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UNIQUENESS OF TRAVELING WAVE SOLUTIONS FOR
NON-MONOTONE CELLULAR NEURAL NETWORKS WITH

DISTRIBUTED DELAYS

HUI-LING ZHOU, ZHIXIAN YU

Abstract. In this article, we study the uniqueness of traveling wave solutions

for non-monotone cellular neural networks with distributed delays. First we

establish a priori asymptotic behavior of the traveling wave solutions at infinity.
Then, based on Ikehara’s theorem, we prove the uniqueness of the solution

ψ(n− ct) with c ≤ c∗, where c∗ < 0 is the critical wave speed.

1. Introduction

In this article, we study the uniqueness of traveling wave solution for the non-
monotone cellular neural networks with distributed delays

x′n(t) = −xn(t) +
m∑
i=1

∫ τ

0

aiJi(y)f(xn−i(t− y))dy

+ α

∫ τ

0

Jm+1(y)f(xn(t− y))dy +
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)f(xn+j(t− y))dy,

(1.1)
where the constants n ∈ Z, m, l ∈ N , τ ≥ 0, and the varible t ∈ R. We use the
following assumptions:

(H0) (i) α > 0, a1 > 0, ai ≥ 0 (i = 2, . . . ,m), β1 > 0 and βj ≥ 0 (j = 2, . . . , l).
a =

∑m
i=1 ai and β =

∑l
j=1 βj .

(ii) Ji : [0, τ ] → (0,+∞) is the piecewise continuous function satisfying∫ τ
0
Ji(y)dy = 1, where 0 < τ <∞.

(H1) f ∈ C([0, b], [0, b
a+α+β ]), f(0) = 0, αf ′(0) ≥ 1 and there exists K > 0 with

K ≤ b such that

(a+ α+ β)f(K) = K, |f(u)− f(v)| ≤ f ′(0)|u− v| for u, v ∈ [0, b].

(H2) (a+ α+ β)f(u) > u for u ∈ (0,K) and (a+ α+ β)f(u) < u for u ∈ (K, b].
(H3) There exist σ > 0, δ > 0 and M > 0 such that

f(u) ≥ f ′(0)u−Mu1+σ for u ∈ [0, δ].
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A traveling wave solution (1.1) with speed c is a nonnegative bounded solution
of the form un(t) = ψ(n − ct) satisfying ψ(−∞) = 0 and lim infξ→+∞ ψ(ξ) > 0.
Substituting un(t) = ψ(n− ct) in (1.1), we have the wave profile equation

−cψ′(ξ) = −ψ(ξ) +
m∑
i=1

∫ τ

0

aiJi(y)f(ψ(ξ − i+ cy))dy

+ α

∫ τ

0

Jm+1(y)f(ψ(ξ + cy))dy

+
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)f(ψ(ξ + j + cy))dy.

(1.2)

When the output function f is monotone, the existence of traveling wave solu-
tions for many versions of CNNs (1.1) with delays or without delays has been widely
investigated. see for example [10, 11, 13, 14, 15, 16, 17, 18, 21, 23, 24, 28, 30, 26].
The existence of entire solutions for (1.1) has been investigated by Wu and Hsu
[23, 24]. Letting Ji = δ(y − τi), i = 1, . . . ,m + l + 1, (1.1) reduces to the multiple
discrete delays equation

w′n(t) = −wn(t) +
m∑
i=1

aif(wn−i(t− τi)) + αf(wn(t− τm+1))

+
l∑

j=1

βjf(wn+j(t− τm+1+j)).

(1.3)

Yu and Mei [28] investigated uniqueness and stability of traveling wave solutions
for (1.3) with the monotone output function. In [28] the authors used the technique
in [3] to study uniqueness of travelling wave soluitons for (1.3) with discrete delays.
We will extend this method to (1.1) with distributed delays.

For the non-monotone output function f , Yu et al. [27] only established the exis-
tence of non-critical traveling wave solutions. Yu and Zhao [31] further established
the existence of the spreading speed, its coincidence with the minimal wave speed
and the existence of critical waves for the non-monotone DCNNs (1.1). We sum-
marize the existence of traveling wave solutions of (1.1) with the non-monotone
output function in [27, 31] as follows.

Proposition 1.1. Assume that (H0)-(H3) hold. Then there exists c∗ < 0 (which is
given in Lemma 2.1) such that for any c ≤ c∗, (1.1) admits a non-negative traveling
wave solution ψ(n− ct) with the wave speed c∗ < 0 and satisfying

ψ(−∞) = 0 and 0 < lim inf
ξ→+∞

ψ(ξ) ≤ lim sup
ξ→+∞

ψ(ξ) ≤ b. (1.4)

The uniqueness of monotone travelling wave solutions for various evolution sys-
tems has been established; see for example [1, 2, 4, 5, 19, 20] and the references
therein. The proof of uniqueness strongly relies on the monotonicity of travelling
waves. It seems very difficult to extend the techniques in those literatures to the
non-monotone evolution systems because the wave profile may lose the monotonic-
ity and the study of the corresponding uniqueness is very limited, see, e.g., [6, 8, 9].
Recently, the authors in [25, 29] extend the technique in [3] to non-monotone lattice
equations with discrete delays. In this article, we extend the technique in [3] to
non-monotone CNNs with distributed delays.
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The rest of this article is organized as follows. Section 2 is devoted to studying
the asymptotic behavior of the traveling wave solutions. In Section 3, we prove the
uniqueness of the solution.

2. Asymptotic behavior of traveling wave solutions

In this section, we consider the asymptotic behavior at negative infinity of any
traveling wave solutions of (1.1). The characteristic equation of (1.2) at 0 is

∆(c, λ) = −cλ+ 1− f ′(0)
[ m∑
i=1

ai

∫ τ

0

Ji(y)eλ(−i+cy)dy

+ α

∫ τ

0

Jm+1(y)eλcydy +
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)eλ(j+cy)dy
]
.

(2.1)

Lemma 2.1 ([26, Lemma 2.1]). Assume that (H0) and αf ′(0) ≥ 1 hold. Then
there exist a unique pair of c∗ < 0 and λ∗ > 0 such that

(i) ∆(c∗, λ∗) = 0, ∂∆(c,λ)
∂λ |c=c∗,λ=λ∗ = 0;

(ii) For any c > c∗ and λ ∈ [0,+∞), 4(c, λ) < 0;
(iii) For any c < c∗, 4(c, λ) = 0 has two positive roots λ2 ≥ λ1 > 0. Moreover,

if c < c∗, 4(c, λ) > 0 for any λ ∈ (λ1, λ2); if c = c∗, then λ1 = λ2 = λ∗.

Now we give a different version of Ikehara’s Theorem, which can be found in [3].

Proposition 2.2. Let F (λ) :=
∫ +∞

0
u(x)e−λxdx, where u(x) is a positive decreas-

ing function. Assume F (λ) can be written as

F (λ) =
h(λ)

(λ+ µ)k+1
,

where k > −1 and h(λ) is analytic in the strip −µ ≤ <λ < 0. Then

lim
x→+∞

u(x)
xke−µx

=
h(−µ)

Γ(µ+ 1)
.

Remark 2.3. Changing the variable t = −x, and modifying the proof for Ikehara’s
Theorem given in [7], we can show the following version of Proposition 2.2. Let
F (λ) :=

∫ 0

−∞ u(t)e−λtdt, where u(t) is a positive increasing function. Assume F (λ)
can be written as

F (λ) =
h(λ)

(µ− λ)k+1
,

where k > −1 and h(λ) is analytic in the strip µ− ε < <λ ≤ µ for some 0 < ε < µ.
Then

lim
x→−∞

u(x)
|x|keµx

=
h(µ)

Γ(µ+ 1)
.

To apply Ikehara’s Theorem, we need to assure that traveling wave solutions are
positive.

Lemma 2.4. Assume that (H0)–(H3) hold and let ψ(n − ct) be a non-negative
traveling wave of (1.1) with c ≤ c∗ satisfying (1.4). Then ψ(ξ) > 0 for ξ ∈ R.
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Proof. Assume that there exists ξ0 such that ψ(ξ0) = 0. Without loss of generality,
we may assume ξ0 is the left-most point. According to ψ(ξ) ≥ 0 for ξ ∈ R, we can
easily see that ψ(ξ) attains the minimum at ξ0 and ψ′(ξ0) = 0. According to (H0)
and (H1), it follows from (1.2) that∫ τ

0

Jm+1(y)f(ψ(ξ0 + cy))dy = 0,

which implies that f(ψ(ξ0 + cy)) = 0 for any y ∈ [0, τ ]. Thus, choosing some
sufficiently small number y0 > 0, we can obtain ψ(ξ0 + cy0) = 0 according to the
continuity of ψ(ξ) and c < 0. This contradicts to the choice of ξ0, and completes
the proof. �

Lemma 2.5. Assume that (H1)–(H3) hold and let ψ(n − ct) be any non-negative
traveling wave of (1.1) with c ≤ c∗ and satisfy (1.4). Then there exists a positive
number ρ > 0 such that ψ(ξ) = O(eρξ) as ξ → −∞.

Proof. Since f ′(0)(a+ α+ β) > 1, there exists ε0 > 0 such that

A := (1− ε0)f ′(0)(a+ α+ β)− 1 > 0.

For such ε0 > 0, there exist δ1 > 0 such that f(u) ≥ (1 − ε0)f ′(0)u for any
u ∈ [0, δ1]. Since ψ(−∞) = 0, there exists M > 0 and ∀ξ ≤ −M such that
ψ(ξ) < δ1. Integrating (1.2) from η to ξ with ξ ≤ −l −M , it follows that

− c[ψ(ξ)− ψ(η)]

= −
∫ ξ

η

ψ(x)dx+
m∑
i=1

ai

∫ ξ

η

∫ τ

0

Ji(y)f(ψ(x− i+ cy)) dy dx

+ α

∫ ξ

η

∫ τ

0

Jm+1(y)f(ψ(x+ cy)) dy dx

+
l∑

j=1

βj

∫ ξ

η

∫ τ

0

Jm+1+j(y)f(ψ(x+ j + cy)) dy dx

≥ −
∫ ξ

η

ψ(x)dx+ f ′(0)(1− ε0)
[ m∑
i=1

ai

∫ ξ

η

∫ τ

0

Ji(y)ψ(x− i+ cy) dy dx

+ α

∫ ξ

η

∫ τ

0

Jm+1(y)ψ(x+ cy) dy dx

+
l∑

j=1

βj

∫ ξ

η

∫ τ

0

Jm+1+j(y)ψ(x+ j + cy) dy dx
]

= A

∫ ξ

η

ψ(x)dx+ f ′(0)(1− ε0)
[
α

∫ ξ

η

∫ τ

0

Jm+1(y)(ψ(x+ cy)− ψ(x)) dy dx

+
m∑
i=1

ai

∫ ξ

η

∫ τ

0

Ji(y)(ψ(x− i+ cy)− ψ(x)) dy dx

+
l∑

j=1

βj

∫ ξ

η

∫ τ

0

Jm+1+j(y)(ψ(x+ j + cy)− ψ(x)) dy dx
]
.

(2.2)
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Since ψ(x) is differentiable, we have∫ ξ

η

(ψ(x− i+ cy)− ψ(x))dx =
∫ ξ

η

∫ −i+cy
0

ψ′(x+ s)dsdx

=
∫ −i+cy

0

(ψ(ξ + s)− ψ(η + s))ds.

Similarly, ∫ ξ

η

(ψ(x+ cy)− ψ(x))dx =
∫ cy

0

(ψ(ξ + s)− ψ(η + s))ds,∫ ξ

η

(ψ(x+ j + cy)− ψ(x))dx =
∫ j+cy

0

(ψ(ξ + s)− ψ(η + s))ds.

Letting η → −∞ in (2.2), we obtain

A

∫ ξ

−∞
ψ(x)dx

≤ −cψ(ξ)− f ′(0)(1− ε0)
[ m∑
i=1

ai

∫ τ

0

∫ −i+cy
0

Ji(y)ψ(ξ + s) ds dy

+ α

∫ τ

0

∫ cy

0

Jm+1(y)ψ(ξ + s) ds dy

+
l∑

j=1

βj

∫ τ

0

∫ j+cy

0

Jm+1+j(y)ψ(ξ + s) ds dy
]
.

(2.3)

From (2.3), we know that
∫ ξ
−∞ ψ(x)dx < +∞. Letting Φ(ξ) =

∫ ξ
−∞ ψ(x)dx and

integrating (2.3) from −∞ to ξ, we have

A

∫ ξ

−∞
Φ(x)dx

≤ −cΦ(ξ)− f ′(0)(1− ε0)
[ m∑
i=1

ai

∫ τ

0

∫ −i+cy
0

Ji(y)Φ(ξ + s) ds dy

+ α

∫ τ

0

∫ cy

0

Jm+1(y)Φ(ξ + s) ds dy

+
l∑

j=1

βj

∫ τ

0

∫ j+cy

0

Jm+1+j(y)Φ(ξ + s) ds dy
]

≤ %Φ(ξ + κ)

(2.4)

for some κ > 0 and % > 0 according to the monotonicity of Φ(ξ), Letting $ > 0
such that % < A$, and for ξ ≤ −l −M , it follows that

Φ(ξ −$) ≤ 1
$

∫ ξ

ξ−$
Φ(x)dx ≤ 1

$

∫ ξ

−∞
Φ(x)dx ≤ %

A$
Φ(ξ + κ). (2.5)

Define h(ξ) = Φ(ξ)e−ρξ, where ρ = 1
ρ+$ ln A$

% > 0. Hence,

h(ξ −$) = Φ(ξ −$)e−ρ(ξ−$) ≤ %

A$
eρ(κ+$)h(ξ + κ) = h(ξ + κ),
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which implies h is bounded. Therefore, Φ(ξ) = O(eρξ) when ξ → −∞. Integrating
(1.2) from −∞ to ξ, it follows from (H2) that

−cψ(ξ) =
m∑
i=1

ai

∫ τ

0

∫ ξ

−∞
Ji(y)f(ψ(x− i+ cy)) dx dy

+ α

∫ τ

0

∫ ξ

−∞
Jm+1(y)f(ψ(x+ cy)) dx dy

+
l∑

j=1

βj

∫ τ

0

∫ ξ

−∞
Jm+1+j(y)f(ψ(x+ j + cy)) dx dy − Φ(ξ)

≤ f ′(0)
m∑
i=1

ai

∫ τ

0

∫ ξ

−∞
Ji(y)ψ(x− i+ cy) dx dy

+ αf ′(0)
∫ τ

0

∫ ξ

−∞
Jm+1(y)ψ(x+ cy) dx dy

+ f ′(0)
l∑

j=1

βj

∫ τ

0

∫ ξ

−∞
Jm+1+j(y)ψ(x+ j + cy) dx dy − Φ(ξ)

= −Φ(ξ) + f ′(0)
m∑
i=1

ai

∫ τ

0

Ji(y)Φ(ξ − i+ cy)dy

+ αf ′(0)
∫ τ

0

Jm+1(y)Φ(ξ + cy)dy

+ f ′(0)
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)Φ(ξ + j + cy)dy.

(2.6)

Thus, we have ψ(ξ) = O(eρξ) when ξ → −∞. With the help of Ikehara’s theorem,
we obtain the asymptotic behavior of traveling wave solutions at −∞. �

Proposition 2.6. Assume that (H1)–(H3) hold and let ψ(n − ct) be any non-
negative traveling wave of (1.1) with the wave speed c ≤ c∗ and satisfy (1.4). Then

lim
ξ→−∞

ψ(ξ)
eλ1ξ

exists for c < c∗, lim
ξ→−∞

ψ(ξ)
|ξ|eλ∗ξ

exists for c = c∗. (2.7)

Proof. According to Lemma 2.5, we define the two-sided Laplace transform of ψ
for 0 < <λ < ρ,

L(λ) ≡
∫ +∞

−∞
ψ(x)e−λxdx.

We claim that L(λ) is analytic for 0 < <λ < λ1 and has a singularity at λ = λ1.
Note that

− cψ′(ξ) + ψ(ξ)− f ′(0)
m∑
i=1

ai

∫ τ

0

Ji(y)ψ(ξ − i+ cy)dy

− αf ′(0)
∫ τ

0

Jm+1(y)ψ(ξ + cy)dy
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− f ′(0)
l∑

j=1

βj

∫ τ

0

Jim+ 1 + jψ(ξ + j + cy)dy

=
m∑
i=1

ai

∫ τ

0

Ji(y)[f(ψ(ξ − i+ cy))− f ′(0)ψ(ξ − i+ cy)]dy

+ α

∫ τ

0

Jm+1(y)[f(ψ(ξ + cy))− f ′(0)ψ(ξ − i+ cy)]dy

+
l∑

j=1

βj

∫ τ

0

Jm+1+j [f(ψ(ξ + j + cy))− f ′(0)ψ(ξ − i+ cy)]dy

=: Q(ψ)(ξ).

Multiplying the two sides of the above equality by e−λξ and integrating ξ on R, we
obtain

∆(c, λ)L(λ) =
∫ +∞

−∞
e−λxQ(ψ)(x)dx. (2.8)

We know that the left-hand side of (2.8) is analytic for 0 < <λ < ρ. According to
(H3), for any u > 0, there exists d > 0 such that f(u) ≥ f ′(0)u − duσ+1, for all
u ∈ [0, u], where d := max{d, γ−(σ+1) maxu∈[γ,u]{f ′(0)u− f(u)}}. Thus,

− d
[ m∑
i=1

ai

∫ τ

0

Ji(y)ψσ+1(ξ − i+ cy)dy + α

∫ τ

0

Jm+1(y)ψσ+1(ξ + cy)dy

+
l∑

j=1

βj

∫ τ

0

Jm+1+jψ
σ+1(ξ + j + cy)dy

]
≤ Q(ψ)(ξ) ≤ 0.

(2.9)

Choose υ > 0 such that υ
σ < ρ. Then for any <λ ∈ (0, ρ+ υ), we have∣∣ ∫ +∞

−∞
e−λxQ(ψ)(x)dx

∣∣
≤ d

∫ +∞

−∞
e−λξ

[ m∑
i=1

ai

∫ τ

0

Ji(y)ψσ+1(ξ − i+ cy)dy

+ α

∫ τ

0

Jm+1(y)ψσ+1(ξ + cy)dy

+
l∑

j=1

βj

∫ τ

0

Jm+1+jψ
σ+1(ξ + j + cy)dy

]
dξ

= d[
m∑
i=1

ai

∫ τ

0

Ji(y)eλ(−i+cy)dy + α

∫ τ

0

Jm+1(y)eλcydy

+
l∑

j=1

βj

∫ τ

0

Jm+1+je
λ(j+cy)dy]

∫ +∞

−∞
e−λxψσ+1(x)dx

≤ d
[ m∑
i=1

ai

∫ τ

0

Ji(y)eλ(−i+cy)dy + α

∫ τ

0

Jm+1(y)eλcydy
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+
l∑

j=1

βj

∫ τ

0

Jm+1+je
λ(j+cy)dy

]
L(λ− υ)

(
sup
ξ∈R

ψ(ξ)e
−υξ

σ

)σ
< +∞.

We use properties of Laplace transform [22, p. 58]. Since ψ > 0 according to Lemma
2.4, there exists a real numberD such that L(λ) is analytic for 0 < <λ < D and L(λ)
has a singularity at λ = D. Thus, when c ≤ c∗, L(λ) is analytic for <λ ∈ (0, λ1)
and L(λ) has a singularity at λ = λ1.

According to (2.8), we have

F (λ) :=
∫ 0

−∞
ψ(x)e−λxdx =

∫ +∞
−∞ e−λxQ(ψ)(x)dx

∆(c, λ)
−
∫ +∞

0

ψ(x)e−λxdx.

Define H(λ) = F (λ)(λ1 − λ)k+1, where k = 0 if c < c∗ and k = 1 if c = c∗.
We claim that H(λ) is analytic in the strip S := {λ ∈ C|0 < <λ ≤ λ1}. Indeed,

define

G(λ) =

∫ +∞
−∞ e−λxQ(ψ)(x)dx

∆(c, λ)/(λ1 − λ)k+1
= L(λ)(λ1 − λ)k+1.

It is easily seen that G(λ) is analytic in the strip {λ ∈ C|0 < <λ < λ1}.
To prove that G(λ) is analytic for <λ = λ1, we only need to prove that ∆(c, λ) =

0 does not have any zero with <λ = λ1 other than λ = λ1. Indeed, letting λ =
λ1 + iλ̃, we have

0 = −cλ̃+ 1− f ′(0)
[ m∑
k=1

ak

∫ τ

0

Jk(y)eλ1(−k+cy) cos(−k + cy)λ̃dy

+ α

∫ τ

0

Jm+1(y)eλ1cy cos cyλ̃dy

+
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)eλ1(j+cy) cos(j + cy)λ̃dy
]

(2.10)

and

0 = −cλ̃− f ′(0)
[ m∑
k=1

ak

∫ τ

0

Jk(y)eλ1(−k+cy) sin(−k + cy)λ̃dy

+ α

∫ τ

0

Jm+1(y)eλ1cy sin cyλ̃dy

+
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)eλ1(j+cy) sin(j + cy)λ̃dy
]
.

(2.11)

It follows from (2.10) and (2.11) that λ̃ = 0.
According to the above argument, G(λ) is analytic in S, and H(λ) is also an-

alytic in S. Moreover, we claim that H(λ1) > 0. Indeed, notice that H(λ1) =
G(λ1). On the other hand,

∫ +∞
−∞ e−λ1xQ(ψ)(x)dx < 0 according to (2.9) and

limλ→λ−1
∆(c, λ)/(λ1 − λ)k+1 < 0 according to Lemma 2.1.

Since ψ(ξ) may be non-monotone, Ikehara’s Theorem could be directly used.
Thus, we need to make a function transformation, i.e., ψ̂(ξ) = ψ(ξ)epξ, where
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p = −1
c > 0. It follows from (1.2) that

ψ̂′(ξ) =
−1
c

[ m∑
i=1

∫ τ

0

aiJi(y)f(ψ(ξ − i+ cy))dy + α

∫ τ

0

Jm+1(y)f(ψ(ξ + cy))dy

+
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)f(ψ(ξ + j + cy))dy
]
epξ > 0.

Therefore, ψ̂(ξ) is increasing and ψ̂(ξ) > 0. Now we apply the Ikehara’s Theorem
to ψ̂(ξ). Let

F̂ (λ) :=
∫ 0

−∞
ψ̂(x)e−λxdx = F (λ− p).

Then

F̂ (λ) =
Ĥ(λ)

((λ1 + p)− λ)k+1
,

where Ĥ(λ) = H(λ−p) is analytic for p < <λ ≤ λ1 +p and Ĥ(λ1 +p) = H(λ1) > 0.
According to Remark 2.3, the limits exists and

lim
ξ→−∞

ψ̂(ξ)
|ξ|ke(λ1+p)ξ

= lim
ξ→−∞

ψ(ξ)
|ξ|keλ1ξ

,

i.e.,

lim
ξ→−∞

ψ(ξ)
eλ1ξ

exists for c < c∗, lim
ξ→−∞

ψ(ξ)
|ξ|eλ∗ξ

exists for c = c∗.

This completes the proof. �

3. Uniqueness of traveling wave solutions

In this section, we show the following unique result of traveling wave solutions
of (1.1).

Theorem 3.1. Assume that (H1)–(H3) hold. Let ψ(n− ct) be a traveling wave of
(1.1) with the wave speed c ≤ c∗, which is given in Proposition 1.1. If φ(n − ct)
is any non-negative traveling wave of (1.1) with the same wave speed c satisfying
(1.4), then φ is a translation of ψ; more precisely, there exists ξ̄ ∈ R such that
φ(n− ct) = ψ(n− ct+ ξ̄).

Proof. From Proposition 2.6, there exist two positive numbers ϑ1 and ϑ2 such that

lim
ξ→−∞

φ(ξ)
|ξ|keλ1ξ

= ϑ1, lim
ξ→−∞

ψ(ξ)
|ξ|keλ1ξ

= ϑ2

where k = 0 for c < c∗, and k = 1 for c = c∗. For ε > 0, define

ω(ξ) :=
φ(ξ)− ψ(ξ + ξ)

eλ1ξ
for c < c∗, ωε(ξ) :=

φ(ξ)− ψ(ξ + ξ)
(ε|ξ|+ 1)eλ∗ξ

for c = c∗, (3.1)

where ξ = 1
λ1

ln ϑ1
ϑ2

. Then ω(±∞) = 0 and ωε(±∞) = 0.
First, we consider c < c∗. Since ω(±∞) = 0, supξ∈R{ω(ξ)} and infξ∈R{ω(ξ)}

are finite. Without loss of generality, we assume supξ∈R{ω(ξ)} ≥ | infξ∈R{ω(ξ)}|.
If ω(ξ) 6≡ 0, there exists ξ0 such that

ω(ξ0) = max
ξ∈R

ω(ξ) = sup
ξ∈R

ω(ξ) > 0, ω′(ξ0) = 0.
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We claim that for all i, j ∈ Z, we have

ω(ξ0 − i+ cy) = ω(ξ0 + cy) = ω(ξ0 + j + cy) = ω(ξ0)

for y ∈ [0, τ ]. Suppose on the contrary that one of three inequalities ω(ξ0−i+cy) <
ω(ξ0), ω(ξ0 + cy) < ω(ξ0) and ω(ξ0 + j + cy) < ω(ξ0) for some i0, j0 must hold.
According to (1.2), (3.1) and (H2), we obtain

0 = cω′(ξ0)

= −cλ1ω(ξ0) + ω(ξ0)

− e−λ1ξ0

m∑
i=1

ai

∫ τ

0

Ji(y)[f(φ(ξ0 − i+ cy))− f(ψ(ξ0 + ξ − i+ cy))]dy

− e−λ1ξ0α

∫ τ

0

Jm+1(y)[f(φ(ξ0 + cy))− f(ψ(ξ0 + ξ + cy))]dy

− e−λ1ξ0

l∑
j=1

βj

∫ τ

0

Jm+1+j(y)[f(φ(ξ0 + j + cy))− f(ψ(ξ0 + ξ + j + cy))]dy

> −cλ1ω(ξ0) + ω(ξ0)− f ′(0)ω(ξ0)
[ m∑
i=1

ai

∫ τ

0

Ji(y)eλ1(−i+cy)dy

+ α

∫ τ

0

Jm+1(y)eλ1cydy +
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)eλ1(cy+j)dy
]

= −ω(ξ0)4(c, λ1) = 0,

which is a contradiction. Thus, ω(ξ0 +cy0) = ω(ξ0) also holds for y0 ∈ (0, τ). Again
by bootstrapping, ω(ξ0 + kcy0) = ω(ξ0) for all k ∈ Z and ω(+∞) = 0. Therefore,
we have φ(ξ) ≡ ψ(ξ + ξ) for ξ ∈ R, which contradicts to ω(ξ) 6≡ 0.

Next, we consider c = c∗. Assume supξ∈R{ω(ξ)} ≥ | infξ∈R{ω(ξ)}|. If ωε(ξ) 6= 0,
there exists ξε0 such that

ωε(ξε0) = max
ξ∈R
{ωε(ξ)} = sup

ξ∈R
{ωε(ξ)} > 0, ω′ε(ξ

ε
0) = 0.

Now we divide this part into three cases:
Case 1: Suppose that ξε0 → +∞ as ε→ 0. It follows from (3.1) and (1.2) that

c∗[φ′(ξε0)− ψ′(ξε0 + ξ)]

= φ(ξε0)−
m∑
i=1

ai

∫ τ

0

Ji(y)[f(φ(ξε0 − i+ c∗y))− f(ψ(ξε0 + ξ − i+ c∗y))]dy

− α
∫ τ

0

Jm+1(y)[f(φ(ξε0 + c∗y))− f(ψ(ξε0 + ξ + c∗y))]dy − ψ(ξε0 + ξ)

−
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)f(φ(ξε0 + j + c∗y))− f(ψ(ξε0 + ξ + j + c∗y))]dy.

We claim that for all i, j ∈ Z,

ωε(ξε0 − i+ c∗y) = ωε(ξε0 + c∗y) = ωε(ξε0 + j + c∗y) = ωε(ξε0)

for y ∈ [0, τ ]. Suppose for the contrary that one of three inequalities ωε(ξε0 − i +
c∗y) < ωε(ξε0), ωε(ξε0 + c∗y) < ωε(ξε0) and ωε(ξε0 + j + c∗y) < ωε(ξε0) for some i0 and
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j0 must hold. Choose ε > 0 sufficiently small such that ξε0 −m+ c∗τ > 0. Thus,

− c∗ωε(ξε0)ε− c∗λ∗ωε(ξε0)(εξε0 + 1)

≤ −ωε(ξε0)(ε|ξε0|+ 1)

+ f ′(0)
m∑
i=1

ai

∫ τ

0

Ji(y)eλ∗(−i+c∗y)[ε|ξε0 − i+ c∗y|+ 1]ωε(ξε0 − i+ c∗y)dy

+ αf ′(0)
∫ τ

0

Jm+1(y)eλ∗c∗y[ε|ξε0 + c∗y|+ 1]ωε(ξε0 + c∗y)dy

+ f ′(0)
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)eλ∗(j+c∗y)[ε|ξε0 + j + c∗y|+ 1]ωε(ξε0 + j + c∗y)dy

< −ωε(ξε0)(ε|ξε0|+ 1) + f ′(0)
m∑
i=1

ai

∫ τ

0

Ji(y)eλ∗(−i+c∗y)[ε|ξε0 − i+ c∗y|+ 1]ωε(ξε0)dy

+ αf ′(0)
∫ τ

0

Jm+1(y)eλ∗c∗y[ε|ξε0 + c∗y|+ 1]ωε(ξε0)dy

+ f ′(0)
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)eλ∗(j+c∗y)[ε|ξε0 + j + c∗y|+ 1]ωε(ξε0)dy,

it follows that
− c∗ωε(ξε0)ε+ ωε(ξε0)(εξε0 + 1)∆(c∗;λ∗)

< f ′(0)
m∑
i=1

ai

∫ τ

0

Ji(y)eλ∗(−i+c∗y)ε(−i+ c∗y)ωε(ξε0)dy

+ αf ′(0)
∫ τ

0

Jm+1(y)eλ∗(c∗y)εc∗yωε(ξε0)dy

+ f ′(0)
l∑

j=1

βj

∫ τ

0

Jm+1+j(y)eλ∗(j+c∗y)[ε(j + c∗y)]ωε(ξε0)dy.

(3.2)

This contradicts ∂∆(c,λ)
∂λ |c=c∗,λ=λ∗ = 0. Repeating the arguments, we have ωε(ξε0) =

ωε(ξε0 +kc∗y0) for all k ∈ Z and some y0 ∈ (0, τ). It follows from that ωε(+∞) = 0,
we can obtain φ(ξ) ≡ ψ(ξ + ξ) for ξ ∈ R, which contradicts ωε(ξ) 6≡ 0.

Similar to the process in [3], φ(ξ) ≡ ψ(ξ + ξ) for ξ ∈ R still holds for
Case 2: Suppose ξε0 → −∞ as ε → 0 and Case 3: Suppose ξε0 is bounded. This
completes the proof. �
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