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HETEROCLINIC ORBITS OF A SECOND ORDER NONLINEAR
DIFFERENCE EQUATION

HAIPING SHI, XIA LIU, TAO ZHOU

Communicated by Paul H. Rabinowitz

Abstract. This article concerns a second-order nonlinear difference equation.

By using critical point theory, the existence of two heteroclinic orbits is ob-

tained. The main method used is variational.

1. Introduction

Let N, Z and R denote the sets of all natural numbers, integers and real numbers
respectively. For a, b ∈ Z, we define Z(a, b) = {n ∈ Z|a < n < b}, Z[a, b] = {n ∈
Z|a ≤ n ≤ b}. For a set M ⊂ R, r > 0, Br(M) is denoted by

Br(M) = {u ∈ R : inf
v∈M
|u− v| < r}.

In this article we consider the existence of heteroclinic orbits of the second-order
nonlinear difference equation

∆2un−1 + pnf(un) = 0, n ∈ Z, (1.1)

where ∆ is the forward difference operator ∆un = un+1 − un, ∆2un = ∆(∆un),
{pn}n∈Z is a positive real sequence, f ∈ C(R,R). Moreover, p and f satisfy the
conditions:

(A1) 0 < p = infn∈Z{pn} ≤ p̄ = supn∈Z{pn} < +∞;
(A2) there exists a function F ∈ C1(R,R) with F (0) = 0, F (u + T ) = F (u),

F ′(u) = f(u) and F has a maximum 0 on R. Denote Ψ = {u ∈ R : F (u) =
0}.

(A3) Ψ consists only of isolated points and 0 ∈ Ψ.
As usual, a solution u of (1.1) is called a heteroclinic orbit (or heteroclinic

solution) if there exist two constants µ, ν ∈ R, µ 6= ν such that u joins µ to ν, i.e.,

u−∞ = lim
n→−∞

un = µ,

u+∞ = lim
n→+∞

un = ν.

Such orbits and homoclinic orbits have been found in various models of continuous
and discrete dynamical systems and frequently have tremendous effects on the dy-
namics of such nonlinear systems. So the heteroclinic orbits and homoclinic orbits
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have been extensively studied, the reader is referred to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

In 1989, Rabinowitz [17] considered the following second-order Hamiltonian sys-
tem

q̈ + V ′(q) = 0 (1.2)

where q = (q1, . . . , qn), V is periodic in qi, 1 ≤ i ≤ n, and proved the existence and
multiple heteroclinic orbits joining maxima of V .

By using variational method and a delicate analysis technique, Xiao and Yu [22]
showed that there indeed exist heteroclinic orbits of discrete pendulum equation

∆2un−1 +A sinun = 0, n ∈ Z, (1.3)

joining every two adjacent points of {2kπ + π : k ∈ Z}.
When pn ≡ 1, Xiao, Long and Shi [21] in 2010 investigated the existence and

multiplicity of heteroclinic orbits of the system

∆2un−1 + V ′(un) = 0, n ∈ Z, (1.4)

by using the critical point theory. Zhang and Li [24] using variational method
proved some existence results of heteroclinic orbits and heteroclinic chains for a
second order discrete Hamiltonian system of (1.4).

However, to the best of our knowledge, the results on heteroclinic orbits of
discrete systems are very scarce in the literature [21, 22, 24]. The difficulty is the
idea of continuous systems depend heavily on the continuity of the solutions and
therefore they can not be applied directly to discrete systems. Motivated by the
recent papers [3, 6], the purpose of this paper is to consider problem (1.3) in a
more general sense. It is obvious that (1.3) is a special of (1.1) with pn ≡ A and
f(un) = sinun. Our main result is as follows.

Theorem 1.1. Suppose that (A1)–(A3) are satisfied. Then (1.1) possesses two
heteroclinic orbits joining 0 to some τ ∈ Ψ\{0}, one of which originates from 0 and
one of which terminates at 0.

For basic knowledge of variational methods, we refer the reader to the mono-
graphs [14, 18].

2. Variational structure and some lemmas

To apply the critical point theory, we shall establish the corresponding variational
functional associated with (1.1) and give some lemmas which will be used in proving
our main results. We firstly introduce some basic notation.

Let S be the set of bi-infinite convergent sequences u = {un}+∞n=−∞, that is

S :=
{
{un}| lim

n→+∞
un and lim

n→−∞
un exist, un ∈ R, n ∈ Z

}
.

Define

E :=
{
u ∈ S :

+∞∑
n=−∞

|∆un|2 < +∞
}
,

with the inner product

〈u, v〉 =
+∞∑

n=−∞
∆un∆vn + u0v0, ∀u, v ∈ E. (2.1)



EJDE-2017/260 HETEROCLINIC ORBITS 3

Then E is a Hilbert space with the norm

‖u‖2 =
+∞∑

n=−∞
|∆un|2 + |u0|2, ∀u ∈ E. (2.2)

For 1 < s < +∞, the spaces ls and l∞ are defined by

ls :=
{
{un} :

+∞∑
n=−∞

|un|s < +∞, un ∈ R, n ∈ Z},

l∞ :=
{
{un} : sup

n∈Z
|un| < +∞, un ∈ R, n ∈ Z

}
.

For any u ∈ E, define the functional J associated with (1.1) on E as follows:

J(u) :=
1
2

+∞∑
n=−∞

|∆un|2 −
+∞∑

n=−∞
pnF (un). (2.3)

By (A2) and (A3), we have

δ :=
1
3

inf
ρ,%∈Ψ,ρ6=%

|ρ− %| > 0.

For ρ ∈ Ψ and 0 < ε < δ, let the set Γε(ρ) satisfy
(i) u−∞=0,
(ii) u+∞ = ρ,

(iii) un 6∈ Bε(Ψ \ {0, ρ}) for all n ∈ Z.
It is easy to see that Γε(ρ) is nonempty for all ρ ∈ Ψ \ {0} and 0 < ε < δ. Denote

cε(ρ) := inf
u∈Γε(ρ)

J(u),

ϕε := inf
u6∈Bε(Ψ)

[−F (u)].

Remark 2.1. From (A2) and (A3) it follows that ϕε > 0 for all 0 < ε < δ. As a
matter of fact, ϕε 6= 0. If not, there is v ∈ R 6∈ Bε(Ψ) such that F (0) = 0 implies
that v ∈ Ψ. This is a contradiction. From F (u + T ) = F (u) and u 6∈ Bε(Ψ) it
follows that ϕε > 0.

Lemma 2.2. For any a ≤ b, assume that u ∈ E such that un 6∈ Bε(Ψ), then

1
2

b∑
n=a

|∆un|2 −
b∑

n=a

pnF (un) ≥
√

2pϕε|ub+1 − ua|.

Proof. By the definition of ϕε and Hölder inequality, we have

|ub+1 − ua| ≤
√
b+ 1− a

( b∑
n=a

|∆un|2
)1/2

.

Then
b∑

n=a

|∆un|2 ≥
|ub+1 − ua|2

b+ 1− a
.

Thus,

1
2

b∑
n=a

|∆un|2 −
b∑

n=a

pnF (un) ≥ 1
2

b∑
n=a

|∆un|2 + p

b∑
n=a

[−F (un)]
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≥ |ub − ua|2

2(b+ 1− a)
+ p(b+ 1− a)ϕε

≥
√

2pϕε|ub+1 − ua|.

The desired results are obtained. �

Remark 2.3. For all ρ ∈ Ψ \ {0} and 0 < ε < δ, it follows immediately from
Lemma 2.2 that cε(ρ) > 0.

Lemma 2.4. Assume that u ∈ E and J(u) < +∞, then there are two constants
µ, ν ∈ Ψ such that u−∞ = µ, u+∞ = ν.

Proof. To prove µ ∈ Ψ, arguing by contradiction, we suppose that there exists
θ > 0 such that un 6∈ Bθ(Ψ) for all n near −∞. Then, we have

J(u) ≥
n∑

n=−∞
[−pnF (un)] ≥ p

n∑
n=−∞

ϕθ,∀n ∈ Z,

which contradicts with J(u) < +∞. Thus, µ ∈ Ψ. The proof of ν ∈ Ψ is similar to
the proof of µ ∈ Ψ. �

By using the ideas developed in [21, 24], we can easily obtain the following three
lemmas, but for the sake of completeness, we give the proofs.

Lemma 2.5. For any given ρ ∈ Ψ\{0}, assume that {u(k)}∞k=1 is a minimizing
sequence for (1.1) restricted to Γε(ρ) such that u(k)

n → u ∈ E and J(u) < +∞, then
u ∈ Γε(ρ).

Proof. First, un 6∈ Bε(Ψ \ {0, ρ}) for all n ∈ Z. Otherwise, there is n0 and ψ ∈
Ψ \ {0, ρ} such that un0 ∈ Bε(ψ). Therefore, for sufficiently large k, we have

|u(k)
n0
− ψ| ≤ |u(k)

n0
− un0 |+ |ψ − un0 | < ε,

which is a contradiction.
Then u−∞ = µ ∈ {0, ρ}, u+∞ = ν ∈ {0, ρ}. Otherwise, for sufficiently large k1

and k2, we have

|u(k)
−k1 − µ| ≤ |u

(k)
−k1 − u−k1 |+ |u−k1 − µ| < ε,

and

|u(k)
k2
− ν| ≤ |u(k)

k2
− uk2 |+ |uk2 − ν| < ε,

which are contradictions.
Next, u−∞ = 0. From u(k) ∈ Γε(ρ), u(k)

n ∈ Bε(0) and u
(k)
n ∈ B̄ε(0) for n < 0.

Therefore, µ ∈ B̄ε(0) ∩ {0, ρ} = {0}.
Finally, u+∞ = ρ. Otherwise, u+∞ = 0. If u(k)

1 ∈ Bε(0), then |∆u(k)
0 | ≥ δ. Thus,

J
(
u(k)

)
≥ δ2

2
+

1
2

+∞∑
n=2

|∆u(k)
n |2 −

+∞∑
n=2

pnF
(
u(k)
n

)
. (2.4)
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If u(k)
1 6∈ Bε(0), then there is an n(k) ≤ 1 such that u(k)

n 6∈ B ε
2
{Ψ}, n = n(k), n(k) +

1, . . . , 1. It follows from Lemma 2.2 that

J
(
u(k)

)
≥ 1

2

1∑
n=n(k)

|∆u(k)
n |2 −

1∑
n=n(k)

pnF
(
u(k)
n

)
+

1
2

+∞∑
n=2

|∆u(k)
n |2 −

+∞∑
n=2

pnF
(
u(k)
n

)
≥
√

2pϕ ε
2
ε

2
+

1
2

+∞∑
n=2

|∆u(k)
n |2 −

+∞∑
n=2

pnF
(
u(k)
n

)
.

(2.5)

Set

M = min
{δ2

2
,

√
2pϕ ε

2
ε

2
}
.

By (2.4) and (2.5), we have

J
(
u(k)

)
≥M +

1
2

+∞∑
n=2

|∆u(k)
n |2 −

+∞∑
n=2

pnF
(
u(k)
n

)
. (2.6)

Since u+∞ = 0, there is ñ ≥ 1 such that

u2
n ≤

M

16
, ∀n ≥ ñ.

For k large enough, we have(
u

(k)
ñ

)2

≤ M

12
,
(
u

(k)
ñ+1

)2

≤ M

12
.

Denote

v(k)
n =

{
0, n < ñ+ 1,

u
(k)
n , n ≥ ñ+ 1.

Thus,
|∆v(k)

ñ |
2 = |u(k)

ñ+1|
2 = |∆u(k)

ñ + u
(k)
ñ |

2

≤ |∆u(k)
ñ |

2 + 4|u(k)
ñ |

2 + 2|u(k)
ñ+1|

2 ≤ |∆u(k)
ñ |

2 +
M

2
.

(2.7)

By (2.6) and (2.7), we have

J
(
v(k)

)
=

1
2

+∞∑
n=ñ+1

|∆v(k)
n |2 −

+∞∑
n=ñ+1

pnF
(
v(k)
n

)
≤ 1

2

+∞∑
n=2

|∆u(k)
n |2 −

+∞∑
n=2

pnF
(
u(k)
n

)
+
M

2

≤ J
(
u(k)

)
− M

2
.

(2.8)

From (2.8), we have

inf
s∈Γε(ρ)

J(s) ≤ inf
s∈Γε(ρ)

J(s)− M

2
,

which is a contradiction. The proof is complete. �

Lemma 2.6. For any given ρ ∈ Ψ\{0} and 0 < ε < δ, there is ū = uε,ρ ∈ Γε(ρ)
such that J(uε,ρ) = cε,ρ.
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Proof. Assume that {u(k)}∞k=1 is a minimizing sequence for (1.1) restricted to Γε(ρ).
There is a constant K > 0 such that J

(
u(k)

)
≤ K.

On one hand, {u(k)
0 }∞k=1 is a bounded sequence. If not, limi→∞ u

(ki)
0 = ∞ and

there is i0 ∈ N such that u(ki)
0 6∈ Bε(ρ), i ≥ i0. Consider {u(ki)

j }∞i=i0 .

Case 1. If u(ki)
j ∈ B̄ε(ρ), then J(u(ki)) ≥ |u

(ki)
0 −ρ−ε|2

2 and J(u(ki))→∞, i→ +∞,
which is a contradiction.
Case 2. If u(ki)

j 6∈ B̄ε(ρ). Set

ni = {n > 0 : u(ki)
n+j ∈ B̄ε(ρ), u(ki)

j 6∈ B̄ε(ρ),∀j ∈ Z[0, n]}.
Then

J(u(ki)) ≥
√

2pϕε|u(ki)
0 − u(ki)

ni |+
1
2
|u(ki)
ni+j

− u(ki)
ni |

2

and J(u(ki))→∞ as i→ +∞, which is also a contradiction.
By the definition of the norm on E, {u(k)}∞k=1 is a bounded sequence. Thus,

passing to a subsequence if necessary, there is ū ∈ E such that u(k) weakly converges
to ū.

On the other hand, J(ū) <∞. As a matter of fact, for −∞ < a < b < +∞, let

J(a, b, u) ≥ 1
2

b∑
n=a

|∆un|2 −
b∑

n=a

pnF (un), u ∈ E.

Thus,
J(a, b, ū) ≤ cε,ρ ≤ K,

which implies that J(ū) ≤ infu∈Γε(ρ) J(u). It follows from Lemma 2.5 that ū ∈
Γε(ρ). Therefore, J(uε,ρ) = cε,ρ. �

Set
cε = inf

ρ∈Ψ\{0}
cε,ρ.

Lemma 2.7. For any given ρ ∈ Ψ\{0} and 0 < ε < δ, cε can be achieved by some
cε,τ = J(uε,τ ) with τ = τε and u = uε = uε,τ is an interior point of Γε(τ).

Proof. Let 0 < ε(i) < δ is a sequence converging to 0. By (A3), {τε(i)} consists of
finite elements. Thus, for larger i, τε(i) = τ independent of i. Denote u(i) = uε(i),τ .
For each i ∈ N, there is Ni > 0 such that

u
(i)
−n ∈ Bε(0), u(i)

n ∈ Bε(i)(τ), ∀n ≥ Ni.

Assume that for all i ∈ N, u(i) is not an interior point of Γε(τ). Thus, there is
n(i) ∈ [−Ni, Ni] such that u(i)

n(i) ∈ Bε(i)(Ψ \ {0, τ}). Then, there is ω(i) ∈ Ψ \ {0, τ}
such that u(i)

n(i) ∈ Bε(i)(ω(i)) and ωi = ω independent of i. Set

Ω(i)
n =

{
u

(i)
n , n ≤ n(i),

ω, n > n(i).

Therefore, we have Ω(i) ∈ Γε(i)(ω) and

J(u(i))− J(Ω(i))

=
1
2

+∞∑
n=n(i)+1

|∆u(i)
n |2 −

+∞∑
n=n(i)+1

pnF (u(i)
n )− 1

2
|ω − u(i)

n(i) |2.
(2.9)
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If there is n > n(i) such that |∆u(i)
n | > |ω − u(i)

n(i) |, then J(Ω(i)) < J(u(i)) = cε(i)
which is a contradiction to the definition of cε(i) . Thus,

|∆u(i)
n | ≤ |ω − u

(i)

n(i) | ≤ ε(i), quad∀n > n(i).

From u
(i)
∞ = τ , there is m(i) such that u(i)

m(i) ∈ Bε(0)(τ),m(i) > n(i) and u
(i)
n 6∈

Bε(0)(Ψ), n(i) < n < m(i). Since u
(i)

m(i) ∈ Bε(0)(τ), u(i)

m(i)−1
6∈ Bε(0)(τ), |∆u(i)

n | ≤
|ω − u(i)

m(i) |, for i large enough, we have u(i)

m(i) ∈ Bε(0)(τ) \B ε(0)
2

(τ). It follows from

(2.9) and Lemma 2.2 that

J(u(i))− J(Ω(i))

≥ 1
2

m(i)−1∑
n=n(i)+1

|∆u(i)
n |2 −

m(i)−1∑
n=n(i)+1

pnF (u(i)
n )− (ε(i))2

2

≥
√

2pϕ ε(0)
2

m(i)−1∑
n=n(i)+1

|∆u(i)
n | −

√
2pϕ ε(0)

2
|∆u(i)

m(i)−1
| − (ε(i))2

2

≥
√

2pϕ ε(0)
2
|u(i)

m(i) − u
(i)

n(i) | −
√

2pϕ ε(0)
2
ε(i) − (ε(i))2

2

≥
√

2pϕ ε(0)
2
ε(0) −

√
2pϕ ε(0)

2
ε(i) − (ε(i))2

2
.

(2.10)

Since ε(i) is a sequence converging to 0, for i large enough, we have

J(Ω(i)) ≤ J(u(i))−
√

2pϕ ε(0)
2
ε(0),

which contradicts J(u(i)) = J(uε(i),τ ) = infρ∈Ψ\{0} cε(ρ). The proof is complete.
�

3. Proof of main result

In this section, we proof Theorem 1.1 using a variational method.

Proof of Theorem 1.1. For any n ∈ Z, it follows from Lemma 2.7 that

d

dun
J |Γε(τ)(u) = 0. (3.1)

By (1.1), we have

d

dun
J |Γε(τ)(u) =

d

dun
J(u) = −∆2un−1 − pnf(un). (3.2)

From (3.1) and (3.2), we know that u = uε = uε,τ is a heteroclinic orbit of (1.1)
connecting 0 to τ , which originates from 0. And ω(·) = u(−·) is also a heteroclinic
orbit of (1.1) connecting τ to 0, which terminates at τ . The proof is complete. �
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