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EIGENCURVES OF THE p-LAPLACIAN WITH WEIGHTS AND
THEIR ASYMPTOTIC BEHAVIOR

AHMED DAKKAK, MOHAMMED HADDA

Abstract. In this paper we study the existence of the eigencurves of the

p-Laplacian with indefinite weights. We obtain also their variational formula-
tions and asymptotic behavior.

1. Introduction and preliminaries

We consider the nonlinear eigenvalue problem

−∆pu = λm(x)|u|p−2u in Ω
u = 0 on ∂Ω ,

(1.1)

where Ω is a smooth bounded domain in RN , −∆pu = −div(|∇u|p−2∇u) is the
p-Laplacian, 1 < p < ∞, m ∈ L∞(Ω) is a weight function which can change sign
and verifies

meas{x ∈ Ω : m(x) > 0} 6= 0 .

We denote

M+(Ω) =
{
m ∈ L∞(Ω) : meas{x ∈ Ω : m(x) > 0} 6= 0

}
.

We say that λ is a eigenvalue of p-Laplacian with weight m, when the problem (1.1)
has at least a nontrivial solution u in W1,p

0 (Ω). The set of positive eigenvalues con-
stitutes the spectrum σ+(−∆p,m, Ω) of p-Laplacian with weight m in the domain
Ω. This spectrum contains an infinite sequence given by λ1 < λ2 ≤ · · · ≤ λn → +∞
and formulated as follows

1
λn

=
1

λn(m)
= sup

K∈Γn

min
u∈K

∫
Ω

m|u|p , (1.2)

where Γn is defined by

Γn = {K ⊂ S : K is symetric, compact and γ(K) ≥ n},

S = {u ∈ W1,p
0 (Ω) :

∫
Ω
|∇u|p = 1} is the sphere unity of W1,p

0 (Ω) and γ is the
genus function. We may also define the negative spectrum when −m ∈M+(Ω) by
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−σ+(−∆p,−m,Ω) which contains an infinite sequence λ−1 > λ−2 ≥ · · · ≥ λ−n →
−∞ such that

λ−n = λ−n(m) := −λn(−m) . (1.3)

The variational characterization (1.2) and the properties of λn depending on weight
m was the subject of several works of which we cite for example [1, 2, 3, 6].

In this note, we study the following problem: Find all the real numbers α, β
such that λn(αm1 + βm2) = 1.

This last equation comes from the problem of eigencurves of Sturm-Liouville.
Several applications of these problems can be found in the bifurcation domain
and other, making reference [5]. In [4] we find the properties related to the first
eigencurve such as concavity, differentiability and the asymptotic behavior. The
authors wished to have information about the other eigencurves, especially their
asymptotic behavior. This will be the object of our study. Let m1,m2 ∈ M+(Ω)
so that ess infΩ m2 > 0. we define the graph of the nth eigencurve by

Cn = {(α, β) ∈ R2 : λn(αm1 + βm2) = 1} , (1.4)

We note that this definition differs from that given in [5], which is

βn(α) = inf
K∈Γn

max
u∈K

∫
Ω
|∇u|p − α

∫
Ω

m1|u|p∫
Ω

m2|u|p
. (1.5)

This paper is organized as follows. First, we are interested to the existence of
eigencurve Cn . Then we show that (α, βn(α)) ∈ Cn. This would allow us to affirm
the coincidence of the two definitions (1.4) et (1.5) and also present the variational
formulation of that eigencurve. We would end up with the study of the asymptotic
behavior of the eigencurves Cn. And finally we affirm that all eigencurves have the
same asymptotic behavior.

2. Existence of the eigencurve Cn

We first recall the following

Proposition 2.1. (1) Let m,m′ ∈ M+(Ω). If m ≤ m′ (resp. m < m′), then
λn(m) ≥ λn(m′) (resp. λn(m) > λn(m′)).

(2) λn : m 7→ λn(m) is continuous in (M+(Ω), ‖.‖∞).

For the proof, see for example [6].

Next we can establish the following

Proposition 2.2. Let (mk)k be a sequence in M+(Ω) such that mk → m in
L∞(Ω). Then limk λn(mk) = +∞ if and only if m ≤ 0 almost everywhere in Ω.

Proof. Let (mk)k be a sequence in M+(Ω) such that mk converges to m in L∞(Ω).
Assume first that limk λn(mk) = +∞, we claim that m ≤ 0 almost everywhere in
Ω; otherwise

meas{x ∈ Ω : m(x) > 0} 6= 0

it then follows that limk λn(mk) = λn(m), is a finite, a contradiction.
Inversely, if m ≤ 0 almost everywhere in Ω, suppose that limk λn(mk) is finite,

then there exist λ > 0 such that

λn(mk) ≤ λ for all k ∈ N. (2.1)
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We put r = 2λ/λn(2) and ε = 1/r. Then there exist k = k(r), such that

‖mk −m‖∞ < ε .

We consider the following weights

mk,r(x) =

{
mk(x) if x ∈ Ω \Br ∩ Ω−k
1
r if x ∈ Br ∩ Ω−k

and

mr(x) =

{
m(x) if x ∈ Ω \Br ∩ Ω−k
1
r if x ∈ Br ∩ Ω−k

where Br = B(xk, 1
r ) is a ball and xk ∈ Ω−k = {x ∈ Ω : mk(x) < 0}. It is clear that

‖mk,r −mr‖∞ ≤ ‖mk −m‖∞
so that

mk,r ≤ mr + ε almost everywhere in Ω .

Observe that mk ≤ mk,r. Since m ≤ 0 almost everywhere in Ω, we have mr ≤ 1/r
almost everywhere in Ω, and

mk ≤
1
r

+ ε almost everywhere in Ω . (2.2)

It follows from (2.1) and (2.2) that

λ ≥ λn(mk) ≥ λn(
1
r

+ ε) .

Since 1
r + ε = 2

r ,

2λ = rλn(2) = λn(
1
r

+ ε) ≤ λn(mk) ≤ λ ,

which is a contradiction. So limkλn(mk) = +∞. �

Now we can state the main theorem of this section.

Theorem 2.3. Let m1, m2 ∈ M+(Ω) be such that ess inf Ω m2 > 0. So for all
α ∈ R there exist a unique real tn(α) which satisfies λn(αm1 + tn(α)m2) = 1.

Proof. Let α ∈ R. We consider the function fα : t 7→ λn(αm1 + tm2). According
to the proposition 2.1 we affirm that fα is decreasing continuous. Consequently fα

is injective. To show that the equation fα(t) = 1 has a solution (hence only one ),
we distinguish three cases.
Case 1: λ−n(m1) < α < λn(m1) It is clear that when α = 0, the unique real t0
that verifies λn(αm1 + t0m2) = 1 is t0 = λn(m2). Suppose that α is not nil, in this
case we have

fα(0) =
λn(m1)

α
if α > 0 and fα(0) =

λ−n(m1)
α

if α < 0 ;

So that fα(0) > 1. Now α
t m1 + m2 → m2 in L∞(Ω) as t → +∞;

lim
t→+∞

fα(t) = lim
t→+∞

1
t
λn(

α

t
m1 + m2) = 0 ,

so there exist a unique real tn(α) ∈]0,+∞[ which verifies fα(tn(α)) = 1.
Case 2: α > λn(m1). In this case α > 0 and

0 < fα(0) =
λn(m1)

α
< 1 . (2.3)
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Let γα = −α‖m1‖∞
ess inf Ω m2

, it is easy to see that

αm1 + γαm2 ≤ 0 almost everywhere in Ω ,

so
γα ∈ {t < 0 : αm1(x) + tm2(x) ≤ 0 a.e. x ∈ Ω} = Aα

we put τα = sup Aα. We prove that τα ∈ Aα.
We first show that τα < 0. Since fα(0) > 0, and fα, is a continuous function

then there exist η < 0 such that fα(t) > 0 for all t ∈ [η, 0]. so λn(αm1 + tm2) > 0
for all t ∈ [η, 0]; i.e.,

meas{x ∈ Ω : αm1(x) + tm2(x) > 0} 6= 0 ∀t ∈ [η, 0] ;

hence τα ≤ η < 0. Moreover, for all n ∈ N, there exist tn ∈ Aα such that
τα − 1

n < tn. It follows that

αm1(x) + ταm2(x) ≤ αm1(x) + tnm2(x) +
1
n

m2(x) ≤ 1
n
‖m2‖∞ a.e. x ∈ Ω,∀n ∈ N

thus we have αm1 + ταm2 ≤ 0 almost everywhere in Ω. Then Proposition 2.2
implies

lim
t→τα

fα(t) = +∞ . (2.4)

It then follows from (2.3) and (2.4) that there exist a unique real tn(α) ∈]τα, 0[
which verifies fα(tn(α)) = 1.
case 3: α < λ−n(m1). In this case we have α < 0 and

0 < fα(0) =
λ−n(m1)

α
< 1 .

Let δα = α‖m1‖∞
ess infΩ m2

,

Bα = {t < 0 : αm1(x) + tm2(x) ≤ 0 a.e. x ∈ Ω} and ρα = sup Bα.

Obviously
αm1 + δαm2 ≤ 0 almost everywhere in Ω .

The rest of the proof can be carried out in a similar manner to that of the case 2.
The proof is complete. �

3. Variational formulation of the eigencurve Cn

We consider the formula (1.5) of βn(α). By the Sobolev inequality and hypothesis
ess inf Ω m2 > 0, it is easy to see that βn(α) is finite. Our objective in this section
is to show that the graph of βn(α) is exactly Cn.

Theorem 3.1. We take again the notation of Theorem 2.3. So we have

tn(α) = βn(α) for all α ∈ R .

Proof. We have on one hand, according to (1.5) for all K ∈ Γn, there is uK ∈ K
such that

βn(α) ≤ max
u∈K

∫
Ω
|∇u|p − α

∫
Ω

m1|u|p∫
Ω

m2|u|p
=

∫
Ω
|∇uK |p − α

∫
Ω

m1|uK |p∫
Ω

m2|uK |p
,

then

α

∫
Ω

m1|uK |p + βn(α)
∫

Ω

m2|uK |p ≤
∫

Ω

|∇uK |p = 1 .
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So that

min
u∈K

∫
Ω

(αm1 + βn(α)m2)|u|p ≤ α

∫
Ω

m1|uK |p + βn(α)
∫

Ω

m2|uK |p ≤ 1,

for all K ∈ Γn, this implies

sup
K∈Γn

min
u∈K

∫
Ω

(αm1 + βn(α)m2)|u|p ≤ 1 .

Since
1

λn(αm1 + βn(α)m2)
= sup

K∈Γn

min
u∈K

∫
Ω

(αm1 + βn(α)m2)|u|p,

it follows that

λn(αm1 + βn(α)m2) ≥ 1 . (3.1)

On the other hand, from Theorem 2.3, we have

λn(αm1 + tn(α)m2) = 1 ,

so for all K ∈ Γn, there is uK ∈ K such that

α

∫
Ω

m1|uK |p + tn(α)
∫

Ω

m2|uK |p = min
u∈K

∫
Ω

(αm1 + tn(α)m2)|u|p,

and

min
u∈K

∫
Ω

(αm1 + tn(α)m2)|u|p ≤ λn(αm1 + tn(α)m2) = 1 .

Since 1 =
∫
Ω
|∇uK |p,

α

∫
Ω

m1|uK |p + tn(α)
∫

Ω

m2|uK |p ≤
∫

Ω

|∇uK |p .

This implies

tn(α) ≤
∫
Ω
|∇uK |p − α

∫
Ω

m1|uK |p∫
Ω

m2|uK |p
≤ max

u∈K

∫
Ω
|∇u|p − α

∫
Ω

m1|u|p∫
Ω

m2|u|p
,

for all K ∈ Γn, thus we deduce

tn(α) ≤ inf
K∈Γn

max
u∈K

∫
Ω
|∇u|p − α

∫
Ω

m1|u|p∫
Ω

m2|u|p
= βn(α) .

Using the monotony of λn with respect to the weight, it follows that

λn(αm1 + βn(α)m2) ≤ λn(αm1 + tn(α)m2) = 1 . (3.2)

From (3.1) and (3.2), we obtain

λn(αm1 + βn(α)m2) = 1 .

Since tn(α) is unique, we then conclude that tn(α) = βn(α). �
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4. Asymptotic behavior of Cn

The fact of considering βn(α) by its expression given in the variational formu-
lation (1.5) makes regrettably the study of its asymptotic behavior difficult. So,
our aim in this section is to determine the asymptotic behavior with the help of
Theorem 3.1 and the definition of Cn (cf. (1.4)).

Theorem 4.1. Let m1,m2 ∈ M+(Ω) be such that ess inf Ω m2 > 0. So we have
the following asymptotic behavior:

(i) limα→+∞ βn(α)/α = − ess supΩ m1/m2,
(ii) limα→−∞ βn(α)/α = − ess infΩ m1/m2.

Proof. To prove (i), we consider α > λn(m1): The formula

λn(αm1 + βn(α)m2) = 1

then implies

λn(m1 +
βn(α)

α
m2) = α

which is a finite quantity and positive, so

m1 +
βn(α)

α
m2 ∈M+(Ω),

thus there exist a subset Ωα such that

meas(Ωα) 6= 0 and m1(x) +
βn(α)

α
m2(x) > 0 a.e. x ∈ Ωα .

Hence

−βn(α)
α

<
m1(x)
m2(x)

a.e. x ∈ Ωα ;

thus we have

−βn(α)
α

< ess sup
Ω

m1

m2
.

So we get

lim sup
α→+∞

− βn(α)
α

≤ ess sup
Ω

m1

m2
. (4.1)

On the other hand, suppose that

l = lim inf
α→+∞

−βn(α)
α

.

We choose a sequence αk → +∞, so that

m1 +
βn(αk)

αk
m2 → m1 − l m2 in L∞(Ω) .

Since

λn(m1 +
βn(αk)

αk
m2) = αk → +∞,

according to Proposition 2.2, we obtain m1− lm2 ≤ 0 almost everywhere in Ω, i.e.,
m1

m2
≤ l almost everywhere in Ω ;

so that

ess sup
Ω

m1

m2
≤ l = lim inf

α→+∞
− βn(α)

α
. (4.2)
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Then (4.1) and (4.2) yield the result (i).
The proof of (ii) can be carried out as that of (i). This concludes the proof . �

Remarks.
(i) All eigencurves of the p-Laplacian have the same asymptotic behavior.
(ii) The asymptotic behavior of the first eigencurve of the p-Laplacian is already

established in [4], but their method which uses the properties of the first
eigenfunction is not generalised to the higher orders.

(iii) The results established in this paper can also be generalised to eigencurves
of order ≥ 2 of the p-Laplacian with Neumann condition.
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