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SEMIPOSITONE m-POINT BOUNDARY-VALUE PROBLEMS

NICKOLAI KOSMATOV

ABSTRACT. We study the m-point nonlinear boundary-value problem
—[pOu @)) = Af(t,ut), 0<t<1,

m—2
W(0)=0, > agu(n)=u(l),

i=1
where 0 < m1 < m2 < -+ < Mm—2 < 1, a; >0for 1 < i< m—2 and
22712 o; < 1, m > 3. We assume that p(t) is non-increasing continuously
differentiable on (0,1) and p(t) > 0 on [0,1]. Using a cone-theoretic approach
we provide sufficient conditions on continuous f(t,«) under which the problem
admits a positive solution.

1. INTRODUCTION

In this note we consider the nonlinear m-point eigenvalue problem

—[pOu' ()] = Af(t,u(t), 0<t<1, (1.1)
m—2

W' (0)=0, > asu(n) =u(l), (1.2)
=1

where 0 <7y < Mo < - <o <1, >0for 1 <i<m—2, Y7 *a; <1 We
also assume that the function p(t) is non-increasing continuously differentiable on
(0,1) and p(¢) > 0 on [0,1]. The inhomogeneous term in is allowed to change
its sign. Other assumptions on f(¢, u(t)) will be made later.

The study of multi-point boundary-value problems was initiated by II’in and Moi-
seev in [7, 8]. Many authors since then considered nonlinear multi-point boundary-
value problems (see, e.g., [2, [, 5 [6 @, 14, [I5] 16, 17] and the references therein).
In particular, Ma studied in [I5] positive solutions to the three-point nonlinear
boundary-value problem

—u”’(t) = a(t)f(u(t)), 0<t<l,
u(0) =0, au(n) = u(l),
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where 0 < o, 0 <7 < 1 and an < 1. The results of [I5] were complemented in the
works of Webb [17], Kaufmann [9], Kaufmann and Kosmatov [10], and Kaufmann
and Raffoul [11].

Among the studies dealing with semipositone multi-point boundary-value prob-
lems, we mention the papers by Cao and Ma [3] and Liu [I3]. Cao and Ma considered
the boundary-value problem

—u"(t) = Xa(t) f(u(t), (), 0<t<l,

m—2

w(0) =0, Y aul) = u(t).

The authors applied the Leray-Schauder fixed point theorem to obtain an interval
of eigenvalues for which at least one positive solution exists. Liu applied a fixed
point index method to obtain such an interval for

—u”’(t) = Xa(t) f(u(t)), 0<t<1,
uw'(0) =0, au(n)=u(l).

Our approach is based on Krasnosel’skii’s cone-theoretic theorem [12] and enables
us to show the existence of a positive solution for the semipositone problem ,
. Other applications of Krasnosel’skii’s fixed point theorem to semipositone
problems can, for example, be found in [I].

2. PRELIMINARIES

We now proceed with the auxiliaries. Consider the equation
=p)u' () =g(t), 0<t<L, (2.1)

with the boundary conditions (|1.2]).

For convenience we set o = ZZ’;Q a;. Recall that a < 1.

Lemma 2.1. [f g € C[0,1] and g(t) > 0 on [0,1], then
u(t)/ot(/:;(l:))g(s)dsquia/ol </Slpc(l77_))g(s)d5
=T VAF IS

is the unique nonnegative solution on [0,1] of the problem , .

Proof. Integration of (2.1)) from 0 to ¢ with the use of the boundary condition (1.2])
at 0 yields

u'(t) = _i/o g(s)ds <0.

p(t)

Integrating again we get

u(t):—/Otp(ls)</osg(7)d7)ds+z4=—/;(/:;(l:))g(s)ds—&-/l.
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Using the multi-point condition in (1.2]) we determine A and obtain (2.2]). Since
W () <0,

u(t) > u(l)
o ! Lodar ez i T dr
= () ) as- Z“/O (] 5 )ate)as
m—2 1 1 T i Mo dr
:11(11:1 ai[/o (/g pch))g(s)ds—/o (/g pc(lT))g(s)ds}ZO
on [0,1] and the proof is complete. O

For g(t) = 1 on [0, 1], we denote by u(t) the unique solution (2.2). Then we
have

C= tren[g’)i] uo(t) = up(0)

e e e (] o

The Green’s function for —[p(t)u’(¢)]" = 0 with (L.2) is given by
1 [td
Gltos) = | =5

l—a /s p(7)
B {fu s<t {@Z?ﬁ}gaixxs)fﬁ"’;f:y § < =2
0, s>t 0, 8> Nm—2,
where
1, s<n
xils) = {0, s> n;.
Note that

max /1 G(t,s)ds = C. (2.3)
0

te[0,1]
The integral operator T': B — B associated with (1.1f), (1.2] is defined by

Tu(t):/o G(t, s)f(s,u(s))ds

A routine argument shows that 7" is completely continuous.

Definition 2.2. Let B be a Banach space and let C C B be closed and nonempty.
Then C is said to be a cone if

(1) au+ pv € C for all u,v € C and for all o, 8 > 0, and

(2) u,—u € C implies u = 0.

Our Banach space, B, is the space C0, 1] with the norm ||u|| = max;¢[o 1) [u(t)].
We will show now that the unique solution (2.2) satisfies

in u(t) > 2.4
t$%w>_ﬂww (2.4)
where )
’}/ = max 76”( ~ 771)

1<i<m-2 1 —aum;
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To this end, note that the solution (2.2)) is concave, since g(¢) > 0 and u/(¢),p’'(¢t) <0
on [0,1]. By concavity and since u(1) > a;u(n;) for each 1 <i <m — 2,

[[ull = u(0)

= 1 t
a1 — ) i ()

and hence (2.4]) holds.
The estimate (2.4]) is used for defining our cone C C B by

C={u(t)eB:u(t) >0o0n]0,1] mi? w(t) > yl|lull} (2.5)

" t€0,1]

It turns out that our operator T is cone-preserving. Fixed points of T' are solutions

of (1.1, (1.2)). The existence of a fixed point of T follows from a fixed point theorem
due to Krasnosel’skil [12], which we now state.

Theorem 2.3. Let B be a Banach space and let C C B be a cone in B. Assume
that Qq, Qs are open with 0 € Qq, Q1 C Qs, and let

T:Cﬂ(gg\gl) —C
be a completely continuous operator such that either

(i) |1Tu]| < ||lu|l, w e CN N, and || Tul| > ||ul], u € CNINa, or
(ii) |[Tu]] > ||u|, w € CN O, and | Tu| < ||ul], u € CNINs.

Then T has a fized point in C N (Q \ Q).

The following assumptions will stand throughout the remainder of this note:
(A1) f(t,z) is a continuous function on [0, 1] x [0, c0)
(A2) There exists M > 0 such that f(¢,z) + M >0 on [0,1] x [0, 00)
(A3) There exist continuous nonnegative nondecreasing on [0, co) functions ¥, (z)
and d)b(z) with ¢b(z) < f(t,Z) +M< ¢a(z) on [Oa 1] X [0,00)
3. POSITIVE SOLUTIONS

We now state our main results.

Theorem 3.1. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition,

that
lim La(z) =0 and lim ¥lz) _

2—07t VA Z2—00 z

Then, for a sufficiently small A > 0, the problem , has a positive solution.
Proof. Consider the equation

It (8] = Myt u() —ua(®), 0<t<1, (3.1)
with the boundary conditions , where

) ftz)+ M, 2>0
fp(t’z)_{f(t,O)JrM, 2<0
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and wuy(t) = AMug(t) (ug(t) is given by (2.2) for g = 1). Our objective is to show
that the problem (3.1), (1.2)) has a positive solution.
Our completely continuous and cone-preserving operator associated with (3.1)),

is defined by
Thu(t) = )\/01 G(t,8)fo(s,u(s) —ux(s))ds

Since lim, _,¢+ w“T(Z) = 0, there exists Ry > 0 such that
Yal2) € 12
“=AC
for all z < R;.
Define Q1 = {u € B: ||u|]| < R1}, then for u € C N 9N we have

Ya(u(s)) < Pa(llull) < *Rl (3.2)

for all s € [0,1], since 1,(2) is nondecreasing. Now, if u(s) > ux(s) for s € [0, 1],
then

fo(s,u(s) = un(s)) = f(s,u(s) —ua(s)) + M < ¢a(u(s) —ur(s)) < Ya(u(s)).
If u(s) < ux(s), then
fo(s,u(s) —ux(s)) = f(s,0) + M < 194 (0) < ¢pa(u(s))
(we know that u(s) > 0 as an element of C). Combining both cases and using

and (2.3]), we get

1Tyl :trg%A/ G(t, )1, (5, u(s) — ur(s)) ds
gmax)\/Gtsz/Ja s))ds
te[0,1]

< P
_)\trenaawl(]/ G(t,s)ds /\C’Rl Ry,

that is, [|[Thu| < ||u|| on C N OQy.

Uu() h(E-AMO)

Since lim, _, = 00, then also lim, _, = oo. Thus, there exists
Ry > 0 large enough (so that Ry > )‘Mc and Ry > Rl) such that

1
_ >
Vp(yz — AMC) > )\CZ

for all z > Ry. In fact,

Py(YRy — AMC) > ERz (3.3)

Define Q3 = {u € B: ||lu|]| < Rz}, then for u € C N9y we have
u(s) —ur(s) = vllull = AMuo(s) > yRa — AMC > 0.
Now, for all s € [0,1],
fp(s,uls) —ua(s)) = f(s,uls) —ur(s)) + M = Pp(u(s) —ua(s)) = o(vR2 — AMC),



6 NICKOLAI KOSMATOV EJDE-2004/119

since 3 (2) is nondecreasing. Therefore, by (3.3) and (2.3),

IThu| = max )\/ G(t,s)fp(s,u(s) —ux(s))ds

1

max A [ G(t,s)p(yR2 — AMC) ds
te[o 1] 0

1
1
> A t.s)ds — Ry =
> trél[aaﬁ(]/OG(,s) SACRQ R,

that is, || Thul|l < |lul] on C N Q.
Smce the assumptions of Theorem [2.3]are satisfied, we conclude that the problem
, . has a positive solution in C N (g \ 1), which we denote by wu,,.
Let A be small enough so that Ry > ,\J\gc Now we have u,(t) > v||up| > yR1 >
AMC > uy(t) for all t € [0,1]. Set u(t) = up(t) - uA( ), then
)=

—[p()u' (1)) = —[p(t)u,(t
= /\fp(t up(t) — UA( )) =AM
A(f(tup(t) —ua(t)) + M) — AM
= Af(t,u(?)),
which shows that u(t) is a positive solution of , . The proof is complete.

O

Example. To illustrate our main result, we consider the inhomogeneous term in
the form of the function
f(t,2) = =1+ 2%(2 +sin (4mz(1 + t%))).
The function f(¢,z) is continuous and, setting M = 1, we get f(t,z) + M > 0
n [0,1] x [0,00). In addition, for ¥3(z) = 2% and 1,(2) = 322, we have (z) <
ft,2) + M < ,(z) and
Vo (2)

lim L(Z):O and lim —* =
z—071 z zZ—00 z

Thus, Theorem [3.1] applies.
With only minor adjustments to the argument above one can prove our next
theorem.

Theorem 3.2. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition,

that
lim 71/)(1(2') = and lim Lb(z)

z—0Tt z 200 z

Then, for a sufficiently small X > 0, the problem , has a positive solution.

Remark. If problem (1.1}, (1.2 has a positive solution for some A; > 0, there is
also a positive solution for each A € (0, A].
We say that a function ¢(z) is sublinear if

=0.

lim ¥(2) =00 and lim M =0.
z—071 z zZ—00 z

On the other hand, if
lim ¥(2) =0 and Ilim ¥(2) = 00,

z—0t+ Z z—oo  Z
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then the function v is called superlinear.

If in the assumption (A3) we take 1)4(z) = ¥(2), then the following corollary to

Theorems [3.1] and [B.2] becomes immediate.

Corollary 3.3. Let the assumptions (A1)-(A3) be satisfied. Assume, in addition,
that ¥a(2) = Wp(2) is either sublinear or superlinear. Then, for a sufficiently small

A > 0, the problem , has a positive solution.
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