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I. INTRODUCTION

In this thesis, we will be studying primarily permutation groups. We will

consider many different permutation groups and a parameter defined by Harrison

[6] in his thesis. Harrison used this parameter to bound the order of a group.

We will be observing the relationship between the order of different types of

permutation groups and their respective parameter. We will also be looking at

special types of p-groups, which are not permutation groups but interesting findings

arise. We will examine the relationship with these p-groups and their respective

parameters. We will also test to see if it is possible to improve the bound discussed

by Harrison, specifically in cases where our specific p-groups have a large derived

length. More will be explained about this parameter later in this chapter.

Important Definitions

First, we would like to remind the reader that a group is a set of objects

under a binary operation. This set must also meet the following requirements: the

set must be closed under the binary operation, the set must contain an identity

element and inverses of all elements, and the operation must follow the associative

law. Before we can look at the permutation groups and the parameter, let us first

look at some essential definitions. For this chapter, we will let G denote a group.

Definition 1. The center of a group is the set of elements of G that commutes

with all other elements. We denote this subgroup as Z(G).

Definition 2. Let x ∈ G. We say that CG(x), the centralizer of x, is the subgroup

of G containing all of the elements of G that commute with x.

Definition 3. Let N be a subgroup of G. We say that N is normal in G if for

every element g ∈ G, g−1Ng = N . We denote a normal subgroup N of G as N ◁G.
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We would like to remind the reader that for any two elements x, g ∈ G, g−1xg

is the conjugate of x with respect to g. It can also be denoted as xg.

Definition 4. Let x ∈ G. Then the conjugacy class of x is the subset of G

containing the elements xg, for all g ∈ G.

For the rest of this thesis, we shall denote the conjugacy class of an element

x ∈ G as kG(x).

For the remaining definitions, we let Ω be a nonempty finite set.

Definition 5. We say that G acts on Ω under the action (⋅) if the two following

conditions hold:

1. α ⋅ 1 = α, for all α ∈ Ω.

2. (α ⋅ g) ⋅ h = α ⋅ gh, for all α ∈ Ω and g, h ∈ G.

This is also known as a group action.

Definition 6. An orbit of a group action is the set of elements α ⋅ g for a set

element α ∈ Ω and for all g ∈ G. We denote this set as Oα.

When G acts on itself under the conjugation action, a conjugacy class is an

orbit.

Definition 7. The stabilizer of an element α ∈ Ω is the set of elements g ∈ G, such

that α ⋅ g = α. We denote this subgroup of G as Gα.

This can also be called a point stabilizer.

Theorem 1.1 (Fundamental Counting Principle). Let G be a group that acts

on Ω. and Oα be an orbit of Ω containing α ∈ Ω. Let H = Gα and ∆ = {Hx ∣ x ∈ G}

be the set of right cosets of H in G. Then there exists a bijection θ ∶ ∆ → Oα such

that θ(Hg) = α ⋅ g. So, ∣Oα∣ = ∣G ∶ Gα∣.

A proof of this theorem can be found in [10], Chapter 1 Section A Theorem

1.4.
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From the FCP, we can see that if G acts on itself under the conjugation

action, then ∣kG(x)∣ = ∣G∣
∣CG(x)∣

.

Definition 8. Let G act on Ω. We say that the action is faithful if α ⋅ g = α only

when g is the identity in G.

Definition 9. A permutation group is group G that acts faithfully on the set Ω.

Another way to think of this, is let g ∈ G and σg ∶ Ω → Ω, such that σg(α) =

α ⋅ g, for all α ∈ Ω. Now we can create a homomorphism θ ∶ G → Ω such that θ(g) =

σg. This homomorphism is known as a permutation representation and a group G

that acts on a set Ω is a permutation group if its permutation representation is an

injective homomorphism.

Parameter e

In 2008, Snyder [16] bounded the order a group by e, where his e used

representation theory. Snyder used that fact that if G has order n, then n = d(d + e)

where d is a character degree of G and e is some non-negative integer. Snyder then

proved his main result in [16] where he created his upper bound of the order of G.

We state the theorem without proof.

Theorem 1.2. Let G be a finite group of order n with a simple C[G]-module V of

dimension d and d(d + e) = n.

1. If e = 0, then G is trivial.

2. If e = 1, then G is a doubly transitive Frobenius group or a cyclic group with

two elements.

3. If e > 1, then n ≤ ((2e)!)2.

Note that for this thesis, we are not concerned with (1) and (2) from this

main result. We will also define what it means for a group to be a Frobenius group

and doubly transitive in a later chapter.
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With this upper bound on the order of a group, it became popular to

attempt to improve this bound. It was in 2011, Isaacs [11] made an improvement

to this bound on the group order. The main result is presented without proof.

Theorem 1.3. Let ∣G∣ = d(d+e), where d is the degree of some irreducible character

of G and e > 1. Then ∣G∣ ≤ Be6 for some universal constant B.

Later in 2011, Durfee and Jensen [4], two students of Isaacs, improved this

bound further. We present their main result without proof.

Theorem 1.4. For e > 1 we have the following bounds on d and ∣G∣ in terms of e.

1. If e is not a prime power then d2 < e and ∣G∣ < e4 + e3.

2. If e is a prime power then d < e3 − e and ∣G∣ < e6 − e4.

3. If e is a prime then d < e2 and ∣G∣ < e4 + e3.

Recall that d is the degree of an irreducible character in G.

Because of formal parallels between character degrees and conjugacy class

sizes, on the group theoretical side one can define a parameter in a similar fashion

as one defines the representation theoretic e. We call this group theoretic parameter

also e. This parameter was first studied by Harrison [6, 7]. We will now define e as

Harrison did.

Definition 10. e shall be defined in the following way:

e =min(∣CG(x)∣ − 1)
√

∣kG(x)∣ ∶ x ∈ G.

From this, Harrison was able to deduce that the largest conjugacy class of G

and its respective centralizer (which would be the smallest centralizer of G) can be

used to define e instead. For the remainder of this thesis, we shall denote CG(x),
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where x ∈ G such that its centralizer is minimal in G, and the size of the largest

conjugacy class in G as CG and kG, respectively. So. let us define the parameter e

as such for the remainder of the thesis.

Definition 11. We shall define e as follows:

e = (CG − 1)
√
kG.

Harrison used this parameter e to prove a general bound for the order of the

group. He proved the following theorem. We state this theorem without proof, if

the reader would like to see the proof refer to [6, 7].

Theorem 1.5. Let G be a finite group. Then ∣G∣ ≤ 2e2.

For the remainder of this thesis, we shall denote our parameter e as eG,

where G is the group we are studying.
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II. ALTERNATING GROUPS

The alternating group, denoted as An, is the proper subgroup of the

symmetric group, Sn, where the index is two. An is also known as the proper

subgroup of Sn containing all even permutations. Since An is a subgroup of Sn, the

conjugacy classes of An depend on Sn. So, we will find what a conjugacy class in

An will look like.

First, let us see how we can determine the size of conjugacy classes in Sn.

Theorem 2.1. Let x ∈ Sn, such that x is of cycle type (m1)(m2)⋯(mr). Now, let

ji be the number of cycles of cycle length equal to mi. Thus, we can say that

∣kSn(x)∣ =
n!

r

∏
i=1

(mi)ji(ji!)
.

Reference to this can be found in [3] (Chapter 4, page 132, problem 33).

Let kSn(x) be a conjugacy class of x ∈ Sn, where x is an even permutation.

Then, either kSn(x) splits or it does not split as a conjugacy class of x in An. If

kSn(x) splits, then ∣kSn(x)∣ = 2∣kAn(x)∣, where kAn(x) is the conjugacy class of x ∈

An. If kSn(x) does not split, then it is also the conjugacy class to x ∈ An.

The criteria to determine if kSn(x) splits in An or does not split in An are

the following:

• kSn(x) splits if it is made up of permutations with distinct cycles of odd

length.

• kSn(x) does not split if it is made up of permutations that have a cycle of

even length or two cycles of equal length.

The splitting criteria and what it means for a conjugacy class in Sn to split in An

can be found in Scott’s book [15].
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From this, we shall be able to observe that the largest conjugacy class of the

symmetric group is not the largest in the alternating group.

Theorem 2.2. Let n ∈ N, where n > 4 and n is even. If x is a (n − 1)-cycle in

An, then there exists a y ∈ An, where y is not a (n − 1)-cycle, such that ∣kAn(x)∣ <

∣kAn(y)∣.

Proof. By the splitting criteria above, it can be noticed that kSn(x) splits in An.

Since ∣kSn(x)∣ = n!
n−1 , then, ∣kAn(x)∣ = n!

2(n−1) .

Let y ∈ Sn, such that y is a (n − 2)(2)-cycle. Notice that y ∈ An and

that the conjugacy class, kSn(y), containing y does not split. Now, notice that

∣kSn(y)∣ = ∣kAn(y)∣ = n!
2(n−2) . We shall now compare the denominators of ∣kAn(x)∣

and ∣kAn(y)∣ since they share the same numerators. Notice that 2(n − 1) > 2(n − 2).

Thus, ∣kAn(x)∣ < ∣kAn(y)∣.

Therefore, we have shown that there exists a conjugacy class kAn(y), for

some y ∈ An where y is not a (n − 1)-cycle, whose size is larger than the size of

kAn(x).

Notice, if n = 3 the largest conjugacy class size of A3 is 1 and when n = 4,

the largest conjugacy class size of A4 is four. So, for the rest of this section, we will

assume n > 4.

We would like to inform the reader that we found our parameter e for some

alternating groups by using the group theory program GAP. We shall now discuss

our findings with GAP.

Using GAP

Notice that as n gets larger then the order of An and Sn become

unmanageable. So, we use the group theory coding system GAP. With GAP, we

7



can find the largest conjugacy class of An for a large n. Although we can use GAP

for a large n, of course we can only check for as big of an n as GAP’s system will

allow. The information presented in this section was checked and confirmed for

n = 8,9, ...,20 and for n = 40. We would like to note that n = 45 and n = 50 was

attempted, but the computing size was too big for GAP’s memory to handle. Now,

we must consider two cases; when n is even and when n is odd. To help determine

the largest conjugacy class in An, we must first look at Sn. Using GAP, we can

see that the largest four conjugacy classes in Sn, respectively, are the conjugacy

classes made up of (n − 1), (n), (n − 3)(2), (n − 2)(2) and (n − 2)-cycles, with the

(n−2)-cycle and the cycle type (n−2)(2) having equal conjugacy classes sizes. Now

we shall observe the two cases. We would like to note that the code we used to find

the largest conjugacy class of An and the largest four conjugacy classes of Sn can

be found in Appendix A.

Theorem 2.3. For the values of n tested above, the largest conjugacy class of An

is either made up of elements of cycle type (n − 2)(2) or (n − 3)(2).

Proof. Case 1: n is even.

From Theorem 2.1 the conjugacy classes made up of (n−1)-cycles will have a

smaller conjugacy class sizes than the conjugacy class made up of elements of cycle

type (n − 2)(2). Also, the conjugacy classes made up of (n), (n − 2)-cycles, and of

cycle type (n − 3)(2), respectively, will not be contained in An. Thus the conjugacy

class made up of elements of cycle type (n − 2)(2) is the largest in An.

Case 2: n is odd.

Notice that (n − 1)-cycles are not in An. Now, observe that the conjugacy

class made up of (n)-cycles splits. So, n!
2n < n!

2(n−2) . Thus, the largest conjugacy class

in An is the one made up of (n − 3)(2)-cycles.

Thus, we an see that the largest conjugacy class is made up of either

elements with cycle type (n − 2)(2) or (n − 3)(2).
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Parameter e for An using GAP

Let us first consider the case where n is even.

Since the largest conjugacy class is made up of elements with cycle type (n −

2)(2), then

eAn = (n − 2 − 1)
√

n!

2(n − 2) .

Now we will consider e2An
.

e2An
= (n − 3)2 n!

2(n − 2)

= n!

2

⎡⎢⎢⎢⎢⎣

((n − 3)2
n − 2

⎤⎥⎥⎥⎥⎦

= n!

2

⎡⎢⎢⎢⎢⎣

n2 − 6n + 9

n − 2

⎤⎥⎥⎥⎥⎦

Now, to show that e2An
≥ ∣An∣, we must show that n2−6n+9

n−2 > 1. By simple algebra,

this can be shown to be true when n > 4 and since our n > 4, we can conclude that

e2An
≥ ∣An∣ is true.

Thus, if n is even and n > 4, then e2An
≥ ∣An∣.

Now we shall consider the case when n is odd.

Since the largest conjugacy class is made up of elements with cycle type (n −

3)(2), then

eAn = (n − 4)
√

n!

2(n − 3) .

Now we will consider e2An
.

e2An
= (n − 4)2

⎡⎢⎢⎢⎢⎣

n!

2(n − 3)

⎤⎥⎥⎥⎥⎦
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= n!

2

⎡⎢⎢⎢⎢⎣

(n − 4)2
n − 3

⎤⎥⎥⎥⎥⎦

= n!

2

⎡⎢⎢⎢⎢⎣

n2 − 8n + 16

n − 3

⎤⎥⎥⎥⎥⎦

Now, to show that e2An
> ∣An∣, we must show that n2−8n+16

n−3 > 1. By simple algebra,

this can be shown to be true when n > 5.

In the case when n = 5, we get that the largest conjugacy class is not made

up of permutations of cycle type (n − 3)(2). Instead, the largest conjugcay class

is made up of (n − 2)-cycles. Now, with n = 5, we see that permutations made

up of (n − 3)(2) are going to be of cycle type (2)(2)(1). With this, it alters our

arbitrary class size from n!
2(n−3) to n!

(22)(2!) . The cycles are no longer of separate

length, meaning n − 3 is no longer different from 2, so we find that the largest

conjugacy class is made up of permutations of (n − 2)-cycles. When n = 5,

these cycles become (3)-cycles. So, in the case of when n = 5, we get our largest

conjugacy class to have size 5!
(3)(2!) = 20 and with smallest centralizer size 3. So, we

get

eA5 = (3 − 1)
√

20 = 2
√

20

and

e2A5
= 80.

Thus, we can see that e2A5
≤ ∣A5∣.

Thus, in both cases for even and odd n, we can increase the accuracy of our

bound to e2An
≥ ∣An∣, with n ≥ 5.
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III. MATHIEU GROUPS

In this chapter, we will be discussing the five Mathieu Groups. Note the

information presented about the Mathieu groups was obtained and can be further

investigated in [2]. Before we do, we will first define relevant information about

the Mathieu Groups. First of which is the group PSL(n, q), where n ≥ 2 and q is

a prime power. To understand what this group is, we must first let F be a field of

order q. With n and q, we can construct the general linear group GL(n, q), which is

the group of invertible n × n matrices over the field F . Defining SL(n, q) to be the

normal subgroup of GL(n, q), whose elements have determinant 1. The center of

SL(n, q), we shall denote as Z. The center of this group is exactly all of the scalar

matrices with determinant 1. So, we can now define PSL(n, q) = SL(n, q)/Z. We

will also define Steiner systems.

Definition 12. A Steiner system is defined as S = S(Ω,B), where Ω is a finite

set of points, and B is set of subsets of Ω, which are called blocks. We say for

some integers t and λ, where t is the size of a subset of Ω and λ is the size of

each block, every t points are contained in exactly one block. We also say that an

automorphism of S(Ω, λ) is a permutation over Ω that also permutes the blocks

amongst themselves as well.

More can be found about Steiner systems through [2], Chapter 6 Section 6.2.

The Mathieu groups were first discovered by Emile Mathieu between

1861-1873. These permutation groups are the first five of 26 sporadic simple

groups. Meaning they are simple groups not belonging to an infinite family. The

Mathieu groups will be denoted as M11, M12, M22, M23, and M24, where the index

is the number of items being permuted. Each Mi ⊂ M24, where i = 11,12,22,23.

These groups are the automorphism groups of Steiner systems.

We shall discuss further theses groups, but first need to establish these
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definitions.

Definition 13. Let G act on Ω and ∣Ω∣ = n. Then, we say that the degree of G is n.

Definition 14. Let G act on Ω. If for each α,β ∈ Ω, there exists a g ∈ G such that

α ⋅ g = β, then G is transitive on Ω.

Definition 15. Let G transitively act on Ω. If for each α,β ∈ Ω there exists a

unique g ∈ G, such that α ⋅ g = β, then G is regular on Ω.

We can also say that G is sharply transitive on Ω.

Definition 16. Let G act on Ω. Let Ok(Ω) be the set of k-tuples, i.e. of elements

(α1, α2,⋯, αk), where each αi ∈ Ω. Then G is k-transitive on Ω, if for each

(α1, α2,⋯, αk) and (β1, β2,⋯, βk), there exists a g ∈ G such that

(α1, α2,⋯, αk) ⋅ g = (α1 ⋅ g,α2 ⋅ g,⋯, αk ⋅ g) = (β1, β2,⋯, βk)

We can also say that G is multiply transitive on Ω.

Small Mathieu Groups

The small Mathieu groups are M11, M12. The group M11 is a subset of M12

and is a point stabilizer of M12. While the group M12 is regular 5-transitive of

degree 12. So, any 5-point stabilizer in the group, must be the identity. Thus, we

can say that M11 is sharply 4-transitive on 11 points. M11 has a 3-transitive action

on 12 points such that the point stabilizers are isomorphic to PSL(2,11). So, it can

be seen that PSL(2,11) is both the natural 2-transitive action of degree 12 and an

exceptional 2-transitive action of degree 11.

Large Mathieu Groups

The large Mathieu groups consist of M22, M23, and M24. The largest of

the three being M24, which is 5-transitive of degree 24. Each of M23 and M22 are
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one-point and two-point stabilizers, respectively. The group PSL(3,4) is isomorphic

to the point stabilizers in M22 in its natural 2-transitive action on PSL(3,4).

Parameter e for Mathieu Groups

We shall now explore the parameter e discussed by Harrison. Note the

information collected in this section was with the help of the ATLAS [1]. First, we

need to know the order and largest conjugacy class size for each group. We shall

denote the size of the largest conjugacy class of each group as kMi
, where i is the

index to its respective Mathieu group. ∣M11∣ = 24 ⋅ 32 ⋅ 5 ⋅ 11, with kM11 = 24 ⋅ 32 ⋅ 11.

∣M12∣ = 26 ⋅32 ⋅5⋅11, with kM12 = 25 ⋅3⋅5⋅11. ∣M22∣ = 27 ⋅32 ⋅5⋅7⋅11, with kM22 = 27 ⋅32 ⋅7⋅11.

∣M23∣ = 27 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23, with kM23 = 24 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23. ∣M24∣ = 210 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23,

with kM24 = 210 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 23.

We shall denote the size of the centralizer pertaining to a representative of

the largest conjugacy class as CMi
, where i pertains to their respective Mathieu

group. So, CM11 = 5, CM12 = 2 ⋅ 3 = 6, CM22 = 5, CM23 = 23 = 8, and CM24 = 11. We

shall also denote the parameter e to be eMi
, where i is the index to its respective

Mathieu group.

Recall that e = (CG − 1) ⋅
√
kG, where CG and kG is the size of the smallest

centralizer and largest conjugacy class of the group, respectively. So,

eM11 = (5 − 1)
√

24 ⋅ 32 ⋅ 11 = 24 ⋅ 3 ⋅
√

11

eM12 = (6 − 1)
√

25 ⋅ 3 ⋅ 5 ⋅ 11 = 22 ⋅ 5 ⋅
√

2 ⋅ 3 ⋅ 5 ⋅ 11

eM22 = (5 − 1)
√

27 ⋅ 32 ⋅ 7 ⋅ 11 = 25 ⋅ 3 ⋅
√

2 ⋅ 7 ⋅ 11

eM23 = (8 − 1)
√

24 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23 = 22 ⋅ 3 ⋅ 7 ⋅
√

5 ⋅ 7 ⋅ 11 ⋅ 23

eM24 = (11 − 1)
√

210 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 23 = 25 ⋅ 3 ⋅
√

3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 23
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If we write the order of each Mathieu group in terms of their respective e, we

see

∣M11∣ =
5

24
e2M11

∣M12∣ =
6

25
e2M12

∣M22∣ =
5

24
e2M22

∣M23∣ = ( 5

24
eM23)2

∣M24∣ = e2M24
.

From this, we can improve the bound in respect to Mathieu groups. It can

be seen that for any Mathieu group, M , ∣M ∣ ≤ e2.
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IV. p-GROUPS OF MAXIMAL CLASS

In this section we shall discuss the parameter e for p-groups with maximal

class. First we shall discuss information about p-groups.

p-Groups

Let p be a prime. We say that P is a p-group if ∣P ∣ = pa, where a ∈ N. We

shall now present some theorems about p-groups.

Theorem 4.1. Let P be a finite p-group. Suppose that N is a nontrivial normal

subgroup of P . Then, N ⋂Z(P ) > 1.

Proof. Let us look at the conjugation action from P on N . Then, the total set

of fixed points from this action is N ⋂Z(P ). This tells us that every element in

N ⋂Z(P ) will be in an orbit of size 1. Recall that from the Fundamental Counting

Principal, that all non trivial orbits must have an order that divides the order of

the group. So, all nontrivial orbits are made up from elements in N − N ⋂Z(P )

and will have an order that divides p. So, it must be that ∣N −N ⋂Z(P )∣ divides p.

Thus, ∣N ⋂Z(P )∣ ≡ ∣N ∣ mod p. Now since we defined N to be a nontrivial p-group,

then ∣N ∣ ≡ 0 mod p. Thus, ∣N ⋂Z(P )∣ ≡ ∣N ∣ mod p ≡ 0 mod p. Since N ⋂Z(P ) ≠ 1,

then N ⋂Z(P ) > 1.

So, we have shown that if P has a nontrivial normal subgroup, then the

center of P is also nontrivial.

Definition 17. Let G be a group. Then, G is said to be nilpotent, if there exists a

finite collection of normal subgroups of G, G0,G1,G2, ...,Gn, where

1 = G0 ⊆ G1 ⊆ G2 ⊆ ... ⊆ Gn = G,
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such that

Gi+1/Gi ⊆ Z(G/Gi)

for i ∈ {0,1,2, ..., n}

Definition 18. Let G be a group. G is to have a central series if there exists a a

set {Ni}ni=0 of normal subgroups of G, such that

N0 ⊆ N1 ⊆ ⋯ ⊆ Nn

and Ni+1/Ni ⊆ Z(G/Ni)

Note: 1 and G are included in the above series iff G is nilpotent. I.e. if the

central series is

1 = N0 ⊆ N1 ⊆ ⋯ ⊆ Nn = G

then G is nilpotent.

Theorem 4.2 (Correspondence Theorem). Let ϕ ∶ G → H be a surjective

homomorphism and let N =ker(ϕ). Define the following sets of subgroups:

S = {U ∣ N ⊆ U ⊆ G}

and

T = {V ∣ V ⊆H}.

Then ϕ and ϕ−1 are inverse bijections between S and T . Furthermore, these maps

respect containment, indices, normality, and factor groups.

Note, proof of this theorem can be found in [9], Chapter 3 page 35.

Theorem 4.3. Let G be a finite group and M be a proper normal subgroup of G.

If Z(G/M) > 1 for all M ◁G, then G is nilpotent.

Proof. Define Z0 = 1, Z1 = Z(G), and Zi such that Zi/Zi−1 = Z(G/Zi−1) for all i ≥ 2.

16



Notice that by the Correspondence Theorem, this guarantees each of the Zi’s to be

normal, for i ≥ 1. Also notice that for each i ∈ Z, we have Zi+1 > Zi. So since G is

finite, then there must exist an n ∈ Z, such that Zn = G. Thus we have created the

central series

1 = Z0 ⊆ Z1 ⊆ ⋯ ⊆ Zn = G

So, by Definition 6, G is nilpotent.

Thus, we have shown that for all M ◁ G and Z(G/M) > 1, then G is

nilpotent.

Theorem 4.4. A finite p-group is nilpotent.

Proof. By Theorem 4.1, we know that any nontrivial finite p-group has a nontrivial

center. So, by Theorem 4.3 we have our desired result.

Thus a finite p-group is nilpotent.

Now we will define what it means for a p-group to have maximal class. First,

we must define nilpotency class. To do this, we must first define a set of related

definitions.

Let us define Z0(G) = 1 and Zi(G) such that Zi(G)/Zi−1(G) = Z(G/Zi−1(G))

for i > 0.

So, we can define the nilpotency class of a group G to be the smallest integer

n, such that Zn(G) = G.

Thus we can now define what it means for a p-group to have a maximal

class. We define a p-group P of order pn to have maximal class if P has nilpotency

class of n − 1, where n > 3.

Any dihedral, semidihedral, and quaternion 2-groups are examples of

p-groups of maximal class. A proof of these groups being of maximal class can be

17



found in [12, 5].

Parameter e for p-Groups

For the rest of this section, let us denote G to be a p-group of maximal class

of order pn.

To be able to discuss the parameter e, we must find the largest conjugacy

class of our group G. To do this, we must define uniform elements.

Definition 19. Let G be a p-group of order pn of maximal class. Let us define s ∈

G to be a uniform element if s ∉
n−2

⋃
i=2

CG(Gi/Gi+2).

With these elements we can find out the size of the largest conjugacy class

of our group G. But we must first know if there exists uniform elements inside our

group. Luckily, Burnside was able to achieve this. Firstly, he was able to show that

p-groups of maximal class always contain uniform elements.

We will present Burnside’s Theorem and the following Theorem 4.5 without

proof. The proofs of these theorems can be found in [5].

Theorem 4.5. (Burnside’s Theorem) Let G be a p-group of maximal class of order

pn. Then the following statements hold:

1. If l(G) = 0 then p ≥ 5, n is even, and 6 ≤ n ≤ p + 1.

2. l(G/Z(G)) ≥ 1.

3. G has uniform elements.

Here l(G) is the degree of commutativity of G. We leave the reader to look

into this if interested, as we will not be using this in this thesis. More information

can be found in [5], Chapter 3 Section 3.2.

With this theorem, we know that a uniform element exists, so we can now

find the largest conjugacy class of p-groups of maximal class.

18



Theorem 4.6. Let G be a p-group of maximal class of order pn and let s be a

uniform element of G. Then the following properties hold:

1. CG(s) = ⟨s⟩Z(G).

2. sp ∈ Z(G) and consequently o(s) ≤ p2 and ∣CG(s)∣ = p2.

3. The conjugates of s are exactly the elements in the cosset sG2.

4. For 0 ≤ t ≤ m − 4, the subgroup H = ⟨s,Gi+1⟩ is a p-group of maximal class

of order pm−t and such that Hi = Gi+1 for every i ≥ 1. Hence, either l(H) =

m − t − 2 or l(H) ≥ l(G) + t.

By (2) in Theorem 4.5, we can see that if s is a uniform element of our

group G then ∣CG(s)∣ = p2 and by (3) in Burnside’s Theorem, we see that G does

have uniform elements. So, from these two properties the largest conjugacy class of

G, kG(s), is of order pn−2.

We shall denote the parameter e for our p-group G as ep. Thus, we can see

that

ep = (∣CG(s)∣ − 1)
√

∣kG(s)∣

= (p2 − 1)
√
pn−2

=
√
pn(p − 1

p
)

and

e2p = pn(p −
1

p
)2.

Notice that (p − 1
p)2 > 1, so we can improve our upper bound of the order of

G using our parameter from ∣G∣ ≤ 2e2p to ∣G∣ ≤ e2p, where ∣G∣ = e2p
(p− 1

p
)2

.

Now, notice that

e2p = pn(p −
1

p
)2 = ∣G∣(p − 1

p
)2

19



e2p

(p − 1
p)2

= ∣G∣

Let us now fix a p > 1000. Then, (p − 1
p) ≈ p. So,

e2p
p2 ≈ ∣G∣. Now, since ∣G∣ = pn, then

p2 = ∣G∣ 2n .

So,
e2p
p2

≈ ∣G∣

e2p

∣G∣ 2n
≈ ∣G∣

e2p ≈ ∣G∣1+ 2
n

e
2

1+ 2
n

p ≈ ∣G∣

Now, as n → ∞, 1 + 2
n → 1. So, as n → ∞, e

2

1+ 2
n

p → e2p. Thus, as n → ∞,

e2p → ∣G∣.

Therefore, lim
n→∞

e2p ≈ ∣G∣.

Derived Length of a p-Group and its Parameter e

In this section, we shall explore the conditions needed to decrease our upper

bound of ∣G∣ to be less than e2G. Before we can explore this, we must first note some

definitions.

Definition 20. We say that G is solvable if there exists a finite collection of

normal subgroups G0,G1,⋯,Gn, such that

1 = G0 ⊆ G1 ⊆ ⋯ ⊆ Gn = G

and Gi+1/Gi is abelian for all i ∈ {0,1,⋯, n − 1}.

Definition 21. Let x, y ∈ G. We say the commutator of x and y is x−1y−1xy. We

denote this as [x, y].
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Definition 22. Let G′ be the set of commutators of x and y, for all x, y ∈ G. We

say that G′ is the commutator subgroup of G. This is also known as the derived

subgroup of G.

Note, that G′ is the smallest normal subgroup of G, such that G/G′ is

abelian. We can also denote G′ = [G,G].

From this derived subgroup, we can create G′′ as the derived subgroup of

G′. We can then create G′′′ to be the derived subgroup of G′′ and can continue

this process indefinitely. Lets write this series as G(0) = G,G(1) = G′,G(2) =

G′′, . . . ,G(n) = (G(n−1))′. Now, let us observe the following theorem:

Theorem 4.7. A group G is solvable if and only if G(n) = 1, for some n ∈ Z.

Proof. First let us assume G is solvable. Then there exists normal subgroups of G,

G0,G1, . . .Gn, such that

1 = G0 ⊆ G1 ⊆ ⋅ ⋅ ⋅ ⊆ Gn = G

where Gi+1/Gi is abelian for all i ∈ {0,1, . . . , n − 1}. Now since G′ is the smallest

normal subgroup of G and Gi+1 ◁ Gi, then we can notice that (Gi+1)′ ⊆ Gi for all

i ∈ {0,1, . . . , n−1}. Notice that since Gn = G and G′ is the smallest normal subgroup

of G with an abelian factor group, then G′ ⊆ Gn−1. Now since G(2) = G′′ = (G′)′

and G′ ⊆ Gn−1, then G(2) ⊆ (Gn−1)′ ⊆ Gn−2. So, G(2) ⊆ Gn−2. If we continue this

process, we can deduce that G(k) ⊆ Gn−k, for all 0 ≤ k ≤ n. From this, we can see

that G(n) ⊆ G0 = 1. Thus, G(n) = 1.

Now, assume that G(n) = 1, for some n ∈ Z. This thus implies that

1 = G(n) ⊆ G(n−1) ⊆ ⋯ ⊆ G(1) ⊆ G(0) = G.

Since, for all 0 ≤ k ≤ n, G(k)◁G, then G is solvable.

Thus, G is solvable if and only if G(n) = 1, for some n ∈ Z.
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This theorem helps confirm, that if G is solvable, then there is a derived

series of G such that G(0) = G and G(n) = 1. This smallest integer n such that

G(n) = 1 is called the derived length of G, denoted as dl(G).

With this information of a derived length, we are able to place an upper

bound on the derived length using the group’s nilpotency class. We present the

following theorem without proof. The reader can find the proof in [9], Chapter 8

Theorem 8.30.

Theorem 4.8. Let G be nilpotent with derived length d and nilpotency class c.

Then

d < 1 + log2(c + 1).

We will be presenting a theorem without proof, the proof can be found in

[12], Chapter 3 Section 3.4 Corollary 3.4.13. We would like to note that (1) of

the theorem is unneccessary for this thesis and interested readers should look at

Leedham-Green and McKay’s book [12] for further information.

Theorem 4.9. Let G be a p-group of maximal class p ≥ 5.

1. If ∣G∣ ≥ p6p−23 then P1 is nilpotent of class at most 3.

2. If ∣G∣ ≥ p6p−35 then G has derived length at most 3.

Now, suppose our p-group G, with p ≥ 5 and maximal class has a large

derived length. From Theorem 4.9, it implies that if G has a large derived length,

then ∣G∣ ≈ pp. Now recall from the previous section that ep =
√
pn(p − 1

p). So, in this

case ep =
√
pp(p − 1

p). For any p > 2, (p − 1
p) ≈ p. Since ∣G∣ ≈ pp, then p ≈ ∣G∣

1
p . So,

(p − 1
p)2 ≈ p2 ≈ ∣G∣

2
p .

Thus, we can see that

ppp2 ≈ e2p.
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Recall that ∣G∣ ≈ pp, so

∣G∣1+
2
p ≈ e2p.

∣G∣ ≈ e
2

1+ 2
p

p

∣G∣ ≈ e
2p
p+2
p .

Thus, as we can see in this case we are actually able to improve the upper

bound of the group order from ∣G∣ ≤ 2e2p to approximately ∣G∣ ≤ e
2p
p+2
p .

Since our discussion requires us to approximate from (p − 1
p) to p our upper

bound is not fully accurate, as it depends on an approximation where(p− 1
p) < p. We

shall instead get rid of our approximation and use a number greater than (p − 1
p)2.

We still use the assumption that a p-group with maximal class and a large

derived length has size approximate to pp. Now, notice that (p − 1
p)2 = p2 − 2 + 1

p2 >

p2 − 2 ≥ 1
2p

2. Thus, we can see that

pp(1

2
p2) ≤ pp(p2 − 2) < pp(p − 1

p
)2 = e2p.

Now we can deduce the following,

1

2
pp+2 < e2p

pp+2 < e2p

∣G∣
p+2
p < 2e2p

∣G∣ < (2e2p)
p

p+2

Now we need to show that this new upper bound is less than our upper

bound for arbitrary p-groups with maximal class, e2p.

To show this, we shall look at for what values of p does the following hold:
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(2e2p)
p

p+2 < e2p. This means that we must check if 2 < (ep2)
2
p . From this, since ep =

√
pp(p − 1

p), it follows that one has to show that

2 < [pp+2 − 2pp + pp−2]
2
p ,

which is true for all values of p. Thus, when the derived length of a p-group of

maximal class is large ∣G∣ < (2e2)
p

p+2 , a smaller upper bound.

We would like to remind the reader then, that what was just discussed

in this section of this chapter works for p-groups of maximal class of order pp.

Roughly speaking, from the results on p-groups of maximal class mentioned earlier

one can say that if a p-group of maximal length has large derived length, then its

order is, more or less, equal to pp, so that the discussion above applies. A little

more work would be needed to make this latter statement fully precise, but here

we just wanted to discuss the main idea.
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V. FROBENIUS GROUPS

One type of permutation group is called a Frobenius group. To define

a Frobenius group F , we must first define what it means for a group to be

a complement of another and some information about a subgroup and its

complement.

Definition 23. Let N ◁ F and H ⊆ F . We say that H is a complement for N if

NH = F and N ⋂H = 1.

Theorem 5.1. Let N ◁ F be a normal subgroup of F and H be a complement for

N in F . Then the following are equivalent:

1. The conjugation action of H on N is Frobenius.

2. H ⋂Hf = 1, for all elements f ∈ F ∖H.

3. CF (h) ⊆H, for all 1 ≠ h ∈H.

4. CF (n) ⊆ N , for all 1 ≠ n ∈ N .

Note that if H acts on N , then the action is said to be Frobenius if for all

1 ≠ h ∈H and n ∈ N , then n ⋅ h ≠ h, under the conjugation action.

The reader can find proof of Theorem 5.1 in [10], Chapter 6 Section A

Theorem 6.4. Now let us define a Frobenius group.

Definition 24. Let H, N be groups such that H acts on via automorphisms N ,

denoted as (⋅). We say that G is the semidirect product of N by H, denoted as F =

N ⋊H. Such that if n0 ∈ N and h0 ∈H, then for all n ∈ N and h ∈H

(n0, h0)(n,h) = (n0n ⋅ h0−1), h0h).

25



From this definition, F is Frobenius group if the action in the semidirect

product is Frobenius. Although this is a definition of a Frobenius group, we can

also say that F is a Frobenius group in the following way.

Definition 25. Let F be a finite group. We say that F is a Frobenius group if

there exists a normal subgroup N ◁ F and subgroup H ⊆ F , such that H is a

complement for N where the information in Theorem 5.1 is true.

Parameter e for an Arbitrary Frobenius Group

Now, we will look at the parameter e of our Frobenius group. Let us denote

the parameter as eF for this specific type of group.

Before we can discuss, eF , we need the following theorem.

Theorem 5.2. Let H,K ⊆ G be subgroups of G. Then

∣HK ∣ = ∣H ∣∣K ∣
∣H ⋂K ∣ .

Proof. Let Ω = {Hx ∣ x ∈ G and K act on Ω by right multiplication. Notice,

HK = ⋃
k∈K

Hk.

Since Hk = H ⋅ k, then HK must be in the in the orbit O that contains H. In other

words, O = {Hk ∣ k ∈ K}. Now, since each coset in O is disjoint, then they all have

size ∣H ∣. So we can see that ∣HK ∣ = ∣H ∣∣O∣. Note that the stabilizer of H is H ⋂K.

Now, by Theorem 1.1 (Fundamental Counting Principle), we can see that

∣HK ∣ = ∣H ∣∣K ∣
∣H ⋂K ∣ ,

as desired.
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Let us fix an arbitrary n ∈ N and h ∈H.

Now, since from Theorem 5.1 part (3), we see that CF (h) ⊆ H, then

∣CF (h)∣ ≤ ∣H ∣. Since F = NH and N ⋂H = 1, then from Theorem 5.2, we can

see that ∣F ∣ = ∣N ∣∣H ∣. So,

∣N ∣ = ∣F ∣
∣H ∣

and

∣H ∣ = ∣F ∣
∣N ∣ .

Thus, it can be see that

∣kF (h)∣ =
∣F ∣

∣CF (h)∣
≥ ∣F ∣

∣H ∣ = ∣N ∣.

Similar steps can be made for CF (n) to show

∣kF (n)∣ =
∣F ∣

∣CF (n)∣
≥ ∣F ∣

∣N ∣ = ∣H ∣.

Also, since N ◁ F , then it must be that kF (n) ⊆ N . So, ∣kF (n)∣ ≤ ∣N ∣.

From these inequalities, we can deduce that ∣kF (n)∣ ≤ ∣kF (h)∣. Thus, if we are

trying to find our eF , we only need to look at the elements in H, as they will

produce the largest conjugacy class and smallest centralizer. So, we shall write

eF = (CF − 1)
√
kF , where CF and kF are the sizes of the smallest centralizer and

largest conjugacy class, respectively, in H.

Because the elements of Frobenius groups differ between groups, we cannot

go further in specifying what the value of eF will be. So, in this next section we will

look at multiple examples of Frobenius groups.
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Examples of Frobenius Groups and their Respective Parameter e

The Frobenius groups we will be looking at are taken from Perumal’s thesis

[14]. First, let us look at the dihedral group of order 2n, where n is an odd integer.

We would first like to remind the reader that the dihedral group of order 2n,

denoted D2n, is the group made up of rotations and turns on some geometric shape.

For all n ∈ N, we can write D2n = {rltk∣0 ≤ l ≤ 2 and 0 ≤ k ≤ n}, where r is a rotation

and t is a turn. Also, we would like to remind the reader that r2 = tn = 1.

Perumal, shows that the Frobenius complement of the Frobenius group D2n

is H = {1, r}. Now from this, we can see that kD2n(1) = {1}. So, we are interested in

the size of kD2n(r). Thus, we shall show all types of conjugacy classes of D2n.

Theorem 5.3. Let D2n be the dihedral group of order 2n, where n is odd. Then

the conjugacy classes are {1}, {tk, t−k} for all 1 ≤ k < n, and {rtk∣1 ≤ k ≤ n}.

Proof. Clearly 1 is in a conjugacy class of its own. Now, let tk ∈ D2n, for some k ∈

{1,⋯, n}. Note, that we only need to check the conjugate action of rtl on tk, for

some l ∈ {1,⋯, n − 1}, since r2 = 1. Which means that t−1tktl = tk. So,

(rtl)−1tk(rtl) = t−lrtkrtl = t−lt−ktl = t−l+(−k)+l = t−k,

for some l ∈ {1,⋯, n − 1}. Thus, {tk, t−k} is a conjugacy class for all 1 ≤ k < n.

Now we shall look at the conjugacy class of r. So,

(rtl)−1r(rtl) = t−lrrrtl = t−lrtl.

Now, since rt−kr = tk, then

rt−krtk = t2kt−krtk = rt2k.
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So,

t−lrtl = rt2l,

for all l ∈ {1,⋯, n}. Now, since we l is arbitrary, we can generate the conjugacy

class {rtk∣1 ≤ k ≤ n}.

Notice, that since n is odd, then n = 2m + 1. Now, then the total size of each

conjugacy class should equal the group order. Then,

∣{1}∣ + ∣{b, b−1}∣ +⋯ + ∣{bm, b−m}∣ + ∣{rtk∣1 ≤ k ≤ n}∣

= 1 + 2 +⋯ + 2 + n = 2n

Thus, we have found all conjugacy class of D2n, where n is odd.

So, from this, we can see that

eD2n = (2 − 1)
√
n =

√
n

Now, since ∣D2n∣ = 2n, then ∣D2n∣ = 2e2D2n
.

Definition 26. Let G be a group and p be a prime. A Sylow p-subgroup of G is a

subgroup, S, such that ∣S∣ = pa, where a is the largest integer such that ∣G∣ = pam,

for some m ∈ N not divisible by p. We denote the set of all Sylow p-subgroups of G

as Sylp(G).

Another example we see of a Frobenius group from Perumal [14] is a

nonabelian group G of order pq, where p and q are primes with p > q > 2, such

that the Sylow p-subgroup P ◁G is normal in G and the Sylow q-subgroup Q is not

normal in G. Now, we shall present a theorem, its proof can be found in [14].

Theorem 5.4. Suppose that G is Frobenius with complement H. Then, if P ∈
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Sylp(H), then

1. if p = 2, then P is cyclic or generalized quaternion.

2. if p ≠ 2, then P is cyclic.

Notice that Q is the Frobenius complement in G. Now, since Q is its own

Sylow q-subgroup, then Q is cyclic. Since Q is cyclic. Then Q is abelian. So, we

can say that ∣CG(x)∣ ≥ ∣Q∣, for all x ∈ Q. This also implies that ∣kG(x)∣ ≤ ∣P ∣, for all

x ∈ Q. Since G is Frobenius, then we know that CG = ∣Q∣ and kG = ∣P ∣. So,

eG = (∣Q∣ − 1)
√

∣P ∣ = (q − 1)√p.

Now, we can also see that

e2G = (q − 1)2p.

So, ∣G∣ ≤ e2G.

Recall that SL(n, q) is the normal subgroup of GL(n, q), where each element

has determinant of 1. Now, we will look at the example in [14] 292 ⋊ SL(2,5), where

292 is a group of order 292. We shall denote this group as G.

From Perumal, we can see that the size of this group is 292 ⋅ 120, the largest

conjugacy class is of size 292 ⋅ 30, and its respective centralizer is of size 4. So,

eG = (4 − 1)
√

292 ⋅ 30 = 87
√

30.

Thus, we can see e2G = (872)(30). So, ∣G∣ ≤ e2G.
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VI. SOLVABLE DOUBLY TRANSITIVE PERMUTATION GROUPS

It is known that in the 1950s, Betram Huppert classified all of the solvable

doubly transitive permutation groups. We will be looking at a theorem prior to

Huppert’s discussed in [13]. Before we show the theorem, we would first like to

discuss some essential definitions.

First we would like the reader to recall the meaning of solvable,

k-transitivity, where k = 2 (doubly transitive), and the group GL(n, q) of n × n

matrices over a field F of order q. Note that F can also be called a Galois field,

denoted GF(q).

Let V be a vector space of dimension n over the field F of order q. Then, V

is a field of degree qn. Also, let H be the multiplicative group of V . This group is

also known as V ∗. Now, let H act on V by multiplication. Let us define ϕ ∶ V → V

such that ϕ(v) = vq. Now, we shall let the group generated by ⟨ϕ⟩ act on the

semi-direct product of V ⋊ H. Thus, the group known as the semi-linear group

Γ(qn) = (V ⋊H) ⋊ ⟨ϕ⟩.

Lastly, we shall define the fitting subgroup. We say that the fitting subgroup

of G is the largest normal nilpotent subgroup of G, denoted F(G). From this we

can derive a series of subgroups

F1(G) ≤ F2(G) ≤ . . .

such that F(G) = F1(G) and Fi+1/Fi = F(G/Fi(G)).

We now present the theorem in [13], chapter 2 section 6, without proof.

Theorem 6.1. Let V be a vector space of dimension n over GF(q), where q is a

prime power. Suppose that G ≤ GL(V ) be a solvable subgroup that is transitive on

V ∗. Then G ≤ Γ(qn), or one of the following occurs:

1. qn = 34, F(G) is extra-special of order 25, ∣F2(G)/F(G)∣ = 5 and G/F2(G) ≤
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Z4.

2. qn = 32, 52, 72, 112, or 232. Here F(G) = QT , where T = Z(G) ≤ Z(GL(V ))

is cyclic, Q8 ≅ Q ◁ G, T ⋂Q = Z(Q) and Q/Z(Q) ≅ F(G)/T is a faithful

irreducible G/F(G)-module. We also have one of the following entries:

qn ∣T ∣ G/F(G)

32 2 Z3 or S3

52 2 or 4 Z3

52 4 S3

72 2 or 6 S3

112 10 Z3 or S3

232 22 S3

We would like to note that the G in Theorem 6.1 is not doubly transitive.

Instead it is a solvable transitive subgroup of the general linear group of dimension

n over a field of order q. In order to obtain our solvable doubly transitive

permutation group, we must take the semi-direct product of our found group and

its respective vector space V of size qn. More about this can be found in [13] at the

beginning of chapter 2 section 6.

Parameter e for Solvable Doubly Transitive Permutation Groups

To find the parameter e for each of the groups classified in Theorem 6.1 and

the solvable doubly transitive groups, we used the computing system GAP. We

found that we were able to compute all of the needed information for each of the

values for qn in (2) of Theorem 6.1 except for when qn = 232 as their were too many

subgroups of GL(2,23) than GAP’s memory could handle. We leave the code we

used in Appendix B.

First, we shall discuss the parameter e in respect to (1) of Theorem 6.1.
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Now, since G/F2(G) ≤ Z4, then there are three possible choices for G, that

is G/F2(G) ≅ ⟨1⟩, G/F2(G) ≅ Z2, or G/F2(G) ≅ Z4. So, let us denote the

parameter e as ed1, ed2, ed3, where the subscript pertains to each of the possible

quotient groups, respectively. Our choice of subscript will be clear in respect to the

doubly transitive groups. We shall show the size of the three possible groups G, its

respective parameter, and the square of the parameter.

∣G∣ = 160 ed1 = 32 e2d1 = 1024

∣G∣ = 320 ed2 = 14
√

(10) e2d2 = 1960

∣G∣ = 640 ed3 = 28
√

(5) e2d3 = 3920

The three possible solvable doubly transitive groups G are also known as

Bucht groups, denoted B1, B2, and B3 respectively. More about Bucht groups can

be found in [8], pages 385 and 386. So, let us denote the parameter e as e1, e2, e3,

where the subscript pertains to each Bucht group, respectively. So,

∣B1∣ = 12960 e1 = 324 e21 = 104976

∣B2∣ = 25920 e2 = 126
√

(10) e22 = 158760

∣B3∣ = 51840 e3 = 42
√

(190) e23 = 335160

We shall look at the groups obtained in (2) of Theorem 6.1 and their

respective parameter and its square. Since there are different values for qn, the

order of T , and what the group G/F(G) being isomorphic to, we shall denote our

parameter as eG. Here the first will pertain to the case where qn = 32, ∣T ∣ = 2, and

G/F(G) ≅ Z and the second will pertain to the case where qn = 32, ∣T ∣ = 2, and

G/F(G) ≅ S3, continuing in this fashion. We present the size of each group and

each parameter and its square below.

33



∣G∣ = 24 eG = 3
√

(6) e2G = 54

∣G∣ = 48 eG = 6
√

(3) e2G = 108

∣G∣ = 24 eG = 3
√

(6) e2G = 54

∣G∣ = 48 eG = 7
√

(6) e2G = 294

∣G∣ = 96 eG = 14
√

(3) e2G = 588

∣G∣ = 48 eG = 6
√

(3) e2G = 108

∣G∣ = 144 eG = 22
√

(3) e2G = 1452

∣G∣ = 120 eG = 19
√

(6) e2G = 2166

∣G∣ = 240 eG = 38
√

(3) e2G = 4332

The size of the solvable doubly transitive groups, each of the parameters for

their respective groups, and the parameter squared shall now be given. We shall

use the same notation, eG, but please note that these are not the same groups.

∣G∣ = 216 eG = 9
√

(6) e2G = 486

∣G∣ = 432 eG = 30
√

(2) e2G = 1800

∣G∣ = 600 eG = 20
√

(6) e2G = 2400

∣G∣ = 1200 eG = 35
√

(6) e2G = 7350

∣G∣ = 2400 eG = 70
√

(3) e2G = 14700

∣G∣ = 2352 eG = 42
√

(3) e2G = 5292

∣G∣ = 7056 eG = 154
√

(3) e2G = 71148

∣G∣ = 14520 eG = 209
√

(6) e2G = 262086

∣G∣ = 29040 eG = 418
√

(3) e2G = 524172

In each one of these cases, we can see that ∣G∣ ≤ e2G. Because of the large

difference between most of the order of our found groups G and their parameter

squared e2G, there may exist a universal constant B, such that ∣G∣ ≤ BeG for

all found solvable transitive permutation groups in (1) and (2) of Theorem 6.1,

including their respective solvable doulby transitive permutation groups.
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Now, we shall look at the subgroups G of Γ(qn). In [13], they have many

theorems that help us find subgroups of the semi-linear group. In our case, we only

needed the following.

Theorem 6.2. Let G be a solvable irreducible subgroup of GL(p, q) for primes p

and q.

1. If q = 2, then G ≤ Γ(2p).

2. If q = p, then G ≤ Γ(pp) or G ≤ Zp−1wrS, where Zp ≤ S ≤ Zp ⋅Zp−1 ≤ Sp.

Proof of this theorem can be found in [13], chapter 1 section 2.

Theorem 6.3. Let G be a solvable irreducible subgroup of GL(pr,2) where p and

r are primes not necessarily distinct. After possibly inter-changing p and r, one of

the following occurs:

1. G ≤ Γ(2p)wrS where Zr ≤ S = Zr ⋅Zr−1 ≤ Sr,

2. G ≤ Γ(2pr), or

3. F(G) = DT with D,T < G, T = Z(F(G)) is cyclic, D is extra-special of order

p3, F(G)/T ≅ D/Z(D) is a faithful irreducible G/F(G)-module of order p2.

Furthermore, ∣T ∣ ∣ 2r − 1 and p ≠ 2.

Proof of this theorem can be found in [13], Chapter 1 Section 2.

With these theorems, we are able to find some semi-linear groups using

GAP then find its respective parameter e. With the capabilities of GAP, the values

for q and p we could compute are the following: 22, 23, 24, 33, 25, and 26. When

presenting our information, we shall present in the order of value of qn.

First, we found the parameter e for these subgroups then found the

parameter e for their respective solvable doubly transitive permutation groups. We

shall denote our parameter in both instances as eG.
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We obtained the following information.

∣G∣ = 6 eG =
√

(3) e2G = 3

∣G∣ = 21 eG = 2
√

(7) e2G = 28

∣G∣ = 60 eG = 3
√

(15) e2G = 135

∣G∣ = 78 eG = 5
√

(13) e2G = 325

∣G∣ = 155 eG = 4
√

(31) e2G = 496

∣G∣ = 378 eG = 15
√

(7) e2G = 1575

Here, one can notice that we are unable to lower our bound of 2e2G to e2G,

since in the case where qn = 22 our group G has order equal to 2e2G. Now we present

the solvable doubly transitive permutation group parameters in the same order.

∣G∣ = 24 eG = 4
√

(2) e2G = 32

∣G∣ = 168 eG = 10
√

(7) e2G = 700

∣G∣ = 960 eG = 20
√

(10) e2G = 4000

∣G∣ = 2106 eG = 15
√

(39) e2G = 8775

∣G∣ = 4960 eG = 32
√

(31) e2G = 31744

∣G∣ = 24192 eG = 64
√

(42) e2G = 172032

From these groups, we can see that we are able to lower our upper bound

from 2e2G to e2G. Thus we can conclude that ∣G∣ ≤ e2G, except for when qn = 22.

So, we are unable to generalize and improve our upper bound to e2G. We would like

to note that each of these found groups were in the case when G = Γ(qn). This is

because of the code we used for GAP, we were unable to find groups G that were

proper subgroups of Γ(qn).

The code we used to find all of the subgroups G mentioned in [13], the

solvable doubly transitive permutation groups from Huppert, and their respective

parameter e’s can be found in the Appendix A of this thesis.
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VII. OPEN PROBLEMS

Throughout this thesis, we were unable to fully explore many different

aspects of the groups we were studying. So, we leave here a list of open problems

for those interesting in studying to attempt to answer.

• Finding the largest conjugacy class for the alternating group, An, for all n ∈

N.

• Determining if the bound of the order of the alternating groups. for values of

n not tested here (20 < n < 40 and for all n > 40), using Harrison’s parameter.

• Proving or disproving that if P is a p-group of maximal class with large

derived length, then the bound on the group’s order using Harrison’s

parameter can be further improved to ∣P ∣ ≤ (2e2P )
p

p+2 .

• Finding the parameter e for the solvable doubly transitive permutation groups

and solvable transitive permutation groups when qn = 232 in (2) of Theorem

6.1.

• Finding the parameter e for the solvable doubly transitive permutation groups

and solvable transitive permutation groups for any qn ≠ 22, 23, 24, 33, 25, or 26

when G ≤ Γ(qn).

• Finding the parameter e for the solvable doubly transitive permutation groups

and solvable transitive permutation groups when qn = 22, 23, 24, 33, 25, or 26

and G < Γ(qn).

• Finding if there exists a universal constant B, such that ∣G∣ ≤ BeG, for all G

from (1) and (2) of Theorem 6.1

• Finding the general bound for solvable doubly transitive permutation groups

and solvable transitive permutation groups.
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APPENDIX SECTION

APPENDIX A: In this section we shall present the various codes used to

find the largest conjugacy classes of the permutation groups we observed. And the

code used to find the largest four conjugacy classes of Sn. We would like to note

to the reader that text written within %% %% is not part of the code, but is an

explanation of prior line of code.

We shall first present the main code used to find the largest conjugacy class

of a group.

c := ConjugacyClasses (G) ;

nc := NrConjugacyClasses (G) ;

m := [ ] ;

f o r i in [ 1 . . nc ] do

m[ i ] := S i z e ( c [ i ] ) ;

od ;

m;

We would like to note that the groups we dealt with were usually small

enough for us to check manually which was the largest conjugacy class. This was

not the case when dealing with An and Sn. So, we will append the extra bit of code

needed to find the largest conjugacy class that was used when working with An and

Sn.

k := 2 ;

j := 2 ;

repeat

j := j + 1 ;

i f m[ j ] > m[ k ]

then k := j ;
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e l s e k := k ;

f i ;

u n t i l j > nr − 1 ;

k ;

c [ k ] ;

Now we will show the code used to find the largest four conjugacy classes of

Sn. This code is similar to the process of finding the largest conjugacy class in An.

k := 2 ;

j := 2 ;

repeat

j := j + 1 ;

i f m[ j ] > m[ k ]

then k := j ;

e l s e k := k ;

f i ;

u n t i l j > nr − (p + 1 ) ;

k ;

c [ k ] ;

Remove(m, k ) ;

We would like to make note that the final loop process is repeated until the

user decides to stop. The p represents the number of elements removed from m

prior to computing current loop. In our case, we would repeat this process until we

obtained the desired cycle type of Sn. Recall that this cycle type was (n − 2)(2) for

an even n and (n − 3)(2) for an odd n. While repeating this process, we would keep

track of what cycle types we would be eliminating from l, which would help confirm

our conjecture on what the four largest conjugacy classes are in Sn.
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Now we shall present to code to find the subgroup G from Theorem 6.1

(1). Note, to do this for (1) we had to find the subgroup G of Γ(34) that met the

requirements presented in (1).

n i := NumberIrreducibleSolvableGroups ( 4 , 3 ) ;

l := [ ] ;

f o r i in [ 1 . . n i ] do

l [ i ] := IrreducibleSolvableGroupMS (4 ,3 , i ) ;

od ;

k := [ ] ;

j := 0 ;

f o r i in [ 1 . . n i ] do

i f S i z e ( Fitt ingSubgroup ( l [ i ] ) ) = 32 then

j := j + 1 ;

f i ;

i f S i z e ( Fitt ingSubgroup ( l [ i ] ) ) = 32 then

k [ j ] := l [ i ] ;

f i ;

od ;

t := [ ] ;

f o r i in [ 1 . . j ] do

t [ i ] := Fitt ingSubgroup ( FactorGroup ( k [ i ] ,

Fitt ingSubgroup ( k [ i ] ) ) ) ;

od ;

y := [ ] ;

r := 0 ;

f o r i in [ 1 . . j ] do

i f S i z e ( t [ i ] ) = 5 then
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r := r + 1 ;

f i ;

i f S i z e ( t [ i ] ) = 5 then

y [ r ] := k [ i ] ;

f i ;

od ;

After obtaining the three subgroups, we applied the code to find the largest

conjugacy class to each.

Now, we shall present the code used to find the subgroups from Theorem 6.1

(2). Here, we checked for the subgroups that met the requirements of having the

correct size for the group and its Fitting subgroup.

x := GL(n , q ) ;

as := AllSubgroups ( x ) ;

ng := S i z e ( as ) ;

i := 2 ;

p := 0 ;

j := 0 ;

k := [ ] ;

r epeat

i f S i z e ( as [ i ] ) = |G| then

p := i ;

f i ;

i f S i z e ( as [ i ] ) = |G| then

j := j + 1 ;

f i ;

i f S i z e ( as [ i ] ) = |G| then

k [ j ] := as [ i ] ;
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f i ;

i := i + 1 ;

u n t i l i > ng − 1 ;

l := [ ] ;

f o r i in [ 1 . . j ] do

l [ i ] := S i z e ( Fitt ingSubgroup ( as [ p− j+i ] ) ) ;

od ;

Now, we shall present the code used to find the various subgroups of Γ(qn) for the

values of q and n we had chosen.

n i := NumberIrreducibleSolvableGroups (n , q ) ;

i r r := [ ] ;

f o r i in [ 1 . . n i ] do

i r r [ i ] := IrreducibleSolvableGroupMS (n , q , i ) ;

od ;

l := [ ] ;

k := [ ] ;

j := 0 ;

f o r i in [ 1 . . n i ] do

k [ i ] := S i z e ( i r r [ i ] ) ;

od ;

With these codes and found subgroups, we will not present the code used to

create the solvable doubly transitive permutation groups classified by Huppert.

g := SemidirectProduct (h , n ) ;

N := Image ( Embedding (g , 2 ) ) ; ;

Nelm := Elements (N ) ; ;

H := Image ( Embedding (g , 1 ) ) ; ;
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act1 := Action (H, Nelm , OnPoints ) ;

act2 := Action (N, Nelm , OnRight ) ;

G := ClosureGroup ( act1 , act2 ) ;

We would like to thank Professor Alexander Hulpke for his help in creating

the following code. Without his help, we would have struggled finding out how to

produce the desired groups.
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