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EXISTENCE OF SOLUTIONS TO N-DIMENSIONAL
PENDULUM-LIKE EQUATIONS

PABLO AMSTER, PABLO L. DE NAPOLI, MARIA CRISTINA MARIANI

ABSTRACT. We study the elliptic boundary-value problem
Au + g(z,u) = p(z) in Q
| tant / du _y
u = constan — =
o0 ’ 20 v ’
where g is T-periodic in u, and Q C R” is a bounded domain. We prove the
existence of a solution under a condition on the average of the forcing term
p. Also, we prove the existence of a compact interval I, C R such that the
problem is solvable for p(z) = p(x) + ¢ if and only if ¢ € I,,.

1. INTRODUCTION

Existence and multiplicity of periodic solutions to the one-dimensional pendulum
like equation

u” + g(t,u) = p(t) (1.1)
w(0) —u(T) =4 (0) —u'(T) =0 (1.2)

where g is T-periodic in u have been studied by many authors; see e.g. [4] and
for the history and a survey of the problem see [6l [7]. In this work, we consider a
generalization of this problem to higher dimensions. With this aim, note that the
boundary condition can be written as

w(0) = u(T) = c, /OT u =0

where ¢ is a non-fixed constant. Thus, by the divergence Theorem, (1.1)-(1.2]) can
be generalized to a boundary-value problem for an elliptic PDE in the following
way:

Au+ g(z,u) =p(z) inQ
ou (1.3)

=0,

= constant, — =
o0 81/
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where Q@ C R™ is a bounded C''! domain. We shall assume that p € L?(Q), and
that g € L™ (Q X R) is T-periodic in u. For simplicity we shall assume also that
%9 ¢ L=(Q x R).

This kind of problems have been considered for example in [2], where the authors
study a model describing the equilibrium of a plasma confined in a toroidal cavity.
Under appropriate conditions this model can be reduced to the nonhomogeneous
boundary-value problem

Au+ h(z,u) =0 in Q
1.4
ou 7 ( )

u’ag = constant, o O =
The authors prove the existence of at least one solution u € H? of the problem for
any h satisfying the following assumptions:

(A1) h: Q xR — [0,+00) is continuous, nondecreasing on u, with h(z,u) = 0

for u < 0.

(A2) limy— oo o Mz, u)dx > 1.

(A3) limy—too h(;f;“) = 0 for some r € R (with r < -5 when n > 2).

On the other hand, for the particular case h(z,u) = [u]f. and Q = B1(0), Ortega
has proved in [9] that if n > 2 and p > 5 then there exists a finite constant I,
such that the problem has no solutions for I > I,.

In the second section we obtain a solution of by variational methods under
a condition on the average of the forcing term p.

In the third section we prove by topological methods that for a given p there
exists a nonempty closed and bounded interval I, such that problem is solvable
for p = p+cif and only if ¢ € I,,. A similar result for the one-dimensional case has
been proved by Castro [3], using variational methods, and by Fournier and Mawhin
[], using topological methods.

2. SOLUTIONS BY VARIATIONAL METHODS

For fixed x € Q, define ay(z) as the average of g with respect to u, namely:

ag(x) = %/0 g(z,u)du.

For ¢ € L*() denote by © the average of ¢, i.e.
).
o=— [ o(z)dx.
 Jo

P =g, (2.1)
then (1.3) admits at least one solution u € H?(2).

Proof. Let R+ H(Q) = {u € HY(Q) : u‘ag = constant}, and consider the func-
tional Z : R + H(Q) — R given by

2 = | (T4~ 6eu(w) + ploute) )i

Theorem 2.1. If

where

G(z,u) = /Oug(a;s)ds.
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By standard results, Z is weakly lower semicontinuous in R + Hg(£2). We remark
that u is a critical point of 7 if and only if

/Q(Vu.Vgp —g(z,u)p +pp)dr =0 (2.2)

for any » € R + HZ(Q). In this case, if ¢ = u|8Q then u is a weak solution of the
problem

Au+ g(x,u) = p(x), U‘BQ =c. (2.3)
It follows that u € H*(2). We claim that [,, 9% = 0. Indeed, taking ¢ = 1 in

(2.2) we obtain:
/ g(z,u)dx = / p(z)dx.
Q Q
Integrating (2.3]) over €2, we deduce that

Au = 0.
/amaV /

Thus, any critical point of Z is a weak solution of | .
To prove the existence of critical points of Z, 1et {un} C R+ H{ () be a mini-

mizing sequence, and let ¢, = u”|aﬂ' For any u € R + H}(Q) it holds that

Z(u+T)—Z(u) = T/Qp(ac)d:v - /Q[G(:c, u+T)— G(z,u)lde.
For fixed x, we have
T
G(z,u(zx) +T) — G(z,u(z)) = /( : g(x,s)ds = /0 g(x,s)ds = Tagy(z),

and from (2.1) we deduce that Z(u + T) = Z(u). Hence, we may assume that
€ [0,T]. By Poincaré’s inequality we have that

||un - CTLHL2 < C”Vu’ﬂHLZ?

w(x)+T

and then
1 1
I(u,) = 5\|Vun||2Lz + / Py dr — / G(z,up)dz > iHVunHQLz —7||Vupl||z — s
Q Q

for some constants r,s. Thus, {u,} is bounded, and by classical results Z has a
minimum on R + Hg (). O

3. THE MAXIMAL INTERVAL I,

Fix p € L*(Q) such that p = @, and consider the problem
Au+ g(z,u) =p(z)+c inQ
ou (3.1)

= constant — =0

Ul o, o OV

with ¢ € R. It is easy to establish a necessary condition on ¢ for the solvability of
(31): indeed, if u is a solution of (3.I)) then

xu =p+ec
),

Thus, if we define g, (z) = g(z, u(x)), we obtain:

c=0y — .
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Furthermore, if

g+ () = OSSBETg(m,u), g—(v) = OglgiTg(%U),

it follows that g— < g, < g1, and hence

g— —ag < c< gy —ay.

In particular,

inf g—a,<c< sup —a,.
[0,T]xR ! [0,T]xR

In the next theorem we obtain also a sufficient condition. More precisely, if we
define
I, = {c e R: (B.1) admits a solution in H*(Q)},

we shall prove that I, is a nonempty compact interval. From Theorem it follows
that

Iy = [ap, Bp],
where
g- — a3 <, <0< B, < gy —ay.
Theorem 3.1. Assume that D =@y and define
E={ucR+H*NH}(Q): Au+ g(z,u) =p+Ga — ay}.
Then the set
E;:={g.:ue E}CR

s a nonempty compact interval. Furthermore, By = ag + I,.

For the proof of this theroem, we need Lemmas|3.2] and Theorem
B8 below.

Lemma 3.2 (Poincaré-Wirtinger inequality). There exists a constant ¢ € R such
that

Ju =2 < el| Va2
for all u € H(Q).

The proof of the above lemma can be found in [5].
Lemma 3.3. Assume that p =ag. Then for any r € R the problem
Au+g(z,u) =p+ g0 — g
0
“ =0

= constant, — =
oq OV

“’aﬂ
admits at least one solution u such that uw = r.

Proof. For u € H*(2) define Tu = v as the unique solution of the problem

Av=p+7gy —a; — g(z,u) (3.2)

v|[m = constant, v =r1.

Then T : HY(Q) — H'(Q) is well defined and compact. Indeed, if ug is the unique
element of H? N H{(Q2) such that

Au0:p+giu*aigfg(xau)7
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it is clear that v = wy — ug + r is the unique solution of (3.2)), and compactness

follows immediately from the compactness of the mapping u© — wug. Moreover,
integrating the equation, it is immediate that

Av = 0.
093’/ /

ov
Av(v—r —|—/ Vol? = (v —-r — =0,
[ avw=n+ [0 = 0l =) [ T

and we deduce that

Then

lo = rlg < cllAv): <C

for some constant C'. Thus, the proof follows from Schauder Theorem. O

Lemma 3.4. Let p, E, E, be as in Theorem [3.1] and
Er ={ue E:ul,, <[0,T]}.
Then:
(1) BEr C R+ H}(Q) is compact.
(2) Eg ={gu:u € Er}.
Proof. Let {u,} C Er and ¢, = un‘ag € [0,7T]. (From standard elliptic estimates
it follows that ||u,|g2 < C for some constant C. Taking a subsequence we may
assume that u,, — u in R + Hg(2). ;From the equalities
Aup =p+Gu, —ag — 9(x,un)
it follows easily that w € Ep, and (1) is proved. Moreover, for any u € F there
exists k € Z such that ur := u+kT € Er. AS gy, = gu, the proof of (2) follows. O

To complete the proof of Theorem it suffices to show that I, is connected.
Indeed, it is clear that u is a solution of (3.1)) if and only if u € E with ¢ = g, — @y,
and by continuity of the mapping v — g, it follows that I, is compact.

Remark 3.5. jFrom Lemma E is infinite. In particular, if I, = {0} then (1.3
admits a continuum of solutions.

To apply the method of upper and lower solutions to our problem, we shall first
prove an associated maximum principle:

Lemma 3.6. Let A > 0 and assume that u € H?(Y) satisfies:
Au— du >0,
ou
u’aﬂ = constant, /aQ o <0.
Then u < 0.

Proof. If u|aQ = ¢ < 0 the result follows by the classical maximum principle. If
c>0,let QF ={z € Q:u(z) >0} and u*(z) = max{u(x),0}. Then

0<//\uu+</Auu / |Vu|2+c/ —<O
o+ o0 0

a contradiction. O
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Lemma 3.7. Let 0 € L?(Q)) and A > 0. Then the problem
Au—Adu=0 1inQ

u‘ = constant / aU*O
29 ) 00, OV

admits a unique solution ug € H?(Q). Furthermore, the mapping 0 — g is con-
tinuous.

Proof. Let J : R+ H}(Q2) — R be the functional

2 2
J(u):/ Vul? | A g,
Q 2

2

It is immediate that J is weakly lower semicontinuous and coercive, then it has a
minimum u. Furthermore, u € H?*(Q) and |, 20 % = 0. Integrating the equation,
we also obtain that —\u = 6.

By standard elliptic estimates and Lemma there exists a constant ¢ such
that

lw —@|| g2 < c||Aw — Aw|| L2
for any w € H* N(R+ Hj) such that [, 9w — 0; thus, uniqueness follows. Finally,
if 01, 02 € L?(Q) then
lug, — ug, ||z < |9QL.[01 — 02| + cl|61 — b2l 2,

and the proof is complete. ([

Now we have the following result.
Theorem 3.8. If p € L*(2) and there exist a, 3 € H?(Q) with o < 3 such that

6’89 = constant, O"ag =
[Boon] o
a0 aV a0 6V

Au+ g(z,u) = ¢(z)
Ju
u|8Q = constant, - Eoi 0

admits at least one solution u € H?(Q) such that o < u < 3.

Proof. Let A > R, where R = ||%||Loo. For fixed v € L?(2) define Tv = u as the
unique solution of the problem

constant,

then the problem

Au—du=¢—g(x,v) — v in Q
0
“—o.

constant, — =
o0 61/

“{an =

By the lemmas above, the mapping T : L?(Q) — L?(Q) is well defined and compact.
Moreover for o < v < 3, we have

Au—du=p—glz,v) — v >p—glx,[) — A0 >AB—)\0.

Hence,

A(u=08) = Mu—=5) =0
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and

_ = —= < 0.
(u B)|BQ constant, /{m 5y < 0

From Lemma we deduce that u < 8. In the same way, we obtain that u > «
and the result follows by Schauder Theorem. O

Proof of Theorem[3.1l Let P € H?(2) be any solution of the problem

AP =p—a4
oP

P|8§2 = constant, — =0.
o0 OV

Taking v = uw — P, problem ({3.1) is equivalent to the problem

Av+ gz, v) =c+ay
oP
P‘ag = constant, — =0,
o 81/

where g(z,v) := g(x,v + P(z)) is continuous and T-periodic in v. Thus, we may
assume without loss of generality that p is continuous. Let ¢1,c2 € I, ¢1 < c2, and
take ui,us € E such that g,; =¢; —ag. Asu; € C(Q), adding kT for some integer
k if necessary, we may suppose that u; < us. For ¢ € [¢1, ca] we have that

Aug + g(z,u1) =p+c1—ag <p+c—ay <p+co—ag = Aug + g(x, uz).

From the previous theorem, there exists v € E such that g, = ¢ —a4. The proof is
complete. |

Remark 3.9. Using fixed point methods, Lemma can be generalized; thus, it
is easy to see that Theorem [3.1] is still valid for the more general problem

Au + (b(x),Vu) + g(x,u) = p(xz) in Q
ou 0

= constant, — =
o0 81/

u|6Q

where b is a C'-field such that div b = 0. However, for b # 0 the problem is no longer
variational, and then the claim of Theorem is not necessarily true. Indeed, in
the particular case n = 1, it is well known that for the pendulum equation

v’ +au’ + b sinu = f(t),

where a is a positive constant, there exists a family of T-periodic functions f such
that fOT f = 0 for which the equation has no periodic solutions (see [I}, 8, [I0]).

Remark 3.10. As in [4], it can be proved that for any c in the interior of I,, there
exist at least two solutions of ([3.1)) which are essentially different (i.e. not differing
by a multiple of T).
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