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Existence of solutions for a variational unilateral

system ∗

Marcondes R. Clark & Osmundo A. Lima

Abstract

In this work the authors study the existence of weak solutions of the
nonlinear unilateral mixed problem associated to the inequalities

utt −M(|∇u|2)∆u+ θ ≥ f,
θt −∆θ + ut ≥ g,

where f , g, M are given real-valued functions with M positive.

1 Introduction

Let Ω be a bounded and open set of Rn, with smooth boundary Γ = ∂Ω, and
let T be a positive real number. Let Q = Ω×]0, T [ be the cylinder with lateral
boundary Σ = Γ×]0, T [.

We study the variational nonlinear system

utt −M(|∇u|2)∆u+ θ ≥ f in Q, (1.1)
θt −∆θ + ut ≥ g in Q, (1.2)

u = θ = 0 in Σ (1.3)
u(0) = u0, u′(0) = u1, θ(0) = θ0. (1.4)

The above system with M(s) = m0 +m1s (m0 and m1 positive constants) and
θ = 0 is a nonlinear perturbation of the canonical Kirchhof model

utt −
(
m0 +m1

∫
Ω

|∇u2dx
)
∆u = f . (1.5)

This model describes small vibrations of a stretched string when only the trans-
verse component of the tension is considered, see for example, Arosio & Spagnolo
[1], Pohozaev [12].
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Several authors have studied (1.5). For Ω bounded, we can cite: D’ancona
& Spagnolo [5], Medeiros & Milla Miranda [9], Hosoya & Yamada [7], Lions [8],
Medeiros [10], and Matos [9]. For Ω unbounded, we can cite Bisiguin [2], Clark
& Lima [4], and Matos [9]. The system (1.1)–(1.4) was studied also in the case
when (1.1) and (1.2) are equations, see for example [3].

In the present work we show the existence of a weak solution for the varia-
tional nonlinear system (1.1)–(1.4), under appropriate assumptions on M , f and
g. We employ Galerkin’s approximation method and the penalization method
used by Frota & Lar’kin [6].

2 Notation and main result

We represent the Sobolev space of order m on Ω by

Wm,p(Ω) = {u ∈ Lp(Ω); Dαu ∈ Lp(Ω),∀ |α| ≤ m}

and its associated norm by

‖u‖m,p =
( ∑
|α|≤m

|Dαu|pLp(Ω)

)1/p

, u ∈Wm,p(Ω), 1 ≤ p <∞ .

When p = 2, we have the usual Sobolev space Hm(Ω). Let D(Ω) be the space
of the test functions on Ω, and let Wm,p

0 (Ω) be the closure of D(Ω) in Wm,p(Ω).
When p = 2, we have W 2,p

0 (Ω) = Hm
0 (Ω). The dual space of Wm,p

0 (Ω) is denoted
by W−m,p

′
(Ω), with p′ such that 1

p + 1
p′ = 1. For the rest of this paper we use

the symbol (·, ·) to indicate the inner product in L2(Ω), and ((·, ·)) to indicate
the inner product in H1

0 (Ω).
Let K = {ψ ∈W 2,4

0 (Ω); |∆ψ| ≤ 1 and ψ ≥ 0 a. e. in Ω }. Then we have the
following proposition whose proof can be found in [6]

Proposition 2.1 The set K is a closed and connected in W 2,4
0 (Ω).

Definition Let V be a Banach space and V ′ its dual. An operator β from V
to V ′ is called hemicontinous if the function

λ→ 〈β(u+ λv), w〉

is continuous for all λ ∈ R. The operator β is called monotone if

〈β(u)− β(v), u− v〉 ≥ 0, ∀u, v ∈ V.

We consider the penalization operator β : W 2,4
0 (Ω)→W−2,4/3(Ω) such that

β(z) = β1(z) + β2(z), z ∈W 2,4
0 (Ω), where β1(z) and β2(z) are defined by

〈β1(z), v〉 = −
∫

Ω

z−(x)v(x)dx,

〈β2(z), v〉 = −
∫

Ω

(1− |∆z(x)|2)−∆z(x)∆v(x)dx

for all v in W 2,4
0 (Ω).
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Proposition 2.2 The operator β defined above satisfies the following coditions:

i) β is monotone and hemicontinous

ii) β is bounded; this is, β(S) is bounded in W 2,4/3(Ω) for all bounded set S
in W 2,4

0 (Ω).

iii) β(u) = 0 if only if u belongs to K.

The proof of this proposition can be found in [6].
In this article, we assume the following hypotheses:

A1) M ∈ C1[0,∞), M(s) ≥ 0 for s ≥ 0, and
∫∞

0
M(s)ds =∞

A2) f, g belong to H1(0, T ;L2(Ω).

The main result of this paper is stated as follows.

Theorem 2.3 Assume A1) and A2). For u0 ∈ H1
0 (Ω) ∩ H2(Ω), u1, θ0 in the

interior of K, there exist functions u, θ : Q→ R such that

u ∈ L∞(0, T ; H1
0 (Ω) ∩H2(Ω)) (2.1)

u′ ∈ L1(0, T ; W 2,4
0 (Ω)) and u′(t) ∈ K a.e. in [0, T ] (2.2)

u′′ ∈ L∞(0, T ; L2(Ω)) (2.3)

θ ∈ L∞(0, T ; H1
0 (Ω)) and θ(t) ∈ K a.e. in [0, T ] . (2.4)

Also

(u′′(t)−M(‖u(t)‖2)∆u(t) + θ(t)− f(t), v − u′(t) ≥ 0, ∀v ∈ K a.e. in [0, T ]
(2.5)

(θ′(t)−∆θ(t) + u′(t)− g(t), v − θ(t)) ≥ 0 ∀v ∈ K a.e. in [0, T ] (2.6)
u(0) = u0, u

′(0) = u1, θ(0) = θ0 . (2.7)

To obtain the solution {u, θ} of problem (2.1)–(2.4) in Theorem 2.3, we
consider the following associated penalized problem. For 0 < ε < 1, consider

u′′ε (t)−M(‖uε(t)‖2)∆uε(t) + θε(t) +
1
ε
β(u′ε(t)) = f(t) in Q (2.8)

θ′ε(t)−∆θε(t) + u′ε +
1
ε
β(θε(t)) = g(t) in Q (2.9)

uε(0) = u0ε, u
′
ε(0) = u1ε, θε(0) = θ0ε in Ω (2.10)

Here β is a penalization operator, M , f , and g are as above. The solution
{uε, θε} of the penalized problem (2.8)–(2.10) are guaranteed by the following
theorem.
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Theorem 2.4 Suppose the hypotheses of the Theorem 2.3 hold, and for
0 < ε < 1, then there exist functions {uε, θε} such that

uε, θε ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)) (2.11)

u′ε ∈ L4(0, T ;W 2,4
0 (Ω)) (2.12)

u′′ε ∈ L∞(0, T ;L2(Ω)) (2.13)

θε ∈ L4(0, T ;W 2,4
0 (Ω)) (2.14)

(u′′ε (t), v) +M(‖uε(t)‖2)((uε(t), v)) + (θε(t), v) +
1
ε
〈β(u′ε(t)), v〉

= (f(t), v) a.e. in [0, T ] for all v ∈W 2,4
0 (Ω), (2.15)

(θ′ε(t), v) + ((θε(t), v)) + (u′ε(t), v) +
1
ε
〈β(θε(t)), v〉

= (g(t), v)a.e. in [0, T ] for all v ∈W 2,4
0 (Ω), (2.16)

uε(0) = u0ε, u
′
ε(0) = u1ε, θε(0) = θ0ε. (2.17)

Proof We will use Galerkin’s method and a compactness argument.
First step (Approximated system) Let w1, . . . , wm, . . . be an orthonormal base
of W 2,4

0 (Ω) consisting of eigenfunctions of the Laplacian operator. Let
Vm = [w1, . . . , wm] the subspace of W 2,4

0 (Ω), generated by the first m vectors
wj . We look for a pair of functions

uεm(t) =
m∑
j=1

gjm(t)wj , θεm(t) =
m∑
j=1

hjm(t)wj in Vm

with gjm ∈ C2([0, T ]) and hjm ∈ C1([0, T ]), for all j = 1, . . . ,m. Which are
solutions of the following system of ordinary differential equations

(u′′εm(t), wj) +M(‖uεm(t)‖2)((uεm(t), wj)) + (θεm(t), wj)+
1
ε
〈β(u′εm(t)), wj〉 = (f(t), wj), (2.18)

(θ′εm(t), wj) + ((θεm(t), wj)) + (u′εm(t), wj)+
1
ε
〈β(θεm(t)), wj〉 = (g(t), wj), (2.19)

for j = 1, . . . ,m, with the initial conditions: uεm(0) = u0εm, u′εm(0) = u1εm,
θεm(0) = θ0εm, where

u0εm =
m∑
j=1

(u0ε, wj)wj → u0 strongly in H1
0 (Ω) ∩H2(Ω),

u1εm =
m∑
j=1

(u1ε, wj)wj → u1 strongly in H1
0 (Ω),

θ0εm =
m∑
j=1

(θ0ε, wj)wj → θ0 strongly in W 2,4
0 (Ω).

(2.20)
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The system (2.18)–(2.20) contains 2m unknowns functions gjm(t), hjm(t);
j = 1, 2, . . . ,m. By Caratheodory’s Theorem it follows that (2.18)–(2.20) has a
local solution {uεm(t), θεm(t)} on [0, tm[. In order to extend these local solution
to the interval [0, T [ and to take the limit in m, we must obtain some a priori
estimates.
Estimate (i) Note that finite linear combinations of the wj are dense in
W 2,4

0 (Ω), then we can take w ∈ W 2,4
0 (Ω) in (2.18) and (2.19) instead of wj .

Taking w = 2u′εm(t) in (2.18) and w = 2θεm(t) in (2.19) we obtain

d

dt
|u′εm(t)|2 +

d

dt
M̂(‖uεm(t)‖2) +

2
ε
〈β(u′εm(t)), u′εm(t)〉

= 2(f(t), u′εm(t))− 2(θεm(t), u′εm(t)), (2.21)
d

dt
|θεm(t)|2 + ‖θεm(t)‖2 +

2
ε
〈β(θεm(t)), θεm(t)〉

= −2(u′εm(t), θεm(t)) + 2〈g(t), θεm(t)〉 , (2.22)

where M̂(λ) =
∫ λ

0
M(s)ds. Adding (2.21) and (2.22), and integrating from 0 to

t ≤ tm we have

|u′εm(t)|2 + |θεm(t)|2 +
∫ ‖uεm(t)‖2

0

M(s)ds+
∫ t

0

‖θεm(s)‖2ds+

2
ε

∫ t

0

〈β(u′εm(s)), u′εm(s)〉ds+
2
ε

∫ t

0

〈β(θεm(s)), θεm(s)〉ds ≤∫ T

0

|f(t)|2ds+ 3
∫ t

0

|u′εm(s)|2ds+ 3
∫ t

0

|θεm(s)|2ds+∫ T

0

|g(t)|2dt+ |θ0εm|2 + |u1εm|2.

(2.23)

From (2.20) and hypothesis (A2) there exists a positive constant C, indepen-
dently of ε > 0 and m such that

|u′εm(t)|2 + |θεm(t)|2 +
∫ ‖uεm(t)‖2

0

M(s)ds+
∫ t

0

‖θεm(s)‖2ds+

2
ε

[ ∫ t

0

〈β(u′εm(s)), u′εm(s)〉ds+
∫ t

0

〈β(θεm(s)), θεm(s)〉ds
]
≤

C + 3
∫ t

0

|u′εm(s)|2ds+ 3
∫ t

0

|θεm(s)|2ds.

(2.24)

Next we analyze the sign of the term
∫ t

0
〈β(u′εm(s)), u′εm(s)〉ds. Note that

−u′εm(t) ≤ u′εm(t)−. Then, by the definition of β, we have

〈β(u′εm(t)), u′εm(t)〉 =〈β1(u′εm(t)), u′εm(t)〉+ 〈β2(u′εm(t)), u′εm(t)〉

=−
∫

Ω

(u′εm(x, t))−u′εm(x, t)dx+∫
Ω

(1− |∆u′εm(t)|2)−(∆u′εm(t))2dx ≥ 0.
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Similarly, we have,
〈β(θεm(t)), θεm(t)〉 ≥ 0 .

Because M(s) ≥ 0 for all s, from (2.24) and Gronwall’s inequality it follows that

|u′εm(t)|2 + |θεm(t)|2 ≤ C1, ∀ε,m,∀t ∈ [0, tm[.

Returning to (2.24), we obtain

|u′εm(t)|2 + |θεm(t)|2 +
∫ ‖uεm(t)‖2

0

M(s)ds+
∫ t

0

‖θεm(s)‖2ds+

2
ε

[
∫ t

0

〈β(u′εm(s)), u′εm(s)〉ds+
∫ t

0

〈β(θεm(s)), θεm(s)〉ds] ≤ C + 3C1T .

(2.25)

Since
∫∞

0
M(s)ds =∞, by (2.25) we can find C1 such that

‖uεm(t)‖2 ≤ C1, ∀ε,m,∀t ∈ [0, tm[.

Thus there exists, other constant C = C(T ) independently of ε,m and t ∈ [0, tm[
such that

|u′εm(t)|2 + |θεm(t)|2 + ‖uεm(t)‖2 +
∫ t

0

‖θεm(s)‖2ds+

2
ε

∫ t

0

〈β(u′εm(s)), u′εm(s)〉ds+
2
ε

∫ t

0

〈β(θεm(s)), θεm(s)〉ds ≤ C
(2.26)

Estimate (ii) We will obtain a bound for |u′′εm(0)|. For this, we note that u1

being in the interior of K and u1εm → u1 imply that u1εm is in the interior of
K, for m large. Therefore, |∆u1εm| ≤ 1 and u1εm ≥ 0 a. e. in Ω. Also we have
(u1εm)− = 0 and (1− |∆u1εm|2)− = 0 a. e. in Ω. Thus

〈β(u1εm), u′′εm(0)〉 = 0 (2.27)

Taking t = 0 and v = u′′εm(0) in (2.14), and observing (2.27), we obtain

|u′′εm(0)|2 +M(‖u0εm‖2)((u0εm, u
′′
εm(0))) + (θεm, u′′εm(0)) = (f(0), u′′εm(0))

which implies

|u′′εm(0)|2 ≤ |f(0)||u′′εm(0)|+M(‖u0εm‖2)|∆u0εm||u′′εm(0)|+ |θ0εm||u′′εm(0)|.

From u0εm → u0 in H1
0 (Ω) ∩H2(Ω), θ0εm → θ0 in H1

0 (Ω), M ∈ C1[0,∞), and
f ∈ H1(0, T ;L2(Ω), we obtain

|u′′εm(0)| ≤ C, (2.28)

with C independent of ε,m, and t ∈ [0, T [.
Estimate (iii) We obtain estimates for |∆u′εm(t)|, |∆θεm(t)|,

∫ t
0
|u′εm(s)|3ds,

and
∫ t

0
|θ′εm(s)|3ds. For this, we need the following lemma whose proof can be

found in [6].
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Lemma 2.5 Let h : Ω→ R be an arbitrary function. Then

h4 − 1 ≤ 2(1− h2)−h2.

By this lemma, we have

(∆u′εm)4 − 1 ≤ 2[1− (∆u′εm)2]−(∆u′εm)2 .

Therefore,

‖∆u′εm‖4L4(Q) =
∫ T

0

∫
Ω

|∆u′εm(x, t)|4dx dt

≤2
∫ T

0

∫
Ω

(1−∆|u′εm(x, t)|2)−(∆u′εm(x, t))2dx dt+ meas(Q)

=2
∫ T

0

〈β2(∆u′εm(t)), u′εm(t)〉dx dt+ meas(Q)

≤2
∫ T

0

(β(u′εm(t)), u′εm(t))dt+ meas(Q) .

Using (2.26), we obtain

‖∆u′εm‖4L4(Q) ≤ Cε+ meas(Q) < C + meas(Q) (2.29)

with C independent of ε,m and t ∈ [0, T [. Analogously, using the Lemma 2.5
with h = ∆θεm and (2.26), we obtain

‖∆θεm‖4L4(Q) ≤ C + meas(Q) (2.30)

On the other hand, from (2.18) and (2.19), we obtain

1
ε
〈β(u′εm(t)), v〉+

1
ε
〈β(θεm(t)), v〉 ≤ C(|f(t)|) + |g(t)|)‖v‖+

M(‖uεm(t)‖2)‖uεm(t)‖.‖v‖+ C(|θεm(t)|) + |u′εm(t)|) ≤
|f(t)||v|+ |g(t)||v|+M(‖uεm(t)‖2)‖uεm(t)‖.‖v‖|u′′εm(t)||v|+ |θεm(t)||v|+

|θ′εm(t)||v|+ ‖θεm(t)‖.‖v‖+ |u′εm(t)||v| ≤
C{|f(t)|+ |g(t)|+ |u′′εm(t)|+ |θεm(t)|+ |θ′εm(t)|+ |u′εm(t)|}‖v‖+

(M(‖uεm(t)‖2)‖uεm(t)‖+ ‖θεm(t)‖)‖v‖.

Since f, g ∈ C0([0, T ];L2(Ω)), from the inequality above we obtain

1
ε
|〈β(u′εm(t)), v〉| ≤ C1‖v‖ ∀v ∈W 2,4

0 (Ω) , (2.31)

1
ε
|〈β(θεm(t)), v〉| ≤ C1‖v‖ ∀v ∈W 2,4

0 (Ω), (2.32)

independent of ε,m and t ∈ [0, T ]; this is,

‖β(u′εm)‖L∞(0,T ;W 2,4/3(Ω)) ≤ C1 , (2.33)

‖β(θεm)‖L∞(0,T ;W 2,4/3(Ω)) ≤ C1 . (2.34)
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To estimate |∆uεm(t)|, we note that

|∆uεm(t)|2 =|∆u0εm|2 +
∫ t

0

d

ds
|∆uεm(s)|2ds

=|∆u0εm|2 + 2C
∫ t

0

|∆uεm(s)|‖∆u′εm(s)‖

≤|∆u0εm|2 + C

∫ t

0

(|∆uεm(s)|2 + ‖∆u′εm(s)‖2)ds ,

where C is the constant of the embedding from H1
0 (Ω) into L2(Ω). From (2.20),

(2.29) and Gronwall’s inequality, we obtain

|∆uεm(t)|2 < C , (2.35)

where C is a constant independent of ε,m and t ∈ [0, T [.
Next, we obtain an estimate for

∫ t
0
‖∆u′εm(s)‖3ds. Let C represent various

positives constants of the embedding in the sequence

W 2,4
0 (Ω) ↪→ H2

0 (Ω) ↪→ H1
0 (Ω) .

Observing that WH2(Ω) ≤ C|∆w| we obtain∫ t

0

‖u′εm(s)‖3ds ≤ C
∫ t

0

‖u′εm(s)‖3H2(Ω)ds ≤ C
∫ t

0

|∆u′εm(s)|3ds, (2.36)

independently of ε and m. It follows from Höder’s inequality that∫ t

0

|∆u′εm(s)|3ds ≤ (
∫ T

0

11ds)1/4(
∫ t

0

‖∆u′εm(s)‖4ds)3/4

and substituting in (2.36) and observing (2.29), we obtain∫ t

0

‖u′εm(s)‖3ds ≤ C, (2.37)

independent of ε, m and t ∈ [0, T [.
Estimate (iv) We will obtain the estimative for |u′′εm(t)|. Let us consider the
functions

Ψh(t) = 1
h [uεm(t+ h)− uεm(t)] ,

Mh(t) = 1
h [M(‖uεm(t+ h)‖2)−M(‖uεm(t)‖2)] ,

fh(t) = 1
h [f(t+ h)− f(t)].

Setting w = 2Ψ′h(t) in (1.14), we obtain

2(u′′εm(t),Ψ′h(t)) + 2M(‖uεm(t)‖2)((uεm(t),Ψ′h(t)))+
2
ε
〈β(u′εm(t)),Ψ′h(t))〉 = 2(f(t),Ψ′h(t))

. (2.38)
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Substituting t by t+ h ∈ [0, T ] in (2.18) and taking w = 2Ψ′h(t), we set

2(u′′εm(t+ h),Ψ′h(t)) + 2M(‖uεm(t+ h)‖2)((uεm(t+ h),Ψ′h(t)))+
2
ε
〈β(u′εm(t+ h)),Ψ′h(t))〉 = 2(f(t+ h),Ψ′h(t)).

(2.39)

Now, from (2.38) and (2.39) it follows, for h 6= 0, that

2(
u′′εm(t+ h)− u′′εm(t)

h
,Ψ′h(t)) +

2
h
M(‖uεm(t+ h)‖2)((uεm(t+ h),Ψ′h(t)))−

2
h
M(‖uεm(t)‖2)((uεm(t),Ψ′h(t))) +

2
hε
〈β(u′εm(t+ h))− β(u′εm(t)),Ψ′h(t)〉 =

2(
f(t+ h)− f(t)

h
,Ψ′h(t)),

which implies

d

dt
|Ψ′h(t)|2 +

2
h
M(‖uεm(t+ h)‖2)(uεm(t+ h),Ψ′h(t))−

2
h
M(‖uεm(t)‖2)((uεm(t),Ψ′h(t)))+

2
hε
〈β(u′εm(t+ h))− β(u′εm(t)),Ψ′h(t)〉 = 2(fh(t),Ψ′h(t)).

(2.40)

Nothing that

2
h
M(‖uεm(t+ h)‖2)((uεm(t+ h),Ψ′h(t)))− 2

h
M(‖uεm(t)‖2)((uεm(t),Ψ′h(t))) =

2M(‖uεm(t+ h)‖2)((Ψh(t),Ψ′h(t))) +
2M(‖uεm(t+ h)‖2)

h
((uεm(t),Ψ′h(t)))−

2M(‖uεm(t)‖2)
h

((uεm(t),Ψ′h(t))) =

M(‖uεm(t+ h)‖2)
d

dt
(‖Ψh(t)‖2) + 2Mh(t)((uεm(t),Ψ′h(t))).

From (2.40) it follows that

d

dt
|Ψ′h(t)|2 +M(‖uεm(t+ h)‖2)

d

dt
(‖Ψh(t)‖2)+

2
h2ε
〈β(u′εm(t+ h))− β(u′εm(t)), u′εm(t+ h)− u′εm(t)〉 =

−2Mh(t)((uεm(t),Ψ′h(t))) + 2(fh(t),Ψ′h(t)).

By the monotonicity of the operator β, we obtain

d

dt
|Ψ′h(t)|2 +M(‖uεm(t+ h)‖2)

d

dt
(‖Ψh(t)‖2)

≤ 2|Mh(t)(∆uεm(t),Ψ′h(t))|+ 2|(fh(t),Ψ′h(t))|.
(2.41)
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Integrating (2.41) in t we have

|Ψ′h(t)|2 +
∫ t

0

M(‖uεm(s+ h)‖2)
d

ds
(‖Ψh(s)‖2)ds ≤

|Ψ′h(0)|2 + 2
∫ t

0

|Mh(s)(∆uεm(s),Ψ′h(s))|ds+ 2
∫ t

0

|(fh(s),Ψ′h(s))|ds .

Taking the limit as h→ 0, it follows

|u′′εm(t)|2 +
∫ t

0

M(‖uεm(s)‖2)
d

ds
‖u′εm(s)‖2ds ≤

|u′′εm(0)|2 + 2
∫ t

0

[M ′(‖uεm(s)‖2)
d

ds
‖uεm(s)‖2]|∆uεm(s), u′′εm(s)|ds+

2
∫ t

0

|(f ′(s), u′′εm(s))|ds .

(2.42)

Using Assumption (A2) and (2.28), we obtain, from (2.42),

|u′′εm(t)|2 +
∫ t

0

M(‖uεm(s)‖2)
d

ds
‖u′εm(s)‖2ds ≤

C + 4
∫ t

0

|M ′(‖uεm(s)‖2)|‖u′εm(s)‖‖uεm(s)‖‖∆uεm(s)‖‖u′′εm(s)‖ds+∫ t

0

|u′′εm(s)|2ds.

(2.43)

From (2.26), (2.35) and (2.37) it follows that there exists a positive constant C
such that

‖uεm(t)‖2 + |∆uεm(t)|2 +
∫ t

0

‖u′εm(s)‖2ds ≤ C, ∀ε,m, t. (2.44)

Since M ∈ C1([0,∞)), we also obtain from (2.44),

|M ′(‖uεm(s)‖2)| ≤ C, ∀ε,m, t. (2.45)

On the other hand, using integration by parts, we get∫ t

0

M(‖uεm(s)‖2)
d

ds
‖u′εm(s)‖2ds =

M(‖uεm(s)‖2)‖u′εm(s)‖2 −M(‖u0εm(s)‖2)‖u1εm(s)‖2−∫ t

0

M ′(‖uεm(s)‖2)
d

ds
‖u′εm(s)‖2‖u′εm(s)‖2ds.

Estimates (2.37), (2.44), and (2.45) together imply

−
∫
M ′(‖uεm(s)‖2)

d

ds
‖uεm(s)‖2‖u′εm(s)‖2ds ≥ −C

∫ t

0

‖u′εm(s)‖3 ≥ −C,
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independently of ε, m, and t. Therefore,∫ t

0

M(‖uεm(s)‖2)
d

ds
‖u′εm(s)‖2ds ≥M(‖uεm(t)‖2)‖u′εm(t)‖2 − C, (2.46)

independently of ε, m and t. Here, C denote various positive constants. Making
use of inequalities (2.44)–(2.46) in (2.43) we obtain

|u′′εm(t)|2 +M(‖uεm(t)‖2)‖u′εm(s)‖2 ≤ C + C

∫ t

0

|u′′εm(s)|2ds, (2.47)

independently of ε, m, and t. From (2.47) and using Gronwall’s inequality, we
have

|u′′εm(t)|2 ≤ C, (2.48)

independently of ε, m and t.

Passage to the limit By estimates (2.26) and (2.35) we obtain

(uεm) is bounded in L∞(0, T ;H1
0 (Ω) ∩H2(Ω)),

(u′εm) is bounded in L∞(0, T ;L2(Ω)),
(θεm) is bounded in L∞(0, T ;L2(Ω)).

Therefore, we can get subsequences, if necessary, denoted by (uεm) and (θεm),
such that

uεm → uε weak star in L∞(0, T ;H1
0 (Ω) ∩H2(Ω)), (2.49)

u′εm → u′ε weak star in L∞(0, T ;L2(Ω)), (2.50)

θεm → θε weak star in L∞(0, T ;L2(Ω)). (2.51)

Similarly by (2.48), we obtain

u′′εm → u′′ε weak star in L∞(0, T ;L2(Ω)). (2.52)

Also, by (2.33) and (2.34), there exist functions Xε, φε ∈ L4/3(0, T ;W 2,4/3(Ω))
such that

β(u′εm)→ Xε in L4/3(0, T ;W 2,4/3(Ω)), (2.53)

β(θεm)→ φε in L4/3(0, T ;W 2,4/3(Ω)). (2.54)

It follows from the embeding W 2,4
0 (Ω) into L4(Ω) and of (2.29) that

|u′εm|4L4(0,T ;W 2,4
0 (Ω))

≤ C‖∆u′εm‖4L4(Ω) ≤ K.

Therefore, there exists a subsequence of (uεm) such that

u′εm → u′ε weak star in L4(0, T ;W 2,4
0 (Ω)). (2.55)
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Analogously, by (2.30) we obtain

θεm → θε weak star in L4(0, T ;W 2,4
0 (Ω)). (2.56)

Being the embedding from H1
0 (Ω) ∩H2(Ω) into H1

0 (Ω) compact, we can set a
subsequence, again denoted by (uεm), such that:

uεm → uε strong in L2(0, T ;H1
0 (Ω)). (2.57)

By assumption (A1) we obtain

M(‖uεm(t)‖2)→M(‖uε(t)‖2). (2.58)

From the compactness of the embedding H1
0 (Ω) ↪→ L2(Ω) we obtain

u′εm → u′ε strong in L2(0, T ;L2(Ω)). (2.59)

Then taking limit in the system (2.18)–(2.20), when m → ∞, with w = vϕ(t),
v ∈W 2,4

0 (Ω), ϕ(t) ∈ D(0, T ) instead of wj , and using the fact that β is monotone
and hemicontinous operator, we obtain that {uε, θε} is a weak solution of the
system (2.18)–(2.20).

The initial conditions (2.19) can be obtained by observing the convergence
above and the definition of weak solution; this is,

u′ε(0) = lim
m→∞

u0εm = lim
m→∞

m∑
j=1

(u0ε, wj)wj = u0 ,

u′ε(0) = limu1εm = lim
m→∞

m∑
j=1

(u1ε, wj)wj = u1 ,

φε(0) = lim
m→∞

θ0εm = lim
m→∞

m∑
j=1

(θ0ε, wj)wj = θ0.

This concludes the proof of Theorem 2.4

3 Main Result

In this section, we will prove the Theorem 2.3. By Theorem 2.4, there exists
functions uε, θε : Q→ R such that

uε ∈ L∞(0, T ;H1
0 (Ω) ∩H2(Ω)),

u′ε, θε ∈ L4(0, T ;W 2,4
0 (Ω)),

u′′ε ∈ L∞(0, T ;L2(Ω)),

θε ∈ L∞(0, T ;L2(Ω)),
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satisfying the system

(u′′ε (t), w) +M [‖uε(t)‖2]((uε(t), w)) +
1
ε
〈β(u′ε(t), w)〉 = (g(t), w),

(θε(t), w) + ((θε(t), w)) + (u′ε(t), w) +
1
ε
〈β(θε(t), w)〉 = (g(t), w),

a.e. in [0, T ], for all w ∈W 2,4
0 (Ω). uε(0) = u0; u′ε(0) = u1, and θε(0) = θ0.

Being the estimates (2.26), (2.29), (2.30), (2.33), (2.34), (2.32) and (2.44)
independently of ε, m and t we obtain by Uniform Boundedness Theorem that
there exists a positive constant C such that

|u′ε(t)|2 + |θε(t)|2 + ‖uε(t)‖2 +
∫ T

0

‖θε(t)‖2ds+

2
ε

∫ T

0

〈β(u′ε(s), u
′
ε(s))〉ds+

2
ε

∫ T

0

〈β(θε(s)), θε(s))〉ds ≤

C‖∆u′ε‖4L4(Q) ≤C ,

and

‖∆θε‖4L4(Q) ≤ C , ‖β(u′ε)‖L 4
3 (0,T ;W 2,4/3(Ω))

≤ C ,

‖β(θε)‖L4/3(0,T ;W 2,4/3(Ω)) ≤ C , |∆uε(t)|2 ≤ C , |u′′ε (t)|2 ≤ C.

Consequently, we can find a subnet, which we still represent by (uε), (θε) such
that

uε → u weak star in L∞(0, T ;H1
0 (Ω) ∩H2(Ω)),

u′ε → u′ weak star in L∞(0, T ;L2(Ω)),

u′′ε → u′′ weak star in L∞(0, T ;L2(Ω)),

β(u′ε)→ β(u′) weak in L4/3(0, T ;W−2, 43 (Ω)),

β(θε)→ β(θ) weak in L4/3(0, T ;W−2, 43 (Ω)),

u′ε → u′ weak in L4(0, T ;W 2,4
0 (Ω)),

θε → θ weak in L4(0, T ;W 2,4
0 (Ω)).

By the compactness theorem of Aubin-Lions [8], we obtain

uε → u strongly L2(0, T ;H1
0 (Ω)), (3.1)

u′ε → u′ strongly L2(0, T ;L2(Ω)). (3.2)

We observe that

(u′′ε (t), v(t)) +M(‖uε(t)‖2)((uε(t), v(t))) + (θε(t), v(t))+
1
ε
〈β(u′ε(t)), v(t)〉 = (f(t), v(t)) ,

(θ′ε(t), v(t)) + ((θε(t), v(t))) + (u′ε(t), v(t)) +
1
ε
〈β(θε(t)), v(t)〉 = (g(t), v(t)) .
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is true for all v ∈ L4(0, T ;W 2,4
0 (Ω)).

On the other hand, being u′ε, θε ∈ L4(0, T ;W 2,4
0 (Ω)) implies

(u′′ε (t), u′ε(t)) +M(‖uε(t)‖2)((uε(t), u′ε(t))) + (θε(t), u′ε(t))+
1
ε
〈β(u′ε(t)), u

′
ε(t)〉 = (f(t), u′ε(t)) ,

(θ′ε(t), θε(t)) + ((θε(t), θε(t))) + (u′ε(t), θε(t)) +
1
ε
〈β(θε(t)), θε(t)〉 = (g(t), θε(t)).

Subtracting the equations of the system above, we obtain

(u′′ε (t), v(t)− u′ε(t)) +M(‖uε(t)‖2)((uε(t), v(t)− uε(t)))+ (3.3)

(θε(t), v − u′ε(t)) +
1
ε
〈β(u′ε(t)), v(t)− u′ε(t)〉 =(f(t), v(t)− u′ε(t)) ,

(θ′ε(t), v(t)− θε(t)) + ((θε(t), v(t)− θε(t)))+

(u′ε(t), v(t)− θε(t)) +
1
ε
〈β(θε(t)), v(t)− θε(t)〉 = (g(t), v(t)− θε(t)),

(3.4)

for all v ∈W 2,4
0 (Ω).

Let us consider v(t) ∈ K a. e. in [0, T ]. Then we obtain β(v(t)) = 0 and
being β a monotone operator, we have

〈β(u′ε(t))− β(v(t)), v(t)− u′ε(t)〉 ≤ 0 ,
〈β(θε(t))− β(v(t)), v(t)− θε(t)〉 ≤ 0 .

Therefore,∫ T

0

(u′′ε (t)−M(‖uε(t)‖2)∆uε(t) + θε(t)− f(t), v(t)− u′ε(t))dt ≥ 0, (3.5)∫ T

0

(θε(t)−∆θε + u′ε − g(t), v(t)− θε(t))dt ≥ 0, (3.6)

for all v ∈ L4(0, T ;W 2,4
0 (Ω)) with v(t) ∈ K a.e. in [0, T ]. Now, taking the

limit in (3.6) and (3.7), when ε → 0 and using (3.1)–(3.3) and observing that
∆uε → ∆u weak in L2(0, T ;L2(Ω)) it follows that u, θ satisfy (1.5) and (1.6) in
Theorem 2.3.

To conclude the proof of the existence of a solution, we show that
u′(t), θ(t) ∈ K a.e. in [0, T ]. In fact, by (2.33) and (2.34) we have

‖β(u′ε)‖L∞(0,T ;W 2, 43 (Ω))
≤ Cε,

‖β(θε)‖
L∞(0,T ;W 2, 43 (Ω))

≤ Cε.

Therefore, as ε→ 0, β(u′ε)→ 0 and β(θε)→ 0 strong L∞(0, T ;W 2, 43 (Ω)).
On the other hand we have β(u′ε) → β(u′) and β(θε) → β(θ) weak in

L4/3(0, T ;W 2,4/3(Ω)). Then, β(u′(t)) = β(θ(t)) = 0 in L∞(0, T ;W 2,4/3(Ω)).
Therefore, u′(t), θ(t) ∈ K a.e. in [0, T ].

The initial conditions (1.7) can be verified easily. This concludes the proof
of Theorem 2.3.
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4 Uniqueness

For proving uniqueness of solutions in Theorem 2.3, we consider the restriction

u0 ∈ H1
0 (Ω) ∩H2(Ω), u0(x) ≥ 0 a. e. in Ω, and ‖u0‖ > 0.

Consequently ‖u(t)‖ > 0, for all t ∈ [0, T ]. In fact, if there exists t0 ∈ [0, T ]
such that ‖u0‖ = 0, then∫

Ω

|u(x, t0)|2dx ≤ C‖u(t0)‖2 = 0,

where C is the constant of the embedding H1
0 (Ω) ↪→ L2(Ω). Therefore,

u(x, t0) = 0, a.e. in Ω.
Since u′(t) ∈ K a.e. in [0, T ], we have u′(t) ≥ 0 a.e. in Ω. This implies that

u(x, t) ≥ u(x, 0) = u0(x) in Ω a.e. in [0, T ]. (4.1)

Being ‖u0‖ > 0, there exists Ω′ ⊂ Ω with ‖Ω′‖ > 0 such that that u0(x) > 0.
By (3.1) it follows that u(x, t0) > 0 in Ω. This is a contradiction.

Theorem 4.1 Under the hypotheses of Theorem 2.3, if

i) M(λ) > 0 for all λ > 0, and M(0) = 0.

ii) u0 ∈ H1
0 (Ω) ∩H2(Ω), u0(x) ≥ 0 a.e. in Ω, and ‖u0‖ > 0,

Then the solution {u, θ} of Theorem 2.3 is unique.

Proof. From (i) and (ii) it follows that

m0 = min{M(‖u(t)‖2); t ∈ [0, T ]} > 0.

Suppose we have two pairs of solutions {u, θ} and {w,ϕ} satisfying the condi-
tions of Theorem 2.3. Let Ψ = u− w and φ = θ − ϕ. Thus, Ψ and φ satisfy

(Ψ′′(t)−M(‖u(t)‖2)∆Ψ(t) + {M(‖w(t)‖2)−M(‖u(t)‖2)}∆w + φ(t),Ψ′(t)) ≤ 0,
(φ′(t)−∆φ(t) + Ψ′(t), φ(t)) ≤ 0,

which implies

1
2
d

dt
{|Ψ′(t)|2 + |φ(t)|2 + ‖φ(t)‖2}+M(‖u(t)‖2)

1
2
d

dt
‖Ψ(t)‖2 + 2(φ(t),Ψ′(t)) ≤

{M(‖u(t)‖2)−M(‖w(t)‖2)}(∆w(t),Ψ′(t)) .

Since

M(‖u(t)‖2)
d

dt
‖Ψ(t)‖2 =

d

dt
{M(‖u(t)‖2)‖Ψ(t)‖2} − d

dt
[M(‖u(t)‖2)]‖Ψ(t)‖2
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we obtain

1
2
d

dt
{|Ψ′(t)|2 + |φ(t)|2 + ‖φ(t)‖2}+

d

dt
{M(‖u(t)‖2)‖Ψ(t)‖2}+ 2(φ(t),Ψ′(t)) ≤

{M(‖u(t)‖2)−M(‖w(t)‖2)}(∆w(t),Ψ′(t))+

M ′(‖u(t)‖2)((u′(t), u(t))‖Ψ(t)‖2.

Now, integrating this inequality form 0 to t < T , we obtain

1
2
{|Ψ′(t)|2 + |φ(t)|2 + ‖φ(t)‖2}+M(‖u(t)‖2)‖Ψ(t)‖2+

2
∫ t

0

(φ(t),Ψ′(t))ds ≤∫ t

0

{M(‖u(s)‖2)−M(‖w(s)‖2)}(∆w(s),Ψ′(s))ds+∫ t

o

M ′(‖u(s)‖2)((u′(s), u(s))‖Ψ(s)‖2ds.

(4.2)

Note that ‖u(t)‖ and ‖u′(t)‖ ∈ L∞(0, T ). Then there exists a positive constant
C0 such that

‖u(t)‖ ≤ C0 and ‖u′(t)‖ ≤ C0 a.e. in [0, T ].

Since M ∈ C1([0,∞)), it follows |M ′(ξ)| ≤ C1, for all ξ ∈ [0, C0].
Now, by the Mean Value Theorem, for each s ∈ [0, T ], there exists ξs between

‖u(s)‖2 and ‖w(s)‖2 such that

|M(‖u(s)‖2)−M(‖w(s)‖2)| ≤ C1|‖u(s)‖2 − ‖w(s)‖2| ≤
C2‖u(s)− w(s)‖ = C2‖Ψ(s)‖.

(4.3)

Observing that |∆w(s)| ≤ C3, from (4.2) and (4.3) we obtain that

|Ψ′(t)|2 + ‖φ(t)‖2 +M(‖u(t)‖2‖)Ψ(t)‖2 ≤

C4

∫ t

o

{
|Ψ′(s)|2 + ‖Ψ(s)‖2 + ‖φ(s)‖2

}
ds,

which implies

|Ψ′(t)|2 + ‖φ(t)‖2 + ‖Ψ(t)‖2 ≤ C5

∫ t

o

{
|Ψ′(t)|2 + ‖Ψ(t)‖2 + ‖φ(s)‖2

}
ds.

where C5 = C4/min{1,m0}. From the above inequality and Gronwall inequality
if follows that ‖φ(t)‖ = ‖Ψ(t)‖ = 0, i.e., φ and Ψ are zero almost everywhere.
This completes the proof of uniqueness.
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