	13.	 Xu C, Corces VG. Nascent DNA methylome mapping reveals inheritance of 
hemimethylation at CTCF/cohesin sites. Science. 2018;359:1166-1170.

	14.	 Sun Z, Asmann YW, Kalari KR, et al. Integrated analysis of gene expression, 
CpG island methylation, and gene copy number in breast cancer cells by deep 
sequencing. PLoS ONE. 2011;6:e17490.

	15.	 Harris EY, Ponts N, Le Roch KG, Lonardi S. BRAT-BW: efficient and accurate 
mapping of bisulfite-treated reads. Bioinformatics. 2012;28:1795-1796.

	16.	 Hall JN, Schwartz RL. Effective Perl Programming: Writing Better Programs With 
Perl. Reading, MA: Addison Wesley; 1998.

	17.	 Cozens S. Advanced Perl Programming (Safari Books Online (Firm)). 2nd ed. 
Sebastopol, CA; Farnham, UK: O’Reilly Media; 2005. http://proquest.safari-
booksonline.com/0596004567.

	18.	 Team TRC. R: A Language and Environment for Statistical Computing. Version 
3.0.1. Vienna: R Foundation for Statistical Computing; 2013.

	19.	 Conover WJ. On methods of handling ties in the Wilcoxon signed-rank test. J 
Am Stat Assoc. 1973;68:985-988.

	20.	 GeneCards—Gene Database. www.genecards.org.
	21.	 Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a 

knowledge-based approach for interpreting genome-wide expression profiles. 
Proc Natl Acad Sci U S A. 2005;102:15545-15550.

	22.	 Herwig R, Hardt C, Lienhard M, Kamburov A. Analyzing and interpreting 
genome data at the network level with ConsensusPathDB. Nat Protoc. 
2016;11:1889-1907.

	23.	 Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R. Con-
sensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 
2011;39:D712-D717.

	24.	 Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interac-
tion database: 2013 update. Nucleic Acids Res. 2013;41:D793-D800.

	25.	 Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB —a data-
base for integrating human functional interaction networks. Nucleic Acids Res. 
2009;37:D623-D628.

	26.	 Doherty R, Couldrey C. Exploring genome wide bisulfite sequencing for DNA 
methylation analysis in livestock: a technical assessment. Front Genet. 2014;5:126.

	27.	 Brown GR, Hem V, Katz KS, et al. Gene: a gene-centered information resource 
at NCBI. Nucleic Acids Res. 2015;43:D36-D42.

	28.	 Fiegl H, Millinger S, Goebel G, et al. Breast cancer DNA methylation profiles 
in cancer cells and tumor stroma: association with HER-2/neu status in primary 
breast cancer. Cancer Res. 2006;66:29-33.

	29.	 Tan LW, Bianco T, Dobrovic A. Variable promoter region CpG island methyla-
tion of the putative tumor suppressor gene Connexin 26 in breast cancer. Carci-
nogenesis. 2002;23:231-236.

	30.	 Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. 
Oncogene. 2002;21:5462-5482.

	31.	 Sun S, Chen Z, Yan PS, Huang YW, Huang TH, Lin S. Identifying hypermeth-
ylated CpG islands using a quantile regression model. BMC Bioinformatics. 
2011;12:54.

	32.	 Bojesen SE, Pooley KA, Johnatty SE, et al. Multiple independent variants at the 
TERT locus are associated with telomere length and risks of breast and ovarian 
cancer. Nat Genet. 2013;45:371-384, 384e1-2.

	33.	 Marzese DM, Hoon DS, Chong KK, et al. DNA methylation index and 
methylation profile of invasive ductal breast tumors. J Mol Diagn. 
2012;14:613-622.

	34.	 Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes 
involved in oxidative phosphorylation are coordinately downregulated in human 
diabetes. Nat Genet. 2003;34:267-273.

	35.	 Berger SI, Posner JM, Ma’ayan A. Genes2Networks: connecting lists of gene 
symbols using mammalian protein interactions databases. BMC Bioinformatics. 
2007;8:372.

	36.	 Ali S, Coombes RC. Estrogen receptor alpha in human breast cancer: occurrence 
and significance. J Mammary Gland Biol Neoplasia. 2000;5:271-281.

	37.	 Seo JH, Park JH, Lee EJ, et al. ARD1-mediated Hsp70 acetylation balances 
stress-induced protein refolding and degradation. Nat Commun. 2016;7:12882.

	38.	 Hon GC, Hawkins RD, Caballero OL, et al. Global DNA hypomethylation 
coupled to repressive chromatin domain formation and gene silencing in breast 
cancer. Genome Res. 2012;22:246-258.

	39.	 Li C, Lee J, Ding J, Sun S. Integrative analysis of gene expression and methyla-
tion data for breast cancer cell lines. BioData Min. 2018;11:13.

	40.	 Ma X, Liu Z, Zhang Z, Huang X, Tang W. Multiple network algorithm for epi-
genetic modules via the integration of genome-wide DNA methylation and gene 
expression data. BMC Bioinformatics. 2017;18:72.

	41.	 Ma X, Sun PG, Zhang ZY. An integrative framework for protein interaction 
network and methylation data to discover epigenetic modules [published online 
ahead of print April 30, 2018]. IEEE/ACM Trans Comput Biol Bioinform. 
doi:10.1109/TCBB.2018.2831666.

	42.	 Ma X, Yu L, Wang P, Yang X. Discovering DNA methylation patterns for long 
non-coding RNAs associated with cancer subtypes. Comput Biol Chem. 
2017;69:164-170.

	43.	 Yang X, Gao L, Zhang S. Comparative pan-cancer DNA methylation analysis 
reveals cancer common and specific patterns. Brief Bioinform. 2017;18:761-773.

	44.	 Zhang J, Huang K. Pan-cancer analysis of frequent DNA co-methylation pat-
terns reveals consistent epigenetic landscape changes in multiple cancers. BMC 
Genomics. 2017;18:1045.

	45.	 Naue J, Lee HY. Considerations for the need of recommendations for the 
research and publication of DNA methylation results. Forensic Sci Int Genet. 
2018;37:e12-e14.

	46.	 Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its rele-
vance with breast tumor subtyping. J Cancer. 2017;8:3131-3141.

http://proquest.safaribooksonline.com/0596004567
http://proquest.safaribooksonline.com/0596004567
www.genecards.org



