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CHAPTER I 

SPATIAL AND TEMPORAL PATTERNS IN A CHIHUAHUAN DESERT FISH 
ASSEMBLAGE 

ABSTRACT 

Obligate riverine fishes in North America are decreasing in occurrence and 

abundance, particularly in semi-arid and arid regions of central and southwestern USA. 

Population declines of obligate riverine fishes frequently are associated with 

anthropogenic alterations of riverine environments. The purpose of this study was to 

quantify the relationship between riverine mesohabitats and fish occurrence and 

abundance in the Big Bend reach of the Rio Grande to assess possible mechanisms for 

obligate riverine fish's declines related to anthropogenic alterations. The Big Bend fish 

assemblage was sampled monthly from seven sites, collectively spanning about 200 river 

km of the Rio Grande. The fish assemblage differed spatially related to habitat 

differences among sites (CCA; P<0.01). Current velocity and depth were among the 

strongest abiotic parameters explaining fish assemblage segregation. Some obligate 

riverine fishes (i.e., Rhinichthys cataractae, Macrhybopsis aestivalis, Notropis 

jemezanus, and Cycleptus sp.) were strongly associated with specific riverine habitats, 

whereas some other riverine fishes (i.e., Cyprinella lutrensis and Notropis braytoni) were 

not. Habitat suitability estimates were calculated for juveniles and adults for abundant 
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fishes (S = 4) to further delineate current velocity and depth associations. The fish 

assemblage also differed temporally (ANOSIM; P<0.01) between wet and dry season 

seasonal changes were attributed to downstream movement oflentic-type fishes into the 

study area during the wet season (i.e., Cyprinus carpio, Ictalurus furcatus, L punctatus, 

and Menidia beryllina). This study demonstrated that fishes in the Big Bend reach were 

influenced by components of river flow (i.e., current velocity and depth) and by prior and 

distant alterations of the riverscape (i.e., instream reservoirs in Mexico). Information 

from this study can be used to estimate a flow prescription of the Big Bend reach for the 

maintenance and protection of the current fish assemblage. In addition, habitat estimates 

of these fishes, especially the imperiled or obligate riverine components of the fish 

assemblage, can be applied to other areas of the Rio Grande to restore fish assemblages 

previously impacted by anthropogenic alterations. 

INTRODUCTION 

Obligate riverine fishes, those dependant on lotic systems for all or part of their 

life history, are declining in abundance and distribution in response to alterations of 

natural flow regimes (Holden 1979; Winston et al. 1991; Platania and Altenbach 1998; 

Bonner and Wilde 2000). Alterations, such as dam construction and hydrologic 

diversions, modify physical, chemical, and biological components of rivers. Reductions 

in mean discharge and magnitude and frequency of scouring flood events affect channel 

morphology, sediment transport, substrates, and habitat types (Schmidt et al. 2003). 

Resulting water quality changes alter natural patterns in turbidity, temperature, and 

conductivity (Bain et al. 1988; Ligon et al. 1995; Poff et al. 1997; Richter et al. 1997; 
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Bunn and Athington 2002; Richter et al. 2003). These physical and chemical changes 

typically lead to increases in abundance of some fishes (Scott and Hel:finan 2001 ), which 

exacerbates the declines of obligate riverine fish abundance and distribution related to 

habitat alterations. 

Over 50% of the inland fish species of concern in Texas occur in the Rio Grande 

drainage (Hubbs et al. 2008). Fish species that were historically common and widespread 

in the Rio Grande, now exhibit reduced abundance and distribution (Trevino-Robinson 

1959; Hubbs et al. 1977; Edwards and Contreras-Balderas 1991; Edwards et al. 2002; 

Calamusso et al. 2005). In particular, populations of obligate riverine fishes are highly 

impacted (Anderson et al. 1995; Hubbs et al. 2008), The Rio Grande silvery minnow 

Hybognathus amarus, Rio Grande shiner Notropisjemezanus, Rio Grande blue sucker 

Cycleptus sp. and Rio Grande speckled chub Macrhybopsis aestivalis are currently 

extirpated from large portions of their historical ranges, and the phantom shiner Notropis 

orca and Rio Grande bluntnose shiner Notropis simus simus are now considered extinct 

(Bestgen and Platania 1990; Platania and Altenbach 1998; Hubbs et al. 2008). 

lchthyofauna changes in the Rio Grande are associated with anthropogenic 

activities that drastically alter the river from its natural state. Construction of reservoirs, 

channelization, hydrologic diversions for agricultural purposes, reduced water quality and 

quantity, ground water depletion, overgrazing, and introduction of non-native species are 

common in the Rio Grande watershed. In some reaches in New Mexico and far west 

Texas, the Rio Grande is periodically completely dewatered because of agricultural and 

municipality withdrawals (Calamusso et al. 2005); in other reaches, poor water quality 

and chemical pollution prompted advisories against water ingestion and fish consumption 
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(IBWC 2003; USGS 2004; Owens and Niemeyer 2005). This has led Calamusso et al. 

(2005) to suggest that fish conservation efforts in the Rio Grande mainstem should be 

abandoned, instead focusing conservation efforts only in the tributaries. Despite these 

extensive alterations and suggestion for abandonment, a few reaches within the Rio 

Grande drainage have relatively intact fish assemblages. In the lower Rio Grande, 

several obligate riverine fishes, including, Cycleptus sp., Macrhybopsis aestivalis, and the 

Tamaulipas shiner Notropis braytoni, persist in the reach from the confluence of the Rio 

Conchos to the confluence of the Pecos River (Edwards et al. 2002; Garrett 2002; Moring 

2002; Edwards 2005). 

The purposes of this study are to describe seasonal trends in abundance and 

habitat associations of fishes in the Big Bend reach of the Rio Grande, a section of the 

Rio Grande between the confluence of the Rio Conchos to the confluence of the Pecos 

River. Objectives of this study were to determine seasonal and longitudinal patterns in 

Rio Grande fish assemblage abundance and density and to quantify habitat associations. 

To date, historical trends in fish occurrence and abundance are documented for the lower 

Rio Grande of Texas (Hubbs 1958; Hubbs et al. 1977; Platania 1990; Edwards et al. 

2002; Garrett 2002; Moring 2002; Edwards 2005); however, intra-annual variation in 

species abundance and habitat associations are lacking. Past studies within the Big Bend 

reach of the Rio Grande have found large bodied fish species in deeper run type 

geomorphic units and smaller bodies species in shallower areas with more varied current 

velocities (Moring 2002). I concentrated my sampling effort on these shallow areas 

because my goal was to assess habitat associations of small bodied obligate riverine 

cyprinids which form a large portion of the Rio Grande's biomass and of which many are 



considered imperiled (Hubbs 1958; Hubbs et al. 1977; Platania 1990; Edwards et al. 

2002; Garrett 2002; Moring 2002; Edwards 2005; TPWD 2005; Hubbs et al. 2008). 

Information provided on the Big Bend fish assemblage, specifically on the obligate 

riverine cyprinids, will improve capabilities to conserve, maintain, and possibly restore 

this and other reaches within the lower Rio Grande. 

MATERIALS AND METHODS 

5 

Big Bend reach of the Rio Grande, between Presidio (TX) and the confluence of 

the Pecos River, primarily borders Big Bend Ranch State Park, Big Bend National Park 

(NP), and Black Gap Wildlife Management Area (WMA) or is managed by the National 

Parks Service as a Wild and Scenic River. The natural flow regime in the Big Bend reach 

is altered because of reductions in discharge attributed to upstream dam construction and 

dewatering in Mexico and the USA (Figure 1) (Hubbs et al. 1977; Moring, 2002; 

Edwards 2005). For example, the magnitude of2-year flood recurrence is reduced by 

about 50% downstream from Rio Conchos and Rio Grande confluence since 1915 

(Schmidt et al. 2003). Consequently, proportions of braided channels, shallow runs, 

riffles, and sand substrates are reduced, whereas the proportion of deep, sluggish runs 

with silt substrate has increased. However, diverse habitats persist, consisting of multiple 

geomorphic units (i.e., riffle, run, pool), limited areas of braided channels, and silt 

through boulder substrates (Hubbs et al. 1977; Armantrout 1998; Moring 2002; Goldstein 

and Meador 2004). Water quality has deteriorated, attributed to high nutrient loads from 

municipalities and agriculture along the Rio Conchos and Rio Grande near Presidio (TX), 



but generally improves as the river flows through the Big Bend reach and into the lower 

Canyons (IBWC 2003; USGS 2004). 

6 

Seven sites were selected based on accessibility, longitudinal distribution, and 

availability of various types of geomorphic units. These sites spanned a distance of about 

200 river km (Figure 2). At each site, geographic coordinates recorded with a Garmin 

GPSMAP 60CSx GPS unit in the UTM coordinate system, Zone 13 R, NAD 27. Main 

stem sampling sites were located near the confluence of Contrabando Creek (Site 1; E 

612395, N 3239287), downstream from Santa Elena Canyon (Site 2; E 635271, N 

3226912), near the USGS Gauging Station within Big Bend National Park (Site 3; E 

656882, N 3212601), near Johnson Ranch campground of Big Bend NP (Site 4; E 

658721, N 3211332), near the confluence ofTornillo Creek (Site 5; E 695091, N 

3229250), upstream from Boquillas Canyon in Big Bend NP (Site 6; E 702576, N 

3231651), and near the confluence ofMaravillas Creek in Black Gap WMA (Site 7; E 

715509, N 3272178). Study sites contain a mixture of geomorphic units at seinable 

depths and are bordered upstream and downstream by deep and sluggish runs. Riparian 

vegetation consisted of dense stands of exotic giant reed Arundo donax and salt cedar 

Tamarix sp. (Edwards 2005). 

I collected fish and quantified habitat monthly from January through December 

2006. Sites 3 and 4 were not sampled in July 2006 because of road inaccessibility. At 

each site, I established up to ten transects perpendicular to the stream bank (Simonson et 

al. 1994). The positions of transects was not static month to month. Along each transect, 

discrete geomorphic units (i.e., run, riffle, pool, side channel, backwater) were sampled 

with seine (3 m X 1.8 m; mesh size= 3.1 mm) hauls that were 5 min length in a 
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downstream direction or one 5-m kick into a blocking seine. Transects were (>10 m) 

apart to avoid disturbing adjacent habitats. Twenty to sixty seines hauls or kicks were 

taken at each site and date (Matthews 1986; Dudley and Platania 1997). Captured fishes 

were identified to species (except larval Lepomis), enumerated measured to the nearest 

millimeter (total length) and released, except for voucher specimens in order to calculate 

relative abundance and catch per unit effort (CPUE) (number offish collected per seine 

haul (m2)). Within the area of the seine haul, current velocity (cm/sec; Marsh-McBimey, 

Inc. Flowmate model 2000) and depth ( cm) were measured from two points on the short 

axis of the seine haul, and substrate type (Cummins 1962) was determined from 10 

random points within the seine haul. Temperature (°C), specific conductivity (µSiem), 

and pH was obtained from continuous monitoring station (Castolon C720; Texas 

Commission of Environmental Quality) located near Site 3. Hourly measurements were 

used to calculate monthly means ( or median for pH) for January through December, 

2006. Turbidity (NTU) was taken once at each site and sampling date with a YSI Model 

660 multi-probe unit. Monthly means were calculated across sites. 

Site and seasonal differences in habitat characteristics (i.e., mean current velocity, 

mean depth, percent substrate, and geomorphic unit type) among seine hauls were 

assessed with principal component analysis (PCA; SAS V. 9.1). Mean current velocity, 

mean depth, and percent substrate were Z-score transformed; dummy variables were used 

to denote geomorphic unit type. Fish assemblage similarity among sites was assessed 

with a pairwise Renkonen similarity index (Matthews and Marsh-Matthews 2006). 

Seasonal differences in fish occurrences and abundances were assessed with analysis of 

similarity (ANOSIM; Clarke 1993) using Bray-Curtis similarity indices in PRIMER 
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(version 6.1.6) (Bean et al. 2007). Abundances were fourth-root transformation to down 

weight highly abundant species and to recognize less abundant species (Clark and Green 

1988). Canonical correspondence analysis (CCA; CANOCO V4.5; ter Braak 1986) was 

used to assess multivariate relationships between habitat characteristics and fish 

abundance. For all models, season was based on monsoonal precipitation cycles which 

peak in late summer and early fall: January through July and November through 

December (dry seasons 1 & 2), and August through October (wet season) (Figure 3). For 

species-specific assessments, current velocity and depth associations were quantified for 

two size class (<25 mm & >25 mm) of Notropis braytoni, Macrhybopsis aestivalis, and 

Cyprinella lutrensis, and one size class of Rhinichthys cataractae by using weighted 

averages. These species were found in sufficient numbers to assess current velocities and 

depths used relative to available habitats. 

RESULTS 

Seinable geomorphic units primarily consisted of runs (56- 89% among sites) 

and riffles (2.7 -25%). Among geomorphic units and sites, cobble was the dominant 

substrate ( 41 % - 89% ), except at Site 4, which had relatively large amounts of gravel 

(43%) and silt (33%) substrates. Sand, boulder, and bedrock comprised <15% of the 

available substrates across all sites (Table 1 ). Mean monthly turbidity ranged from 234.8 

to 426.3 NTU. Mean(± 1 SD) monthly temperature and chemical parameters ranged 

between 11 °C (± 1.6) and 29°C (± 2.5) for water temperature and between 953 (± 241.0) 

to 3,321 (± 404.8) µSiem for specific conductivity. Median pH (range) was 7.0 (6.0-
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8.0). The flow regime during 2006 was typical for the reach temporally and in magnitude 

when compared to patterns measured since 1984 (Figure 3). 

The first three axes of PCA explained 38.5% of the variation in habitat 

parameters. Axis I (15.5%) described a geomorphic unit gradient, with runs, water depth, 

and current velocity having highest negative loadings and riffles, side channels, 

backwaters, and silt substrate having highest positive loadings (Table 2). Axis II (13.8%) 

described primarily a substrate gradient, with cobble, riffles, and current velocity having 

highest negative loadings and silt and backwater having highest positive loadings. Axis 

III (9.3%) described another substrate gradient, with cobble and riffle having highest 

negative loadings and cobble, silt, and run having highest positive loadings. Among 

sites, mean PC habitat scores on axes I and II clustered into four groups: Site 1 with 

primarily shallow riffles and side channels; sites 2, 6, and 7 with runs, riffles, and cobble 

and silt substrates; sites 3 and 5 with more riffles and cobble substrates; and, site 4 with 

more backwaters and silt substrates (Figure 4). Mean PC habitat scores on axes III 

reflected a gradual gradient for sites 3, 7, and 1 from the other sites primarily based on 

low percentage (<12%) of gravel substrates. Among seasons, mean PC habitat scores 

were similar between dry and wet seasons on PC axis I, were higher in the wet season on 

PC axis II (more backwaters with silt substrate), and lower in the dry season on PC axis 

III (more run habitats with cobble substrates). 

A total of 10,565 fishes representing 20 species were taken from seven sites. 

Species richness (S) was highest (S = 19) at Site 2 and was lowest at Site 5 (S = 11 ). 

Cyprinella lutrensis was most abundant across all sites ( 46%) and most abundant at sites 

1 through 4, ranging from 45% (Site 2) to 69% (Site 1 ). Endemic Notr_opis braytoni was 
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the second most abundant across all sites (35%) and most abundant at sites 5 through 7, 

ranging from 40% (Site 7) to 51 % (Site 5). Six imperiled taxa (N. braytoni, N. chihuahua 

N.jemezanus, M. aestivalis, R. cataractae, Cycleptus sp.; TPWD 2005; Hubbs et al. 

2008) were taken from at least one site. Three non-native taxa ( Cyprinus carpio, Menidia 

beryllina, and Fundulus zebrinus) were taken and represented <1 % of the total 

assemblage; an additional non-native fish ( Oreochromis aureus) was observed during a 

fish kill in December, 2006 near Site 2. The assemblage was dominated (>80% relative 

abundance) by two species. hnperiled fishes, excluding N. braytoni, composed 4% of 

the assemblage. Among all sites, catch per unit effort of fish was lowest (159 x 10-3) at 

Site 3 and highest ( 44 7 x 10-3) at Site 6. Highest CPUE by species and site was N. 

braytoni at Site 5 (218 x 1 o-3) and Site 6 (207 x 10-3), followed by C. lutrensis at Site 6 

(194 x 1 o-3) and at Site 4 (171 x 10-3) (Table 3). 

Fish assemblage exhibited significant variation among sites and between seasons. 

Fish assemblage similarities were >80% among sites 1, 3, and 4, and among sites 5, 6, 

and 7, attributed to dominance of Cyprinella lutrensis (51 - 69% at sites 1, 3, and 4) and 

dominance of Notropis braytoni (40 - 50% at sites 5, 6, and 7). Site 2 was least similar to 

other sites, dominated by Cyprinella lutrensis (45%), followed by Notropis braytoni 

(26% ), as well as the highest abundances of Notropis chihuahua and Notropis jemezanus 

along with the only occurrence of Rhinichthys cataractae. Fish assemblages also differed 

(ANOSIM, R = 0.467, P < 0.01) among seasons. Abundances and densities (CPUE) of 

Cyprinella lutrensis, Notropis braytoni, and Carpiodes carpio decreased and densities of 

Cyprinus carpio, Ictalurus furcatus, L punctatus, and Menidia beryllina increased 

between Dry Season 1 and the Wet Season. Abundances and densities of Cyprinus 
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carpio, lctaluras furcatus, L punctatus decreased and densities of Notropis braytoni, 

Carpiodes carpio, and Gambusia affinis increased between Wet Season and Dry Season 

2. Assemblage after the Wet Season (i.e., comparison between Dry Season 1 and 2) had 

lower abundances and densities of Cyprinella lutrensis, Macrhybopsis aestivalis, L 

furcatus, and L punctatus and higher abundances and densities of Gambusia affinis and 

Menidia beryllina {Table 4). 

A total of 12% of the taxonomic variation (CCA; P<0.01) was explained by 

habitat parameters. Axis I described a current velocity and geomorphic unit gradient with 

swifter current velocities, runs, and riffles having positive loadings, and backwater, side 

channel, and shallow depths having negative loadings. Axis II described a depth, 

geomorphic unit and substrate gradient with deeper water and backwaters with silt 

substrate having positive loadings and shallow water and gravel to cobble substrates 

having negative loadings on Axis II. Fishes with strong habitat associations were 

Rhinichthys cataractae, associated with riffles and cobble substrates, lctalurus furcatus, 

L punctatus, Pylodictis olivaris, Macrhybopsis aestivalis, Notropis jemezanus, and 

Cycleptus sp., associated with runs and with swift current velocities, Notropis chihuahua, 

Gambusia affinis, and Carpiodes carpio, associated with backwaters and silt substrates, 

and Fundulus zebrinus, associated with pools. Abundant fishes without strong habitat 

associations included Cyprinella lutrensis, Notropis braytoni, and Astyanax mexicanus 

(Figure 5). 

Among the common cyprinids, species segregation and size groups differed 

among current velocity and depth gradients (Figure 6). Mean current velocity (±SE) of 

smaller fish (<25 mm) was 0.10 mis (±0.04) for Notropis braytoni (N= 390), 0.10 mis 



(±0.03) for Cyprinella lutrensis (N= 1,168), and 0.17 mis (±0.06) for Macrhybopsis 

aestivalis (N= 14). Mean depth (±SE) of smaller fish was 0.26 m (±0.04) for Notropis 

braytoni, 0.26 m (±0.04) for Cyprinella lutrensis, and 0.17 m (±0.04) for Macrhybopsis 

aestivalis. Larger fishes shifted to swifter current velocities. Mean current velocity 

(±SE) oflarger fish (>25 mm) was 0.30 mis (±0.06) for Notropis braytoni (N = 2,003), 

0.19 mis (±0.04) for Cyprinella lutrensis (N= 2,172), 0.68 mis (±0.08) for Rhinichthys 

cataractae (N = 38) and 0.48 mis (±0.06) for Macrhybopsis aestivalis (N = 279). Shifts 

to greater depths only occurred with Macrhybopsis aestivalis (0.38 m; ±0.04). 

DISCUSSION 

12 

Occurrences and abundances of fishes reported in this study were similar to those 

taken in past collections {Table 5; Hubbs 1958; Hubbs et al. 1977; Platania 1990; Garrett 

2002, Edwards et al. 2002; Moring 2002; Edwards 2005). Tax.a not taken in this study 

were two fishes (Campostoma ornatum and Dionda episcopa) that are typically found in 

tributaries of the Rio Grande (Thomas et al. 2007), and nine fishes that were historically 

uncommon in occurrence ( ~ of 8 collections since 1954). Relative abundances of fishes 

generally were within reported abundance variability of fishes taken from the Big Bend 

reach (Hubbs 1958; Hubbs et al. 1977; Platania 1990; Garrett 2002, Edwards et al. 2002; 
I 

Moring 2002; Edwards 2005). Notable exceptions included three riverine fishes 

(Notropis jemezanus, /ctiobus bubalus, and Cycleptus sp. ), which had lower abundances 

in this study compared to historical abundances, when present. Possible population 

declines of these three riverine tax.a are consistent with other riverine fishes that were 

historically found in the Big Bend reach but are now extinct (Notropis simus simus and 
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Notropis orca) or extirpated (Hybognathus amarus) (Hubbs et al. 2008). In contrast, 

relative abundance increased for Cyprinella lutrensis since the 1970s and for Notropis 

braytoni since the mid-1990s in the Big Bend reach. Despite these changes, the fish 

assemblage retains more of its integrity in the Big Bend reach relative to other reaches in 

the Rio Grande mainstem and lower Pecos River, where many of the obligate riverine 

taxa, such as Notropis braytoni, Macrhybopsis aestivalis, N. jemez.anus, Rhinichthys 

cataractae and Cycleptus sp., are extirpated or in low abundance (Sublette et al. 1990; 

Edwards and Contreras-Balderas 1991; Contreras-Balderas et al. 2002; Hoagstrom 2003; 

Calamusso et al. 2005). 

Fish occurrences, abundances, and distributions were explained, in part, by habitat 

and season. Among habitat parameters, fishes were segregated primarily along a current 

velocity and geomorphic unit gradient. Rhinichthys cataractae, Notropis jemezanus, 

juvenile catfishes (Pylodictis olivaris, Ictalurus punctatus, and L furcatus ), juvenile 

Cycleptus sp., and Macrhybopsis aestivalis were specialized in their habitat associations, 

generally found in swifter current velocities and in run or riffle habitats. Likewise, 

juvenile Notropis chihuahua, Gambusia a/finis, Fundulus zebrinus, and Lepisosteus 

osseus were often associated with low current velocities habitats, such as backwaters, 

pools, and side channels with silt substrate. Several taxa, including two of the most 

abundant fishes ( Cyprinella lutrensis and Notropis braytoni), exhibited generalist habitat 

traits and often were found in pools, side channels, runs, and riffles. Segregation also 

was observed along current velocity and depth gradients between age groups (i.e., 

juveniles and adults) of conspecifics. Segregation along current velocity, depth, and 

geomorphic units gradients is common among riverine assemblages (Herbert and 
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Gelwick 2003; Barko et al. 2004; Li and Gelwick 2005) and is necessary to maintain an 

ecologically intact and functioning riverine assemblage (Schlosser 1991; Ward 1998). 

Likewise, season, or more specifically seasonal flow pulses, influenced fish occurrence 

and abundance in this study. lctaluras punctatus, L .furcatus, Gambusia affinis, Cyprinus 

carpio and Menidia beryllina were more abundant during or after high flow pulses. 

Increases in abundance were attributed presumably to downstream displacement of 

reservoir fishes in the Rio Conchos (Ward and Stanford 1979; Schultz et al. 2003), 

whereas Cyprinella lutrensis and Macrhybopsis aestivalis were less abundant after the 

high flow pulses, attributed presumably to downstream displacement of riverine fishes 

(Schultz et al. 2003) or due to the increased mortality of post spawning adults (Bestgen et 

al. 1989). Occurrence of reservoir fishes in the Big Bend reach attributed to downstream 

displacement during flow pulses is not natural, and their occurrence can negatively 

impact riverine taxa (Meffe 1985; Marsh and Brooks 1989; Douglas et al. 1994; Marsh 

and Douglas 1997; Dudley and Matter 2000; Schultz et al. 2003; however, their presence 

illustrates some of the benefits of seasonal flow pulses and an intact riverscape (Ward and 

Stanford 1995; Poff et al. 1997; Fausch 2002)--local species pools are influenped by 

regional species pools (Heoinghaus et al. 2007) and local energy sources can be derived 

from distant sources (Karr 1991). 

Modification to natural flow regimes through impoundments and water 

withdrawals disrupt ecological and biological processes in large rivers by altering 

physical habitat components, including fragmenting longitudinal habitats, homogenizing 

stream geomorphology, and lessening seasonal peak flows (Poff et al. 1997; Hughes et al. 

2005). Throughout the Rio Grande drainage, modifications of flow regimes are 
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associated with extirpations of several fishes and increases of habitat generalist, lentic 

specialists, and exotic taxa (Sublette et al. 1990; Edwards and Contreras-Balderas 1991; 

Contreras-Balderas et al. 2002; Hoagstrom 2003; Calamusso et al. 2005). Changes in 

fish assemblage in the Big Bend reach are consistent with the trends with the extirpation 

of Hybognathus amarus and possibly declining populations of Notropis jemezanus and 

Cycleptus sp. and increasing populations of red shiners and Tamaulipas shiners (habitat 

generalists), inland silversides (lentic specialists), and common carp (exotic taxa). Yet, 

major modifications to the natural flow regime occur substantial distances upstream, with 

water withdrawals in the lower Rio Conchos and Presidio, TX, area of Mexico and USA 

(about 150 km upstream) and large dams in the Rio Conchos (about 250 km upstream) 

and the Rio Grande (600 km upstream). Consequently, protection, management, and 

restoration for biotic integrity or species will be cumbersome, given that the sources of 

flow modifications are distant and crossing state and international boundaries. 

Nevertheless, adequate flows must be ensured through the Big Bend reach. If not, I 

predict based on the results of this study that further reductions in flow will compress 

current velocity, depth, and geomorphic unit gradients that currently structure habitat 

segregation and likely lead to further loss of fish taxa or species abundance (Bonner and 

Wilde 2000; Aarts et al. 2004). 

Physical habitat alterations are not the only threat to the fish assemblage in the 

Big Bend reach of the Rio Grande. Chemical pollution and nutrient enrichment, likely 

the causes of periodic fish kills, are concerns as well (Davis 1980c; Miyamoto et al. 

1995; IBWC 2003; Edwards 2005; Marfurt 2007). High chemical and nutrient levels 

have been documented in the Rio Grande in the area associated with the confluence of 
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the Rio Conchos and the urban areas of Presidio, Texas and Ojinaga, Chihuahua (IBWC 

2003). Five fish kills and three pollution complaints were reported in the Big Bend reach 

of the Rio Grande encompassed in this study from 1983 to 2006. Three of the reported 

fish kills were located in or in the vicinity of Santa Elena Canyon (TPWD 2008). This 

complicates management downstream of these areas in that even with quality habitat and 

flows for fish species, water quality issues from upstream watersheds, much of which is 

located in Mexico, can negatively impact the fish assemblage in Big Bend National Park 

and other protected areas along the reach. 

The Rio Grande is the 5th longest in North America and ranks 24th in length 

globally (Dahm et al. 2005). The ichthyofauna has a high level of endemism and 

although highly impacted overall, it retains some areas of refuge for these species. The 

troubled history of the Rio Grande is unfortunately common to large rivers globally. The 

plight of the world's large rivers has become a concern not only to the scientific 

community due to the purely ecological services they provide to aquatic and terrestrial 

organisms (Naiman et al. 1993; Richter et al. 2003) but to society as well. Societal goods 

and services supplied by rivers include fresh water supply, hydroelectric power, fish for 

consumption, fertilization of floodplains and deltas, stabilizatio~ and building of deltas 

through deposition of sediment, pollutant dilution and transportation , water purification, 

the dispersal and.storage of flood pulses and recreation (Postel and Carpenter 1997; 

Brismar 2002). River restoration efforts, even in impacted systems, that maintain 

riverine species as well as societal goods and services, although difficult and costly, are 

possible when an adaptive management plan is implemented by the multiple stakeholders 



involved (Valdez and Muth 2005). This study and others are necessary steps in the 

overall goal of implementation of large river conservation and restoration efforts. 

17 
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TABLE 1. Overall and per site relative abundance of geomorphic units and substrate 
types encountered from January 2006 through December 2006 in the Big Bend reach of 
the Rio Grande. 

Site# Site 1 Site 2 Site 3 Site4 Site 5 Site 6 Site 7 Total 
N of seine hauls 349 467 256 338 389 303 291 2393 
Percent geomorphic unit 

Run 55.6 74.9 89.1 88.8 74.7 79.2 82.5 77.8 
Riffle 24.8 15 5.5 2.7 22.2 11.6 6.2 12.6 
Side channel 3.5 5.8 3.1 2.1 1.3 0.3 5.2 3.0 
Backwater 6.1 1.1 1.2 3.6 3 2.4 2.5 
Pool 8.6 1.5 1.2 1.8 0.5 0.3 1.4 2.2 
Eddy 1.4 1.7 1.2 1.3 5.6 2.4 1.9 

Percent substrate 
Cobble 50.7 40.7 88.5 5.5 65 53.3 59.7 51.9 
Gravel 8.2 38.7 7.1 43.1 27.9 30.7 11.1 23.8 
Silt 13.9 12.1 3.7 33.2 3.2 10 15.6 13.1 
Boulder 15.4 1.5 0.4 3.9 1.5 0.3 13.4 5.2 
Sand 0.9 7 14.3 2.2 5.7 0.1 ·4.3 

Bedrock 10.9 0.3 0.2 0.1 1.6 
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TABLE 2. PCA loadings from axes I, II and III and the % variance explained for 
geomorphic units and substrate types encountered from January 2006 through December 
2006 in the Big Bend reach of the Rio Grande. 

PCA 
Parameter I II III 

Current velocity (mis) -0.300 -0.333 0.247 
Depth(m) -0.370 0.160 -0.144 
Run -0.581 0.111 -0.223 
Riffle 0.360 -0.397 0.327 
Side channel 0.240 0.145 0.056 
Backwater 0.222 0.211 -0.069 
Pool 0.191 0.154 -0.087 
Eddy 0.129 0.055 -0.026 
Boulder(%) 0.072 -0.071 -0.061 
Cobble(%) -0.005 -0.544 -0.449 
Gravel(%) -0.229 0.188 0.638 
Sand(%) -0.118 0.193 0.166 
Silt(%) 0.246 0.475 -0.249 

% Variance explained 15.5 13.8 9.3 
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TABLE 3. Overall and per site relative abundance (A) and catch per unit effort (CPUE x 
10-3) (B) ofichthyofauna encountered from January 2006 through December 2006 in the 
Big Bend reach of the Rio Grande. Lepomis species (L. megalotis and L. cyanellus). 

A. S[!ecies Site 1 S1te2 Site3 Site4 Site 5 Site6 Site7 Total 
Lepisosteus osseus 0.1 0.3 0.2 0.1 1 0.1 
Cyprinella lutrensis 69 45 51 60 32 43 40 46 
Cyprinus carpio 03 2 I 0.3 0.4 0.2 1 1 
Macrhybopsis aestivalis 2 6 7 5 2 2 0.4 3 
Notropis braytoni 20 26 19 20 51 46 40 35 
Notropis chihuahua 1 0.1 0.1 
Notropis jemezanus 0.2 0.1 0.1 
Rhinichthys cataractae 2 0.4 
Carpiodes carpio 2 10 2 6 4 4 
Icttobus bubalus 0.1 0.02 
Cycleptus sp. 0.1 0.1 1 1 0.2 
Astyanax mexicanus 1 0.2 1 0.1 2 1 6 1 
Ictaluras farcatus 2 1 1 2 2 1 4 2 
Ictaluras punctatus 2 2 3 1 4 2 2 2 
Pylodictis o/ivans 0.1 1 1 0.3 1 0.3 
Fundulus zebrinus 2 1 0.1 0.4 0.1 1 
Gambusia afjinzs 2 1 11 5 3 2 2 3 
Menidia beryllina 2 0.2 0.1 1 0.3 1 1 
Lepomis species 0.1 0.2 1 0.4 1 0.2 

TotalN 1,225 1,938 611 1,441 2,511 2,033 806 10,565 

B. S[!ecies Site 1 Site 2 Site 3 Site4 Site 5 Site 6 Site 7 
Lepisosteus osseus 0.1 1 1 0.4 1 
Cyprinella lutrensis 161 124 82 171 137 194 74 
Cypnnus carpw 1 5 2 1 2 1 1 
Macrhybopsis aestivalzs 4 17 12 13 7 8 1 
Notropis braytoni 48 72 30 57 218 207 75 
Notropis chihuahua 2 0.2 
Notropis Jemezanus 0.4 0.2 
Rhinichthys cataractae 5 
Carpiodes carpio 4 27 2 18 16 3 2 
Ictiobus bubalus 0.2 
Cycleptus sp. 0.2 03 0.2 3 1 
Astyanax mexicanus 1 0.4 2 0.2 9 5 11 
Ictaluras farcatus 6 2 2 5 6 6 8 
Ictaluras punctatus 4 4 5 3 19 8 4 
Pylodictis olivaris 0.2 1 2 0.2 1 1 
Fundulus zebrmus 5 1 0.4 2 0.2 
Gambusia afjinis 5 4 18 14 12 8 4 
Menidia beryllina 5 0.3 0.2 2 1 1 
Lepomis species 0.2 0.4 0.2 1 

Total 234 277 159 284 430 447 185 
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TABLE 4. Seasonal relative abundance (A) and catch per unit effort (CPUE x 10-3) 

(B)ofichthyofauna encountered from January 2006 through December 2006 in the Big 
Bend reach of the Rio Grande. 

Relative Abundance 
A. Species Dry season 1 Wet season Dry season2 

Lepisosteus osseus 0.1 0.3 
Cyprinella lutrensis 50 37 38 
Cyprinus carpio 0.4 2 
Macrhybopsis aestivalis 4 2 2 
Notropis braytoni 33 36 42 
Notropzs chihuahua 0.2 0.1 
Notropis jemezanus 0.1 
Rhznichthys cataractae 0.4 0.5 0.1 
Carpiodes carpio 4 1 5 
lctiobus bubalus 0.03 
Cycleptus sp. 0.3 0.1 0.1 
Astyanax mexicanus 1 2 2 
lctaluras farcatus 1 4 
lctaluras punctatus 1 9 0.2 
Pylodictis olivaris 0.2 1 0.5 
Fundulus zebrinus 1 0.2 0.4 
Gambusia affinis 2 2 7 
Menidia beryllzna 1 3 
Lepomis species 0.2 0.3 

TotalN 7353 1724 1488 

B. Season D!i: season 1 Wet season Dryseason2 
N of seine hauls 1452 514 427 
Lepisosteus osseus 0.5 1 
Cyprinella lutrensis 170 83 88 
Cyprinus carpio 1 5 
Macrhybopsis aestivalis 12 5 5 
Notropis braytoni 112 80 98 
Notropis chihuahua 1 0.2 
Notropis jemezanus 0.2 
Rhinichthys cataractae 1 1 0.3 
Carpiodes carpio 15 3 12 
Ictiobus bubalus 0.1 
Cycleptus sp. 1 0.1 0.2 
Astyanax mexicanus 4 4 4 
Ictaluras farcatus 5 9 
Ictaluras punctatus 4 21 0.5 
Pylodictis olivaris 1 1 1 
Fundulus zebrinus 2 0.4 1 
Gambusia affinis 8 5 16 
Menidia beryllina 3 6 
Lepomis species 1 1 

Total 338 224 232 
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TABLE 5. Historical fish assemblage with relative abundances from the Big Bend reach 
of the Rio Grande. X indicates species was present. 

Species 1954 1977 1990 1992 1993 1999 2004 2006 
Lepisosteus osseus 1 0.1 0.1 1 1 0.1 
Dorosoma cepedianum 2 1 0.2 
Campostoma ornatum 0.01 
Cyprinella lutrensis 1 19 77 62 87 27 16 46 
Cyprinus carpio 1 0.2 0.1 1 2 0.2 1 
Dionda episcopa 0.03 
Macrhybopsis aestivalis 1 3 0.3 1 10 0.03 3 
Notropis braytoni 16 2 2 0.2 2 25 59 35 
Notropis chihuahua 0.1 2 0.02 0.1 
Notropis jemezanus 7 3 1 0.3 7 0.05 
Notropis stramineus 0.2 
Pimephales promelas 0.1 5 0.2 
Rhinichthys cataractae 58 9 0.4 1 0.2 0.4 
Carpiodes carpio 20 0.5 4 11 5 10 4 
lctiobus bubalus 1 2 0.2 0.4 0.02 
Cycleptus sp. 4 3 0.2 
Moxostoma austrinum 1 0.02 
Astyanax mexicanus 1 1 2 1 0.01 7 1 
Ictaluras furcatus 45 1 1 0.2 5 2 2 
Ictaluras lupus 0.1 0.02 0.4 
Ictaluras punctatus 1 1 0.1 0.1 0.04 3 2 
Pylodictis olivaris 4 0.3 0.1 1 0.03 5 0.4 0.3 
Cyprinodon eximius 0.3 
Fundulus zebrinus 0.2 1 0.1 1 
Gambusia a/finis 1 3 2 7 0.2 3 3 
Menidia beryllina 1 2 6 0.3 1 
Morone chrysops 0.1 0.3 
Lepomis species 0.5 0.2 0.1 0.2 1 0.3 0.2 
Micropterus salmoides 0.1 1 
Aplodinotus grunniens 0.2 0.03 
Oreochromis aureus 8 X 
TotalN 152 2077 1376 992 8964 474 3044 10565 

References: Hubbs 1958; Hubbs et al. 1977; Platania 1990; Edwards et al. 2002; Moring 
2002; Edwards 2005; Heard 2006, this study. 
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FIGURE 3. Daily average and monthly Average discharge rates from Johnson Ranch 
(IBWC) gauging station, Big Bend Reach, Rio Grande, January 2007 through December 
2007. 
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FIGURE 5. Simplified Canonical Correspondence Analysis (CCA) ordination plot for 
habitat associations of the fish assemblage of the Big Bend Reach, Rio Grande, January 
2007 through December 2007. Lep oss (Lepisosteus osseus); Cyp lut (Cyprinella 
lutrensis); Cyp car (Cyprinus carpio); Mac aes (Macrhybopsis aestivalis); Not bra 
(Notropis braytoni); Not chi (Notropis chihuahua); Notjem (Notropisjemezanus); Rhi 
cat (Rhinichthys cataractae); Car car (Carpoides carpio); let bub (lctiobus bubalus); 
Cyc elo (Cycleptus elongatus); Ast mex (Astyanax mexicanus); Jct fur (Jctaluras 
furcatus); Jct pun (lctaluras punctatus); Pyl oli (Pylodictis olivaris); Fun zeb (Fundulus 
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