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EXISTENCE OF SOLUTIONS FOR THE ONE-PHASE AND THE
MULTI-LAYER FREE-BOUNDARY PROBLEMS WITH THE

P-LAPLACIAN OPERATOR

IDRISSA LY, DIARAF SECK

Abstract. By considering the p-laplacian operator, we show the existence of a

solution to the exterior (resp interior) free boundary problem with non constant

Bernoulli free boundary condition. In the second part of this article, we study
the existence of solutions to the two-layer shape optimization problem. From

a monotonicity result, we show the existence of classical solutions to the two-

layer Bernoulli free-boundary problem with nonlinear joining conditions. Also
we extend the existence result to the multi-layer case.

1. Introduction

In part I, we study the exterior and interior free-boundary problem with non-
constant Bernoulli boundary condition. Given K a C2-regular bounded domain in
RN and a positive continuous function g, such that g(x) > α > 0 for all x ∈ R, we
find for the exterior problem a domain Ω and a function uΩ such that

−∆puΩ = 0 in Ω\K, 1 < p < ∞
uΩ = 0 on ∂Ω
uΩ = 1 on ∂K

−∂uΩ

∂νe
= g(x) on ∂Ω

(1.1)

Here ∆p denotes the p-Laplace operator, i.e. ∆pu := div(‖∇u‖p−2∇u) and νe is
the normal exterior unit of Ω. And for the interior problem, we look for a domain
Ω and a function uΩ such that

−∆puΩ = 0 in K\Ω̄, 1 < p < ∞
uΩ = 1 on ∂Ω
uΩ = 0 on ∂K

∂uΩ

∂νi
= g(x) on ∂Ω

(1.2)
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where νi is the normal interior unit of Ω. The problem arises when a fluid flows in
porous medium around an obstacle. In certain industrial problems such as shape
optimization, galvanization, we seek to find level lines of the potential function with
prescribed pressure.

Inspired by the pioneering work of Beurling, where the notion of sub and su-
persolutions in geometrical case is used, Henrot and Shahgohlian [16] studied this
problem . They proved that when K ⊂ RN is a bounded and convex domain a
generalization of [14, 15] to the case of the non-constant Bernoulli boundary con-
dition.

By combining a variational approach and a sequential method, we establish an
existence result by generalizing the problems studied in [25, 26] to the case of the
non-constant Bernoulli boundary condition.

The structure of Part I is as follows: In the first part, we present the main
result which generalizes results in [25, 26], to the case of non-constant Bernoulli
boundary condition. In the second section, we give auxiliary results. The third
part deals with the study of the shape optimization problem and the existence of
Lagrange multiplier λΩ for the exterior (respectively interior) case. First, we study
the existence result for the shape optimization problem for the exterior case: Find

min{J1(w), w ∈ O1
ε},

where O1
ε = {w ⊃ K : w is an open set satisfying the ε-cone property,

∫
w

gp

cp (x)dx =
V0}, where V0 is a given positive value. The functional J1 is

J1(w) :=
1
p

∫
w\K

‖∇uw‖pdx,

where uw is a solution to the Dirichlet problem

−∆puw = 0 in w\K, 1 < p < ∞
uw = 0 on ∂w

uw = 1 on ∂K.

(1.3)

Second, we study the existence result for the shape optimization problem. For the
interior case: Find

min{J2(w), w ∈ O2
ε},

where O2
ε = {w ⊂ K : w is an open set satisfying the ε-cone property,

∫
w

gp

cp (x)dx =
W0}, where W0 is a given positive value. The functional J2 is

J2(w) :=
1
p

∫
K\w̄

‖∇uw‖pdx,

where uw is a solution to the Dirichlet problem

−∆puw = 0 in K\w̄, 1 < p < ∞
uw = 1 on ∂w

uw = 0 on ∂K.

(1.4)

Next, we obtain an optimality condition for the exterior (respectively interior)
case

− ∂u

∂νe
= (

p

1− p
λΩ)1/p (respectively

∂u

∂νi
= (

p

p− 1
λΩ)1/p) on ∂Ω
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Then we conclude this section with a monotonicity result for the exterior (respec-
tively interior) case. The last part is the proof of the main result for the exterior
(respectively interior) case.

In Part II, we study the multi-layer case. Let D∗
0 and D∗

1 be C2-regular, compact
sets in RN and star shaped with respect to the origin such that D∗

1 strictly contains
D∗

0 . We look for (D, v, u) where D is C2-regular domain such that D∗
0 ⊂ D ⊂ D̄ ⊂

D∗
1 and v and u are solutions of the problems

−∆pv = 0 in D∗
1\D

v = 1 on ∂D

v = 0 on ∂D∗
1

−∆pu = 0 in D\D∗
0

u = 0 on ∂D

u = 1 on ∂D∗
0

(1.5)

respectively, and satisfy the nonlinear joining condition

‖∇v‖p − ‖∇u‖p = λ on ∂D, λ ∈ R. (1.6)

This joining condition is justified by the method which we are using.
The described above problem appears in several physical situations and can be

appropriately interpreted in many industrial applications. In the case p = 2, we
refer the reader to [1, 2] and the references therein.

Inspired by the pioneering work of Beurling, where the notion of sub and su-
per solutions in the geometrical case is used, Acker et al [7] studied this problem
with a more general non linear joining junction. They assumed that D∗

0 and D∗
1

are bounded convex domains and D∗
1 contains D∗

0 strictly. By considering the p-
laplacian operator, we show the existence of a solution to the exterior (resp interior)
free boundary problem with non constant Bernoulli free boundary condition. In
the second part of this article, we study the existence of solutions to the two-layer
shape optimization problem. From a monotonicity result, we show the existence of
classical solutions to the two-layer Bernoulli free-boundary problem with nonlinear
joining conditions. Also we extend the existence result to the multi-layer case..
They proved there exists a convex C1 domain D, D∗

0 ⊂⊂ D ⊂⊂ D∗
1 which is a

classical solution of the two-layer free-boundary problem (1.5)-(1.6).
Using convex domains, Acker [1, 2] proved the existence for multi-layer free

boundary problems by using the operator method in the case where p = 2. Laurence
and Stredulinsky [18, 19], use convex domains, when proving an existence result in
the case p = 2, N = 2.

Now, by combining a variational approach and a sequential method, we establish
an existence result for non necessarily convex domains.

The structure of the Part II is as follows. In the first part, we present the main
result. By considering the auxiliary results in the Part I, we study in the second part
the shape optimization problem and the existence of Lagrange multiplier function
λ. The existence result for the shape optimization problem consists of finding a
domain D such that

J(D) = min{J(w), w ∈ Oε},
where Oε = {w ⊂ RN , D∗

0 ⊂⊂ D ⊂⊂ D∗
1 , w verifying the ε-cone property , vol(w) =

m0}, where vol denotes the volume, m0 is a fixed value in R∗+. The functional J is
defined on Oε by

J(D) =
1
p

∫
D∗

1\D
‖∇v‖p +

1
p

∫
D\D∗

0

‖∇u‖p, 1 < p < ∞,
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where v and u are solutions of
−∆pv = 0 in D∗

1\D
v = 1 on ∂D

v = 0 on ∂D∗
1

−∆pu = 0 in D\D∗
0

u = 0 on ∂D

u = 1 on ∂D∗
0

(1.7)

respectively. Next, we obtain the joining condition as an optimality condition:

‖∇v‖p − ‖∇u‖p =
p

p− 1
λD on ∂D, λD ∈ R . (1.8)

Then we conclude this section with a monotonicity result. The third section is
devoted to the proof of the main result. And the last part is devoted to the extension
to the multi-layer case.

2. main results of Part I

For the exterior case, let K be a C2-regular, star-shaped with respect to the
origin and bounded domain.

Theorem 2.1. If Ω solution of the shape optimization problem min{J1(w), w ∈ O1
ε}

is C2-regular domain, then the free boundary problem (1.1) admits a classical unique
solution Ω.

For the interior case, let K be a C2-regular, star-shaped with respect to the origin
and bounded domain. Let

α(RK , p,N) :=


e/RK if p = N

|p−N
p−1 |∣∣( p−1

N−1 )
N−1
N−p − ( p−1

N−1 )
p−1
N−p

∣∣ 1
RK

if p 6= N.

where RK = sup{R > 0 : B(o,R) ⊂ K}, Here cK is the minimal value for which
the interior Bernoulli problem (1.2) admits a solution.

Theorem 2.2. If the solution Ω of the shape optimization problem min{J(w), w ∈
O2

ε} is C2-regular, then for all constant c > 0 satisfying c ≥ α(RK , p,N), Ω is the
classical solution of the free-boundary problem (1.2). Moreover The constant cK

satisfies 0 < cK ≤ α(RK , p,N).

To prove these theorems we need the following results.

3. Auxiliary results

For the rest of this article, we consider a fixed, closed domain D which contains
all the open subsets used.

Let ζ be an unitary vector of RN , ε be a real number strictly positive and y be
in RN . We call a cone with vertex y, of direction ζ and angle to the vertex and
height ε, the set defined by

C(y, ζ, ε, ε) = {x ∈ RN : |x− y| ≤ ε and |(x− y)ζ| ≥ |x− y| cos ε}.

Let Ω be an open set of RN , Ω is said to have the ε-cone property if for all x ∈ ∂Ω
then there exists a direction ζ and a strictly positive real number ε such that

C(y, ζ, ε, ε) ⊂ Ω, for all y ∈ B(x, ε) ∩ Ω̄.
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Let K1 and K2 be two compact subsets of D. Let

d(x, K1) = inf
y∈K2

d(x, y), d(x,K2) = inf
y∈K1

d(x, y).

Note that

ρ(K1,K2) = sup
x∈K2

d(x,K1), ρ(K2,K1) = sup
x∈K1

d(x,K2).

Let
dH(K1,K2) = max[ρ(K1,K2), ρ(K2,K1)],

which is called the Hausdorff distance of K1 and K2.
Let (Ωn) be a sequence of open subsets of D and Ω be an open subset of D. We

say that the sequence (Ωn) converges on Ω in the Hausdorff sense and we denote
by Ωn

H→ Ω if limn→+∞ dH(D̄\Ωn, D̄\Ω) = 0.
Let (Ωn) be a sequence of open sets of RN and Ω be an open set of RN . We

say that the sequence (Ωn) converges on Ω in the sense of Lp, 1 ≤ p < ∞ if χΩn

converges on χΩ in Lp
loc(RN ), χΩ being the characteristic functions of Ω.

Let (Ωn) be a sequence of open subsets of D and Ω be an open subset of D. We
say that the sequence (Ωn) converges on Ω in the compact sense if:

(1) Every compact G subset of Ω, is included in Ωn for n large enough,
(2) every compact Q subset of Ω̄c, is included in Ω̄c

n for n large enough.

Lemma 3.1. Let Ω1 and Ω2 be two different domains star-shaped with respect to
the origin and bounded. If Ω̄1 ⊂ Ω̄2 then there exists 0 < t0 < 1 such that t0Ω2 ⊂ Ω1

and t0∂Ω2 ∩ ∂Ω1 6= ∅.

The proof of the above lemma can be found in [22].

Lemma 3.2. Let (fn)n∈N be a sequence of functions of Lp(Ω), 1 ≤ p < ∞ and
f ∈ Lp(Ω). We suppose fn converges on f a.e. and limn→∞ ‖fn‖p = ‖f‖p. Then
we have limn→∞ ‖fn − f‖p = 0.

For the proof of the above lemma see for example [17].

Lemma 3.3 (Brezis-Lieb). Let (fn)n∈N be a bounded sequence in Lp(Ω), 1 ≤ p <
∞. We suppose that fn converges on f a.e., then f ∈ Lp(Ω) and

‖f‖p = lim
n→∞

(‖fn − f‖p + ‖fn‖p).

For the proof of the above lemma, see for example [17].

Lemma 3.4. Let (Ωn)n∈N be a sequence of open sets in RN having the ε-cone
property, with Ω̄n ⊂ F ⊂ D, F a compact set and D a ball, then, there exists an
open set Ω, included in F , which satisfies the ε

2 -cone property and a subsequence
(Ωnk

)k∈N such that

χΩnk

L1

→ χΩ, Ωnk

H→ Ω

∂Ωnk

H→ ∂Ω, Ω̄nk

H→ Ω̄.

The above lemma is a well known result in functional analysis related to shape
optimization; its proof can be found for example in [26].
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4. Shape optimization result and monotonicity result

For the exterior case, we have the following result, whose proof can be found in
[25].

Proposition 4.1. The problem: Find Ω ∈ O1
ε such that J1(Ω) = min{J1(w), w ∈

O1
ε} admits a solution.

For the interior case, we have the following result, whose proof can be found in
[26].

Proposition 4.2. The problem: Find Ω ∈ O2
ε such that J2(Ω) = min{J2(w), w ∈

O2
ε} admits a solution.

Remark 4.3. Let us define another class of domains:

O0 = {w ⊃ K : w is an open set ofRN .Ck-regular domain,
∫

w

gp

cp
(x)dx = V0}

where k ≥ 3. It is possible to use the oriented distance, the results in [9, theorems
5.3 5.5,5.6], [10] and the Ascoli theorem to prove the existence of a domain at least
of class Ck−1 which is minimum for the shape optimization problem.

For the rest of this article, we assume that Ω is C2-regular in order to use the
shape derivatives. The next theorems give a necessary condition optimality condi-
tion. We follow the approach of Sokolowski-Zolesio [29] to define the shape deriva-
tives (see also [28]).

For the exterior case, we have the following result.

Proposition 4.4. If Ω is the solution of the shape optimization problem

min{J1(w) : w ∈ O1
ε},

then there exists a Lagrange multiplier λΩ < 0 such that − ∂u
∂νe

= ( p
1−pλΩ)

1
p g

c (x) on
∂Ω.

Proof. Let J1 be a functional defined on O1
ε by

J1(w) :=
1
p

∫
w\K

‖∇uw‖pdx,

where uw is a solution to the Dirichlet problem

−∆puw = 0 in Ω\K, 1 < p < ∞
uw = 0 on ∂w

uw = 1 on ∂K.

(4.1)

We use classical Hadamard’s formula to compute the Eulerian derivative of the
functional J1 at the point Ω in the direction V . A standard computation, see [22],
shows

dJ1(Ω;V ) =
∫

∂Ω

‖∇u‖p−2 ∂u

∂νe
u′ds +

1
p

∫
∂Ω

‖∇u‖pV (0).νeds

where u′ = − ∂u
∂νe

V (0).νe on ∂Ω. This implies

dJ(Ω;V ) =
1− p

p

∫
∂Ω

‖∇u‖pV (0).νeds.
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Let us take J(Ω) =
∫
Ω

gp

cp (x)dx. Then

dJ(Ω;V ) =
∫

Ω

div(
gp

cp
(x)V (0))dx =

∫
∂Ω

gp

cp
(x)V (0).νeds.

Ω is optimal then there exists a Lagrange multiplier λΩ ∈ R such that dJ1(Ω, V ) =
λΩdJ(Ω; V ). We obtain∫

∂Ω

(
1− p

p
‖∇u‖p − λΩ

gp

cp
(x)V (0).ν)ds = 0 for all V.

Then

‖∇u‖p =
p

1− p
λΩ

gp

cp
(x) on ∂Ω,

‖∇u‖ = (
p

1− p
λΩ)

1
p
g

c
(x) on ∂Ω

Since Ω is C2-regular and u = 0 on ∂Ω, we get

− ∂u

∂νe
= (

p

1− p
λΩ)

1
p
g

c
(x) on ∂Ω.

�

For the interior case, we have the following result.

Proposition 4.5. If Ω is the solution of the shape optimization problem

min{J2(w) : w ∈ O2
ε},

then there exists a Lagrange multiplier λΩ > 0 such that ∂u
∂νi

= ( p
p−1λΩ)

1
p g

c (x) on
∂Ω.

For the proof of the above proposition, we use the same technics as in proposition
4.4. To conclude this section, we state a monotonicity result. For the exterior case,
we have the following result, whose proof can be found in [25].

Proposition 4.6. Suppose that K is star-shaped with respect to the origin. Let Ω1

and Ω2 be two different solutions to the shape optimization problem min{J1(w), w ∈
O1

ε}, star-shaped with respect to the origin such that Ω̄1 ⊂ Ω̄2. The mapping which
associates to every Ω the corresponding Lagrange multiplier λΩ is strictly increasing
i.e λΩ2 > λΩ1 .

For the interior case, we have the following result, whose proof is found in [26].

Proposition 4.7. Suppose that K is star-shaped with respect to the origin. Let Ω1

and Ω2 be two different solutions to the shape optimization problem min{J2(w), w ∈
O2

ε}, star-shaped with respect to the origin such that Ω1 ⊂ Ω2 and ∂Ω1 ∩ ∂Ω2 6= ∅.
The mapping which associates to every Ω the corresponding Lagrange multiplier λΩ

is decreasing i.e λΩ1 ≥ λΩ2 .

5. Proof of the main results of Part I

We use the preceding properties to prove the main result. Exterior case:
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Proof of the Theorem 2.1. We choose a ball B(O,R) centered at the origin and
radius R and a ball B(O, r) such that B(O, r) ⊂ K ⊂ B(O, R). First, we have to
look for a solution u0 to the problem

−∆pu = 0 in BR\Br

u = 0 on ∂BR

u = 1 on ∂Br.

(5.1)

The solution u0 is explicitly determined by

u0(x) =


ln ‖x‖ − lnR

ln r − lnR
if p = N

‖x‖
p−N
p−1 −R

p−N
p−1

r
p−N
p−1 −R

p−N
p−1

if p 6= N,

(5.2)

and

‖∇u0(x)‖ =


1

‖x‖2(lnR− ln r)
if p = N

|p−N
p−1 |‖x‖

−N−p+2
p−1

|r
p−N
p−1 −R

p−N
p−1 |

if p 6= N.

In particular ‖∇u0‖ < c on ∂BR for R big enough.
Now consider the problem

−∆pu = 0 in BR\K
u = 0 on ∂BR

u = 1 on ∂K.

(5.3)

This problem admits a solution denoted by uR. This solution is obtained by mini-
mizing the functional J1 defined on the Sobolev space

V ′ = {v ∈ W 1,p
0 (BR), v = 1on ∂K}

and J1(v) = 1
p

∫
BR\K ‖∇v‖pdx.

Consider the problem
−∆pv = 0 in BR\K

v = 0 on ∂BR

v = u0 on ∂K.

(5.4)

It is easy to see that v = ur is a solution to problem (5.4). By the comparison
principle [30], we obtain 0 ≤ u0 ≤ 1 and 0 ≤ uR ≤ 1. On ∂(BR\K), we obtain
uR ≥ u0 and then, uR ≥ u0 in BR\K. Finally, we have ‖∇uR‖ ≥ ‖∇u0‖ on ∂BR.

Case p = N . If R1 < R0, we get ‖∇u0‖|∂BR0
≤ ‖∇u0‖|∂BR1

then the mapping for
all R associates ‖∇u0‖|∂BR

is decreasing.
Initially, we choose a radius R0 big enough and we compute ‖∇u0‖|∂BR0

and if∣∣‖∇u0‖|∂Br0
− c

∣∣ > δ, where δ > 0 is a fixed and sufficiently small number. We
continue the process by varying R in the increasing sense, we will achieve a step
denoted N such that

∣∣‖∇u0‖|∂BRN
− c

∣∣ < δ.
Consider ON the class of admissible domains defined as follows

ON =
{

w ∈ Oε : w ⊂ BRN
,

∫
w

gp

cp
= V0

}
,
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where V0 denotes a fixed positive constant. We look for Ω ∈ ON and λΩ a real such
that

−∆pu = 0 in Ω\K
u = 0 on ∂Ω
u = 1 on∂K

−∂u

∂ν
= cΩ on ∂Ω

(5.5)

where cΩ = ( −p
p−1λΩ)

1
p g

c (x). Applying proposition (4.1), the shape optimization
problem min{J1(w), w ∈ ON} admits a solution and by proposition 4.4, Ω satisfies
the overdetermined boundary condition −∂u

∂ν = cΩ.
We have Ω ∈ ON , then Ω ⊂ BRN

, according to the lemma 3.1 there exists t0 < 1
such that t0BRN

⊂ Ω, and t0∂BRN
∩ ∂Ω 6= ∅. Let us take x0 ∈ t0∂BRN

∩ ∂Ω and
set ut0(x) = uRN

( x
t0

), x
t0
∈ BRN

\K. ut0 satisfies

−∆put0 = 0 in t0(BRN
\K)

ut0 = 0 on t0∂BRN

ut0 = 1 on t0∂K.

(5.6)

On the other hand, we have t0BRN
⊂ Ω, let us take w3 = u|t0BRN

, then w3 satisfies

−∆pw3 = 0 in t0BRN
\K

w3 = u|t0∂BRN
on t0∂BRN

w3 = 1 on ∂K.

(5.7)

Let us consider the problem

−∆pz = 0 in t0BRN
\K

z = 0 on ∂t0∂BRN

z = ut0 |∂K on ∂K.

(5.8)

It is easy to see that z = ut0 is a solution to the problem (5.8). And we get
0 ≤ ut0 ≤ 1 and 0 ≤ u ≤ 1. On ∂(t0BRN

\K), we have ut0 ≤ u, by the comparison
principle [30], we obtain ut0 ≤ u in(t0BRN

\K). We have

lim
t→0

ut0(x0 − νet)− ut0(x0)
t

≤ lim
t→0

u(x0 − νet)− u(x0)
t

,

which is equivalent to

−∂ut0

∂νe
(x0) ≤ − ∂u

∂νe
(x0) .

This implies

‖∇uRN
(x0)‖ ≤ − ∂u

∂νe(x0)

Let us consider Ω = Ω0 as the first iteration and

O1
N =

{
w ∈ Oε : w ⊂ Ω0 ⊂ BRN

,

∫
w

gp

cp
= V1

}
, (V1 < V0)

where V1 denotes a fixed positive constant.
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We iterate by looking for Ω1 ∈ O1
N and λΩ1 such that such that

−∆pu1 = 0 in Ω1\K
u1 = 0 on ∂Ω1

u1 = 1 on∂K

−∂u

∂ν
= cΩ1 on ∂Ω1

(5.9)

where cΩ1 = ( −p
p−1λΩ1)

1
p g

c (x). Applying proposition (4.1), the shape optimization
problem min{J2(w), w ∈ O1

N} admits a solution and by proposition 4.4, Ω1 satisfies
the overdetermined boundary condition −∂u1

∂ν = cΩ1 . We have Ω ∈ O1
N , then

Ω1 ⊂ BRN
, according the lemma 3.1 there exists t1 < 1 such that t1BRN

⊂ Ω, then
t1∂BRN

∩ ∂Ω1 6= ∅.
Let us take x1 ∈ t1∂BRN

∩ ∂Ω1 and set ut1(x) = uRN
( x

t1
), x

t1
∈ BRN

\K. ut1

satisfies
−∆put1 = 0 in t1(BRN

\K)
ut1 = 0 on t1∂BRN

ut1 = 1 on t1∂K.

(5.10)

On the other hand, we have t1BRN
⊂ Ω1, let us take w4 = u|t1BRN

, then w4 satisfies

−∆pw4 = 0 in t1BRN
\K

w4 = u1|t1∂BRN
on t1∂BRN

w4 = 1 on ∂K.

(5.11)

Let us consider the problem

−∆pz = 0 in t1BRN
\K

z = 0 on t1∂BRN

z = ut1 |∂K on ∂K.

(5.12)

It is easy to see that z = ut1 is a solution to (5.12). And we get 0 ≤ ut1 ≤ 1 and
0 ≤ u1 ≤ 1. On ∂(t1BRN

\K), we have ut1 ≤ u1, by the comparison principle [30],
we obtain ut1 ≤ u1 in(t1BRN

\K). We have

lim
t→0

ut1(x1 − νet)− ut1(x1)
t

≤ lim
t→0

u1(x1 − νet)− u1(x1)
t

,

which is equivalent to

−∂ut1

∂νe
(x1) ≤ −∂u1

∂νe
(x1).

This implies

‖∇uRN
(x1)‖ ≤ −∂u1

∂νe
(x1).

We can continue the process until a step denoted by k such that

−∂uk

∂νe
(xk) = cΩk

For all s ∈ ∂BRN
, we get ‖∇u0(s)‖ ≤ ‖∇uRN

(s)‖ then there exists s0 ∈ ∂BRN
,

such that ‖∇u0(s0)‖ > cΩk
.

The sequence (cΩj
)(0≤j≤k) is strictly decreasing and positive, then ( −p

p−1λΩj
)

1
p

converges on c. Then there exists Ω solution to problem (1.1), the sequence
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(Ωj)(0≤j≤k) gives a good approximation to Ω. The uniqueness of the solution Ω is
given by the monotonicity result.

Case p 6= N . If R1 < R0, we get ‖∇u0‖|∂BR1
≥ ‖∇u0‖|∂BR0

then the mapping
for all R associates ‖∇u0‖|∂BR

is decreasing. Initially, we choose a radius R0 big
enough and we compute ‖∇u0‖|∂BR0

and if
∣∣‖∇u0‖|∂BR0

− c
∣∣ > δ, δ > 0 fixed and

sufficiently small number. We continue the process by varying R in the increasing
sense, we will achieve a step denoted N such that

∣∣‖∇u0‖|∂BRN
− c

∣∣ < δ. Here the
reasoning is identical to the case p = N . �

Interior case.

Proof of the Theorem 2.2. Let RK = sup{R > 0 : B(o,R) ⊂ K}. Let r > 0 such
that B(o, r) ⊂ B(o,RK). First, we have to look for a solution u0 to the problem

−∆pu = 0 in BRK
\Br

u = 0 on ∂BRK

u = 1 on ∂Br.

(5.13)

The solution u0 is explicitly determined by

u0(x) =


ln ‖x‖ − lnRK

ln r − lnRK
if p = N

−‖x‖
p−N
p−1 + R

p−N
p−1

K

R
p−N
p−1

K − r
p−N
p−1

if p 6= N,
(5.14)

and

‖∇u0(x)‖ =


1

r(lnRK − ln r)
if p = N

|p−N
p−1 |‖x‖

−N+1
p−1

|r
p−N
p−1 −R

p−N
p−1 |

if p 6= N.

In particular ‖∇u0‖ > c on ∂Br for r small enough. Now let us consider the
problem

−∆pu = 0 in K\Br

u = 1 on ∂Br

u = 0 on ∂K.

(5.15)

Then problem (5.15) admits a solution denoted by ur. This solution is obtained by
minimizing the functional J defined on the Sobolev space

V ′ = {v ∈ W 1,p(K\Br), v = 1on ∂Br and v = 0 on ∂K}

and J(v) = 1
p

∫
K\Br

‖∇v‖pdx. Consider the problem

−∆pv = 0 in BRK
\Br

v = 1 on ∂Br

v = ur on ∂BRK
.

(5.16)

It is easy to see that v = ur is a solution to (5.16). By the comparison principle
[30], we obtain 0 ≤ u0 ≤ 1 and 0 ≤ ur ≤ 1. On ∂(BRK

\Br), we obtain ur ≥ u0

and then, ur ≥ u0 in BRK
\Br. Finally, we have ‖∇ur‖ ≤ ‖∇u0‖ on ∂Br.
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Case p = N .

‖∇u0‖|∂Br
=

1
r(lnRK − ln r)

= h(r), ∀r ∈]0, RK [.

It is easy to see that h(r) is a strictly decreasing function on ]0, RK

e [ and a strictly
increasing function on ]RK

e , RK [. Then for all r ∈]0, RK [, ‖∇u0‖|∂Br
≥ h(RK

e ) =
e

RK
.

(1) For g(x) = e/RK , let δ > 0 be a fixed and sufficiently small number. To
initialize we choose r0 ∈]0, RK

e [∪]RK

e , RK [ such that
∣∣‖∇u0‖|∂Br0

− c
∣∣ > δ. To fix

ideas let us consider r0 ∈]0, RK

e [. The process will be identical if r0 ∈]RK

e , RK [.
By varying r in the increasing sense, we will achieve a step denoted n such that

rn ∈]0,
RK

e
[and

∣∣‖∇u0‖|∂Brn
− c

∣∣ < δ.

Consider On the class of admissible domains defined as follows

On =
{
w ∈ Oε, Brn

⊂ w, ∂Brn
∩ ∂w 6= ∅, and

∫
w

gp

cp
= V0

}
,

where V0 denotes a fixed positive constant. We look for Ω ∈ On and λΩ such that

−∆pu = 0 in K\Ω̄
u = 1 on ∂Ω
u = 0 on∂K

∂u

∂ν
= cΩ on ∂Ω

(5.17)

where cΩ = ( p
p−1λΩ)

1
p g

c (x). Applying the proposition (4.2), the shape optimization
problem min{J2(w), w ∈ On} admits a solution and by proposition 4.5, Ω satisfies
the overdetermined boundary condition ∂u

∂ν = cΩ. Then problem (5.5) admits a
solution.

Since Ω ∈ On, we have Brn ⊂ Ω, ∂Brn ∩ ∂Ω 6= ∅ and urn satisfies

−∆purn = 0 in K\Brn

urn
= 1 on ∂Brn

urn
= 0 on ∂K.

(5.18)

Let us consider the problem

−∆pz = 0 in K\Ω̄
z = urn

on ∂Ω
z = 0 on ∂K.

(5.19)

It is easy to see that z = urn
is a solution to (5.19), and we get 0 ≤ urn

≤ 1 and
0 ≤ u ≤ 1. On ∂(K\Ω̄), we have urn ≤ u. Since ∂Ω∩∂Brn 6= ∅, let x0 ∈ ∂Ω∩∂Brn ,
we have

lim
t→0

urn(x0 − νt)− urn(x0)
t

≤ lim
t→0

u(x0 − νt)− u(x0)
t

,

This is equivalent to
∂urn

∂ν
(x0) ≥

∂u

∂ν
(x0) = cΩ.
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Let Ω = Ω0 as the first iteration. We iterate by looking for Ω1 ∈ O1
n such that

−∆pu1 = 0 in K\Ω̄1

u1 = 1 on ∂Ω1

u1 = 0 on ∂K

∂u1

∂ν
= cΩ1 on ∂Ω1.

(5.20)

where cΩ1 = ( p
p−1λΩ1)

1
p g

c (x), and

O1
n =

{
w ∈ Oε : Ω0 ⊂ w, ∂w ∩ ∂Brn 6= ∅

∫
w

gp

cp
= V1

}
,

where V1 is a strictly positive constant and V0 < V1. By the same reasoning as
above, we conclude that

∂urn

∂ν
(x1) ≥

∂u1

∂ν
(x1) = cΩ1

where x1 ∈ ∂Ω1 ∩ ∂Brn
. We can continue the process until a step denoted by k

which we will determine and we have
∂urn

∂ν
(xk) ≥ ∂uk

∂ν
(xk) = cΩk

and xk ∈ ∂Ωk ∩ ∂Brn .

Finally, we have constructed an increasing sequence of domain solutions: Ω0 ⊂
Ω1 ⊂ Ω2 · · · ⊂ Ωk. By the monotonicity result, we have cΩ0 ≥ cΩ1 ≥ cΩ2 · · · ≥ cΩk

.
Since ‖∇urn

‖ ≤ ‖∇u0‖ on ∂Brn
, k is chosen as follows: At each point s0 ∈ ∂Brn

,
we have

cΩk
≤ ∂u0

∂ν
(s0) ≤ cΩk−1 .

Then we obtain the inequality

cΩk
− e

RK
≤ ∂u0

∂ν
(s0)−

e

RK
≤ cΩk−1 −

e

RK
. (5.21)

The sequence (cΩj
)(0≤j≤k) is decreasing and strictly positive, then it converges on

l. Passing to the limit in (5.21), we obtain that l = e
RK

and there exists Ω solution
to problem (1.2). The sequence (Ωj)(0≤j≤k) gives a good approximation to Ω. The
uniqueness of the solution Ω is given by the monotonicity result.
(2) For g(x) > e

RK
and r ∈]0, RK

e [∪]RK

e , RK [. We have the same reasoning and we
show that the problem (1.2) admits a solution.

Case p 6= N . Here the reasoning is identical to the case p = N . We note that

‖∇u0‖|∂Brn
=

∣∣p−N

p− 1

∣∣ 1

1− ( r
RK

)
N−p
p−1

1
r

= h(r)

and h is strictly increasing on ]( p−1
N−1 )

p−1
N−p RK , RK [ and a strictly decreasing on

]0, ( p−1
N−1 )

p−1
N−p RK [. For all

g(x) ≥ |p−N

p− 1
| 1

|( p−1
N−1 )

N−1
N−p − ( p−1

N−1 )
p−1
N−p |

1
RK

= h((
p− 1
N − 1

)
p−1
N−p RK),

problem (1.1) admits a solution.
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It is easy to have, 0 < cK ≤ α(RK , p, N). If K is a ball of radius R, an explicit
computation gives cK = α(R, p,N) and for all 0 < c < cK problem (1.2) has no
solution. �

6. Main result of Part II

Let D∗
0 and D∗

1 be C2-regular, compact sets in RN and starshaped with respect
to the origin such that D∗

1 strictly contains D∗
0 . We want to find (v, u) solutions of

−∆pv = 0 in D∗
1\D

v = 1 on ∂D

v = 0 on ∂D∗
1

−∆pu = 0 in D\D∗
0

u = 0 on ∂D

u = 1 on ∂D∗
0

(6.1)

respectively, and satisfy the non linear joining condition

‖∇v‖p − ‖∇u‖p = λ on ∂D, (6.2)

where λ is a given real ∈ R.

Theorem 6.1. Let D∗
0 and D∗

1 be C2-regular, compact sets in RN and starshaped
with respect to the origin such that D∗

1 strictly contains D∗
0. One supposes in add

that there is R0 = sup{R > 0 : B(O, R) ∈ D∗
1}and D∗

0 ∈ B(O,R0) If D, C2-regular
domain solution to the shape optimization problem min{J(w), w ∈ Oε} such that
D∗

0 ⊂⊂ D ⊂⊂ D∗
1, then D is a solution of the two-layer free boundary problem

(6.1)-(6.2).

To prove the main result of the Part II, we need to establish some results such
as shape optimization and monotonicity results.

7. Shape optimization and monotonicity result

Theorem 7.1. The problem: Find D ∈ Oε such that J(D) = min{J(w), w ∈ Oε}
admits a solution

Proof. Let E be a functional defined on W 1,p(D∗
1)×W 1,p(D∗

1) by

E(ṽ, ũ) =
1
p

∫
D∗

1

‖∇ṽ‖p +
1
p

∫
D∗

1

‖∇ũ‖p, 1 < p < ∞,

where ṽ is the extension of v in D0 and ũ is the extension by 0 in D∗
1\D of u. And

v and u are solutions of
−∆pv = 0 in D∗

1\D
v = 1 on ∂D

v = 0 on ∂D∗
1

−∆pu = 0 in D\D∗
0

u = 0 on ∂D

u = 1 on ∂D∗
0

(7.1)

Let J(D) := E(ṽ, ũ). It is easy to see that J(D) ≥ 0, this implies inf{J(w), w ∈
Oε} > −∞. Let α = inf{J(w), w ∈ Oε}. Then there exists a minimizing sequence
(Dn)(n∈N) ⊂ Oε such that J(Dn) converges to α. Since the sequence is bounded,
there exists a compact set F such that D∗

0 ⊂⊂ D̄n ⊂ F ⊂⊂ D∗
1 . By the lemma 3.4,

there exists a subsequence (Dnk
)(nk∈N) and D verifying the ε-cone property such

that
χDnk

L1

→ χD andDnk

H→ D.

It is easy to see the sequence (vn, un) is bounded in W 1,p(D∗
1) see [25, 27]. Since

W 1,p(D∗
1) is a reflexive space, there exists a subsequence (vnk

, unk
) and (v∗, u∗) such
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that vnk
converges weakly on v∗ in W 1,p(D∗

1) and unk
converges weakly on u∗ in

W 1,p(D∗
1). The norm is lower semi continuous for the weak topology in W 1,p(D∗

1),
then we have

1
p

∫
D∗

1\D
‖∇v∗‖p +

1
p

∫
D\D∗

0

‖∇u∗‖p

≥ lim inf(
1
p

∫
D∗

1\Dnk

‖∇vnk
‖p +

1
p

∫
Dnk

\D∗
0

‖∇unk
‖p).

From the above we get J(D) ≥ α, then J(D) = min{J(w), w ∈ Oε}. �

Remark 7.2. On the one hand, see [25] [26], it is easy to verify that v = v∗, u = u∗

and v∗, u∗ satisfy

−∆pv
∗ = 0 in D′(D∗

1\D)

v∗ = 1 on ∂D

v∗ = 0 on ∂D∗
1

−∆pu
∗ = 0 in D′(D\D∗

0)

u∗ = 0 on ∂D

u∗ = 1 on ∂D∗
0

respectively. On the other hand, we have regularity for v, u as solutions to (7.1);
see [11, 21, 31].

Remark 7.3. The remark 4.1 can be stated for the multilayer case. The theorem
4.3 and the lemma 4.4 proved in [26] are valid too for the multilayer case.

For the rest of this article, we assume that D is C2-regular domain in order to
use the shape derivatives. We follow the approach of Sokolowski-Zolesio to define
the shape derivatives [29] (see also [28]).

Theorem 7.4. If D is a solution to the shape optimization problem min{J(w), w ∈
Oε}, then there exists a Lagrange multiplier function λD ∈ R such that

‖∇v‖p − ‖∇u‖p =
p

p− 1
λD on ∂D. (7.2)

Proof of the theorem 7.4.

J(D) =
1
p

∫
D∗

1\D
‖∇v‖p +

1
p

∫
D\D∗

0

‖∇u‖p, 1 < p < ∞,

where v and u are solutions of

−∆pv = 0 in D∗
1\D

v = 1 on ∂D

v = 0 on ∂D∗
1

−∆pu = 0 in D\D∗
0

u = 0 on ∂D

u = 1 on ∂D∗
0

(7.3)

A standard computation , see [22], shows the Euleurian derivative of the functional
J at the point D in the direction V is dJ(D,V ) = A + B, where

A =
∫

D∗
1\D

‖∇v‖p−2∇v′∇vdx +
1
p

∫
D∗

1\D
div(‖∇v‖p)V (0))dx

B =
∫

D\D∗
0

‖∇u‖p−2∇u′∇udx +
1
p

∫
D\D∗

0

div(‖∇u‖p)V (0))dx
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By the Green formula, we have

A = −
∫

D∗
1\D

div(‖∇v‖p−2∇v)v′dx +
1
p

∫
∂(D∗

1\D)

‖∇v‖p−2 ∂v

∂ν1
v′ds

+
1
p

∫
∂(D∗

1\D)

‖∇v‖pV (0).ν1ds.

In D∗
1\D, we have div(‖∇v‖p−2∇v) = 0, then

A =
1
p

∫
∂(D∗

1\D)

‖∇v‖p−2 ∂v

∂ν1
v′ds +

1
p

∫
∂(D∗

1\D)

‖∇v‖pV (0).ν1ds.

By the same reasoning, we obtain

B =
1
p

∫
∂(D\D∗

0 )

‖∇u‖p−2 ∂u

∂ν2
u′ds +

1
p

∫
∂(D\D∗

0 )

‖∇u‖pV (0).ν2ds.

Let us take ν1 = −ν2 where ν2 is the exterior normal unit to D. By the computa-
tions, see [22], we obtain

u′ = − ∂u

∂ν2
V (0).ν2 on ∂D,

v′ = − ∂v

∂ν1
V (0).ν1 on ∂D.

This implies

A = −
∫

∂D

‖∇v‖pV (0).ν1ds +
1
p

∫
∂D

‖∇v‖pV (0)ν1ds,

B = −
∫

∂D

‖∇u‖pV (0).ν2ds +
1
p

∫
∂D

‖∇u‖pV (0).ν2dx .

Then we have

dJ(D,V ) =
1− p

p

∫
∂D

(−‖∇v‖p + ‖∇u‖p)V (0).ν2ds.

Let us take J2(D) =
∫

D
dx = V0, then

dJ2(D,V ) =
∫

D

div(V (0))dx =
∫

∂D

V (0).ν2 ds.

There exists a Lagrange multiplier λD ∈ R such that dJ(D,V ) = λDdJ2(D,V ).
We obtain∫

∂D

[
1− p

p
(−‖∇v‖p + ‖∇u‖p)− λD)]V (0).ν2ds = 0 for all V,

then ‖∇v‖p − ‖∇u‖p = p
p−1λD on ∂D. �

Remark 7.5. The consequence (D, v, u) in theorems (7.1) and (7.4) satisfies

−∆pv = 0 in D∗
1\D

v = 1 on ∂D

v = 0 on ∂D∗
1

−∆pu = 0 in D\D∗
0

u = 0 on ∂D

u = 1 on ∂D∗
0

and satisfy the nonlinear joining condition

‖∇v‖p − ‖∇u‖p =
p

p− 1
λD on ∂D.

To conclude this section, we state a monotonicity result, in the following sense.
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Theorem 7.6. Let D∗
0 and D∗

1 be C2-regular, compact sets in RN and starshaped
with respect to the origin such that D∗

1 strictly contains D∗
0. Let D1 and D2 be two

different solutions to the shape optimization problem min{J(w), w ∈ Oε} starshaped
with respect to the origin such that D1 ⊂ D2 and ∂D1 ∩ ∂D2 6= ∅ then λD1 ≥ λD2 .

Proof. For any i ∈ {1, 2}, if Di is the solution to the shape optimization problem,
we have (vi, ui) satisfy the problem

−∆pvi = 0 in D∗
1\Di

vi = 1 on ∂Di

vi = 0 on ∂D∗
1

−∆pui = 0 in Di\D∗
0

ui = 0 on ∂Di

ui = 1 on ∂D∗
0

and the nonlinear joining condition

‖∇vi‖p − ‖∇ui‖p =
p

p− 1
λDi

on ∂Di, λDi
∈ R.

Consider the problem
−∆pv3 = 0 in D∗

1\D2

v3 = v1 on ∂D2

v3 = 0 on ∂D∗
1

(7.4)

It is easy to see that v3 = v1 is a solution to (7.4). We get 0 ≤ v2 ≤ 1 and
0 ≤ v1 ≤ 1. On ∂(D∗

1\D2), we have v2 ≥ v1. By the comparison principle [30], we
obtain v2 ≥ v1 in D∗

1\D2.
Let x0 ∈ ∂D1 ∩ ∂D2 and ν be the exterior unit normal in x0, then we get

v2(x0 + νh)− v2(x0)
h

≥ v1(x0 + νh)− v1(x0)
h

,

By passing to the limit,

lim
h→0

v2(x0 + νh)− v2(x0)
h

≥ lim
h→0

v1(x0 + νh)− v1(x0)
h

,

which implies
∂v2

∂ν
(x0) ≥

∂v1

∂ν
(x0).

It suffices to remark that ∂vi

∂ν (x0) < 0 (i = 1, 2) to conclude that

‖∇v1(x0)‖p ≥ ‖∇v2(x0)‖p. (7.5)

Consider the problem
−∆pu3 = 0 in D1\D∗

0

u3 = u2 on ∂D1

u3 = 1 on ∂D∗
0

(7.6)

It is easy to see that u3 = u2 is a solution to (7.6 ). We get 0 ≤ u1 ≤ 1 and
0 ≤ u2 ≤ 1. On ∂(D1\D∗

0), we have u2 ≥ u1. By the comparison principle [30], we
obtain u2 ≥ u1 in D1\D∗

0 .
Let x0 ∈ ∂D1 ∩ ∂D2, then

u2(x0 − νh)− u2(x0)
h

≥ u1(x0 − νh)− u1(x0)
h

.

By passing to the limit,

lim
h→0

u2(x0 − νh)− u2(x0)
h

≥ lim
h→0

u1(x0 − νh)− u1(x0)
h
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which implies

−∂u2

∂ν
(x0) ≥ −∂u1

∂ν
(x0).

That is, ‖∇u2(x0)‖ ≥ ‖∇u1(x0)‖, Then we have ‖∇u2(x0)‖p ≥ ‖∇u1(x0)‖p. This
implies

−‖∇u1(x0)‖p ≥ −‖∇u2(x0)‖p. (7.7)

By combining (7.5) and (7.7),

‖∇v1(x0)‖p − ‖∇u1(x0)‖p ≥ ‖∇v2‖p − ‖∇u2‖p.

Then λD1 ≥ λD2 . �

8. Proof of the main result of Part II

In this section, we use the preceding theorems to prove the main result.

Proof of the theorem 6.1. Let R0 = sup{R > 0, B(O,R) ⊂ D∗
1}. Let r0 > 0, r > 0

such that B(O, r0) ⊂ D∗
0 ⊂ B(O, r). First, we look for v0 solution of the problem

−∆pv0 = 0 in BR0\Br

v0 = 1 on ∂Br

v0 = 0 on ∂BR0

(8.1)

and second u0 solution of the problem

−∆pu0 = 0 in Br\Br0

u0 = 0 on ∂Br

u0 = 1 on ∂Br0

(8.2)

The problem (8.1) admits a solution v0 which is explicitly determined by

v0(x) =


ln ‖x‖ − lnR0

ln r − lnR0
if p = N

−‖x‖
p−N
p−1 + R

p−N
p−1
0

R
p−N
p−1
0 − r

p−N
p−1

if p 6= N,

and

‖∇v0(x)‖ =


1

‖x‖(lnR0 − ln r)
if p = N

|p−N
p−1 |‖x‖

−N+1
p−1

|r
p−N
p−1 −R

p−N
p−1
0 |

if p 6= N.

Also the problem (8.2) admits a solution u0 which is explicitly determined by

u0(x) =


ln ‖x‖ − ln r

ln r0 − ln r
if p = N

−‖x‖
p−N
p−1 − r

p−N
p−1

r
p−N
p−1

0 − r
p−N
p−1

if p 6= N,
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and

‖∇u0(x)‖ =


−1

‖x‖(ln r0 − ln r)
if p = N

|p−N
p−1 |‖x‖

−N−p+2
p−1

|r
p−N
p−1

0 − r
p−N
p−1 |

if p 6= N.

On ∂Br, let us take h(r) = ‖∇v0‖p − ‖∇u0‖p.
Now consider the problem

−∆pv = 0 in D∗
1\Br

v = 1 on ∂Br

v = 0 on ∂D∗
1

(8.3)

Problem (8.3) admits a solution denoted by vr. This solution is obtained by mini-
mizing the functional J1 on the Sobolev space

V1 = {v ∈ W 1,p
0 (D∗

1\Br), v = 1 on ∂Br} and J1(v) =
1
p

∫
D∗

1\Br

‖∇v‖pdx.

−∆pu = 0 in Br\D∗
0

u = 1 on ∂D∗
0

u = 0 on ∂Br

(8.4)

Then problem (8.4) admits a solution denoted by ur. This solution is obtained by
minimizing the functional J2 on the Sobolev space

V2 = {u ∈ W 1,p
0 (Br\D∗

0), u = 1 on ∂D∗
0} and J2(u) =

1
p

∫
Br\D∗

0

‖∇u‖pdx.

Consider the problem

−∆pv = 0 in BR0\Br

v = 1 on ∂Br

v = vr on ∂BR0

−∆pu = 0 in Br\D∗
0

u = u0 on ∂D∗
0

u = 0 on ∂Br.

(8.5)

It is easy to see that v = vr and u = u0 are respectively solutions to the problem
(8.5). We have 0 ≤ v0 ≤ 1 and 0 ≤ vr ≤ 1. We obtain on ∂(BR0\Br), vr ≥ v0.
By the comparison principle [30], we have vr ≥ v0 in BR0\Br. Finally, we have
‖∇vr‖ ≤ ‖∇v0‖ then

‖∇v0‖p ≥ ‖∇vr‖p on ∂Br. (8.6)

Also, we have 0 ≤ u0 ≤ 1 and 0 ≤ ur ≤ 1. We obtain on ∂(Br\D∗
0), ur ≥ u0. By

the comparison principle [30], we have ur ≥ u0 in Br\D∗
0 . We get ‖∇ur‖ ≥ ‖∇u0‖

then

−‖∇u0‖p ≥ −‖∇ur‖p on ∂Br. (8.7)

By combining (8.6) and (8.7), we obtain

‖∇v0‖p − ‖∇u0‖p ≥ ‖∇vr‖p − ‖∇ur‖p on ∂Br.
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Case p = N . Note that

h(r) =
1
rp

(
1

(lnR0 − ln r)p
− 1

(− ln r0 + ln r)p

)
, for all r ∈]r0, R0[.

Let δ > 0 be a fixed and sufficiently small number. To initialize, we choose r1 ∈
]r0, R0[, such that |h(r1)− λ| > δ, λ ∈ R. By varying r in the increasing sense, we
will achieve a step denoted n such that rn ∈]r0, R0[ and |h(rn)− λ| < δ.

Consider On the class of admissible domains defined as follows

On = {w ∈ Oε, Brn
⊂ w, ∂Brn

∩ ∂w 6= ∅ and vol(w) = V1},
where V1 denotes a fixed positive constant. We look for D ∈ On such that

−∆pv = 0 in D∗
1\D

v = 1 on ∂D

v = 0 on ∂D∗
1

−∆pu = 0 in D\D∗
0

u = 0 on ∂D

u = 1 on ∂D∗
0

(8.8)

and satisfies the nonlinear joining condition

‖∇v‖p − ‖∇u‖p =
p

p− 1
λD on ∂D. (8.9)

Applying the theorem 7.1, the shape optimization problem min{J(w), w ∈ On}
admits a solution D and by the theorem 7.4, D satisfies the joining condition (8.9).
Since D ∈ On, we have Brn

⊂ D and ∂Brn
∩ ∂D 6= ∅ and vrn

respectively urn

satisfy

−∆pvrn = 0 in D∗
1\Brn

vrn
= 1 on ∂Brn

vrn
= 0 on ∂D∗

1

−∆purn = 0 in Brn\D∗
0

urn
= 0 on ∂Brn

urn
= 1 on ∂D∗

0 .

(8.10)

Consider the problem

−∆pz = 0 in D∗
1\D

z = vrn
on ∂D

z = 0 on ∂D∗
1

−∆pg = 0 in D\D∗
0

g = 0 on ∂D

g = urn
on ∂D∗

0 .

(8.11)

It is easy to see that z = vrn
and g = urn

are respectively solutions to problem
(8.11). We get 0 ≤ vrn ≤ 1 and 0 ≤ v ≤ 1. We have on ∂(D∗

1\D), vrn ≤ v. By
the comparison principle [30], we obtain vrn ≤ v in (D∗

1\D). Since ∂Brn ∩ ∂D 6= ∅,
let’s take x1 ∈ ∂Brn

∩ ∂D, we have by passing to the limit

lim
h→0

vrn(x1 + νh)− vrn(x1)
h

≤ lim
h→0

v(x1 + νh)− v(x1)
h

,

this is equivalent to (where ν is the exterior normal to D)

‖∇vrn
(x1)‖p ≥ ‖∇v(x1)‖p (8.12)

We get 0 ≤ u ≤ 1 and0 ≤ urn
≤ 1. We have on ∂(D\D∗

0), urn
≤ u. By the

comparison principle [30], we obtain urn
≤ u in (D\D∗

0). Since ∂Brn
∩ ∂D 6= ∅, let

us take x1 ∈ ∂Brn
∩ ∂D, we have by passing to the limit

lim
h→0

urn
(x1 − νh)− urn

(x1)
h

≤ lim
h→0

u(x1 − νh)− u(x1)
h

,

that is
−‖∇urn

(x1)‖p ≥ −‖∇u(x1)‖p (8.13)
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By combining the relations (8.12) and (8.13), we obtain

‖∇vrn(x1)‖p − ‖∇urn(x1)‖p ≥ ‖∇v(x1)‖p − ‖∇u(x1)‖p.

Let us take D = D1 as the first iteration. We iterate by looking D2 ∈ O2
n such that

−∆pv2 = 0 in D∗
1\D2

v2 = 1 on ∂D2

v2 = 0 on ∂D∗
1

−∆pu2 = 0 in D2\D∗
0

u2 = 0 on ∂D2

u2 = 1 on ∂D∗
0 ,

(8.14)

and satisfies the nonlinear joining condition

‖∇v2‖p − ‖∇u2‖p =
p

p− 1
λD2 on ∂D2. (8.15)

Also
O2

n = {w ∈ Oε, D1 ⊂ w, ∂Brn
∩ ∂w 6= ∅ and vol(w) = V2},

where V2 is a strictly positive constant and V1 < V2. By the same reasoning as
above, we obtain

‖∇vrn
(x2)‖p − ‖∇urn

(x2)‖p ≥ ‖∇v(x2)‖p − ‖∇u(x2)‖p on ∂Brn
.

We can continue the process until a step denoted k, which we will be determined,
and we have

‖∇vrn(xk)‖p − ‖∇urn(xk)‖p < ‖∇v(xk)‖p − ‖∇u(xk)‖p andxk ∈ ∂Dk ∩ ∂Brn .

Finally, we constructed an increasing sequence of domain solutions

D1 ⊂ D2 ⊂ · · · ⊂ Dk−1 ⊂ Dk.

By the monotonicity result, in theorem 7.6, we have

λD1 ≥ λD2 ≥ · · · ≥ λDk−1 ≥ λDk
.

Since ‖∇vrn(xk)‖p − ‖∇urn(xk)‖p ≤ ‖∇v0‖p − ‖∇u0‖p on ∂Brn , k is chosen as
follows in each point s0 ∈ ∂Brn

,

λDk
≤ h(s0) ≤ λDk−1 .

Then we obtain the inequality

λDk
− λ ≤ h(s0)− λ ≤ λDk−1 − λ. (8.16)

The sequence (λDj
)(0≤j≤k) is decreasing and underestimated because we cannot

indefinitely generate a sequence domains if not we will leave D∗
1 . We have λDk

≥
λD′

∗
where D′

∗ is the greatest domain contained in D∗
1 , ∂D′

∗ ∩ ∂Brn
6= ∅.D′

∗ is
solution to the shape optimization problem min{J(w), w ∈ On} and for all k, we
have Dk ⊂ D′

∗.
The sequence (λDj

)(0≤j≤k) converges to l. By passing to the limit in (8.16),
we obtain l = λ and there exists D solution to problem (1.5)-(1.6). The sequence
(Dj)(0≤j≤k) gives a good approximation to D.

Case p 6= N . Here the reasoning is identical to the case p = N . We note that

h(r) = (|p−N

N − 1
|)p(r−|

N−1
p−1 |)p

( 1

|r
p−N
p−1 −R

p−N
p−1
0 |p

− 1

(r|r
p−N
p−1

0 − r
p−N
p−1 |)p

)
,

for all r ∈]r0, R0[. �
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9. The multi-layer case

Let D0 and Dk+1 be C2-regular , compact sets in RN and starshaped with respect
to the origin such that Dk+1 strictly contains D0. One supposes that there is R0

such that D0 ⊂ B(0, R0) ⊂ Dk+1 where R0 = sup{R > 0 : B(0, R) ⊂ Dk+1}. We
find a sequence of domains, C2-regular, starshaped with respect to the origin and
solution to the shape optimization problem min{J(w), w ∈ Oε}, D0 ⊂ D1 ⊂ D2 ⊂
· · · ⊂ Dk ⊂ Dk+1 such that (Di, vi, ui) is solution of

−∆pvi = 0 in Di+1\Di

vi = 1 on ∂Di

vi = 0 on ∂Di+1

−∆pui = 0 in Di\Di−1

ui = 0 on ∂Di

ui = 1 on ∂Di−1

(9.1)

and satisfy the non linear joining condition

‖∇vi‖p − ‖∇ui‖p =
p

p− 1
λi on ∂Di, λi ∈ R, 1 ≤ i ≤ k. (9.2)

Theorem 9.1. Let D0 and Dk+1 be C2-regular , compact sets in RN and starshaped
with respect to the origin such that Dk+1 strictly contains D0. Then there exists a
sequence domains (Di)(1≤i≤k), C2-regular domain solution to the shape optimization
problem min{J(w), w ∈ Oε} such that D0 ⊂ D1 ⊂ D2 · · · ⊂ Dk ⊂ Dk+1 solution of
the multi-layer free boundary problem (9.1)-(9.2).

To prove this theorem, we use the method presented in the proof of the two layer
case. In fact we consider at first the domains D0 and Dk+1. And according to the
two layer case there is D1 (D0 ⊂ D1 ⊂ Dk+1) which is solution to the problem.
And sequentially, we seek Di (Di−1 ⊂ Di ⊂ Dk+1, i = 2, · · · k).It is always possible
to invoke the two layer case in order to solve these types of problems.
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5683, Dakar, Sénégal
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