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EXISTENCE OF SOLUTIONS TO N-DIMENSIONAL
PENDULUM-LIKE EQUATIONS

PABLO AMSTER, PABLO L. DE NÁPOLI, MARÍA CRISTINA MARIANI

Abstract. We study the elliptic boundary-value problem

∆u + g(x, u) = p(x) in Ω

u
∣∣
∂Ω

= constant,

∫
∂Ω

∂u

∂ν
= 0,

where g is T -periodic in u, and Ω ⊂ Rn is a bounded domain. We prove the

existence of a solution under a condition on the average of the forcing term
p. Also, we prove the existence of a compact interval Ip ⊂ R such that the
problem is solvable for p̃(x) = p(x) + c if and only if c ∈ Ip.

1. Introduction

Existence and multiplicity of periodic solutions to the one-dimensional pendulum
like equation

u′′ + g(t, u) = p(t) (1.1)

u(0)− u(T ) = u′(0)− u′(T ) = 0 (1.2)

where g is T -periodic in u have been studied by many authors; see e.g. [4] and
for the history and a survey of the problem see [6, 7]. In this work, we consider a
generalization of this problem to higher dimensions. With this aim, note that the
boundary condition (1.2) can be written as

u(0) = u(T ) = c,

∫ T

0

u′′ = 0

where c is a non-fixed constant. Thus, by the divergence Theorem, (1.1)-(1.2) can
be generalized to a boundary-value problem for an elliptic PDE in the following
way:

∆u + g(x, u) = p(x) in Ω

u
∣∣
∂Ω

= constant,
∫

∂Ω

∂u

∂ν
= 0,

(1.3)
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where Ω ⊂ Rn is a bounded C1,1 domain. We shall assume that p ∈ L2(Ω), and
that g ∈ L∞

(
Ω × R

)
is T -periodic in u. For simplicity we shall assume also that

∂g
∂u ∈ L∞(Ω× R).

This kind of problems have been considered for example in [2], where the authors
study a model describing the equilibrium of a plasma confined in a toroidal cavity.
Under appropriate conditions this model can be reduced to the nonhomogeneous
boundary-value problem

∆u + h(x, u) = 0 in Ω

u
∣∣
∂Ω

= constant, −
∫

∂Ω

∂u

∂ν
= I.

(1.4)

The authors prove the existence of at least one solution u ∈ H2 of the problem for
any h satisfying the following assumptions:

(A1) h : Ω × R → [0,+∞) is continuous, nondecreasing on u, with h(x, u) = 0
for u ≤ 0.

(A2) limu→+∞
∫
Ω

h(x, u)dx > I.
(A3) limu→+∞

h(x,u)
ur = 0 for some r ∈ R (with r ≤ n

n−2 when n > 2).

On the other hand, for the particular case h(x, u) = [u]p+ and Ω = B1(0), Ortega
has proved in [9] that if n > 2 and p ≥ n

n−2 then there exists a finite constant Ip

such that the problem has no solutions for I > Ip.
In the second section we obtain a solution of (1.3) by variational methods under

a condition on the average of the forcing term p.
In the third section we prove by topological methods that for a given p there

exists a nonempty closed and bounded interval Ip such that problem (1.3) is solvable
for p̃ = p + c if and only if c ∈ Ip. A similar result for the one-dimensional case has
been proved by Castro [3], using variational methods, and by Fournier and Mawhin
[4], using topological methods.

2. Solutions by variational methods

For fixed x ∈ Ω, define ag(x) as the average of g with respect to u, namely:

ag(x) =
1
T

∫ T

0

g(x, u)du .

For ϕ ∈ L1(Ω) denote by ϕ the average of ϕ, i.e.

ϕ =
1
|Ω|

∫
Ω

ϕ(x)dx.

Theorem 2.1. If
p = ag, (2.1)

then (1.3) admits at least one solution u ∈ H2(Ω).

Proof. Let R + H1
0 (Ω) = {u ∈ H1(Ω) : u

∣∣
∂Ω

= constant}, and consider the func-
tional I : R + H1

0 (Ω) → R given by

I(u) =
∫

Ω

( |∇u(x)|2

2
−G(x, u(x)) + p(x)u(x)

)
dx,

where

G(x, u) =
∫ u

0

g(x, s)ds.
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By standard results, I is weakly lower semicontinuous in R + H1
0 (Ω). We remark

that u is a critical point of I if and only if∫
Ω

(∇u.∇ϕ− g(x, u)ϕ + pϕ)dx = 0 (2.2)

for any ϕ ∈ R + H1
0 (Ω). In this case, if c = u

∣∣
∂Ω

then u is a weak solution of the
problem

∆u + g(x, u) = p(x), u
∣∣
∂Ω

= c. (2.3)

It follows that u ∈ H2(Ω). We claim that
∫

∂Ω
∂u
∂ν = 0. Indeed, taking ϕ ≡ 1 in

(2.2) we obtain: ∫
Ω

g(x, u)dx =
∫

Ω

p(x)dx.

Integrating (2.3) over Ω, we deduce that∫
∂Ω

∂u

∂ν
=

∫
Ω

∆u = 0.

Thus, any critical point of I is a weak solution of (1.3).
To prove the existence of critical points of I, let {un} ⊂ R + H1

0 (Ω) be a mini-
mizing sequence, and let cn = un

∣∣
∂Ω

. For any u ∈ R + H1
0 (Ω) it holds that

I(u + T )− I(u) = T

∫
Ω

p(x)dx−
∫

Ω

[G(x, u + T )−G(x, u)]dx.

For fixed x, we have

G(x, u(x) + T )−G(x, u(x)) =
∫ u(x)+T

u(x)

g(x, s)ds =
∫ T

0

g(x, s)ds = Tag(x),

and from (2.1) we deduce that I(u + T ) = I(u). Hence, we may assume that
cn ∈ [0, T ]. By Poincaré’s inequality we have that

‖un − cn‖L2 ≤ C‖∇un‖L2 ,

and then

I(un) =
1
2
‖∇un‖2

L2 +
∫

Ω

pundx−
∫

Ω

G(x, un)dx ≥ 1
2
‖∇un‖2

L2 − r‖∇un‖L2 − s

for some constants r, s. Thus, {un} is bounded, and by classical results I has a
minimum on R + H1

0 (Ω). �

3. The maximal interval Ip

Fix p ∈ L2(Ω) such that p = ag and consider the problem

∆u + g(x, u) = p(x) + c in Ω

u
∣∣
∂Ω

= constant
∫

∂Ω

∂u

∂ν
= 0

(3.1)

with c ∈ R. It is easy to establish a necessary condition on c for the solvability of
(3.1): indeed, if u is a solution of (3.1) then

1
|Ω|

∫
Ω

g(x, u(x))dx = p + c.

Thus, if we define gu(x) = g(x, u(x)), we obtain:

c = gu − ag.
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Furthermore, if

g+(x) = sup
0≤u≤T

g(x, u), g−(x) = inf
0≤u≤T

g(x, u),

it follows that g− ≤ gu ≤ g+, and hence

g− − ag ≤ c ≤ g+ − ag.

In particular,
inf

[0,T ]×R
g − ag ≤ c ≤ sup

[0,T ]×R
−ag.

In the next theorem we obtain also a sufficient condition. More precisely, if we
define

Ip = {c ∈ R : (3.1) admits a solution in H2(Ω)},
we shall prove that Ip is a nonempty compact interval. From Theorem 2.1, it follows
that

Ip = [αp, βp],
where

g− − ag ≤ αp ≤ 0 ≤ βp ≤ g+ − ag.

Theorem 3.1. Assume that p = ag and define

E = {u ∈ R + H2 ∩H1
0 (Ω) : ∆u + g(x, u) = p + gu − ag}.

Then the set
Eg := {gu : u ∈ E} ⊂ R

is a nonempty compact interval. Furthermore, Eg = ag + Ip.

For the proof of this theroem, we need Lemmas 3.2, 3.3, 3.4, 3.6, 3.7 and Theorem
3.8 below.

Lemma 3.2 (Poincaré-Wirtinger inequality). There exists a constant c ∈ R such
that

‖u− u‖L2 ≤ c‖∇u‖L2

for all u ∈ H1(Ω).

The proof of the above lemma can be found in [5].

Lemma 3.3. Assume that p = ag. Then for any r ∈ R the problem

∆u + g(x, u) = p + gu − ag

u
∣∣
∂Ω

= constant,
∫

∂Ω

∂u

∂ν
= 0

admits at least one solution u such that u = r.

Proof. For u ∈ H1(Ω) define Tu = v as the unique solution of the problem

∆v = p + gu − ag − g(x, u)

v
∣∣
∂Ω

= constant, v = r.
(3.2)

Then T : H1(Ω) → H1(Ω) is well defined and compact. Indeed, if u0 is the unique
element of H2 ∩H1

0 (Ω) such that

∆u0 = p + gu − ag − g(x, u),
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it is clear that v = u0 − u0 + r is the unique solution of (3.2), and compactness
follows immediately from the compactness of the mapping u → u0. Moreover,
integrating the equation, it is immediate that∫

∂Ω

∂v

∂ν
=

∫
Ω

∆v = 0.

Then ∫
Ω

∆v(v − r) +
∫

Ω

|∇v|2 = (v
∣∣
∂Ω

− r)
∫

∂Ω

∂v

∂ν
= 0,

and we deduce that
‖v − r‖H1 ≤ c‖∆v‖L2 ≤ C

for some constant C. Thus, the proof follows from Schauder Theorem. �

Lemma 3.4. Let p, E, Eg be as in Theorem 3.1 and

ET = {u ∈ E : u
∣∣
∂Ω

∈ [0, T ]}.

Then:
(1) ET ⊂ R + H1

0 (Ω) is compact.
(2) Eg = {gu : u ∈ ET }.

Proof. Let {un} ⊂ ET and cn = un

∣∣
∂Ω

∈ [0, T ]. ¿From standard elliptic estimates
it follows that ‖un‖H2 ≤ C for some constant C. Taking a subsequence we may
assume that un → u in R + H1

0 (Ω). ¿From the equalities

∆un = p + gun
− ag − g(x, un)

it follows easily that u ∈ ET , and (1) is proved. Moreover, for any u ∈ E there
exists k ∈ Z such that uT := u+kT ∈ ET . As guT

= gu, the proof of (2) follows. �

To complete the proof of Theorem 3.1, it suffices to show that Ip is connected.
Indeed, it is clear that u is a solution of (3.1) if and only if u ∈ E with c = gu−ag,
and by continuity of the mapping u → gu it follows that Ip is compact.

Remark 3.5. ¿From Lemma 3.3, E is infinite. In particular, if Ip = {0} then (1.3)
admits a continuum of solutions.

To apply the method of upper and lower solutions to our problem, we shall first
prove an associated maximum principle:

Lemma 3.6. Let λ > 0 and assume that u ∈ H2(Ω) satisfies:

∆u− λu ≥ 0,

u
∣∣
∂Ω

= constant,
∫

∂Ω

∂u

∂ν
≤ 0.

Then u ≤ 0.

Proof. If u
∣∣
∂Ω

= c ≤ 0 the result follows by the classical maximum principle. If
c > 0, let Ω+ = {x ∈ Ω : u(x) > 0} and u+(x) = max{u(x), 0}. Then

0 ≤
∫

Ω

λu.u+ ≤
∫

Ω

∆u.u+ = −
∫

Ω+
|∇u|2 + c

∫
∂Ω

∂u

∂ν
< 0 ,

a contradiction. �
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Lemma 3.7. Let θ ∈ L2(Ω) and λ > 0. Then the problem

∆u− λu = θ in Ω

u
∣∣
∂Ω

= constant,
∫

∂Ω

∂u

∂ν
= 0

admits a unique solution uθ ∈ H2(Ω). Furthermore, the mapping θ → uθ is con-
tinuous.

Proof. Let J : R + H1
0 (Ω) → R be the functional

J (u) =
∫

Ω

|∇u|2

2
+

λu2

2
+ θu.

It is immediate that J is weakly lower semicontinuous and coercive, then it has a
minimum u. Furthermore, u ∈ H2(Ω) and

∫
∂Ω

∂u
∂ν = 0. Integrating the equation,

we also obtain that −λu = θ.
By standard elliptic estimates and Lemma 3.2, there exists a constant c such

that
‖w − w‖H2 ≤ c‖∆w − λw‖L2

for any w ∈ H2∩ (R+H1
0 ) such that

∫
∂Ω

∂w
∂ν = 0; thus, uniqueness follows. Finally,

if θ1, θ2 ∈ L2(Ω) then

‖uθ1 − uθ2‖H2 ≤ |Ω|.|θ1 − θ2|+ c‖θ1 − θ2‖L2 ,

and the proof is complete. �

Now we have the following result.

Theorem 3.8. If ϕ ∈ L2(Ω) and there exist α, β ∈ H2(Ω) with α ≤ β such that

∆β + g(·, β) ≤ ϕ(x) ≤ ∆α + g(·, α),

β
∣∣
∂Ω

= constant, α
∣∣
∂Ω

= constant,∫
∂Ω

∂β

∂ν
≥ 0 ≥

∫
∂Ω

∂α

∂ν
,

then the problem

∆u + g(x, u) = ϕ(x)

u
∣∣
∂Ω

= constant,
∫

∂Ω

∂u

∂ν
= 0

admits at least one solution u ∈ H2(Ω) such that α ≤ u ≤ β.

Proof. Let λ ≥ R, where R = ‖ ∂g
∂u‖L∞ . For fixed v ∈ L2(Ω) define Tv = u as the

unique solution of the problem

∆u− λu = ϕ− g(x, v)− λv in Ω

u
∣∣
∂Ω

= constant,
∫

∂Ω

∂u

∂ν
= 0.

By the lemmas above, the mapping T : L2(Ω) → L2(Ω) is well defined and compact.
Moreover for α ≤ v ≤ β, we have

∆u− λu = ϕ− g(x, v)− λv ≥ ϕ− g(x, β)− λβ ≥ ∆β − λβ.

Hence,
∆(u− β)− λ(u− β) ≥ 0
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and

(u− β)
∣∣
∂Ω

= constant,
∫

∂Ω

∂(u− β)
∂ν

≤ 0.

From Lemma 3.6, we deduce that u ≤ β. In the same way, we obtain that u ≥ α
and the result follows by Schauder Theorem. �

Proof of Theorem 3.1. Let P ∈ H2(Ω) be any solution of the problem

∆P = p− ag

P
∣∣
∂Ω

= constant,
∫

∂Ω

∂P

∂ν
= 0.

Taking v = u− P , problem (3.1) is equivalent to the problem

∆v + g̃(x, v) = c + ag

P
∣∣
∂Ω

= constant,
∫

∂Ω

∂P

∂ν
= 0 ,

where g̃(x, v) := g(x, v + P (x)) is continuous and T -periodic in v. Thus, we may
assume without loss of generality that p is continuous. Let c1, c2 ∈ Ip, c1 < c2, and
take u1, u2 ∈ E such that gui

= ci − ag. As ui ∈ C(Ω), adding kT for some integer
k if necessary, we may suppose that u1 ≤ u2. For c ∈ [c1, c2] we have that

∆u1 + g(x, u1) = p + c1 − ag ≤ p + c− ag ≤ p + c2 − ag = ∆u2 + g(x, u2).

From the previous theorem, there exists u ∈ E such that gu = c− ag. The proof is
complete. �

Remark 3.9. Using fixed point methods, Lemma 3.7 can be generalized; thus, it
is easy to see that Theorem 3.1 is still valid for the more general problem

∆u + 〈b(x),∇u〉+ g(x, u) = p(x) in Ω

u
∣∣
∂Ω

= constant,
∫

∂Ω

∂u

∂ν
= 0 ,

where b is a C1-field such that div b = 0. However, for b 6= 0 the problem is no longer
variational, and then the claim of Theorem 2.1 is not necessarily true. Indeed, in
the particular case n = 1, it is well known that for the pendulum equation

u′′ + au′ + b sinu = f(t),

where a is a positive constant, there exists a family of T -periodic functions f such
that

∫ T

0
f = 0 for which the equation has no periodic solutions (see [1, 8, 10]).

Remark 3.10. As in [4], it can be proved that for any c in the interior of Ip there
exist at least two solutions of (3.1) which are essentially different (i.e. not differing
by a multiple of T ).
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Maŕıa Cristina Mariani

Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM
88003-0001, USA

E-mail address: mmariani@nmsu.edu


	1. Introduction
	2. Solutions by variational methods
	3. The maximal interval Ip
	Acknowledgement

	References

