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Existence of solutions for a variational unilateral
system *

Marcondes R. Clark & Osmundo A. Lima

Abstract
In this work the authors study the existence of weak solutions of the
nonlinear unilateral mixed problem associated to the inequalities
uee — M(|Vul*)Au+6 > f,
0r — A0+ uy > g,

where f, g, M are given real-valued functions with M positive.

1 Introduction

Let © be a bounded and open set of R, with smooth boundary I' = 92, and
let T be a positive real number. Let Q = Q2x]0,T[ be the cylinder with lateral
boundary ¥ = I'x]0, T7.

We study the variational nonlinear system

gy — M(|Vul>)Au+60 > f in Q, (
0, —A0+u; >g in Q, (
u=60=0 in X (

w(0) = ug, u'(0) =wuy, 6(0)=by. (

— R =
N N
NS ENG NN

The above system with M(s) = mg + mys (mg and my positive constants) and
0 = 0 is a nonlinear perturbation of the canonical Kirchhof model

Uy — (mo + m1/ |Vu2dac)Au =7f. (1.5)
Q

This model describes small vibrations of a stretched string when only the trans-
verse component of the tension is considered, see for example, Arosio & Spagnolo
[1], Pohozaev [12].
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Several authors have studied (1.5). For © bounded, we can cite: D’ancona
& Spagnolo [5], Medeiros & Milla Miranda [9], Hosoya & Yamada [7], Lions [8],
Medeiros [10], and Matos [9]. For € unbounded, we can cite Bisiguin [2], Clark
& Lima [4], and Matos [9]. The system (1.1)—(1.4) was studied also in the case
when (1.1) and (1.2) are equations, see for example [3].

In the present work we show the existence of a weak solution for the varia-
tional nonlinear system (1.1)—(1.4), under appropriate assumptions on M, f and
g. We employ Galerkin’s approximation method and the penalization method
used by Frota & Lar’kin [6].

2 Notation and main result

We represent the Sobolev space of order m on 2 by
WmP(Q) = {u € LP(Q); D% € LP(Q),V |a| < m}

and its associated norm by

1/p
fllny = (2 1D ull)) s wEWTH(Q), 1< p <o,

la|<m

When p = 2, we have the usual Sobolev space H™(£2). Let D(2) be the space
of the test functions on , and let Wi™"?(€2) be the closure of D(€) in W™ ().
When p = 2, we have WP () = HZ*(2). The dual space of W) (Q) is denoted
by W—mr’ (Q), with p’ such that % + z% = 1. For the rest of this paper we use
the symbol (-,-) to indicate the inner product in L?(2), and ((-,-)) to indicate
the inner product in H} ().

Let K = {¢ € W2 (Q);|A¢| <1 and ¢ >0 a. e. in Q }. Then we have the

following proposition whose proof can be found in [6]
Proposition 2.1 The set K is a closed and connected in WOQA(Q).

Definition Let V be a Banach space and V' its dual. An operator 3 from V
to V' is called hemicontinous if the function

A= (Bu+ Av), w)
is continuous for all A € R. The operator [ is called monotone if
(B(u) = B(v),u—v) >0, Yu,veV.

We consider the penalization operator (3 : W02’4(Q) — W=24/3(Q) such that
B(2) = Bi(2) + Ba(z), z € WSH(Q), where 3;(2) and (5(z) are defined by

(Br(2),0) = — /Q - (@le)de,
(Ba(z)v) = — /Q (1 - |A2(2) )~ Az(z) Av(z)dz

for all v in Wy ().
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Proposition 2.2 The operator 3 defined above satisfies the following coditions:
i) B is monotone and hemicontinous

ii) B is bounded; this is, 3(S) is bounded in W24/3(Q) for all bounded set S
in W),

i11) B(u) = 0 if only if u belongs to K.

The proof of this proposition can be found in [6].
In this article, we assume the following hypotheses:

A1) M € C*0,00), M(s) >0 for s >0, and [~ M(s)ds = oo
A2) f,g belong to H(0,T; L?(Q2).

The main result of this paper is stated as follows.

Theorem 2.3 Assume A1) and A2). For ug € HE(Q) N H2(Q), ui, 0y in the
interior of K, there exist functions u,0 : Q — R such that

u€ L0, T; HY () NH?()) (2.1)
u' e L0, T; W' (Q)) and v/ (t) € K a.e. in [0,T] (2.2)
u” € L=(0,T; L*(Q)) (2.3)
6 L>(0,T; Hy(Q) and 6(t) € K a.e. in[0,T]. (2.4)
Also
(W"(t) = M([[u(®)|*) Au(t) +0(t) = f(t),v —u'(t) 20, Vv €K a.e. in [0,T]
(2.5)
(0'(t) — AO(t) +u'(t) — g(t),v—0(t)) > 0Vv €K a.e. in[0,T) (2.6)
u(0) = ug, v (0) = uy, 6(0) =6p. (2.7)

To obtain the solution {u,f} of problem (2.1)—(2.4) in Theorem 2.3, we
consider the following associated penalized problem. For 0 < € < 1, consider

(0) = Ml (O)duc(t) + 66 + LBL0) = () m @ (28)
0L0) ~ A6.(1) + i+ 25(60.()) = g(0) in Q (29)
UE(O) = UQe, u;(O) = Ule, 08(0) = fpe in (210)

Here (8 is a penalization operator, M, f, and g are as above. The solution
{ue, 0} of the penalized problem (2.8)—(2.10) are guaranteed by the following
theorem.
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Theorem 2.4 Suppose the hypotheses of the Theorem 2.3 hold, and for
0 < e <1, then there exist functions {ue, 0} such that

ue, 0. € L(0,T; Hy (Q) N H*(Q)) (
ul € LY0,T; W2*(Q)) (2.12

u € L>=(0,T; L*()) (

(

0. € L0, T; W2 (Q))

)
(ud (), 0) + M ([[us (1) ((ue (t),0)) + (0 (1), v) + i<ﬂ(U’s(t)),v>

= (f(t),v) a.e. in [0,T] for all v € WZ*(), (2.15)

(02(t),v) + ((0=(t),v)) + (u(t),v) + é(ﬂ(ﬁs(t))’v)
= (g(t),v)a.e. in [0, T] for allv € W02 4(9), (2.16)
UE(O) = Upe, U 5(0) = Ule, 96(0) = Ooe. (217)

Proof We will use Galerkin’s method and a compactness argument.

First step (Approximated system) Let wy, ..., W, ... be an orthonormal base
of WO2 4(Q) consisting of eigenfunctions of the Laplacian operator. Let
Vin = [w1,...,wn] the subspace of W;"*(2), generated by the first m vectors
w;. We look for a pair of functions

Uepn () = Zgjm(t)wj; Oem(t) = Zhjm(t)wj in Vp,

with gjm € C?([0,T]) and hj, € C'([0,T]), for all j = 1,...,m. Which are
solutions of the following system of ordinary differential equations

(0 (8),105) + M (e ()17) (e (8, 03)) + (B (8), 105+
(B (1)), 103) = (1), ), (215)

(B (£),105) + (B (8),10)) + (ul (£),105)
(

(B0 (1)), 105) = (9(0),3), (2.19)

for j = 1,...,m, with the initial conditions: uem (0) = Ugem, UL, (0) = Uiem,
0 (0) = Boerm, where

m

Uem = Z(uog,wj)wj — wg strongly in H} () N H?(Q),

j=1
m
Ulem = Z(ulg, w;)w; — uy strongly in H& (), (2.20)
=1
m

0057” = 2(905, ’U)j)’w]‘ — 9() strongly in W02’4(Q)
j=1
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The system (2.18)-(2.20) contains 2m unknowns functions g, (t), hjm(t);
j=1,2,...,m. By Caratheodory’s Theorem it follows that (2.18)—(2.20) has a
local solution {tem, (t), 0em (t)} on [0, ¢, [. In order to extend these local solution
to the interval [0, 7] and to take the limit in m, we must obtain some a priori
estimates.

Estimate (i) Note that finite linear combinations of the w; are dense in
W2 (), then we can take w € W' (Q) in (2.18) and (2.19) instead of w;.

Taking w = 2u,,(t) in (2.18) and w = 20.,,(t) in (2.19) we obtain
Gl (P S BT (e (0)1) + 2 (B (1) 1 1)
= 2(f (1), i (£)) = 2(0cm (t), ug, (1)), (2.21)
G e+ 10 (I + 23O (1)),Bura (1)
= =2(ulpn (1), Ocm (1) + 2(g(t), O (1)) , (2.22)
where M () = [ M(s)ds. Adding (2.21) and (2.22), and integrating from 0 to

t <t,, we have

[[tem (t)]| t
Ul (6% + O (t )|2+A M(s)ds + ; 10 (s)||2ds+
9 [t / 9 [t
2 [ttt + 2 [ 50m(6D, bn)ds <
T t
/O F(8)] ds—i—S/O il (s)] ds+3/0 0.0 (5)[2ds+

T
/ (9(8) 2t + 1Boernl? + [t1em 2.
0

(2.23)

From (2.20) and hypothesis (A2) there exists a positive constant C, indepen-
dently of € > 0 and m such that

Huem(t)l‘z t
u! 2 2 s)ds m(8)|%ds
il (B + o (8)] +/0 M(s)d +/0 B (5) 2+
2 t ul (s)).u’. (s))ds t s s)Vds 2.24
[ [ Bttt + [ (800 (9).0m(as] < (220

€
t t
C'+3/ |u'€m(5)\2ds+3/ |95m(5)|2d5.
0 0

Next we analyze the sign of the term fg(ﬁ(u’sm(s)),u’em(s»d& Note that
—ul,,(t) <wul,, (t)”. Then, by the definition of 3, we have

(B () o (1)) = (1 (e () o (1)) + (Bt (1)), 1 (1))
_ /Q (o (2, £)) (2, D)t

[ = 18 () (Bt 1) > 0,
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Similarly, we have,
Because M (s) > 0 for all s, from (2.24) and Gronwall’s inequality it follows that
UL, ()2 4 [0 ()| < Chy Ve,m,VE € [0, .

Returning to (2.24), we obtain

Husm(t)”z t
il (B + [0 (B)? + / M(s)ds + / 1Bz (5) | 2ds+
0 0 (2.25)

2 t , , t
—[/0 (B(uzm(5)), uem(s))ds +/0 (B(0=m (), O=m (s))ds] < C +3CHT.

Since [~ M(s)ds = oo, by (2.25) we can find C such that

[uem(®)]* < C1, Ve, m,Vt € [0, .
Thus there exists, other constant C' = C(T") independently of &, m and ¢ € [0, t,,[
such that

[l ()7 4 [Oerm (8)]? + [[uem (2) | +/ 102m ()] ds+
0 (2.26)

= [ B s+ 2 [ (3(0u0s(5)). (s < €

3

Estimate (ii) We will obtain a bound for |« (0)|. For this, we note that u
being in the interior of K and wi¢p, — uq imply that ui.,, is in the interior of
K, for m large. Therefore, |Auiem| < 1 and uiem > 0 a. e. in Q. Also we have
(u1em)” =0 and (1 — |Auiem|?)” =0 a. e. in Q. Thus

(Busem), udyy,(0)) =0 (2.27)
Taking t = 0 and v = u/,,(0) in (2.14), and observing (2.27), we obtain
[l (0)]% + M ([[uoem 1) (wozm, 42 (0))) + (Oem, ulm (0) = (£(0), ul,, (0))
which implies
[l (0)* < £ (0)udy (0)] + M (|[woem |*)| Attgem | 1Ly, (0)] + [Boem| [y, (0)]-

From ugem — ug in HE(Q) N H2(Q), Ooem — 0o in HF(Q), M € C[0,00), and
f € HY0,T; L*(9), we obtain

[uZy, (0)] < C, (2.28)
with C independent of ¢, m, and ¢t € [0, T7[.

Estimate (iii) We obtain estimates for |Au’, (t)], |Abm (2], f; [ul,,(s)]3ds,

and fot 6, (s)|>ds. For this, we need the following lemma whose proof can be
found in [6].
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Lemma 2.5 Let h: Q — R be an arbitrary function. Then
Rt —1<2(1—h%)"h2
By this lemma, we have
(Aug,)* =1 <201 = (Au,,)?] ™ (Aul,,)? .

Therefore,

T
1Al = / /Q Al (1) dt

T

§2/ / (1 —Alul,, (z,t)*) " (AuL,, (z,t))*dz dt + meas(Q)
0 Q
T

=) / (Ba (A (), e (6)) iz dit -+ meas(Q)
0

<2 [ (Bl (1)) (1))t + mcas(Q).

Using (2.26), we obtain
1AUL,, 1 11(g) < Ce 4+ meas(Q) < C + meas(Q) (2.29)

with C independent of e,m and ¢ € [0,T[. Analogously, using the Lemma 2.5
with h = Af.,, and (2.26), we obtain

||A95m||i4(Q) < C 4+ meas(Q) (2.30)
On the other hand, from (2.18) and (2.19), we obtain
1 1

2 (Blucn (8)),0) + —(B(0=m(t)), 0) < CUS@) + lg@)DIv ]I+
M ([[teem (D) tem O]l + C(0em (D)) + uzy (D)]) <
LF @110+ lg@)]o] + M (luem 1) [tem @ [0/l [uZn, E)][0] + [0em (©)][v]+
162 0] + [0em O] 0]] + uly, @)]v] <
CULOI+ 19O + [udy (O] + 10em ()] + 102, (0] + [ul, W) Hv]I+
(M (|[uem O [uem O] + [10m ) ID 101
Since f,g € C°([0,T]; L*(Q2)), from the inequality above we obtain

1

S |{Bluen (8),0)] < Culloll Vo & Wyt (@), (2.31)

1

ZH(B(0em (1)), 0)] < Callo]l Yo € W5 (9), (2:32)
independent of €, m and ¢ € [0, T]; this is,

1Byl Loe (0,2 473 0)) < C s (2.33)
18(Ocm)l oo (0,75w2473(0)) < C1- (2.34)



8 Existence of solutions of a variational unilateral system EJDE-2002/22

To estimate |Auc, ()|, we note that
td
‘Auem(t)|2 :lAUOEW‘Z +/ _‘Auﬁm(s)|2ds
0 ds
t
Bt + 20 [ 1Mt (98t 5]
0
t
<t + € [ (Bt (5) + | (5))ds.
0

where C is the constant of the embedding from H}(Q) into L?(9). From (2.20),
(2.29) and Gronwall’s inequality, we obtain

[ Auen (t)* < C, (2.35)

where C is a constant independent of e,m and ¢ € [0, T
Next, we obtain an estimate for fot |AuL,,(s)||?ds. Let C represent various
positives constants of the embedding in the sequence

Wy () — H(Q) — Hg(Q).

Observing that W2 q) < C|Aw| we obtain

t t t
/ o (s)]2ds < C / sl (5) 132 gy ds < C / Al (s)Pds,  (2.36)
0 0 0

independently of € and m. It follows from Héder’s inequality that

t T t
| 18u s < ([ 1) [, o)) as)
0 0 0

and substituting in (2.36) and observing (2.29), we obtain

t
/ el (s)]%ds < C. (2.37)
0

independent of e, m and ¢ € [0, 7T7.
Estimate (iv) We will obtain the estimative for |u,,(¢)|. Let us consider the
functions

Uy (t) = %[usmg +h) = uem(t)],
My (t) = 4 [M ([wem (t + 0)?) = M(Jluem(®)]1)],
fu(t) = 5 Lf(t+h) = f(1)]-
Setting w = 20} (¢) in (1.14), we obtain
2(uly, (1), W (8)) + 2M (luem (D7) (uem (t), U, (1)) +

2 . (2.38)
RECOIONERIFORINO)
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Substituting t by ¢+ h € [0,T] in (2.18) and taking w = 2V} (), we set

2(ul (t+h), P, (t)

em

~—

+ 2M ([[uem (£ + B)I*) ((uem (t + h), ¥, (1)) +

(2.39)
(Bl (t+ 1)), W3 ()) = 2(f (£ + h), Ty (1)).

NN oo

Now, from (2.38) and (2.39) it follows, for h # 0, that

oMM =Y ) 1)) - 2Lt )2 (o4 1) (1)~
2 Mt ()]t (0, W4 00)) + o (B0 (8 1)) = B0 (), Wh(0)) =

which implies
DI04 ZM (et + W) et + 1), (1)~
2 Mt ) (e (), Wi+ (2:40)
(B0 (1 1)) = B (1)), W36 = 20 (1), W4(6).
Nothing that

2 M ¢+ )P (e (6 1) W4 (60)) — > M (e (8] (e (8), (1)) =

20 e+ 1)) (0 1), 1)) + 2L 1) ) -

w ((tem (1), W} (1)) =

M ([uem (t + h)IIZ)%(II\Ph(t)IIQ) + 2M (8) ((uem (1), W3 (1))

From (2.40) it follows that

LI + Mt -+ 1)) S (1 (1) )+

(B (4 1)) = B0 (), (4 B) = L (1)
2N (6) (e (61, W46))) + 2000, W4 (1)

By the monotonicity of the operator 3, we obtain

DO + M (a4 1)) S (1A (0)P)
< 20V () (At (1), W3, ()] + 2 (8), W5, (0)]

(2.41)
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Integrating (2.41) in ¢ we have
O+ [ Mo + W) 1) s <
t
L OF +2 [ M (6) At (5), Ty (5] s + 2 / (i (5), Wh(s))lds.
0 0
Taking the limit as h — 0, it follows
2 ¢ 2 d 2
i OF + [ (e ()2) ol ()]s <
t
o O +2 10t (5)1P) Gt () Pl (5, ) (2:42)

2 [ 1660 o).

Using Assumption (A2) and (2.28), we obtain, from (2.42),
/ 2 ! 2 d U 2
[ul, (8)] +/ M (l[wem ($)117) 7 luem (s)lIPds <
0 S
t
C+4/O | M (||t () 1)l () s () 1| Ateern () [[[[uZ, (5) lds+ - (2:43)

/ lul (s)|*ds.

From (2.26), (2.35) and (2.37) it follows that there exists a positive constant C
such that

t
[tem (O + | Auey (8)[? +/ [utm(s)|?ds < C, Ve mit. (2.44)
0
Since M € C*([0,0)), we also obtain from (2.44),
| M (||tem()]|?)] < C, Ve, m,t. (2.45)
On the other hand, using integration by parts, we get
! 2, d 2
!
| M) 1) 5 (5P =
0 S
M ([l ($)%) [ ()P = M (|02 () 1) [wrem (5)]]°
¢ d
/M’(Iluam(8)||2)£IIUQm(S)IIQIIU’em(S)IIQdS-
0

Estimates (2.37), (2.44), and (2.45) together imply

d t
—/M'(lanm(S)||2)£||Usm(5)||2||Uém(5)H2d8 2 —CA [ugm (s)II° = =C,
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independently of €, m, and t. Therefore,

/0 M(Iluem(8)||2)%IIU’em(S)IIQdS > M(JJtem (D)) lutrm (O = C, (2.46)

independently of €, m and ¢. Here, C' denote various positive constants. Making
use of inequalities (2.44)—(2.46) in (2.43) we obtain

t
[ (07 + M ([[uem (O] [uzm ()]1* < C + C/ [ul, () ds, (2.47)
0

independently of ¢, m, and ¢. From (2.47) and using Gronwall’s inequality, we
have
[ul (t)]* < C, (2.48)

independently of €, m and t.

Passage to the limit By estimates (2.26) and (2.35) we obtain

(tuem) s bounded in  L*°(0, T} H&(Q) N HQ(Q))’
(ul,,) is bounded in  L*(0,T;L3*(Q)),

(Oern)  is bounded in  L>(0,T; L*(Q)).

Therefore, we can get subsequences, if necessary, denoted by (ucy,) and (fep),
such that

Uem — ue  weak star in L0, T; Hy(Q) N H?(Q)), (2.49)
ul,, — ul weak star in  L>(0,T; L*(Q)), (2.50)
Ocm — 0. weak star in  L>°(0,T; L*(Q)). (2.51)

Similarly by (2.48), we obtain

ul, —u  weak star in  L>(0,T; L*(2)). (2.52)

Also, by (2.33) and (2.34), there exist functions X, ¢. € L*/3(0,T; W?*/3(Q))
such that

Bul,,) — X. in  LY3(0,T; W2*3(Q)), (2.53)
B(Oem) — ¢ in LA3(0,T; W243(Q)). (2.54)

It follows from the embeding W;*(Q) into L*(2) and of (2.29) that

Ul < CllAUL, 110y < K.

!/
6m|L4<o,T;W5‘4(ﬂ>> =
Therefore, there exists a subsequence of (ugy,) such that

!/
em

ul,, —u.  weak star in  L*(0,T; Wo*(Q)). (2.55)



12 Existence of solutions of a variational unilateral system EJDE-2002/22

Analogously, by (2.30) we obtain
O — 0. weak star in  L*(0,T; Wy (). (2.56)

Being the embedding from H{(2) N H2(Q2) into H(2) compact, we can set a
subsequence, again denoted by (uep,), such that:

Uen — U strong in  L2(0,T; HJ(Q)). (2.57)
By assumption (Al) we obtain
M([[tem ()I*) — M (JJus()]?)- (2.58)
From the compactness of the embedding Hg(Q) < L?(2) we obtain
ul,, — u. strongin  L?(0,T; L*(2)). (2.59)

Then taking limit in the system (2.18)—(2.20), when m — oo, with w = vp(t),
UNS WO2’4(Q), ©(t) € D(0,T) instead of w;, and using the fact that § is monotone
and hemicontinous operator, we obtain that {u., 6.} is a weak solution of the
system (2.18)—(2.20).

The initial conditions (2.19) can be obtained by observing the convergence
above and the definition of weak solution; this is,

m

u.(0) = lim wupep = lim Z(uog,wj)wj =g,

m—00 m—o0
j=1
m
ul(0) =limujep = lim Z(ula,wj)wj =u,
m— 00
j=1
m
d)E(O) = hm 0057” = hm Z(GOE,wj)wj = 90.
J:

This concludes the proof of Theorem 2.4

3 Main Result

In this section, we will prove the Theorem 2.3. By Theorem 2.4, there exists
functions u., 0. : Q — R such that

u. € L°°(0,T; Hy(Q) N H*(Q)),
ul, 0. € L0, T; W (),
u? € L°°(0,T; L*(Q)

)
0. € L>°(0,T; L*(Q))

3
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satisfying the system

(u (), w) + Ml|ue (£)]*]((ue (), w)) + = (B(ul(t), w)) = (9(t), w),

</3(66(t)7 w)> = (g(t), w)>

a.e. in [0, 7], for all w € WZ*(Q). uc(0) = ug; u’(0) = uy, and 6.(0) = .

Being the estimates (2.26), (2.29), (2.30), (2.33), (2.34), (2.32) and (2.44)
independently of €, m and ¢ we obtain by Uniform Boundedness Theorem that
there exists a positive constant C such that

M=M=

(0 (1), w) + ((0=(t),w)) + (uL(t), w) +

[uz (O + 10=(6)* + [lu=(t)]* +/0 16=(8)*ds+

T T
2 [ st comas+ 2 [ (5000, (9))ds <
CllAug|1a(q) <C,
and

126 |s(q) < € 18N 4 0, 7297809y < €
”/6(95)||L4/3(0,T;W2,4/3(Q)) <, |Au6(t)|2 <C, |ug(t)‘2 <C.

Consequently, we can find a subnet, which we still represent by (u.), (6) such
that

u. — u  weak star in L0, T; H} (2) N H?()),
ul — ' weak star in  L°°(0,T; L*(Q)),

u —u”  weak star in  L°°(0,T; L*(Q)),
Bul) — By weak in L0, T; W23 (9)),
B(0.) — B(A) weak in L0, T; W=235(Q)),
ul —u'  weak in L0, T; Wit(Q)),

0. — 60 weakin L0, T; Wa*(Q)).

By the compactness theorem of Aubin-Lions [8], we obtain
u. —u strongly L*(0,T; H}(Q)), (3.1)
ul — ' strongly  L*(0,T; L*(Q)). (3.2)
We observe that

(g (), v(8)) + M([lue (D)%) (ue (), (1)) + (0=(8), v(t))+

(62(8), v(8) + ((6=(1), v(1)) + (uc(t), v(t) + —(B(B:(1)), v(t)) = (9(t), v(t)).
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is true for all v € L4(0, T; W2 (Q)).
On the other hand, being u’, 0. € L*(0, T} WOQA(Q)) implies

(), (1)) + M (e (8)]2) (e (8), . (8))) + (0 (), ul (1)) +
LB @), w(6) = (F0), (1)),

(62(2), 0= (1)) + ((6(£), 0= (1)) + (ul(t), () + éw(@s(t))ﬁs(t» = (9(t), 0=(1))-

Subtracting the equations of the system above, we obtain

(wl (8), v(t) = uz(t)) + M(|lus(®)]*) (ue(t), v(t) — us(t)))+ (3:3)
(6=(t), v — ul(t)) + é(ﬁ(u;(?ﬁ))» v(t) —ul(t)) =(f(8),v(t) —u(t),

(02(£), v(t) = 0=(2)) + ((6=(£), v(t) — 0=(2)))+ )
(uZ(t),v(t) — 0(t)) + %(ﬂ(%(t))’ v(t) = 0:(8)) = (g(),v(t) = 0:(1)),
for all v € WZ*(Q).
Let us consider v(t) € K a. e. in [0,7]. Then we obtain S(v(t)) = 0 and
being # a monotone operator, we have

(Buc(t)) = B(u(t)), v(t) — ui(t)) <
(B(6=(t)) = B(v(t)),v(t) = 0:(t)) <

Therefore,

T
/O (wl(t) = M(Jluc(t)|*) Auc(t) + 0=(t) — £(£),v(t) — ul(t))dt =0,  (3.5)

/ C0.(0) — A 4o — g(1).o(t) — 0.())dt >0, (3.6)
0

for all v € L*(0,T; WOQA(Q)) with v(t) € K a.e. in [0,7]. Now, taking the
limit in (3.6) and (3.7), when ¢ — 0 and using (3.1)—(3.3) and observing that
Au. — Au weak in L2(0,7T; L?(2)) it follows that u, 6 satisfy (1.5) and (1.6) in
Theorem 2.3.

To conclude the proof of the existence of a solution, we show that
u'(t),0(t) € K a.e. in [0,T]. In fact, by (2.33) and (2.34) we have

1B e gy oy < O

180 oy gy < €=

Therefore, as & — 0, f(ul) — 0 and 4(6.) — 0 strong L>(0,T; W23 (Q)).

On the other hand we have S(u.) — ((v') and p(0:) — B(0) weak in
LA3(0, T; W24/3(Q)). Then, B(u'(t)) = B(0(t)) = 0 in L>(0,T; W4/3(Q)).
Therefore, v'(t),6(¢t) € K a.e. in [0,T].

The initial conditions (1.7) can be verified easily. This concludes the proof
of Theorem 2.3.
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4 Uniqueness
For proving uniqueness of solutions in Theorem 2.3, we consider the restriction
up € Hy(Q) N H?*(Q), wup(xr) >0 a. e inQ, and |ugl > 0.

Consequently |lu(t)|| > 0, for all ¢ € [0,T]. In fact, if there exists ¢y € [0,T]
such that |lug|| = 0, then

[ lute.to)ds < Clutto)] =0,
Q

where C is the constant of the embedding H}(Q) — L?*(Q). Therefore,

u(z,tg) =0, a.e. in Q.
Since v/(t) € K a.e. in [0,T], we have v/(t) > 0 a.e. in . This implies that
u(z,t) > u(x,0) = ug(z) in Q a.e. in [0,T]. (4.1)

Being ||ug]| > 0, there exists Q' C Q with ||| > 0 such that that ug(z) > 0.
By (3.1) it follows that u(x,tg) > 0 in Q. This is a contradiction.

Theorem 4.1 Under the hypotheses of Theorem 2.3, if
i) M(A) >0 for all A >0, and M(0) = 0.
ii) uo € H(Q) N H2(Q), up(x) >0 a.e. in Q, and |lug| > 0,

Then the solution {u,0} of Theorem 2.3 is unique.
Proof. From (i) and (ii) it follows that
mo = min{M ([u(t)||*); ¢ € [0, T]} > 0.

Suppose we have two pairs of solutions {u, 6} and {w, ¢} satisfying the condi-
tions of Theorem 2.3. Let ¥ = u — w and ¢ = 0 — ¢. Thus, ¥ and ¢ satisfy

(W (t) = M(Jlu() ) AT (t) + {M([Jw(®)]]*) = M([u(®)]*)}Aw + ¢(t), ¥’ (1)) <0,
(¢'(t) — Ad(t) + ¥'(t), 6(t)) <0,

which implies

LS OP + 10 + 1601} + MUu(t)P) 5 [P + 260, ¥'(1)) <
(M ((e) ) — Mo (e) )} (Bw(e), ¥/ (1)
Since

M(HU@)IF)%H\I’(t>||2 = %{M(IIUG)HQ)II‘I’(t)H2 - %[J\4(||u(7f)||2)]II‘I’(?f)H2
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we obtain

1d

57 U (OF +[o@)° + llo()]I*} + %{M(IIU(t)Ilg)II‘I’(t)IF} +2(e(1), W'(t)) <

{M(Jlu(®)]*) = M(|lw(®)]*)}(Aw(t), ¥'()+
M () 1) (' (1), u@®) [T @)

Now, integrating this inequality form 0 to t < T, we obtain
S OF + 160 + 16017+ M(Ju(t) ) [ (2) [+
2 [ (ot0). ' (e)ds <
/ (M) ) — M lo(s) )} (Auls), /(5))ds
/ M ()P (), () [0 (5) s,

Note that [Ju(¢)|| and ||u'(t)|| € L>(0,T). Then there exists a positive constant
Cy such that

lu(t)| < Co and ||u/'(t)|| < Co a.e. in [0,T].
Since M € C1([0,00)), it follows |M’(&)| < Cy, for all £ € [0, Co).
Now, by the Mean Value Theorem, for each s € [0,T7], there exists {; between
|lu(s)||? and ||w(s)|? such that

(M ([lu(s)]I") = M([lw(s)]] C)ﬁ2”<u(083|HuZ(US()SI)” HZ?UQ(HS\)I/l(s')E (4.3)
Observing that [Aw(s)| < Cs, from (4.2) and (4.3) we obtain that
@) + lo]* + M([u@) 2D @) <
Cy /Ot {19 ()P + W ()1” + l6(s)]1} ds,

which implies

[P ()] + [l o@)* + [1E@)]* < 05/ {1’ @ + O + lle(s)]* } ds.

where C5 = Cy/ min{1,mg}. From the above inequality and Gronwall inequality
if follows that ||¢(¢)|| = ||[¥(¢)]| = 0, i.e., ¢ and ¥ are zero almost everywhere.
This completes the proof of uniqueness.
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