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VISCOSITY SOLUTIONS OF THE CAUCHY PROBLEM FOR
SECOND-ORDER NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS IN HILBERT SPACES

TRAN VAN BANG, TRAN DUC VAN

Abstract. In this paper we prove the existence and uniqueness of viscosity
solutions of the Cauchy problem for the second order nonlinear partial differ-

ential equations in Hilbert spaces.

1. Introduction

The theory of scalar partial differential equations in infinite dimensional Hilbert
spaces has been developing very rapidly in recent years. The object of its study is
first and second order PDE’s of the form

G(x, u(x), Du(x), D2u(x)) = 0 in Ω, (1.1)

where Ω is a subset of Hilbert space H,u is a real valued and Du(x) and D2u(x)
correspond respectively to the first and second order Fréchet derivatives of u. Iden-
tifying H with its dual, Du(x) corresponds to an element of H and D2u(x) to an
element of S(H), the space of bounded, self-adjoint operators equipped with the
operator norm. Therefore,

G : W ⊂ H × R×H × S(H) 7→ R

is appropriate. If the set W is open in H×R×H×S(H) and G is locally bounded
we call equation (1.1) bounded. It may however happen that W is just dense in
H ×R×H × S(H) and G is not locally bounded. In such case we refer to (1.1) as
to being unbounded.

The unbounded equations are of importance since they appear as dynamic pro-
gramming equations associated with problems of optimal control and differential
games. Roughly speaking, if one controls an infinite dimensional system governed
by an ODE in a Hilbert space, one has to deal with a first order stationary or
time dependent PDE, while controlling a system for which the state equation is
a stochastic PDE gives rise to a second order stationary or time dependent PDE.
“Unboundedness” arises when the state equation of a system involves unbounded
operators or, in the stochastic case, for instance, so called “white noise”.
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More precisely, we will study the Cauchy problem for the fully nonlinear PDE’s
having the form

ut(t, x) + 〈Ax,Du(t, x)〉+ F (t, x,Du(t, x), D2u(t, x)) = 0

(t, x) ∈ (0, T )×H

u(0, x) = g(x) for x ∈ H,
(1.2)

where H is a real, separable Hilbert space endowed with the inner product 〈., .〉 and
the norm |.| and A : D(A) ⊂ H → H is closed linear operator that generates an
analytic C0-semigroup e−tA on H. Moreover, we assume that A is positive definite
and self-adjoint and has compact resolvent R(µ,A).

There is an increasing interest in and a growing literatures on Hamilton-Jacobi
equations in infinite dimensions. These equations were first studied by Barbu and
Da Prato [1], setting the problem in classes of convex functions and using semigroup
and perturbation methods. Much progress has been made recently due to the
introduction of notion of viscosity solutions. We refer the reader to [4, 6, 8, 14, 15,
16] for the first order equations. As regards the second order, “bounded” equations
have been investigate in [11, Parts I and III], and “unbounded” in [11, Part II], [5,
7, 9, 13, 17]. Except for [5, 6, 7, 17] the unboundedness in the studied equations was
always coming from the term 〈Ax,Du(x)〉. This paper is concerned with equations
that exhibit “bad behavior” in the F also in Du and D2u as the same as in [5, 6,
7, 17]. We notice that, [5] studied the stationary version of (1.2), [7] studied (1.2)
with F (t, x,Du(t, x), D2u(t, x)) has form −Trace(QD2u(t, x)) + G(t, x,Du(t, x))
and used a different test functions.

The plan of the paper is the following. In section 2 we give some preliminaries.
In section 3 we present the definition of viscosity solutions and prove a general
uniqueness and existence results for (1.2).

2. Preliminaries

For any Hilbert spaces X,Y and E, we denote

UC(X) = {u : X → R;u is uniformly continuous},
BUC(X) = {u ∈ UC(X);u is bounded},

UCx([0, T ]×X) = {u ∈ C([0, T ]×X);u(t, .) ∈ UC(X) uniformly in t ∈ [0, T ]},
BUCx([0, T ]×X) = {u ∈ UCx([0, T ]×X);u is bounded}.

Let u : (0, T )× E → R. If (t̂, x̂) ∈ (0, T )× E and (a, p, Z) ∈ R× E × S(E) we say
that (a, p, Z) ∈ P 2,+u(t̂, x̂) provided that (see [3])

u(t, x) 6 u(t̂, x̂) + a(t− t̂) + 〈p, x− x̂〉+
1
2
〈Z(x− x̂), x− x̂〉

+ o(|x− x̂|2 + |t− t̂|) as (t, x) → (t̂, x̂).

The closure of P 2,+, P̄ 2,+, is defined as follows:

P̄ 2,+u(t, x) =
{
(a, p, Z) ∈ R× E × S(E) : ∃(tn, xn, an, pn, Zn) in

(0, T )× E × R× E × S(E) : (an, pn, Zn) ∈ P 2,+u(tn, xn)

and (tn, xn, u(tn, xn), an, pn, Zn) → (t, x, u(t, x), a, p, Z)
}
.

We are interested in the situation where E = E1 × E2 is the product of two
spaces and u(t, x1, x2) = u1(t, x1)+u2(t, x2). Proposition below is a straightforward
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corollary from [2, Theorem 8.3]. In this paper, identify operator in any space is
denoted by a same symbol I.

Proposition 2.1. Let ui, i = 1, 2 be upper semicontinuous on (0, T ) × RN and
ϕ : (0, T )×R2N → R be once continuously differentiable in t and twice continuously
differentiable in x. Suppose that

u1(t, x1) + u2(t, x2)− ϕ(t, x1, x2)

has a local maximum at (t̂, x̂) = (t̂, x̂1, x̂2) ∈ (0, T )× R2N and that

D2ϕ(t̂, x̂) = D = D1 −D2,

where D1, D2 ∈ S(RN ) and D1, D2 ≥ 0. Assume, moreover, that

∃r > 0 : ∀M > 0,∃c > 0 such that for i = 1, 2

bi 6 c if (bi, qi, Zi) ∈ P 2,+ui(t, xi), |xi − x̂i|+ |t− t̂| < r

and |ui(t, xi)|+ |qi|+ ‖Zi‖ 6 M.

(2.1)

Then, for every α > 0 there are Z1, Z2 ∈ S(RN ) such that

(i) (bi, Dxiϕ(t̂, x̂), Zi) ∈ P̄ 2,+ui(t̂, x̂i), for i = 1, 2;

(ii) −(‖D1‖+ ‖D2‖)(1 + 2
α )I 6

(
Z1 0
0 Z2

)
6 D + α(D1 +D2);

(iii) b1 + b2 = ϕt(t̂, x̂).

The norm of the symmetric matrix used above is

‖φ‖ = sup
{
|λ| : λ is an eigenvalue of φ

}
= sup

{
|〈φξ, ξ〉| : |ξ| 6 1

}
.

Remark 2.2. The condition (2.1) will be satisfied if ui are the viscosity subsolu-
tions (see [3]) of

(ui)t(t, xi) + F (t, xi, ui(t, xi), Dui(t, xi), D2ui(t, xi)) 6 0 in (0, T )× RN

with F bounded on bounded sets.

We say that a function ρ : [0,+∞) → [0,+∞) is a modulus if ρ is continuous,
nondecreasing, subadditive, and ρ(0) = 0. Subadditivity in particular implies that
for all ε > 0, there exists Cε > 0 such that

ρ(r) 6 ε+ Cεr, for every r ≥ 0.

Moreover, a function ω : [0,+∞) × [0,+∞) → [0,+∞) is a local modulus if ω is
continuous, nondecreasing in both variables, subadditive in the first variable, and
ω(0, r) = 0, for every r ≥ 0.

We assume the following hypothesis:

• (A1):D(A) ⊂ H → H is a self-adjoint operator, there exists a > 0 such
that 〈Ax, x〉 ≥ a|x|2 for all x ∈ D(A), and A−1 is compact.

Remark 2.3. Hypothesis (A1) implies in particular that −A is the infinitesimal
generator of an analytic semigroup with compact resolvent satisfying ‖e−tA‖ 6 e−at

for all t ≥ 0 and that there is an orthonormal basis of H made of eigenvectors of A
such that the corresponding sequence of eigenvalues diverges to +∞ as n→∞. It
also follows that
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We also assume the Interpolation inequality: Let γ ∈ (0, 1], α ∈ (0, γ). For every
σ > 0, there exists Cσ > 0 such that

|Aαz| 6 σ|Aγz|+ Cσ|z|, ∀z ∈ D(Aγ). (2.2)

Let H1 ⊂ H2 ⊂ · · · be finite dimensional subspaces of H generated by eigenvectors
of A such that ∪∞N=1HN = H. Given N ∈ N, denote by PN the orthogonal
projection in H onto HN , let QN = I −PN and let H⊥

N = QNH. We then have an
orthogonal decomposition H = HN ×H⊥

N and we will denote by xN an element of
HN and by x⊥N an element of H⊥

N . For x ∈ H, we will write x = (PNx,QNx). We
make the following assumptions about F .

(F1) There exists β ∈ (0, 1) such that the function F : [0, T ]×D(A
β
2 )×D(A

β
2 )×

S(H) → R is continuous (in the topology of [0, T ]×D(A
β
2 )×D(A

β
2 )×S(H));

(F2) F (t, x, p, S1) 6 F (t, x, p, S2),∀t ∈ (0, T ),∀x, p ∈ D(A
β
2 ), and all S1 ≥ S2;

(F3) There exists a modulus ρ such that

|F (t, x, p, S1)− F (t, x, q, S2)|

6 ρ
(
(1 + |A

β
2 x|)|A

β
2 (p− q)|+ (1 + |A

β
2 x|2)‖S1 − S2‖

)
,

for all t ∈ (0, T ), all x, p, q ∈ D(A
β
2 ) and all S1, S2 ∈ S(H);

(F4) There exist 0 < η < 1 − β and a modulus ω such that, for all ε > 0, all
N ≥ 1, all t ∈ (0, T ), all x, y ∈ D(A

β
2 ) and X,Y ∈ S(HN ) such that(

X 0
0 −Y

)
6

2
ε

(
PNA

−ηPN −PNA
−ηPN

−PNA
−ηPN PNA

−ηPN

)
(2.3)

we have

F
(
t, x,

A−η(x− y)
ε

,X
)
− F

(
t, y,

A−η(x− y)
ε

, Y
)

≥ −ω
(
|A

β
2 (x− y)|

(
1 +

|A
β
2 (x− y)|
ε

))
;

(F5) For every R < +∞, |λ| 6 R, t ∈ (0, T ), x, p ∈ D(A
β
2 ), we have

sup
{
|F (t, x, p, S + λQN )− F (t, x, p, S)| : ‖S‖ 6 R,S = PNSPN

}
→ 0

as N →∞.

Remark 2.4. By the properties of moduli, condition (F3) guarantees that there
exists a constant C such that for all t ∈ (0, T ), all x, p ∈ D(A

β
2 ), all S ∈ S(H),

|F (t, x, p, S)| 6 C
(
1+ (1+ |A

β
2 x|)|A

β
2 p|+(1+ |A

β
2 x|2)‖S‖

)
+ |F (t, x, 0, 0)|. (2.4)

3. Viscosity solutions

The definition of a viscosity solution proposed here has its predecessors in [5, 6,
13].

Definition 3.1. A function ψ : H → R is a test function for the equation in (1.2)
if

ψ(t, x) = ϕ(t, x) + δ(t)(1 + |x|2),
where

(1) δ ∈ C1((0, T )) and δ > 0 in (0, T );
(2) ϕ ∈ C1,2((0, T )×H) and is weakly sequentially lower semicontinuous;
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(3) Dϕ(t, .) ∈ UC(H,H) ∩ UC(D(A
1
2−k),D(A1/2)), for some k = k(ϕ) > 0

and for all t ∈ (0, T );
(4) D2ϕ(t, .) ∈ BUC(H,S(H)), for all t ∈ (0, T ).

Definition 3.2. A weakly sequentially upper (lower) semicontinuous function u :
(0, T ) × H → R is a viscosity subsolution (respectively: viscosity supersolution)
of the equation in (1.2) if for every test function ψ, whenever u − ψ has a local
maximum (respectively: u + ψ has a local minimum) at (t, x) then x ∈ D(A1/2)
and

ψt(t, x) + 〈A1/2x,A1/2Dψ(t, x)〉+ F (t, x,Dψ(t, x), D2ψ(t, x)) 6 0
(resp.

−ψt(t, x) + 〈A1/2x,−A1/2Dψ(t, x)〉+ F (t, x,−Dψ(t, x),−D2ψ(t, x)) ≥ 0).

A function u is a viscosity solution of the equation in (1.2) if it is both a viscosity
subsolution and a viscosity supersolution.

The main result of this paper is theorem below.

Theorem 3.1. Let the Hypothesis (A1) and (F1)-(F5) hold.
Comparison: Let u, v : (0, T ) × H → R be respectively a viscosity subsolution
and a viscosity supersolution of the equation in (1.2). Assume that there exists a
constant C such that

u(t, x),−v(t, x), |g(x)| 6 C(1 + |x|) (3.1)

and
(i) lim

t↓0
(u(t, x)− g(x))+ = 0

(ii) lim
t↓0

(v(t, x)− g(x))− = 0
(3.2)

uniformly on the bounded subsets in H. Then we have that u 6 v in (0, T )×H.
Existence: Let g ∈ BUC(H) and

FR = sup{|F (t, x, p,X)| : (t, x) ∈ [0, T ]×D(A1/2), |p|, ‖X‖ 6 R} < +∞. (3.3)

Then (1.2) has a unique solution u ∈ BUCx([0, T ]×H)∩BUCx([τ, T ]×D(A−
η
2 ))

for τ > 0, satisfying limt↓0 u(t, x) = g(x) in H. Moreover, there is a modulus m
such that

|u(t, x)− u(s, e−(t−s)Ax)| 6 m(t− s)
for 0 6 s 6 t 6 T and x ∈ H.

Before we can attempt to prove the above theorem we would like to begin with
some facts about viscosity solutions of parabolic partial differential equations in
finite dimensional spaces. Those facts will be needed in the proofs of Theorem 3.1.
For the definition of viscosity solutions in this case, we refer to [2].

Proposition 3.2 ([13, Proposition 3.4]). Let an upper semicontinuous function u
and a lower semicontinuous function v on (0, T ) × RN be respectively a viscosity
subsolution and a viscosity supersolution of

ut(t, x) + F (t, x,Du(t, x), D2u(t, x)) = 0 for t ∈ (0, T ), x ∈ RN , (3.4)

where F : ([0, T ]×RN ×RN ×S(RN ) → R is continuous and satisfies the following
three conditions:

(i) F (t, x, p, S1) 6 F (t, x, p, S2), for all t ∈ (0, T ), all x, p ∈ RN , all S1 ≥ S2;
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(ii) There exists µ ∈ C2(RN ), radial, nondecreasing, nonnegative, µ → ∞ as
‖x‖ → ∞, Dµ,D2µ are bounded and

F (t, x, p+αDµ(x), X+αD2µ(x)) ≥ F (t, x, p,X)−σ(α, |p|+‖X‖)∀x, p,X,∀α ≥ 0,
(3.5)

where σ is a local modulus;
(iii) There exists a modulus ω: so that for all t ∈ (0, T ), all x, y ∈ RN , all

X,Y ∈ S(RN ) such that

−c1I 6

(
X 0
0 Y

)
6 c2

(
I −I
−I I

)
,

with the constants c1, c2 ≥ 0, we have

F (t, x, c3(x−y), X)−F (t, y, c3(x−y),−Y ) ≥ −ω(|x−y|(1+(c1 +c2 + |c3|)|x−y|)).
Let g ∈ BUC(RN ). Then

(i) u(t, x)− v(t, x) 6 supz∈RN (u(0, z)− v(0, z))+ for all t ∈ [0, T ] and x ∈ RN .
(ii) If u(0, x) 6 g(x) 6 v(0, x) and u,−v 6 M , then there is a modulus of

continuity m, depending only on M,ω and a modulus of continuity of g,
such that

u(t, x)− v(t, y) 6 m(|x− y|)
for all t ∈ [0, T ) and x, y ∈ RN . Moreover, if u = v, then u ∈ C([0, T ] ×
RN ).

(iii) If supt∈(0,T ),x∈RN |F (t, x, 0, 0)| = K < +∞, then there exists a unique so-
lution u ∈ BUCx([0, T ]× RN ) of (3.4) such that u(0, x) = g(x) and ‖u‖∞
only depends on ‖g‖∞ and K.

The Proposition below is needed in the proof of existence.

Proposition 3.3 ([13, Lemma 2.8]). If F : (0, T )×H×H×S(H) → R is uniformly
continuous on bounded sets, and satisfies (F2) and (F5) then for every (t, x, p,X) ∈
(0, T )×H ×H × S(H),

F (t, PNx, PNp, PNXPN ) → F (t, x, p,X) as N →∞.

Proof of Theorem 3.1: Comparison. Given µ > 0, define

uµ(t, x) = u(t, x)− µ

T − t
, vµ(t, x) = v(t, x) +

µ

T − t
.

Then uµ and vµ satisfy respectively

(uµ)t(t, x) + 〈Ax,Duµ(t, x)〉+ F (t, x,Duµ(t, x), D2uµ(t, x)) 6 − µ

(T − t)2

and

(vµ)t(t, x) + 〈Ax,Dvµ(t, x)〉+ F (t, x,Dvµ(t, x), D2vµ(t, x)) ≥ µ

(T − t)2

For ε, δ, γ > 0, 0 < tδ < T we consider the function

Φ(t, s, x, y) :=uµ(t, x)− vµ(s, y)− |A−
η
2 (x− y)|2

2ε

− δeKµt(1 + |x|2)− δeKµs(1 + |y|2)− (t− s)2

2γ
.

The constant Kµ will be chosen later.
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Since the function Φ is weakly sequentially upper semicontinuous in (0, T ) ×
(0, T )×H ×H and (3.1), Φ has a global maximum over [tδ, T )× [tδ, T )×H ×H
at some points (t̄, s̄, x̄, ȳ), where t̄, s̄ < T and x̄, ȳ bounded independently of ε for a
fixed δ. We can assume this maximum to be strict and (see [6, 8])

lim sup
δ→0

lim sup
ε→0

lim sup
γ→0

δ(|x̄|2 + |ȳ|2) = 0 (3.6)

lim sup
ε→0

lim sup
γ→0

|A−
η
2 (x̄− ȳ)|2

2ε
= 0 for fixed δ > 0. (3.7)

lim sup
γ→0

(t̄− s̄)2

2γ
= 0 for fixed ε, δ. (3.8)

If u 66 v it then follows from (3.7), (3.8) and (3.2) that for small µ and δ, and tδ
sufficiently close 0 we have t̄, s̄ > tδ if γ and ε sufficiently small.

We will now use a rather standard technique of reduction to finite dimensional
spaces to produce appropriate test functions.

We now fix N ∈ N. Then obviously

|A−
η
2 (x− y)|2 = 〈PNA

−ηPN (x− y), x− y〉+ |A−
η
2QN (x− y)|2,

and we have

|A−
η
2QN (x− y)|2 62〈QNA

−ηQN (x̄− ȳ), x− y〉 − 〈QNA
−ηQN (x̄− ȳ), x̄− ȳ〉

+ 2|A−
η
2QN (x− x̄)|2 + 2|A−

η
2QN (y − ȳ)|2

with equality if and only if x = x̄, y = ȳ. Therefore, if we define

u1(t, x) =uµ(t, x)− 〈x,QNA
−ηQN (x̄− ȳ)〉
ε

+
〈QNA

−ηQN (x̄− ȳ), x̄− ȳ〉
2ε

− |A−
η
2QN (x− x̄)|2

ε
− δeKµt(1 + |x|2)

and

v1(s, y) = vµ(s, y)− 〈y,QNA
−ηQN (x̄− ȳ)〉
ε

+
|A−

η
2QN (y − ȳ)|2

ε
+ δeKµs(1 + |y|2),

it follows that the function

Φ̃(t, s, x, y) := u1(t, x)− v1(s, y)−
〈PNA

−ηPN (x− y), x− y〉
2ε

− (t− s)2

2γ
(3.9)

always satisfies Φ̃ 6 Φ and attains a strict global maximum over [tδ, T )× [tδ, T )×
H ×H at (t̄, s̄, x̄, ȳ). Moreover,

Φ̃(t̄, s̄, x̄, ȳ) = Φ(t̄, s̄, x̄, ȳ).

We now define, for xN , yN ∈ HN , the functions

ũ1(t, xN ) := sup
x⊥N∈H⊥N

u1(t, xN , x
⊥
N ), ṽ1(s, yN ) := inf y⊥N ∈ H⊥

Nv1(s, yN , y
⊥
N ).

Since the assumptions about u,−v and the weakly sequentially continuity of inner
product, we obtain that ũ1 and −ṽ1 are upper semicontinuous on (0, T )×HN (see
[3]). Moreover, by definition of u1, v1 and by the form of Φ̃, it follows that

ũ1(t̄, PN x̄) = u1(t̄, x̄), ṽ1(s̄, PN ȳ) = v1(s̄, ȳ). (3.10)
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Defining now the map ΦN : (0, T )× (0, T )×HN ×HN → R as

ΦN (t, s, xN , yN )

:= ũ1(t, xN )− ṽ1(s, yN )− 〈PNA
−ηPN (xN − yN ), xN − yN )〉

2ε
− (t− s)2

2γ
= sup

x⊥N ,y⊥N∈H⊥N

Φ̃
(
t, s, (xN , x

⊥
N ), (yN , y

⊥
N )

)
.

It is not difficult to check that ΦN attains a strict global maximum at (t̄, s̄, x̄N , ȳN ) =
(t̄, s̄, PN x̄, PN ȳ). By the finite dimensional results (see [2]) for every n ∈ N, there
exist points tn, sn ∈ (0, T );xn

N , y
n
N ∈ HN such that

tn → t̄, sn → s̄; xn
N → x̄N , yn

N → ȳN , as n→∞. (3.11)

ũ1(tn, xn
N ) → ũ1(t̄, x̄N ), ṽ1(sn, yn

N ) → ṽ1(s̄, ȳN ) as n→∞. (3.12)

and there exist functions ϕn, ψn ∈ C1,2((0, T ) × HN ) with uniformly continuous
derivatives such that ũ1 − ϕn and −ṽ1 + ψn have unique, strict, global maxima at
(tn, xn

N ) and (sn, yn
N ) respectively, and

(ϕn)t(tn, xn
N ) → t̄− s̄

γ
,

Dϕn(tn, xn
N ) → 1

ε
PNA

−ηPN (x̄N − ȳN ),

(ψn)t(sn, yn
N ) → t̄− s̄

γ
,

Dψn(sn, yn
N ) → 1

ε
PNA

−ηPN (x̄N − ȳN ),

D2ϕn(tn, xn
N ) → XN ,

D2ψn(sn, yn
N ) → YN

(3.13)

where XN , YN satisfy (2.3).
Consider finally the map Φn

N : (0, T )× (0, T )×H ×H → R defined as

Φn
N (t, s, x, y) := u1(t, x)− v1(s, y)− ϕn(t, PNx) + ψn(s, PNy). (3.14)

This map has the variables split and, by the definition of u1 and v1, attains its
global maximum (which we can assume to be strict) at some point (t̂n, ŝn, x̂n, ŷn).
This point depends also on N but we will drop this dependence since N is now
fixed. Repeating now the arguments of [5, page 409] (see also [17]) it is not difficult
to show that

u1(t̂n, x̂n) → u1(t̄, x̄), v1(ŝn, ŷn) → v1(s̄, ȳ) (3.15)

t̂n = tn, ŝn = sn; x̂n
N = xn

N , ŷn
N = yn

N , (x̂n, ŷn) → (x̄, ȳ) (3.16)

as n→∞. Moreover x̄, ȳ ∈ D(A1/2) and

A1/2x̂n ⇀ A1/2x̄, A1/2ŷn ⇀ A1/2x̄ as n→∞. (3.17)

We define

ψ(t, x) =
〈x,QNA

−ηQN (x̄− ȳ)〉
ε

+
|A−

η
2QN (x− x̄)|2

ε
+ϕn(t, PNx)+δeKµt(1+|x|2).
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Then ψ satisfies the conditions of a test function (Definition 3.1) and it follows from
(3.14) and the definitions of u1, v1 that uµ − ψ has a maximum at (t̂n, x̂n). Thus
we have

ψt(t̂n, x̂n) + 〈A1/2x̂n, A1/2Dψ(t̂n, x̂n)〉

+ F (t̂n, x̂n, Dψ(t̂n, x̂n), D2ψ(t̂n, x̂n)) 6 − µ

(T − t̂n)2
.

(3.18)

We now like to pass to the limit as n→∞ in (3.18) keeping ε, δ,N fixed. Since
A−

1−β
2 and A−

η
2 are compact we conclude that, as n→∞,

A
1−η
2 x̂n = A−

η
2 (A1/2x̂n) → A

1−η
2 x̄, A

β
2 (x̂n) = A−

1−β
2 (A1/2x̂n) → A

β
2 (x̄)

which together with the weakly semicontinuity of the norm implies

lim inf
n→∞

〈A1/2x̂n, A1/2Dψ(t̂n, x̂n)〉 ≥
〈
A

1−η
2 x̄,

A
1−η
2 (x̄− ȳ)
ε

〉
+ 2δeKµ t̄|A1/2x̄|2.

On the other hand, using (3.16), (3.11) and (3.13) we have that, as n→∞,

ψt(t̂n, x̂n) → t̄− s̄

γ
+ δKµe

Kµ t̄(1 + |x̄|2),

Dψ(t̂n, x̂n) → 1
ε
A−η(x̄− ȳ) + 2δeKµ t̄x̄,

D2ψ(t̂n, x̂n) → XN +
2A−ηQN

ε
+ 2δeKµ t̄I 6 XN +

2‖A−η‖QN

ε
+ 2δeKµ t̄I,

Therefore, using above results, (F1) and (F2), letting n→∞ in (3.18) yields

t̄− s̄

γ
+ δKµe

Kµ t̄(1 + |x̄|2) +
1
ε

〈
A

1−η
2 x̄, A

1−η
2 (x̄− ȳ)

〉
+ 2δeKµ t̄|A1/2x̄|2

+ F
(
t̄, x̄,

1
ε
A−η(x̄− ȳ) + 2δeKµ t̄x̄, XN +

2
ε
‖A−η‖QN + 2δeKµ t̄I

)
6 − µ

(T − t̄)2
.

(3.19)

We now eliminate terms with δ and N . Using (F3) we have

F
(
t̄, x̄,

1
ε
A−η(x̄− ȳ), XN +

2
ε
‖A−η‖QN

)
− ρ

(
dδeKµ t̄(1 + |x̄|2β)

)
6 F

(
t̄, x̄,

1
ε
A−η(x̄− ȳ) + 2δeKµ t̄x̄, XN +

2
ε
‖A−η‖QN + 2δeKµ t̄I

)
for some constant d > 0. Now, given τ > 0, let Kτ be such that

ρ(s) 6 τ +Kτs.

Applying (2.2) with α = β
2 and γ = 1

2 , we obtain that

ρ
(
dδeKµ t̄(1 + |x̄|2β)

)
6 τ + 2δeKµ t̄|A1/2x̄|2 + δCτe

Kµ t̄(1 + |x̄|2)

for some constant Cτ > 0 independent of δ and ε. Therefore, using these results in
(3.19), (F5) and choosing Kµ = Cτ , we obtain

t̄− s̄

γ
+

1
ε

〈
A

1−η
2 x̄, A

1−η
2 (x̄− ȳ)

〉
+ F

(
t̄, x̄,

1
ε
A−η(x̄− ȳ), XN )

6 τ + ω1(N ; ε, δ, γ)− µ

(T − t̄)2
.

(3.20)
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where limN→∞ ω1(N ; ε, δ, γ) = 0 if ε, δ, γ are fixed. Similarly, we obtain

t̄− s̄

γ
+

1
ε

〈
A

1−η
2 ȳ, A

1−η
2 (x̄− ȳ)

〉
+ F

(
s̄, ȳ,

1
ε
A−η(x̄− ȳ), YN )

≥ −τ − ω1(N ; ε, δ) +
µ

(T − s̄)2
.

(3.21)

We now subtract (3.20) from (3.21), using (F4), and then let N → ∞. We then
conclude that

µ

(T − t̄)2
+

µ

(T − s̄)2
6 2τ + ω

(
|A

β
2 (x̄− ȳ)|

(
1 +

1
ε
|A

β
2 (x̄− ȳ)|

))
− 1
ε
|A

1−η
2 (x̄− ȳ)|2

(3.22)

Set r = |A
1−η
2 (x̄ − ȳ)|. Using the interpolation inequality (2.2), the fact that

|A
β
2 (x̄ − ȳ)| 6 c|A

1−η
2 (x̄ − ȳ)| for some c > 0 and the property of the moduli, we

have that, for all α, σ > 0, there exist Cσ,Kα > 0 such that

µ

(T − t̄)2
+

µ

(T − s̄)2
6 2τ + α+ cKα

(
σ
r2

ε
+ Cσ

|A−
η
2 (x̄− ȳ)|
ε

r + r
)
− r2

ε
.

For α fixed, we choose σ such that cKασ < 1. Then, in the right -hand side of the
previous inequality, we have a polynomial of order 2 in r√

ε
which is bounded from

above and we get

µ

(T − t̄)2
+

µ

(T − s̄)2
6 2τ + α+

K2
αc

2
(√
ε+ Cσ

|A−
η
2 (x̄−ȳ)|√

ε

)2

4(1−Kαcσ)
.

By sending γ → 0, ε → 0, δ → 0 and using (3.7), we obtain a contradiction, which
proves that we must have u 6 v.

Existence. To produce a solution of (1.2) we consider approximation

(uN )t(t, x) + 〈Ax,DuN (t, x)〉+ F (t, x,DuN (t, x), D2uN (t, x)) = 0,

(t, x) ∈ (0, T )×HN ,

uN (0, x) = g(x), x ∈ HN .

(3.23)

Note that (3.23) satisfies the assumptions in (3.5) with constants and moduli
independent of N . By Proposition 3.2 (iii), there is a unique solution uN ∈
BUCx([0, T ] × HN ) of (3.23) such that ‖uN‖∞ 6 M for some M which depends
only on ‖g‖∞, F0 in (3.3). Moreover, since A is positive definite, Proposition 3.2
(ii) provides a modulus of continuity m1 such that

|uN (t, x)− uN (t, y)| 6 m1(|x− y|), ∀t ∈ (0, T ),∀x, y ∈ HN . (3.24)

We now show that for each τ > 0 there is a modulus mτ such that

|uN (t, x)− uN (t, y)| 6 mτ (|A−
η
2 (x− y)|) for τ 6 t 6 T. (3.25)

Given µ > 0, set
u0(t, x) = uN (t, x)− µ

T − t
.

Let w be the modulus of continuity in (F4). For every ε > 0 let Kε be such that
w(r) 6 ε/2 +Kεr. For L > M + 1, we set

ψL(r) = 2L21− 1
2L r

1
2L .
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The function ψL ∈ C2(0,∞) is increasing and concave, ψ′L(r) ≥ 1 for 0 < r 6
2, ψL(0) = 0, ψL(1) > 2(M + 1), and

ψL(r) > L(ψ′L(r)r + r) for 0 6 r 6 2. (3.26)

We will show that for every ε > 0 there exists L = Lε such that

u0(t, x)− u0(t, y) 6
(
ψL(|A−

η
2 (x− y)|) + ε

)
(1 + t) (3.27)

for all t ∈ (0, T );x, y ∈ HN . Indeed, we denote by

∆ := {(x, y) ∈ HN ×HN : |A−η/2(x− y)| < 1}.

It is clear, from the properties of ψL, that for (x, y) 6∈ ∆, (3.27) always satisfied
independently of L. Assume now by contradiction that (3.27) is false. Then, given
any L > M + 1, let

ψ(t, x, y) = ψL

(
(|A−

η
2 (x− y)|+ ε)

)
(1 + t)

we have that

sup
t∈(0,T ),(x,y)∈∆

(
u0(t, x)− u0(t, y)− ψ(t, x, y)

)
> 0

(if not we are done). Then, for small δ > 0,

sup
t∈(0,T ),(x,y)∈∆

(
u0(t, x)− u0(t, y)− ψ(t, x, y)− δ|x|2 − δ|y|2

)
> 0

and is attained at a point (t̄, x̄, ȳ) with (x̄, ȳ) ∈ ∆, x̄ 6= ȳ. It follows from the initial
condition and the definition of u0, ψL that 0 < t̄ < T .

To use Proposition 2.1, we denote s = |A−
η
2 (x̄− ȳ)| and compute

ψt(t̄, x̄, ȳ) = ψL(s) + ε,

Dxψ(t̄, x̄, ȳ) = ψ′L(s)
A−η(x̄− ȳ)

s
(1 + t̄)

D2
xxψ(t̄, x̄, ȳ) = ψ′′L(s)

A−η(x̄− ȳ)⊗A−η(x̄− ȳ)
s2

(1 + t̄) + ψ′L(s)
PNA

−η

s
(1 + t̄)

− ψ′L(s)
A−η(x̄− ȳ)⊗A−η(x̄− ȳ)

s3
(1 + t̄)

= B1 +B2 +B3.

Since ψL is nondecreasing and concave, B2 ≥ 0 and B1, B3 6 0. Using this notation
we have

D2ψ(t̄, x̄, ȳ) =
(
B2 −B2

−B2 B2

)
−

(
−B1 −B3 B1 +B3

B1 +B3 −B1 −B3

)
= D1 −D2

where D1, D2 ≥ 0. Proposition 2.1 applied with ε = 1, u1(t, x) = u0(t, x) −
δ|x|2, u2(t, y) = −u0(t, y) − δ|y|2 tells us that there exist a, b ∈ R, and matri-
ces X,Y ∈ S(RN ) such that

(a,Dxψ(t̄, x̄, ȳ), X) ∈ P̄ 2,+u1(t̄, x̄);

(−b,−Dyψ(t̄, x̄, ȳ),−Y ) ∈ P̄ 2,−(−u2)(t̄, ȳ)
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where

a+ b = ψL(s) + ε,(
X 0
0 Y

)
6 (1 + t̄)

2ψ′(s)
s

(
PNA

−ηPN −PNA
−ηPN

−PNA
−ηPN PNA

−ηPN

)
It follows from the properties of P̄ 2,+ and P̄ 2,− that

(a+
µ

(T − t̄)2
, Dxψ(t̄, x̄, ȳ) + 2δx̄,X + 2δI) ∈ P̄ 2,+uN (t̄, x̄);

(−b+
µ

(T − t̄)2
,−Dyψ(t̄, x̄, ȳ)− 2δȳ,−Y − 2δI) ∈ P̄ 2,−uN (t̄, ȳ).

By the definition of viscosity solutions in case of finite dimensional, we obtain

a+
µ

(T − t̄)2
+
ψ′L(s)
s

(1 + t̄)〈Ax̄,A−η(x̄− ȳ)〉+ 2δ〈A1/2x̄, A1/2x̄〉

+ F (t̄, x̄,
ψ′L(s)
s

(1 + t̄)A−η(x̄− ȳ) + 2δx̄,X + 2δI) 6 0

and

− b+
µ

(T − t̄)2
+
ψ′L(s)
s

(1 + t̄)〈Aȳ,A−η(x̄− ȳ)〉 − 2δ〈A1/2ȳ, A1/2ȳ〉

+ F (t̄, ȳ,
ψ′L(s)
s

(1 + t̄)A−η(x̄− ȳ)− 2δȳ,−Y − 2δI) ≥ 0 .

Repeating the arguments from the proof of comparison we obtain that

a+ b 6− ψ′L(s)
s

(1 + t̄)|A
1−η
2 (x̄− ȳ)|2

+ w
(
|A

β
2 (x̄− ȳ)|

(
1 +

ψ′L(s)
s

(1 + t̄)|A
β
2 (x̄− ȳ)|

))
+ 2w1(L, δ)

6− ψ′L(s)
s

|A
1−η
2 (x̄− ȳ)|2 +

ε

2

+Kε

(
|A

β
2 (x̄− ȳ)|

(
1 +

ψ′L(s)
s

(1 + T )|A
β
2 (x̄− ȳ)|

))
+ 2w1(L, δ)

where lim supδ→0 w1(L, δ) = 0. Therefore, using the interpolation inequality (2.2)
with a sufficiently small σ, it follows that

ψL(s) + ε 6− ψ′L(s)
2s

|A
1−η
2 (x̄− ȳ)|2 +

ε

2
+ Cε(ψ′L(s)s+ s) +

c

2
|A

1−η
2 (x̄− ȳ)|+ 2w1(L, δ)

where Cε depends only on Kε and the interpolation constants (but not on L), and
c is such that |A

1−η
2 x| ≥ c|A−

η
2 x| for all x ∈ D(A

1−η
2 ) [5]. Thus, we eventually

have
ψL(s) 6 Cε(ψ′L(s)s+ s)− ε

2
+ 2w1(L, δ),

which becomes, choosing L = Cε and letting δ → 0,

ψL(s) 6 L(ψ′L(s)s+ s)− ε

2
.

This leads to a contradiction in light of (3.26). Thus we have (3.27), which implies

u0(t, x)− u0(t, y) 6 ψL(|A−
η
2 (x− y)|)(1 + T ) + 2M |A−

η
2 (x− y)|
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for all x, y ∈ HN and t ∈ [0, T ]. We obtain the required modulus of uN by letting
µ→ 0.

Next, we show that there is a modulus m depending only on m1 and the function
FR, such that

|uN (t, x)− uN (s, e−(t−s)Ax)| 6 m(t− s) (3.28)
for x ∈ HN , 0 6 t 6 T . Because of (3.24) it is enough to show (3.28) for s = 0
since all the estimates can be reapplied at later time. To do this we begin with
g ∈ C1,1(H) such that ‖g‖∞ < ∞. We denote the Lipschitz constant of Dg by
LDg. We use the fact that h(t, x) = g(e−tAx) solves

ht(t, x) + 〈Ax,Dh(t, x)〉 = 0 in (0, T ]×HN ,

h(0, x) = g(x) in HN

which implies

u = h+ tFmax(LDg,‖Dg‖∞), v = h− tFmax(LDg,‖Dg‖∞)

are respectively a viscosity supersolution and a viscosity subsolution of (3.23). To
see this we note that h is C1,1 in x, ‖Dh‖∞ 6 ‖Dg‖∞, and LDh 6 LDg. It then
suffices to observe (for a subsolution u) the obvious fact that if for a test function
ϕ, u−ϕ has a local maximum at (t, x) then D2ϕ(t, x) ≥ −LDhI ≥ −LDgI. Hence,
comparison gives

|uN (t, x)− g(e−tAx)| 6 tFmax(LDg,‖Dg‖∞). (3.29)

If g ∈ BUC(H) we can approximate it by a function g̃ ∈ C1,1(H) such that
‖Dg̃‖∞ <∞ [10]. Hence, if ũN solves (3.23) with g̃, then

|uN (t, x)− g(e−tAx)| 6 |uN (t, x)− ũN (t, x)|+ |ũN (t, x)− g̃(e−tAx)|
+ |g̃(e−tAx)− g(e−tAx)|

6 2‖g − g̃‖∞ + tFmax(LDg,‖Dg‖∞),

where we have used (3.29) and Proposition 3.2 (i). This gives us (3.28).
Now set vN (t, x) = uN (t, PNx). Since A−

η
2 is compact, (3.25) and (3.28) we have

the equicontinuity of {vN} in the weak topology on bounded subsets of [τ, T ]×H
for τ > 0. The Arzela-Ascoli theorem then provides a subsequence (still denoted
by vN ) converging uniformly on bounded subsets of [τ, T ]×H to a function u that
obviously satisfies the same estimates as u′Ns [13]. Moreover, (3.28) imply that
limt↓0 u(t, x) = g(x), x ∈ H. It remains to show that u solves the limiting equation
in (1.2). Let ψ(t, x) = ϕ(t, x) + δ(t)(1 + |x|2) is a test function of the equation in
(1.2) and let u(t, x) − ψ(t, x) have a maximum at (t̂, x̂) which we may assume to
be strict. It follows that there exists a sequence x̂N = PN x̂ → x̂ as N → ∞ such
that, for every x ∈ HN ,

vN (t, x)− ψ(t, x) 6 vN (t̂, x̂N )− ψ(t̂, x̂).

Therefore, since APN = PNA,

ψt(t̂, x̂N ) + 〈A1/2x̂N , A
1/2Dϕ(t̂, x̂N )〉+ δ(t)|A1/2x̂N |2

+ F (t̂, x̂N , PNDϕ(t̂, x̂N ) + 2δ(t̂)x̂N , PN (D2ϕ(t̂, x̂N ) + 2δ(t̂)I)PN ) 6 0.
(3.30)

Since x̂N ∈ HN and ψ is a test function we have

|A1/2Dϕ(t̂, x̂N )| 6 B + C|A 1
2−kx̂N | (3.31)
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for some independent constants B,C. Also, by (3.31), (2.2), (2.3) and (3.3),∣∣∣F (t̂, x̂N , PNDϕ(t̂, x̂N ) + δ(t̂)x̂N , PN (D2ϕ(t̂, x̂N ) + δ(t̂)I)PN )
∣∣∣

6 C1

(
1 + |A

β
2 x̂N |2 + |A 1

2−kx̂N |2
)

6 C2 +
δ(t̂)
4
|A1/2x̂N |2.

Using this, (3.31) and the interpolation inequality (2.2), we therefore obtain from
(3.30) that |A1/2x̂N | 6 C3 for some constant C3 independent ofN . Thus, A1/2x̂N ⇀
A1/2x̂ (so x̂ ∈ D(A1/2)) and hence

A
β
2 x̂N → A

β
2 x̂, and A1/2Dϕ(t̂, x̂N ) → A1/2Dϕ(t̂, x̂).

These convergence and Proposition 3.3 allow us to pass to the limit in (3.30) as
N →∞ to conclude that

(ψ)t(t̂, x̂) + 〈A1/2x̂, A1/2Dϕ(t̂, x̂)〉+ δ(t̂)|A1/2x̂|2

+ F (t̂, x̂, Dϕ(t̂, x̂) + δ(t̂)x̂, D2ϕ(t̂, x̂) + δ(t̂)I) 6 0.

This proves that u is a viscosity subsolution. Similarly, we obtain that u is a
viscosity supersolution and therefore it is a viscosity solution of the equation in
(1.2). The comparison gives us the uniqueness of u.
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