Electronic Journal of Differential Equations, Vol. 2005(2005), No. 145, pp. 1–9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ZEROS OF THE JOST FUNCTION FOR A CLASS OF EXPONENTIALLY DECAYING POTENTIALS

DAPHNE GILBERT, ALAIN KEROUANTON

ABSTRACT. We investigate the properties of a series representing the Jost solution for the differential equation $-y''+q(x)y=\lambda y,\ x\geq 0,\ q\in \mathrm{L}(\mathbb{R}^+).$ Sufficient conditions are determined on the real or complex-valued potential q for the series to converge and bounds are obtained for the sets of eigenvalues, resonances and spectral singularities associated with a corresponding class of Sturm-Liouville operators. In this paper, we restrict our investigations to the class of potentials q satisfying $|q(x)|\leq ce^{-ax},\ x\geq 0$, for some q>0 and q>0.

1. Introduction

We consider the differential equation

$$-y'' + q(x)y = \lambda y \quad \text{for } x \ge 0, \tag{1.1}$$

where $q \in L(\mathbb{R}^+)$ is real or complex-valued, with the boundary condition

$$y(0)\cos(\alpha) + y'(0)\sin(\alpha) = 0$$
 for some $\alpha \in [0, \pi)$. (1.2)

In this paper, we consider the consequences of changes on the potential q rather than on the boundary condition (1.2) and we therefore restrict ourself to the classical case $\alpha \in [0,\pi)$. For an analysis of Sturm-Liouville operators with real valued, exponentially decaying potentials and nonselfadjoint boundary conditions, see for example [6].

Let $z = \sqrt{\lambda}$, Im(z) > 0. Since $q \in L(\mathbb{R}^+)$, there exists a unique $L^2(\mathbb{R}^+)$ -solution $\chi(x,z)$ of (1.1) satisfying

$$\chi(x,z) = e^{izx}(1+o(1))$$
 as $x \to +\infty$,

which is known as the Jost solution [3].

Let $\phi(x, z^2)$ be the solution of (1.1) satisfying $\phi(0, z^2) = 0$, $\phi'(0, z^2) = 1$. Then $\phi(x, z^2)$ satisfies (1.2) with $\alpha = 0$ and we have

$$W_0(\chi(x,z),\phi(x,z^2)) = \chi(0,z), \quad Im(z) > 0,$$

where W₀ denotes the Wronskian evaluated at x = 0. Note that $\phi(x, z^2)$ and $\chi(x, z)$ are linearly dependent if and only if $\chi(0, z) = 0$ for some z such that Im(z) > 0. The non-zero eigenvalues of the operator L₀ associated with (1.1) and the Dirichlet

²⁰⁰⁰ Mathematics Subject Classification. 34L40, 35B34, 35P15, 33C10.

 $Key\ words\ and\ phrases.$ Jost solution; Sturm-Liouville operators; resonances; eigenvalues; spectral singularities.

^{©2005} Texas State University - San Marcos.

Submitted October 4, 2005. Published December 8, 2005.

boundary condition are therefore of the form $\lambda = z^2$, where z is a zero of the Jost function $\chi(z) = \chi(0,z)$ satisfying $\mathrm{Im}(z) > 0$. If q is real-valued these zeros are situated on the segment line z = it, $0 < t < +\infty$, giving rise to negative eigenvalues.

Moreover, if q is exponentially decaying, i.e. if q satisfies

$$q(x) = O(e^{-ax})$$
 as $x \to +\infty$ (1.3)

for some a>0 then, whether q is real or complex-valued, the Jost function $\chi(z)$ can be analytically extended to the half plane $\{z\in\mathbb{C}: \mathrm{Im}(z)>-a/2\}$ [9, 10, appendix II] and the part of the expansion in generalised eigenfunctions related to the continuous spectrum contains a spectral-type function of the form

$$\frac{1}{\pi} \left(\frac{z}{\chi(z)\chi(-z)} \right), \quad z > 0. \tag{1.4}$$

The expansion in eigenfunctions and generalised eigenfunctions in the case of exponentially decaying, complex-valued potentials was established by Naimark [9]. If q is real-valued the spectral-type function (1.4) is actually the spectral density associated with L₀ since, in this case, $\chi(-z) = \overline{\chi(z)}$ for Im(z) = 0. The latter was proved by Kodaira [8] for a real-valued potential q.

If we set

$$\chi_{\pi/2}(x,z) = \frac{d}{dx}\chi(x,z)$$
 and $\chi_{\pi/2}(z) = \chi_{\pi/2}(0,z)$,

then the non-zero eigenvalues of the operator L_{α} associated with (1.1) and (1.2) are of the form $\lambda = z^2$, where z is a zero of $\chi_{\alpha}(z)$ satisfying Im(z) > 0, with

$$\chi_{\alpha}(x,z) = \chi(x,z)\cos(\alpha) + \chi_{\pi/2}(x,z)\sin(\alpha) \quad \text{and} \quad \chi_{\alpha}(z) = \chi_{\alpha}(0,z). \tag{1.5}$$

To see this note that $\chi(x,z)$ and $\phi_{\alpha}(x,z^2)$ are linearly dependent if and only if $\chi_{\alpha}(z) = 0$, where $\phi_{\alpha}(x,z^2)$ is a solution of (1.1) satisfying (1.2), more precisely $\phi_{\alpha}(0,z^2) = -\sin(\alpha)$, $\phi'(0,z^2) = \cos(\alpha)$.

If q satisfies (1.3), then $\chi_{\alpha}(z)$ can be analytically extended to the half-plane $\{\operatorname{Im}(z) > -a/2\}$ [9, 10, appendix II]. It is then likely that the zeros of $\chi_{\alpha}(z)$ situated just below the real axis will affect the behaviour of (1.4) [2, 4, 5]. Such a zero is called a resonance and, if q is real valued and if the zero is situated on the semi-axis -it, $0 < t < +\infty$, it is said to be an antibound state.

For Im(z) = 0, $z \neq 0$, we also have [10, appendix II]

$$W_0(\chi_\alpha(x,z),\chi_\alpha(x,-z)) = -2iz,$$

so that $\chi_{\alpha}(z)$ and $\chi_{\alpha}(-z)$ cannot vanish at the same time for $\operatorname{Im}(z)=0, z\neq 0$. If q is real-valued, then $\chi_{\alpha}(-z)=\overline{\chi_{\alpha}(z)}$ and the equality above implies that $\chi_{\alpha}(z)$ cannot vanish for $\operatorname{Im}(z)=0, z\neq 0$. On the other hand, if q is complex-valued, then $\chi_{\alpha}(z)$ can vanish for some z with $\operatorname{Im}(z)=0$. If z is such a zero of $\chi_{\alpha}(z)$, then $\lambda=z^2$ is called a spectral singularity.

The form of the expansion in generalised eigenfunctions obtained by Naimark [9, 10, appendix II] depends on whether such spectral singularities do exist. If there is no spectral singularity, then the expansion takes a form similar to that obtained by Kodaira [8].

It is to be noted that, for $q \in L(\mathbb{R}^+)$, there are no $L^2(\mathbb{R}^+)$ -solutions of (1.1) for $\lambda > 0$ so that the spectral singularities cannot be associated with $L^2(\mathbb{R}^+)$ -solutions

of (1.1). Moreover, if q also satisfies (1.3), then the number of spectral singularities is finite [9, 10, appendix II].

The literature available on the study of eigenvalues, resonances and spectral singularities is already abundant but we propose here an alternative method that allows us to view them as a single mathematical object, namely as arising from the zeros of the Jost function. Our method is relatively simple and allows us, in particular, to investigate resonance-free regions for exponentially decaying potentials. More detailed results are obtained on the set of resonances for compactly supported and super-exponentially decaying potentials in [4, 5] and in [2] for a class of exponentially decaying potentials. The relationship between the Jost function and the classical Titchmarsh-Weyl function is briefly outlined in section 5.

2. The Series

It was shown by Eastham [1, 2] that, for a real-valued integrable potential q, the Jost solution $\chi(x,z)$ can be represented in the form (2.1). However, it is not difficult to show that the results below also hold when q is complex-valued and integrable. We have

$$\chi(x,z) = e^{ixz} \left(1 + \sum_{n>1} r_n(x,z) \right),$$
 (2.1)

with

$$r_0(x,z) = 1$$
, $r_n(x,z) = \frac{i}{2z} \int_x^{+\infty} q(t) r_{n-1}(t,z) \left(1 - e^{2iz(t-x)}\right) dt$, $n \ge 1$. (2.2)

Also,

$$\frac{d}{dx}\chi(x,z) = e^{ixz} \left(iz + \sum_{n>1} s_n(x,z)\right),\tag{2.3}$$

with

$$s_n(x,z) = -\frac{1}{2} \int_{x}^{+\infty} q(t) r_{n-1}(t,z) (1 + e^{2iz(t-x)}) dt \quad n \ge 1.$$
 (2.4)

From (2.2) we have

$$r_0(x,z) = 1,$$

$$r_1(x,z) = \frac{i}{2z} \int_0^{+\infty} q(t) \left(1 - e^{2iz(t-x)}\right) dt$$

so that, for Im(z) > 0,

$$|r_1(x,z)| \le \frac{1}{|z|} \int_0^{+\infty} |q(t)| dt.$$

It is readily seen by induction on n that

$$|r_n(x,z)| \le \left(\frac{\|q\|_1}{|z|}\right)^n, \quad n \ge 0, \ x \ge 0, \ \text{Im}(z) > 0,$$

where $\|\cdot\|_1$ is the $L(\mathbb{R}^+)$ -norm, from which it follows that

$$|1 + \sum_{n \ge 1} r_n(x, z)| \le \sum_{n \ge 0} \left(\frac{\|q\|_1}{|z|}\right)^n.$$

The series in (2.1) therefore converges absolutely and uniformly for $x \ge 0$, Im(z) > 0 and $|z| > ||q||_1$. Note that we supposed only that $q \in L(\mathbb{R}^+)$. This result is similar to the one obtained by Rybkin [11, theorem 3.1].

We now investigate the convergence of (2.1) for a class of exponentially decaying potentials.

3. Main Results

We suppose throughout this section that

$$|q(x)| \le ce^{-ax}, \quad x \ge 0, \tag{3.1}$$

holds for some c > 0 and a > 0.

We first consider the case $\alpha = 0$ and then examine the case $\alpha \in (0, \pi)$. In the latter case the details get rather cumbersome but, since we are aware of only few results concerning this case, we mention it anyway.

Let $\delta > 0$ and let

$$\Lambda_{a,\delta} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > -a/3, |z| > \delta \}.$$

Lemma 3.1. Suppose that (3.1) holds and fix $\delta > 2c/a$. Then

$$|r_n(x,z)| \le \frac{1}{n!} \left(\frac{2c}{|z|a}\right)^n e^{-nax}, \quad x \ge 0, \text{ Im}(z) > -a/3, \ n \ge 1$$

and the series (2.1) converges absolutely and uniformly for $x \geq 0$, $z \in \Lambda_{a,\delta}$.

Proof. We first prove by induction that

$$|r_n(x,z)| \leq \frac{1}{n!} \left(\frac{c}{|z|a}\right)^n \left(\frac{a+\operatorname{Im}(z)}{a+2\operatorname{Im}(z)}\right) \dots \left(\frac{na+\operatorname{Im}(z)}{na+2\operatorname{Im}(z)}\right) e^{-nax}, \quad n \geq 1.$$

According to (2.2) we have $r_0(x, z) = 1$ and, from (2.2) and (3.1),

$$r_1(x,z) \le \frac{c}{2|z|} \int_x^\infty \left(e^{-at} + e^{-t(a+2\operatorname{Im}(z)) + 2x\operatorname{Im}(z)} \right) dt,$$

which yields

$$|r_1(x,z)| \le \frac{c}{a|z|} \left(\frac{a + \operatorname{Im}(z)}{a + 2\operatorname{Im}(z)} \right) e^{-ax}.$$

The result is therefore true for n = 1. Suppose that it were true for $1 \le k \le n - 1$, $n \ge 2$. According to (2.2) we have

$$|r_n(x,z)| \le \frac{1}{2|z|} \int_{r}^{\infty} |q(t)r_{n-1}(t,z)| \left(1 + e^{-2(t-x)\operatorname{Im}(z)}\right) dt,$$

so that, from (3.1) and the induction hypothesis,

$$|r_n(x,z)| \le \frac{c}{2|z|(n-1)!} \left(\frac{c}{|z|a}\right)^{n-1} \left(\frac{a + \operatorname{Im}(z)}{a + 2\operatorname{Im}(z)}\right) \times \dots \times \left(\frac{(n-1)a + \operatorname{Im}(z)}{(n-1)a + 2\operatorname{Im}(z)}\right) \int_x^{+\infty} e^{-nat} (1 + e^{-2(t-x)\operatorname{Im}(z)}) dt,$$

which yields

$$|r_n(x,z)|$$

$$\leq \frac{1}{n!} \left(\frac{c}{|z|a} \right)^n \left(\frac{a + \operatorname{Im}(z)}{a + 2\operatorname{Im}(z)} \right) \dots \left(\frac{(n-1)a + \operatorname{Im}(z)}{(n-1)a + 2\operatorname{Im}(z)} \right) \left(\frac{na + \operatorname{Im}(z)}{na + 2\operatorname{Im}(z)} \right) e^{-nax},$$

as required. The lemma is proved when we notice that

$$0<\frac{na+\operatorname{Im}(z)}{na+2\operatorname{Im}(z)}<2,\quad n\geq 1,\quad \text{and}\quad \frac{2c}{|z|a}<\frac{2c}{\delta a}<1$$

if Im(z) > -a/3 and $|z| > \delta > 2c/a$.

We are now in position to identify a region in the z-plane where $\chi(z)$ cannot vanish.

Theorem 3.2. Suppose (3.1) holds and fix $\delta > 2c/a$. Then, for $z \in \Lambda_{a,\delta}$,

$$|\chi(z)| \ge 2 - \exp\left(\frac{2c}{\delta a}\right)$$

In particular, if

$$\delta > \frac{2c}{a\ln(2)},$$

then $\chi(z)$ cannot vanish inside the set $\Lambda_{a,\delta}$ and the operator L_0 has

- (i) no eigenvalue $\lambda = z^2$ such that $z \in \Lambda_{a,\delta} \cap \{z : \text{Im}(z) > 0\},$
- (ii) no spectral singularity $\lambda = z^2$ such that $z \in (-\infty, \delta) \cup (\delta, +\infty)$,
- (iii) no resonance inside $\Lambda_{a,\delta} \cap \{z : \operatorname{Im}(z) < 0\}$.

Proof. According to lemma 3.1 we have, for $z \in \Lambda_{a,\delta}$,

$$|r_n(x,z)| \le \frac{1}{n!} \left(\frac{2c}{\delta a}\right)^n e^{-nax}, \quad x \ge 0,$$

so that

$$\left|\sum_{n\geq 1} r_n(x,z)\right| \leq \sum_{n\geq 1} \frac{1}{n!} \left(\frac{2c}{\delta a}\right)^n e^{-nax} = \exp\left(\frac{2c}{\delta a}e^{-ax}\right) - 1.$$

Since

$$|\chi(x,z)| = e^{-x\operatorname{Im}(z)} \Big| 1 + \sum_{n \ge 1} r_n(x,z) \Big| \ge e^{-x\operatorname{Im}(z)} \Big\{ 1 - \Big| \sum_{n \ge 1} r_n(x,z) \Big| \Big\},$$

we obtain

$$|\chi(z)| \ge 2 - \exp\left(\frac{2c}{\delta a}\right).$$

In particular, $\chi(z)$ does not vanish if

$$2 - \exp\left(\frac{2c}{\delta a}\right) > 0,$$

i.e. if

$$\delta > \frac{2c}{a\ln(2)},$$

from which (i), (ii) and (iii) follow.

Note that, under the hypotheses of theorem 3.2, if $\lambda=z^2$ is an eigenvalue of L_0 then z can only be located on the semi disk $\{z\in\mathbb{C}:|z|\leq\delta,\operatorname{Im}(z)>0\}$ and, if q is real-valued, on the segment line $z=it,\ 0< t\leq\delta.$ Also, under the hypotheses of theorem 3.2, the resonances situated on $\{z\in\mathbb{C}:-a/3<\operatorname{Im}(z)<0\}$ must be inside the set $\{z\in\mathbb{C}:-a/3<\operatorname{Im}(z)<0,|z|\leq\delta\}$ and the spectral singularities $\lambda=z^2$ must satisfy $-\delta< z<\delta.$

We now show that a similar situation prevails in the case $\alpha \neq 0$.

Lemma 3.3. Suppose that (3.1) holds and fix $\delta > 2c/a$. Then

$$|s_n(x,z)| \le \frac{|z|}{n!} \left(\frac{2c}{|z|a}\right)^n e^{-nax}, \quad x \ge 0, \quad \text{Im}(z) > -a/3, \quad n \ge 1$$

and the series (2.3) converges absolutely and uniformly for $x \geq 0$, $z \in \Lambda_{a,\delta}$.

Proof. From (2.2), (2.3) and (2.4), we have

$$\frac{d}{dx}\chi(x,z) = e^{izx} \left(iz + \sum_{n\geq 1} s_n(x,z)\right)$$

and

$$|s_n(x,z)| \le \frac{|z|}{2|z|} \int_x^{+\infty} |q(t)r_{n-1}(t,z)| \left(1 + e^{-2\operatorname{Im}(z)(t-x)}\right) dt, \quad n \ge 1.$$

Arguing as in lemma 3.1, we obtain the stated result.

The bounds we obtain for $\alpha \in (0, \pi/2) \cup (\pi/2, \pi)$ are not as tight as the ones obtained in theorem 3.2, which is rather natural as, for $\alpha \in (0, \pi/2) \cup (\pi/2, \pi)$, it is possible to find resonances far below the real axis or large eigenvalues, depending on the value of α . We refer to the first example in the next section for an illustration of this phenomenon.

Theorem 3.4. Suppose that (3.1) holds and let δ be such that

$$\delta > \frac{2c}{a\ln(2)}.$$

Then (i), (ii) and (iii) of theorem 3.2 hold as they stand for the operator $L_{\pi/2}$ and (i), (ii) and (iii) of theorem 3.2 continue to hold for the operator L_{α} , $\alpha \in (0, \pi/2) \cup (\pi/2, \pi)$, provided we replace δ by $\max{\{\delta, \delta_{\alpha}\}}$, where

$$\delta_{\alpha} = |\cot(\alpha)| \frac{\exp\left(\frac{2c}{\delta a}\right)}{2 - \exp\left(\frac{2c}{\delta a}\right)}.$$

Proof. We first suppose that $\alpha = \pi/2$. According to (1.5), (2.3) and lemma 3.3 we have, for $z \in \Lambda_{a,\delta}$,

$$|\chi_{\pi/2}(z)| \ge |z| - |z| \left\{ \exp\left(\frac{2c}{\delta a}\right) - 1 \right\} = |z| \left\{ 2 - \exp\left(\frac{2c}{\delta a}\right) \right\}. \tag{3.2}$$

It follows that $\chi_{\pi/2}(z)$ cannot vanish inside $\Lambda_{a,\delta}$ if $\delta > 2c/a \ln(2)$, and the first part of the theorem is proved.

Suppose now that $\alpha \in (0, \pi/2) \cup (\pi/2, \pi)$. From (2.1) and lemma 3.1 we get

$$|\chi(z)| \le 1 + \sum_{n \ge 1} |r_n(0, z)| \le \exp\left(\frac{2c}{\delta a}\right).$$

On the other hand, according to (1.5),

$$|\chi_{\alpha}(z)| \ge |\sin(\alpha)\chi_{\pi/2}(z)| - |\cos(\alpha)\chi(z)|$$

so that, with (3.2), we obtain

$$|\chi_{\alpha}(z)| \ge |z\sin(\alpha)| \left\{ 2 - \exp\left(\frac{2c}{\delta a}\right) \right\} - |\cos(\alpha)| \exp\left(\frac{2c}{\delta a}\right).$$

From the equality above, it is not hard to see that $\chi_{\alpha}(z) > 0$ for

$$|z| > |\cot(\alpha)| \frac{\exp\left(\frac{2c}{\delta a}\right)}{2 - \exp\left(\frac{2c}{\delta a}\right)},$$

from which the last part of the theorem follows.

Let $\delta' = \max\{\delta, \delta_{\alpha}\}$. Under the hypotheses of theorem 3.4, the eigenvalues $\lambda = z^2$ must be such that $z \in \{z \in \mathbb{C} : |z| \le \delta'\}$, the resonances situated on $\{z \in \mathbb{C} : -a/3 < \operatorname{Im}(z) < 0\}$ must be inside the set $\{z \in \mathbb{C} : -a/3 < \operatorname{Im}(z) < 0, |z| \le \delta'\}$ and the spectral singularities $\lambda = z^2$ must satisfy $-\delta' < z < \delta'$.

4. Examples

The case $q \equiv 0$. Let $q \equiv 0$ in (1.1). Then the Jost solution is $\chi(x,z) = e^{izx}$ so that

$$\chi_{\alpha}(x,z) = \cos(\alpha)e^{izx} + iz\sin(\alpha)e^{izx}, \quad \alpha \in (0,\pi).$$

Hence the only zero of $\chi_{\alpha}(z)$ is

- z=0 if $\alpha=\pi/2$
- $z_{\alpha} = i \cot(\alpha)$ if $\alpha \in (0, \pi/2) \cup (\pi/2, \pi)$.

If $\alpha \in (0, \pi/2)$ then $\text{Im}(z_{\alpha}) > 0$, so that $\lambda_{\alpha} = -\cot^{2}(\alpha)$ is an eigenvalue and, if $\alpha \in (\pi/2, \pi)$, then $\text{Im}(z_{\alpha}) < 0$ so that $z_{\alpha} = i \cot(\alpha)$ is a resonance.

If we suppose that α is strictly complex then

$$z_{\alpha} = -\frac{\sinh(2\operatorname{Im}(\alpha))}{\cosh(2\operatorname{Im}(\alpha)) - \cos(2\operatorname{Re}(\alpha))} + i\frac{\sin(2\operatorname{Re}(\alpha))}{\cosh(2\operatorname{Im}(\alpha)) - \cos(2\operatorname{Re}(\alpha))},$$

so that $\lambda_{\alpha} = z_{\alpha}^2$ is an eigenvalue if $\sin(2\operatorname{Re}(\alpha)) > 0$, and z_{α} is a resonance if $\sin(2\operatorname{Re}(\alpha)) < 0$ and $\lambda_{\alpha} = z_{\alpha}^2$ is a spectral singularity if $\sin(2\operatorname{Re}(\alpha)) = 0$.

The Jost-Bessel function. If we take $q(x) = be^{-dx}$ in (1.1), with $b, d \in \mathbb{C}$ and Re(d) > 0, then it can be proved by induction [7] that, in the notation of (2.1),

$$\begin{split} \chi(x,z) &= e^{izx} \Big\{ 1 + \sum_{n \geq 1} r_n(x,z) \Big\} \\ &= e^{izx} \Big\{ 1 + \sum_{n \geq 1} \frac{(bd^{-2}e^{-dx})^n}{n!} \left(\frac{1}{(1-2iz/d)} \cdots \frac{1}{(n-2iz/d)} \right) \Big\}. \end{split}$$

This formula for the Jost solution is independently confirmed in [2], where it is noted that when q is real valued, (1.1) is satisfied by the Bessel function

$$J_{-2iz/d} \left\{ (2id^{-1}\sqrt{b})e^{-dx/2} \right\},$$

which is in $L^2(\mathbb{R}^+)$ for Im(z) > 0 (see also [13, §4.14] and [14, §2.13]).

If d > 0 and b > 0, then as in [2] L₀ had no eigenvalues and also no antibound states in the segment line z = it, -d/2 < t < 0.

Taking b=-1 and d=1, it was shown in [7], using methods we have not discussed in the present paper, that although L_0 has no eigenvalues, it does have a unique antibound state $z_0=it_0$ such that $t_0\in(-1/2,\ 0)$, more precisely $t_0\in[-0.139,\ -0.112]$.

In order to compare the last of these examples with the results obtained in theorem 3.2, take a=1 and c=1 in theorem 3.2. Theorem 3.2 predicts that if $\delta \geq 2.9$, then

 $\chi(z)$ has no zero inside the set $\{z \in \mathbb{C} : \text{Im}(z) > -1/3, |z| > \delta\}$, so that the estimate obtained in the last example is consistent with the bound obtained in theorem 3.2.

Note that the bounds obtained in theorem 3.2 with a=1 and c=1 also apply, for example, to the complex valued potential

$$q(x) = \frac{x - i}{x + i}e^{(-1+2i)x}.$$

5. Jost function and Titchmarsh-Weyl function

We suppose in the first instance that $q \in L(\mathbb{R}^+)$ is real valued and give a brief account of the relationship between the Jost function and the Titchmarsh-Weyl function, since the eigenvalues and more generally the spectrum of the operator L_{α} have traditionally been studied using the properties of the Titchmarsh-Weyl function $m_{\alpha}(\lambda)$. Let $\phi_{\alpha}(x,\lambda)$ be defined as above and let $\theta_{\alpha}(x,\lambda)$ be the solution of (1.1) satisfying

$$\theta_{\alpha}(0,\lambda) = \cos(\alpha), \quad \theta'_{\alpha}(0,\lambda) = \sin(\alpha).$$

Since Weyl's limit-point case applies at $+\infty$, it is known that there exists a unique linearly independent $L^2(\mathbb{R}^+)$ -solution ψ_{α} of (1.1) such that

$$\psi_{\alpha}(x,\lambda) = \theta_{\alpha}(x,\lambda) + m_{\alpha}\phi_{\alpha}(x,\lambda), \quad x \ge 0, \text{ Im } \lambda > 0,$$

which is known as the Weyl solution [13]. The function $m_{\alpha}(\lambda)$ is analytic in the upper half plane $\{\lambda \in \mathbb{C} : \operatorname{Im}(\lambda) > 0\}$ and satisfies

$$\operatorname{Im}(m_{\alpha}(\lambda)) > 0 \quad \text{for } \operatorname{Im}(\lambda) > 0,$$

so that $\lim_{\mathrm{Im}\,\lambda\to 0+} m_{\alpha}(\lambda)$ exists and is finite Lebesgue almost everywhere. The eigenvalues of L_{α} are the poles of m_{α} .

On the other hand, it is readily seen that

$$\chi(x,z) = W_0(\chi,\phi_\alpha)\theta_\alpha(x,z^2) + W_0(\theta_\alpha,\chi)\phi_\alpha(x,z^2), \quad \text{Im}(z) > 0,$$

so that we have formally

$$\psi_{\alpha}(x, z^{2}) = \frac{1}{W_{0}(\chi, \phi_{\alpha})} \chi(x, z).$$

It follows that

$$m_{\alpha}(z^2) = \frac{W_0(\theta_{\alpha}, \chi)}{W_0(\chi, \phi_{\alpha})} = \frac{W_0(\theta_{\alpha}, \chi)}{\chi_{\alpha}(z)}, \quad \text{Im}(z) > 0, \quad \text{Re}(z) > 0$$
 (5.1)

and the poles of $m_{\alpha}(z^2)$ are the zeros of $\chi_{\alpha}(z)$. Since $W_0(\theta_{\alpha}, \chi)$ and $\chi_{\alpha}(z)$ are analytic in the upper half plane $\{z \in \mathbb{C} : \text{Im}(z) > 0\}$, we can analytically extend $m_{\alpha}(\lambda)$ using (5.1). The extended Titchmarsh-Weyl function is meromorphic on $\mathbb{C} \setminus [0, +\infty)$.

If $q \in L(\mathbb{R}^+)$ is allowed to be complex valued and if $\operatorname{Im}(q) \leq 0$, a similar situation prevails [12] and we can construct a Titchmarsh-Weyl function which is analytic on $\{\lambda \in \mathbb{C} : \operatorname{Im}(\lambda) > 0\}$ and can be analytically extended to a function meromorphic on $\mathbb{C} \setminus [0, +\infty)$. For additional information and references on the relationship between the Jost solution and the Titchmarsh-Weyl function, we refer to [6].

References

- M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems, Applications of the Levinson Theorem, London Mathematical Society Monographs New Series, Clarendon Press, Oxford, 1989.
- [2] M. S. P. Eastham, Antibound states and exponentially decaying Sturm-Liouville potentials,
 J. London Math. Soc. (2) 65 (2002) 624-638.
- [3] G. Freiling, V. Yurko, Inverse Sturm-Liouville Problems and their Applications, Nova Science Publishers, New York, 2001.
- [4] R. Froese, Asymptotic distribution of resonances in one dimension, Journal of Differential Equations 137 (1997) 251-272.
- [5] M. Hitrik, Bounds on scattering poles in one dimension, Comm. Math. Phys. 208 (1999) 381-411.
- [6] S. V. Hruščev, Spectral singularities of dissipative Schrödinger operators with rapidly decaying potentials, Indiana University Math. Journal Vol. 33 No. 4 (1984) 613-638.
- [7] A. Kerouanton, Self- and nonself-adjoint Sturm-Liouville operators with exponentially decaying potentials, PhD thesis, Dublin Institute of Technology (2005).
- [8] K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order and Heisenberg's theory of S-matrices, Amer. J. Math. 71 (1949) 921-945.
- [9] M. A. Naimark, Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint differential operator of the second order on a semi-axis, American Mathematical Translation Series 2 Volume 16 (1966).
- [10] M. A. Naimark, Linear Differential Operators, Part II, Harrap, London, 1968.
- [11] A. Rybkin, Some new and old asymptotic representations of the Jost solution and the Weyl m-function for Schrödinger operators on the line, Bull. London Math. Soc. 34 (2002) 61-72.
- [12] A. R. Sims, Secondary conditions for linear differential operators of the second order, Journal of Mathematics and Mechanics, Vol. 6, No. 2 (1957).
- [13] E. C. Titchmarsh, Eigenfunction Expansions, Part I, Second Edition, Clarendon, Oxford, 1962.
- [14] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1962.

DAPHNE GILBERT

School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

E-mail address: daphne.gilbert@dit.ie

Alain Kerouanton

School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

E-mail address: alainkerouanton@hotmail.com Fax: +35314024994