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ON THE GOURSAT PROBLEM FOR A SECOND ORDER
EQUATION

SHIGEO TARAMA

ABSTRACT. We consider the Goursat problem for second order operators and
show existence and uniqueness of smooth solutions. We prove one of the results
of Hasegawa (J. Math. Soc. Japan 50 (1998), no. 3, 639-662) by the energy
method. The same method is applied when one of the surfaces where the
Goursat data are given is a non-characteristic.

1. INTRODUCTION
Hasegawa [1] studied the C*° wellposedness of the Goursat problem
0:0ru + A(t, z, y)(‘?;u = f(t,z,y) (t,z,y) € R
w0,2,y) = gi(z,y) (2,y) € R? (1.1)
u(t,0,y) = g2(t,y)  (ty) €R?

and obtained very interesting results: when A(t,x,y) = At*2! with A a non-zero
real constant and k,! non-negative integers, the Goursat problem (1.1) is C'*° well-
posed if and only if

k and [ are odd and A < 0. (1.2)

This condition is equivalent to the following condition on the signature of the coef-
ficient A(t,x,y) = AtFz! on each quadrant

M, = {(t,7,y) € R | (~1)’t < 0 and (~1)%z < 0}

with p,q =1, 2:
(—1)PH9A(t,z,y) <0 onll,,.

In other words, the polynomial of (7,&,7), 7€ + A(t, z,y)n? is hyperbolic in the
direction (1,d,0) with some constant ¢ satisfying (—1)P*96 > 0 on each quadrant
IL, ,.

Nishitani [4] gave necessary and sufficient conditions for the Goursat problem to
be C*°-wellposed in higher order differential operators with constant coefficients.
According to his result, when A(¢,z,y) is constant, (1.1) is C°°-wellposed if and
only if there exists 6y > 0 such that for 0 < |§| < o, the polynomial 7¢& + An?
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is hyperbolic in the direction (1,d,0). We note that 7& + An? is hyperbolic in the
direction (1,0,0) with § > 0 [respectively with § < 0], if and only if

A <0 [respectively A > 0].

Therefore, one may say that under condition (1.2), the polynomial 7€ + A(t, z, y)n?
satisfies Nishitani’s condition only in the “out-going” direction on each quadrant
II, ,. From this point of view, in this paper, we draw the result of Hasegawa [1],
that is to say, that the conditions (1.2) implies the C°°-wellposedness of (1.1), by
using the energy method, while Hasegawa used the fundamental solution.

Now consider the Goursat problem

Dy 0pu — tF 2L Ay (8, y)aju

+thlA1(t,x,y)8yu +ao(t,z,y)u = f(t,z,y) (t,z,y) € R
u(0,2,y) = gi(z,y) (z,y) € R
ult,0,y) = g2(t,y)  (t,y) €R?

where k and [ are non-negative integers.

We assume that for j = 1,2, A;(¢,z,y) and ao(t,z,y) are C*>°-functions on R3
and bounded on R? with derivatives of any order; that is to say, A;(t, z,y), ao(t,x,y)
are in B> (R3). Also we assume that for some positive constant &y > 0,

(1.3)

As(t,z,y) >0y on R3. (1.4)

Then we have the following statement.

Theorem 1.1. For any f(t,x,y) € C*®(R3) and g1(z,y), g2(t,y) € C*(R?) sat-
isfying the compatibility condition

91(0,9) = 92(0,9),
the Goursat problem (1.3) has one and only one solution u(t,z,y) € C*(R3).

The plan of the proof is the following. First we reduce to the case where
g1(z,y) = g2(t,y) = 0 and f(¢,=,y) is flat on both planes {(0,z,y) | (z,y) € R?}
and {(¢,0,y) | (t,y) € R?}. Then we consider (1.3) on each quadrant II(, oy (p,q =
1,2). For example, when we are on the first quadrant IT(; 1), we extend f(t,z,y) as
C*°-function out of Il 1y by putting f(t,z,y) = 0 for (¢,z,y) & Il(1,1). After ap-
proximating the operator L; = 0,0; — t?* 12241 A, (¢, z, Yy)o2 + thal Ao (t, z,9)0, +
ao(t,z,y) by the strictly hyperbolic operator L; ., we solve the Cauchy problem
Ly cu. = f(t,x,y) with zero data on the plane given by ¢t +x = 0. We see that this
solution u. supported on the closure of II(; ;). Hence by taking the limit, we obtain
the desired solution on II(; ;). The uniqueness follows from the duality argument.
The detail is given in the next section.

By using the similar argument we can consider the case that the plane x = 0 is
not characteristic, that is to say

D0 — B(t, z,y)0%u — t?F 12 Ay (t, y)@iu
—l—tka:ZHAl@yu +ao(t,z,y)u= f(t,z,y) (t,z,y) € R
w(0,2,9) = gi(z,y) (x,y) € R?
u(t,0,9) = ga(t,y)  (t,y) € R?

(1.6)
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where k& and ! are non-negative integers. We assume that A;(¢,z,y) (j = 1,2),
ao(t,z,y), B(t,z,y) € B>®(R?), (1.4) and that B(t,x,y) is real-valued and satisfies

|B(t,z,y)| > 09 on R?

with some positive constant og. Then we have the following statement.

Theorem 1.2. For any f(t,z,y) € C*®(R?) and g1(x,y), g2(t,y) € C*(R?) sat-
isfying the compatibility condition

91(0,9) = 92(0,9),
the Goursat problem (1.6) has one and only one solution u(t,z,y) € C(R3).

In this case we reduce the problem to that with g1(x,y) = 0, g2(¢,y) = 0 and
f(t,x,y) that is flat on the plane ¢ = 0. Then we consider the problem on the upper
half space ¢t > 0 and on the lower half space ¢t < 0 separately. Here we remark that
we may assume B(¢,x,y) > 0 by putting £ = —z if necessary. When we work on
the upper half space t > 0, we extend f(¢,x,y) to the lower half space by putting
f(t,z,y) =0 for t < 0. First we solve the mixed problem on the space x > 0 with
the zero initial data on the plane t 4+ dx = 0 with some § > 0 and zero Dirichlet
data on the boundary z = 0. Then the solution u given for x > 0 is supported in
the first quadrant. Since the given operator is hyperbolic with respect to z-variable
in the second quadrant. We extend wu as the solution of Cauchy problem with the
initial plane z = 0. Then we obatin a solution supported on the upper half space.
The detail is given in the section 4.

We use the following notation. The inner product in L*(R,) denoted by

(f.9) = /jo F)a(y) dy,

and the norm given by || - || = /(:,-). For an open set Q, H> () is the space
consisting of all smooth functions which and their derivatives of any order belong
to L2(£2). The space C§°(Q) consists of compactly supported C°*° functions on
Q. The space H () consists of functions f satisfying xf € H®(Q) for any

loc

X € C§°(9). For any closed set F' C R3, we denote by C5°(F) the space consisting
of all functions f on F such that f can be extended as a function in C§°(R3).
Furthermore in the following, we denote by C with or without a subscript an
arbitary constant which may be different line by line. And in the section 3 and 5,
constants C' are independent of € € (0,1) even if not mentioned explicitly.

2. PROOF OF THEOREM 1.1

We denote by L; the differential operator in (1.3):
Ly = 0,0, — t*F T2 Ay (2, 9)0,% + thal Ay (t, 2, 9)0y + ao(t, z,y). (2.1)
Suppose that u € C*(R3?) satisfies (1.3). Let w;(z,y) denote dlu(0,z,y). Then
uo(z,y) = g1(x, y)-
Since u(t,0,y) = g2(t, y), we obtain
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From the equation Lyu(t,z,y) = f(¢,x,y), we obtain that for [ > 1

l
vy (,y) Zaﬁ” (%, Oy)wi—j + 0, f(0,2,y) (2.3)

with some second order differential operators agi)(x, y,0y). We can determine suc-
cessively u;(z,y) from (2.2) and (2.3).

We see that Ly(YF, “E00) — £t 2,y) = O(tF) and that SF  “OCuL _
g2(t,y) = O(t**1). Then by picking a C*° function v(t, z, y) such that Ol (0,z,y) =
w(z,y) for any I > 0, we see that f(t,z,y) = f(t,z,y) — L1v(t,z,y) and go(t,y) =
g2(t, y)—v(t,0,y) are flat on the plane given by ¢t = 0. Hence w(t, x,y) = u(t, z,y)—
v(t, x,y) satisfies

Liw= f(t,z,y) (tzy)€R’
w0, z,y) =0 (v,y) €R?

w(t7 0, y) = go (t7 y) (t, y) S RQ

Similarly by putting w;(t,y) = 0Lw(t,0,y) (I > 0), we see that
wo(t, y) = g2(t,y).
Since w(0, z,y) = 0, we obtain
wi(0,y) = 0. (2.4)

From the equation Liw = f(t, z,y), we obtain that for [ > 1

l

dewi(t,y) = B Ly, 0 )wi_j + O (t,0,y) (2.5)

=1

with some second order differential operators ﬁj(i)(:c,y,@y). Since wy(t,y) and

AL f(t,0,y) (I > 0) are flat on the plane t = 0, we obtain from (2.4) and (2.5) w; (¢, y)
that is flat on the plane ¢t = 0. Therefore by picking a C* function w(t, z,y) such
that OLw(t,0,y) = w;(t,y) for any | > 0 and w(t,r,y) is flat on the plane t = 0, we
see that f(t, x,y) — Lyw(t, z,y) is flat on the plane given by ¢ = 0 and also on the
plane given by = 0 and that 0 = g2(¢,y) — w(¢,0,y).

Lemma 2.1. The problem to find a C* solution to (1.3) is reduced to the problem
to find a C'*° solution to the following

Liu=h(t,z,y) (t,z,y) € R3
w(0,2,y) =0 (x,y) € R? (2.6)
u(t,0,y) =0 (t,y) € R?

where h(t,x,y) is flat on the plane given by t = 0 and on the plane given by x = 0.

We remark that a C* solution u(t, z,y) to (2.6) is flat on the plane given by
t = 0 and on the plane given by = = 0.
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Since h(t,z,y) is flat on the plane given by ¢ = 0 and on the plane given by
x =0, we can define smooth functions hy 4(t, z,y) (p,g = 1,2) by

h(thvy) (ta'Iay) GHPQ
hypo(t,z,y) = : 2.7
palt;7y) {O otherwise. (2.7)
Now we consider the problem
L1U: hp,q(tafl%y) (t,l‘,y) €R3 (2 8)

suppu C I, 4
If upq(t, 2, y) is the solution to (2.8), then 37 _; 5 5 Upq(t, x,y) satisfies (2.6).
On the other hand for a solution u(t, z,y) to (2.6), then u, 4(¢, z,y) defined by

u(tvxvy) (t,CC,y) GHPZI
u t’ x? = . ’
pal v) {O otherwise.

is a solution to (2.8). Therefore the uniqueness for (2.8) implies that of (2.6).

We note that the problem (2.8) with (p,q) # (1,1) is reduced to that of (1,1)
by the change of coordinates t = (—1)P~1¢, x = (—1)?"'x. Then we have only to
prove the following proposition in order to prove Theorem 1.1.

Proposition 2.2. For any h(t,z,y) € C*(R®) satisfying supp h(t,z,y) C II1 1,
there exists one and only one solution u(t,z,y) € C®(R?) to the equation

Llu: h(t,l’,y) (t,J?,y) € RS
_ (2.10)
suppu C IT; ¢

Proof. To show the proposition above, we define the operator L; . with 1 >¢ >0
by
Ly = 0,0, — t2MT a2 Ay (t, m,y)0; + thal Ay (t, 2,9)0y + ao(t, ,y).
where t. and z. are given by
te =ex(2), ze=ex(2) (2.12)
by using a function x(s) € C*°(R) satisfying the following;

x(s) > max{%,s +1} (seR)
1

X(8)=sH+1 (520), x(5)=1 (s< 1)
We note that t., z. € C*°(R) and that
e, xszg, te=t+e (t>0), ze=ax+e (z>0). (2.13)

Since t2k+122+1 Ay (¢, 2,y) > 0 on R®, we see that the operator L; . is strictly
hyperbolic in the direction (4,1 — §,0) with 0 < § < 1. For any T > 0, the
coefficients of L; . are bounded on a closed domain Dom 7 given by

, 1
Domp = {(t,z,y) ER® | 2T >z + ¢ > 5( 14 (t—x)2—1)}.
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Since I 1 C {(t,z,y) € R® |z +t > L(\/1+(t—2)2 — 1)}, for a h(t,z,y) €

C>(R3) satisfying supp h(t,x,y) C II; 1, there exists one and only one solution
ue(t, z,y) € C°(R?) of the Cauchy problem

Ly ue. = h(t,:v,y) (tw,y) €eR’
1
suppu. C {(t,z,y) €R® |z +¢ > 5(\/1 +(t—z)2=1)}.

Since the plane {(t,z,y) € R? | 6t + (1 — §)a = 0} with 0 < § < 1 is space-like, we
see that

(2.14)

supp ue(t, z,y) C Iy 1.

Furthermore we have the finite propagation speed. That is to say, for any 7" > 0,
there exists a positive constant A independent of € such that, for any yo € R and
r >0,

supp h(t,z,y) NDom C {(t,2,y) € R® | |y —yo| <7}
implies
supp ue (t, z,y) NDom ¢ C {(t,x,y) €R®| |y —yo| <7+ A}
If we can draw a sequence u, (¢, z,y) with ¢; — 0 such that u., (¢, z,y) converges
to a u(t,z,y) in C°°(R3), then we see that u(t,z,y) satisfies (2.10). We see the

existence of such a sequence from the following lemma whose proof is given in the
section 3.

Lemma 2.3. The family of solutions {uc(t,z,y)}oce<1 to (2.14) is bounded in the
space HS(R3).

loc

Concerning the uniqueness of solutions of the problem (2.10), we consider the
adjoint problem; for any T' > 0 and any g(t,7,y) € C§°(R?) whose support is
contained in {(¢t,z,y) € R®|0< ¢t <T and 0 <z < T}, find a solution w(t,z,y)
to

Lycw. = g(t.z,y) (tz,y) €R® (2.15)
Suppwac{(t’x,y)€R3|x+t§2T} .

where 'L; ., the transpose of L ., is given by
"Licw(t,z,y) = 0 0pw(t,z,y) — 22419, (As(t 2, y)w(t, 2,y))
— th2l o, (Av(t, 2, y)w(t, z,y)) + ao(t, z,y)w(t, ,y). (2.16)

The coefficients of L . are also bounded in Dom 7. Then solutions we(t,,y)
have a finite propagation speed independent of 0 < € < 1 in Domy. Then there
exists a compact set F' € R® such that

supp we (t, z,y) N {(t,m,y) cR*|t>0and z > O} Cc F.
Since the plane given by (1 — 6)t + dx = C with 0 < § < 1 is space like, we have
SuppwE(t7x7y) C (_OOaT] X (_OOaT] x R.

Then we obtain the second assertion of the following lemma. The proof of the first
assertion is given in the section 3.
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Lemma 2.4. The family of solutions {w.(t,z,y)}o<e<1 to (2.15) is bounded in the
space H®({(t,z,y) €ER® |0 <z < T and 0 < x < T}). Furtheremore there eists
some constant ro such that
suppwe (t, z,y) N {(t,z,y) € R* |t > 0 and z > 0}
c{lt,z,y) eR}|0<t<T, 0<z<T and |y| <ro}.
Therefore we have a sequence we, (t,x,y) with €; — 0 such that w.,(t,z,y)
converges to a w(t,z,y) in C°({(t,z,y) € R3 |0 <t <T and 0 < z < T}). Then

we see by the integration by parts that for a solution u(¢, z, y) of the problem (2.10)
with h(t,z,y) =0

O:/ Lyu(t, z,y)w(t, z,y) dt de dy
R3

= lim Ly ¢ ult, @, y)we, (t, z,y) dt dx dy

J—00 R3
= [ utt.og)glt,ny) dedsdy
]R3

from which we get u(t,z,y) = 0. Hence we obtain the uniqueness of solutions of
the problem (2.10). O

3. PROOF OF LEMMAS 2.3 AND 2.4

First we draw the estimates for u(t, z,y) € C*°(R?) carried by II; ; and vanishing
for large |y| by using the method of Oleinik [5]. Since

2R(0; 0y — 2K 12 Ay (¢, 2, )0, 2, Dpu)

= Op(0yu, Opu) + t2F T 2209, (Ay(t, , -)Oyu, yu) + Ry 3.1)
where
|Ru| < CEZFFaZH (|0 ul® + 1|0z ull?) (3.2)
and
2R(0;0pu — 12K 2 Ay (¢, 2, )0, 2, Dyu) (33)
= 0, (Opu, Opu) + t2 L2419, (As(t, , -)Dyu, Dyu) + Ro
where
|Ro| < O 221 ([|0yull + 10pu]?),
we have
ICE A e e R
+a, (ef’y(t+z)t;M+2k+1x;M+2l+1(AQ(t’ 2, )0y, Dyu))
4 e‘V(tﬂ)(yts + Mt/g)tg_M_leg_MHaqu? 53

+ e (e 4 (M = 20 = D)al )t M M Ay (8, @, ) Dy u, D)
< 207V =My =M, 0, u(t, x,y) — 28122 Ay (8, 2, )0, 2u, Dpu)

+ Ce—’Y(t+ac)tE—M+2k+1.'L‘E_M+2l+1(Hayu”Q + Haﬂ@uHQ)
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and
az(e—w(t-i-z)tg—MxE—M”atuHQ)
+ 815 (e—'y(t-ﬂc)ﬁE—M—&-2k+1x6—M—0—2l+1(A?(t7 x, -)8yu, 8yu))
+ e YD) (g, + Mal)tz Ma s M1 0pul?
+ e V) (3t (M — 2k — 1)Lt MA2Rp - ME2HL (A (¢ 22, ) Dy, Dyu)
< 207 VEHD =My =M, 9, u — t2F 124 Ay (8, 2, )0, u, Dyu)

+ Ce—w(t+z)tE—M+2k+1xE_M+2l+1(Hay“||2 + [[9hul?).

(3.6)

Since
8tawu(t7 €, y) - t?k+1x?l+1A2 (ta T, y)ayzu(t, xZ, y)
- Ll,au(tv x, y) - tlg'rzl-:Al (t7 x, y)ayu(ta z, y) — Qg (t7 z, y)u(ta x, y))
we have
|(OrOzu — t?k+1x3l+1A2 (t, z, ~)8y2u, O u)]
< (I|Ly cull + CotEal | 0yull + Cllull)|0zull - (3.7)
and
[(OpOzu — t?’”lx?l“Ag(t, x, ~)(’9y2u, Opu)|
< (| Ly cull + CotEal | 0yull + Cllul) |0sull  (3.8)
where Cy = supgs |41(t, z,y)|. Noting

Co _
CotEal||0yulll|0ull < 7(@“13@[”8@/“”2 + t- | 0gul?),

Co _
Cottxl||0yul[| O] < 7(t§k$§l+1||5yu\|2 + 22| 0ul?)
and
tL=1 (t>0),2L=1 (z>0)

which follows from (2.13), we see that (3.5), (3.6), (3.7) and (3.8) imply the follow-
ing; fort >0 and x >0

Bu{e 1M G ([0, w2 + 25H 24 (A (t, 3, )0,u, 0,u)) }

0, {e MG (o2 + 2502 (An(t, 2,0, 0,0,)

e TR Mg ML (1|0 | + (|0l
+ (M — Co)tZH|0pull® + (M — Co)x*[|0pul|*}

+ef'y(t+w)t;M+2k:+lx‘;M+2l+1(27 + (M = 26— 1)t  + (M — 21 — 1)a7h)
X (Aa(t, z,-)Oyu, Oyu)

<e Mg M (|| Ly cul* + (|00ull® + |9l
+ CotZ a0y ul|? + Clul?).

Since As(t, z,y) > Jp > 0 and

(3.9)

Oy (e Y Fmh Mg M |1y |[2) 4 @R ) Mg M (o ALt ) 2
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—y(t+z) =M, —M 9 2 2
<e te Mz (Gl + ;II(’MH ) (3.10)

which follows from &;|lul? = 2R(d;u,u) and the Schwarz inequality, we obtain,
from (3.9), when

Co

Co
M > 2max{Cy,2k+ 1+ — 2l+1+5 1,

do

for t1 > 0, 1 > 0 and for v > 7y with some constant vy > 0 independent of ¢,

/ / V()M M{ (lowull® + 10z ull* + [[ull?)
41 2 2 % -1 2
+ 5 te ([[0zull® + [Jul]®) + 5 Te (|Opul|?} dt da
b M
+/ / e (el MA 2kl “MA2H L 5 Ly 7(7&51 + x| 0yul?} dt dx

t1 xry
s/ / e V@) =My =M 1) || dt dx

from which we obtain
t1 x1
2L e e M ol 0zl + ) de o

tl Xy
+ 507/ / e’”’(H“")t;Mﬂka;MﬂlH\|8yu||2 dt dz (312)
0 0

< /fl /-Tl 6—v(t+x)t€—M3;£—M||Ll)Eu”2 dt de.
0 0
Since
Oyl cu = El,sayu + agy(t,z,y)u
where
I~4178 =L t§k+l$gl+1A2y(tv €T, y)ay + t];méAly(t, x,y)

with Agy(t,z,y) = 0,A42(t,x,y), A1y(t,z,y) = 0,A1(t,x,y) and agy(t,z,y) =
Oyao(t,z,y). Noting that

[E25 a2 Agy (¢, @, )Oyul|* < CHF 22229 ul?,

we have the estimate similar to (3.12); with the same M as that of (3.12)
,y tl xry
S [ e T o+ ol + ) e d
(50'7 / / e~V ()4 M+2k+1 7M+2l+1H8 u||2 dt dx (315)

t1 ~
< / / e V@) =My =M\ 1) || dt dx
0 0
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for v > ~1 with some constant v; > 0 which is independent of € but may depend
on z1 and t;. Repeating the same argument, we have for any integer [ > 0

l t1 x1 )
>0 / / eI MM (110,00
=0 Jo Jo

j 2 ] 2
+ 1000 ull® + [|0)ul|?) dt da

! tpm , (3.16)
+ Z '7/ / efy(t+w)th+2k+1m;M+2l+l Haf,HUHQ dt dx
= Jo Jo

l ty x1
<> c / / e R =My MY 9I L) ul® dt da
=0 Jo Jo

for v > v, with some constant v; > 0 independent of £ and some constant C' > 0
independent of € and ~. Since

[ataLLE] = Rt(ta'r7y78y)a [8137111,8] = Rw(taxayaay)

where R;(t,z,y,0,) and R,(t,z,y,0,) are second order differential operators, we
obtain from (3.16)

l t1 1
Savemsca 3o [ [ e G o o ojul s
=0

t1 1 .
SC/ / e*’Y(t+a:)t;stfM< Z ||3?13?25§L1,5UH2
0 0

a1taz<l1
aptaz+ji<l+1

+ \|8é+2L175u\|2) dt dx

for v > ~y;,1 with some constant 3 > 0 independent of € and some constant C' > 0
independent of € and v. Repeating this argument we have the following lemma.

Lemma 3.1. Let u(t,z,y) € C(R3) satisfy suppu(t,=,y) C II11 and vanish for
large |y|. For any integer k > 1 and any integer 1 > 0

l t1 x1 )
. D /0 /0 e M g M g 9290w di da

a1ta2<2k—1 75=0

t1 T -
< O/O /O e_'Y(t—O—I)tE_MxE_M( Z ||6?18;1262J/L1,8u”2) dt da

a1ta<2k—2
artaz+j<2k—241

l t1 x1 )
Y YA /O /0 e M g M 9 902 5|12 it d

ay+az<2k j=0

t1 Xy . 1
< C/ / e—'y(t+x)t€—M$6—M< Z o 8;128;[/1’511”2' (3.18)
0 0 artax<2k—1
a1 tas+ji<2k+1-1

(3.17)

+ |02FH Ly cul?) dt da

for v > i1 with some constant ;. > 0 independent of € and some constant C > 0
independent of € and .
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For the estimate of the right hand side of (3.17) or (3.18), we need the following
lemma.

Lemma 3.2. When a v(t,z,y) € C®(R3) satisfies suppv(t,z,y) C Il1 1 and van-
ishes for large |y|, we have, for t;,z1 > 0 and any integer K > 1

t1 1 t1 1
/ / 2K 72K g1 dt do < C/ / 105 0K v||? dt dx
o Jo o Jo

with some constant C > 0 independent of .

Proof. Since v(t,z,y) is flat on the plane ¢ = 0 and on the plane z = 0, we have
for t,z >0

v(t,x,y) :ﬁ/o (t — s)K7 10K u(s, z,y)ds

1 t x B B
([(_1)!2/0 /0 (t — ) (@ — )51 0K v (s, w,y)dsdw
Then .
ot < O [ 00 (s, w,y) Pdsd,
0 Jo

which implies
t x
t A 2 oty y) P < © / / 0 0 v (s, w, y)|*dsdw.
o Jo

For t/t. <1 (t > 0) and z/z. < 1 (x > 0). By integrating both sides of the
inequality above, we obtain the desired estimate. O

Therefore, from Lemma 3.1 and Lemma 3.2 we see that any u(t, z,y) that enjoys
the assumption of Lemma 3.1 satisfies the following; for any integer M7 > 0 there
exists an integer M5 > 0 such that for ¢1,z1 >0

tl Xy .
> / / |85 092 0 u|? dt dx
0 0

artaz+ji<M;

t1 1
ﬁc/ / (S 11900200 Ly cull?) dt da
0 0

aytaz+j<Ms

(3.20)

Proof of Lemma 2.3. As we remarked in the previous section, solutions u. (¢, z, y) en-
joy the finite speed of propagation. Hence for any compact set K in R?, there exists
a compact set K7 such that for any hy (¢, z,y) € C5°(R?) satisfying supp h1 (¢, x,y) C
I 1 and hy (¢, z,y) = h(t, z,y) on K1 where h(t, z,y) is the right hand side of (2.14),
the solution of the problem (2.14) with hi (¢, z,y) in the place of h(t,z,y) coincides
with u(t,z,y) on K. By using x1(t,z,y) € C§°(R3) satisfying x1(¢,7,y) = 1 on
K1, we obtain from (3.20) that

> [[] ooz ot adsay
K

ajtas+ji<M;
= C///]Rs( Z |a?18§28ixlh(t7$,y)|2) dt dzx dy

artaz+j< M2

which implies the assertion of Lemma 2.3. ]
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Next we prove Lemma 2.4. From (3.1), (3.2) and (3.3) we have
= (T M| 0 u|?)
— O, (P MAZRR L M2 () (1 Dy, D))
+ e (yt + MENEY M| Ol
+ D) (s 4 (M + 20 4 1)) tM¥2RHL MA2U Ay (1 2 )0y, Dyu)
< =2 MMy (9, 0,0 — 2K 2 Ay (8, 2, )0, 2, Dpu)
F ORI (9,02 4 [0,u]?)
and
= 0o (M M| Oyul|?)
— 0y (YR MARR L MA2EL (4 (1 )0, 0, D) )
+ 0 (e + Mal )t e | Opul?
+ eV (gt 4 (M + 2k + 1)) 2R M2 (A (8,2, )Oyu, Oyu)
< =2 My Mapy(9,0,u — 2L 2 H L Ay (8, 2, )0, 2w, D)
+ OV UHD IR ML (19| + (|9 |?).

The definition of *L; . (2.16) and the argument used for estimates (3.12) and (3.15)
imply that for any w(t,z,y) € C°(R3) satisfying suppw(t,z,y) C {(t,2,y) € R3? |
t <ty and z < x1} with some ¢1, 1 > 0 and vanishing for large |y|, we have

t1 px
7 x) M M 2 2 9
5/0 /0 e (t+ )ts x; (||8tw|\ + [|8pw|)? + ||w]| )dtdm
’750 iz Mot MLt )
+ 7/ / e'Y(t-‘rx)tE +2k+ x; +21+ ||8ywH dt dx (321)
0 0

t1 x1
< / / YO My Mytp) |2 dt da
0 0

for v > vy and M > M, with some positive constants vy and My which are
independent of e. Similarly we obtain the estimates for the derivatives of w(t, z,y).
Hence
Lemma 3.3. Let w(t,z,y) € C>(R?) satisfy suppu(t,z,y) C {(t,z,y) e R® |t <
t1 and x < x1} with some t1, x1 > 0 and vanish for large |y|.

For any integer k > 1 and any integer I > 0

l t1 x1 )
Z Z’y/o /0 eV(HI)tyxéV[||8f‘18§28;w||2dtdx

a1+a2<2k—1 j=0

t1 T .
< C/ / ( § j MM |00 92200 'Ly cw||?) dt da
0 0

a1 Fa<2k—2
ar1tas+j<2k—2+41

(3.22)

l tl Xy .
Z Z'y/o /0 eW(t”)téwx?/[\|8f‘13§‘28;w\|2dtd:z:

ay+azx<2k j=0
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t1 T '
< C/O /0 e_’Y(t-‘rI)téwl'éV[( Z ||ata1agzag/ tL1,5w||2

arta<2k—1
ataz+j<2k+i-1

+ |02FH Ly cwl|?) dt dx (3.23)

for v > v and M > My with some constant v, > 0 independent of € and some
constant C' > 0 independent of € and v where My is the constant appearing in
(3.21).

In order to estimate L?-norm of w(t,x,y) and its derivatives by the left hand
side of (3.22) or (3.23), we use the following lemma.

Lemma 3.4. When a v(t,x,y) € C®(R3) satisfies suppv(t,z,y) C {(t,z,y) €
R? |t <t and x < 21} with some t1, x1 > 0 and vanishes for large |y|, we have
for any integer K > 0,

t1 1 t1 1
/ / o2 dt dz < c/ / 2K 2K | 9K 9K 2 it dp
0 0 0 0

with some constant C' > 0 independent of €.
Proof. When f(s) € C*°(R) vanishes for s > sy > 0, we have for any integer k > 0,
S50 S0 R
(2k + 1)/ s2 1 FR) (s)2d s + 2%/ s2FL (R (5) f+1) (5)d s = 0
0 0

from which we obtain

S0 4 S0
/ S2k|f(k)(8)|2ds < (2k ~ 1)2 /0 S2k+2|f(k+1)(s)‘2d8.

0

Hence, by the induction, for any positive integer K
So S0
[ ipas < 4 [T 00
0 0
The estimate above implies the desired assertion of Lemma 3.3. [l
Therefore, from Lemma 3.3 and Lemma 3.4 we see that for any w(t,z,y) that

satisfies the assumption of Lemma 3.3 we have the following; for any integer M; > 0
there exists an integer My > 0 such that for ¢1,z; >0

tl Xy .
> / / |85 992 0 wl|? dt dx
0 0

a1 +az+ji<M;
t1 Xy .
§C/ /( S 971 0520] Ly cwl|?) dt da
0 0

a1taz+j<Ms

(3.25)

Then the estimate (3.25) shows that a solution of the problem (2.15) w(t, z,y)
(0 < e < 1) is bounded in H®({(t,z,y) € R? |0 <t < Tand 0 < z < T}).
Hence we see that the first assertion of Lemma 2.4 is also valid. Then the proof of
Theorem 1.1 is completed.
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4. PROOF OF THEOREM 1.2

We denote by Lo the differential operator in (1.6);

Ly = 0,0; — B(t,z,y)0? — 2R L2 Ay (¢, y)@i
+ 72T A0, (t, o, y) + ao(t, 2, y)

where, by the assumption, |B(t, x,y)| > o9 and As(t, z,y) > dp with some positive
constants oo and d.

As the proof of Lemma 2.1, we can construct a function v(t, x,y) € C*°(R?) such
that

v(0,2,y) = g1(z,y), v(t,0,y) = g2(t,y)
Lov(t,xz,y) — f(t,z,y) is flat on the plane ¢t = 0.
Then the problem (1.6) can be reduced to the problem
Lou = h(t,z,y) (t,z,y) € R
u(0,z,9) =0 (z,y) € R? (4.1)
u(t,0,) =0 (t,y) € R?

where h(t,z,y) is flat on the plane t = 0.
We remark that a C°°— solution u(t,x,y) to (4.1) is flat on ¢ = 0.
By putting

ug(t,z,y) = {g(t,%y) g i 8;
u_(t,x,y) = ut,z,y) — us(t, x,y),
we see that uy (¢, z,y) [resp. u_(t, z,y)] satisfies
Louy = hy(t,z,y) (t,z,y) € R’
ui(0,2,y) =0 (z,y) € R? (4.2)
suppuy (t,2,y) C {(t,z,y) € R* | t > 0}

[resp.
Lou_ =h_(t,z,y) (t,z,y) €R3
u_(0,z,9) =0 (z,y) € R? (4.3)
suppu_(t,x,y) C {(t,x,y) € R® |t < 0}.
] where

hy(t,z,y) = {g(t,x,y) g i gi

h_(t,x,y) = h’(tﬂz7y) - h+(t,:z:,y).

On the other hand the sum of solutions u4 (¢, z,y) to (4.2) and u_(¢,x,y) to (4.3)
satisfies (4.1). While by the change of coordinate ¢ = —t, the problem (4.3) is
reduced to that of (4.2), hence for the proof of Theorem 2 it suffices to prove the
following proposition.
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Proposition 4.1. For any h(t,z,y) € C°(R3?) whose support is contained in
{(t,z,y) € R® | t > 0}, there exists one and only one solution u(t,z,y) € C>°(R?)
of the problem

Lou = h(t,z,y) in R?
u(0,z,9) =0 on R? (4.4)
suppu(t,z,y) C {(t,z,y) € R* |t > 0}.

Proposition 4.1 follows from the following two propositions where ‘Lq is the
transpose of Lo, that is to say,

'Ly = 0,0, — B(t,7,y)0% — 2B, (t,2,9)0s — Bua(t, z,y)
— PRl 20 (Ag (t, z, y)@; + 249, (t, z,y)0y + Agyy(t, z, y))
- thl+1(A1 (ta &€, y)ay + Aly(ta z, y)) + llo(t, z, y)

where B, (t,x,y) = 0,B(t,7,y), Bux(t,z,y) = 02B(t,x,y) and the similar nota-
tions are used for A;(t,z,y) (j =1,2).

As remarked in the section 1, we may assume B(t,z,y) > o0p. Then in the
following we assume

1
— 2 B(tvxay) 2 0p. (45)
000
Proposition 4.2. a) For any h(t,z,y) € C®({(t,x,y) € R3 | x > 0}) satisfying
h(t,z,y) = 0 fort <0, there exists a solution u(t,z,y) € C®({(t,z,y) € R3 |z >
0}) of the mized problem

Lou = h(t,z,y) in {(t,z,y) € R® |2z >0}
u(t,0,5) =0 on R? (4.6)
u(t,z,y) =0 (¢t <0).
b) For any h(t,z,y) € C({(t,z,y) € R® | z > 0}) and g(t,y) € C3°(R?), there
t

exists a solution w(t,z,y) € C({(t,z,y) € R® | z > 0 and t > 0}) of the mized
problem

tLow = h(t,z,y) in {(t,z,y) €R3 |z >0 and t > 0}
w(t,0,y) = g(t.y) on{(t,y) €R* |t >0}

Proposition 4.3. a) For any h(t,z,y) € C®({(t,z,y) € R? | x < 0}) satisfying
h(t,z,y) =0 fort <0 and any g1(t,y), g2(t,y) € C°(R?) carried on {(t,y) € R? |
t > 0}, there exists a solution u(t,z,y) € C°({(t,z,y) € R® | x < 0}) satisfying
u(t,x,y) =0 for t <0 of the Cauchy problem

(4.7)

Lou = h(t,z,y) in {(t,z,y) € R® |2z <0}
u(t,0,y) = gi(t,y) onR? (4.8)
8zu(t7 07 y) =92 <t7 y) on RQ

b) For any h(t,z,y) € C({(t,z,y) € R® | 2 < 0}) , there exists a solution
w(t,x,y) € C&({(t,z,y) €ER3 | 2 <0 and t > 0}) to

tLow = h(t,z,y) in {(t,z,y) € R |z <0 and t > 0} (4.9)
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We see that Proposition 4.2 and Proposition 4.3 imply Proposition 4.1. Indeed,
for any h(t,z,y) € C*(R®) whose support contained in {(¢,z,y) € R? | t > 0}, we
solve (4.6). Let uy(t,z,y) € C°({(t,z,y) € R® | z > 0}) be its solution. Then
by putting g1 (¢,y) = uy(t,0,y) and ga(t,y) = Ozuy(t,0,y), we solve the Cauchy
problem (4.8) whose solution we denote by u_(t,z,y) € C*({(t,z,y) € R? | z <
0}). Then u(t,z,y) € C*°(R3) defined by

wlt. z _ u+(t,x,y) (JZ > O)
(tz,9) {u_(t,:r,y) (x <0)

satisfies (4.4).

On the other hand, for any h(t,z,y) € C5°(R?), we solve (4.9). Let w_(t,z,y) €
Ce({(t,x,y) € R® |z < 0 and ¢t > 0}) be its solution. Then by putting g(¢,y) =
w_(t,0,y), we solve (4.7), whose solution is denoted by w4 (t,z,y). Now we define

w(t,z,y) by
wlt o) = wy(t,z,y) (x>0
(o) {w(t,x,w (@ <0).

~~

Since we have, if u(t,0,y) = 0,
| utayutayds = [ utspodetods,

which implies for a solution u(t, z,y) of (4.4)

/// Lou(t, z,y)w(t, z.y dtdxdy—/// u(t,z,y) "Low(t, x.y) dt dz dy,
R3 R3

then for any solution u(t,x,y) of (4.4) with h(t, z,y) = 0, we obtain

/// u(t,z,y)h(t, z.y) dt dz dy = 0.
R3

Then we see u(t, z,y) = 0, which implies the uniqueness of solution of (4.4).
For the proof of Proposition 4.2, using the functions ¢. and x. defined by (2.12),
we introduce the opertors Ly . and ‘L . by
L2,5 = 8tam - B(t7 z, y)ag
— 2P 2 Ay (@, )02 + tE T el AL (@, ) 0y + ao(t, 2, y)

and

tL275 = 0,0, — B(t, x, y)@i — 2B, (t,x,y)0r — Bz (t, z,y)
— t?kﬂx?lﬂ (Ag(t, T, y)aj + 249, (t, x,y)0y + Agyy(t, z, y))
— teM M (A (t 2, y)d, + Ayt 2,y)) + ao(t, 2, y).-
We see from the assumption (4.5) that both operators L. and ‘Lo . are strictly
hyperbolic in the direction (1,0,0) with 0 < o < g9 and the plane z = 0 is time

like. Then both of the following two mixed problems are C'*°-wellposed (see for
example [2] or [6]).
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Find a solution u.(t,z,y) € C*®({(t,z,y) € R? | z > 0}) satisfying
Lycue = h(t,z,y) in{(t,z,y) €R* |z >0}
ue(t,0,y) =0 on R? (4.12)
ue(t,z,y) =0 (t+ ?m <0).
where h(t,z,y) € C°({(t,z,y) € R® | x > 0}) satisfies h(t,z,y) =0 for t < 0.

Find a solution w.(t,z,y) € C3°({(t,z,y) € R* | @ > O and t + %%z > 0})
satisfying

‘Lo we. = h(t,z,y) in {(t,z,y) € R®|z>0andt+ ?x >0}

(4.13)
we(t,0,y) = g(t,y) on {(t,y) € R*[¢ >0}
where h(t,z,y) € C°({(t,z,y) € R? | 2 > 0}) and g(t,y) € C°(R?).
First we remark that the surface given by
90, 1 _ 000 ey =
t+ 5 :c+4( 14 (t 5 z)2-1)=C
is space like for L, . and that on the closed domain V7 given by
Vr={(t,z,y) ER®* |2 >0, t+ ?x >0 and
000 1 000 o }
0z 92 )<
t+ 5 x+4( 14 (t 5 z)2-1)<T

the coefficients of Ly . are bounded.

Concerning solutions u. (¢, z,y) to (4.12), since the plane t + oz = C with 0 <
o < ogo 1s space like, we see that u.(t,z,y) = 0 for ¢ < 0. Then the following
lemma implies the part a) of Proposition 4.2.

Lemma 4.4. The family of solutions {uc(t,z,y)} o<ce<1 to (4.12) is bounded in
Hig ({(t,2,y) € R® |z > 0}).
Indeed, thanks to the lemma above we can find a subsequence {u,(t,z,y)}
(j =1,2,---) which converges to a C*°-function u(t,z,y) that satisfies (4.6).
On the other hand, we note that the surface given by
000 g00

1
200, = _ 200 02 ) =
t+ 5 T 4( 14 (t 233) 1)=0

is space like for ‘Lo .. Since on the closed domain Wy given by

Wr = {(t,z,y) €R® |z >0, t+%x§Tand

700 L 200 2
— 7 — — - — — >
t+ T (/14 (2t x) 1) >0}

the coefficients of ‘Lo . are bounded, ‘Ls . has the finite propagation speed inde-
pendent of 0 < £ < 1 on Wyp. Furthermore we see that
000 1 T00

O (14— 22— 1) >
t+ o — (/14 (- —F2)? 1) >0



18 SHIGEO TARAMA EJDE-2002/52

for t > 0 and x > 0. Let Ty > 0 satisfy

T > sup t+ 70,

(t,z,y)Esupp ﬁ(t,m,y) 2
and
To > sup t.
(t,y)€supp g(t,y)

Then we see that we(t,z,y) = 0 if t + %z > T, Since 'Lsc has the finite
propagation speed independent of 0 < ¢ < 1 on Wr,, we see that there exists a
compact set F' such that

suppw. (t,z,y) N {(t,z,y) ER* |2 >0 and t >0} C F.
Hence, similarly to the case of the part a) of Proposition 4.2, the following lemma
implies the part b) of Proposition 4.2.
Lemma 4.5. The family of solutions {we(t,z,y)}o<e<1 to (4.13) is bounded in
H>({(t,z,y) €R® |z >0 and t > 0}).

The proof of Lemma 4.4 and Lemma 4.5 is given in the next section.

For the proof of Proposition 4.3, we first change the problem in the half space
{(t,z,y) € R® | = < 0} to that in {(t,z,y) € R® [ > 0} by the change of
coordinate £ = —z. Let Ly be

Ly = 8,0, + B(t,z,y)0? — t** 102 Ay (¢, x, y)@j + 72! A0, + ao(t, 2, y)
where B(t,z,y) > o9 and As(t,x,y) > d¢ with some positive constants oy and dy.
Then Proposition 4.3 is equivalent to the following proposition.

Proposition 4.6. a) For any h(t,z,y) € C®({(t,x,y) € R3 | z > 0}) satisfying
h(t,z,y) =0 fort < 0 and any g1(t,y), g2(t,y) € C°(R?) whose support contained
in {(t,y) € R? | t > 0}, there exists a solution u(t,z,y) € C*({(t,z,y) € R3 |z >
0}) satisfying u(t,z,y) =0 for t <0 of the Cauchy problem
Lou = h(t,z,y) in {(t,z,y) € R® |z >0}
u(t,0,y) = g1(t,y) onR? (4.15)
Opu(t,0,y) = go(t,y) on R?

b) For any h(t,z,y) € C({(t,z,y) € R® | & > 0}), there exists a solution
w(t,z,y) € C({(t,z,y) €ER3 |z >0 and t > 0}) to the equation

tLow = h(t,z,y) in {(t,z,y) €R3 |z >0 and t > 0}
where 'Ly is the transpose of L.

First of all, we remark that the argument similar to Lemma 2.1 implies that
there exists a function v(t,z,y) € C®({(t,x,y) € R® | 2 > 0}) supported in
{(t,z,y) € R3 |z >0 and t > 0} and satisfying the followings; v(t,0,y) = g1(t, %),
D,v0(t,0,y) = ga(t,y) and Lov(t,z,y) — h(t,z,y) is flat on = = 0. Then by taking
u(t,z,y) — v(t,z,y), the problem (4.15) is reduced the case where ¢;(¢t,y) = 0,
g2(t,y) = 0 and h(t,x,y) is flat on z = 0.

For the proof of Proposition 4.6, using the functions ¢. and x. defined by (2.12),
we introduce the operators Eg,s by

Lo. = 0,05 + B(t,z,y)02
- tszrlxglJrlAQ (tv &€, y)ag + tlgxls+1A1(tv x, y)ay + aO(tv x, y)
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Let *Ly . be the transpose of Ly .. Since Ly . and *Lo . are strictly hyperbolic in
the direction (p,1,0) with 4 > —og, both of the following Cauchy problems are
C*>-wellposed (see for example [3]).
Find a solution u.(t,z,y) € C°({(t,z,y) € R® | 2 > 0}) that satisfies
Lycus = h(t,z,y) in {(t,z,y) R |z >0}
u:(t,0,9) =0 on R? (4.17)
Dpucs(t,0,y) =0 on R?
where h(t,z,y) € C®({(t,z,y) € R® | > 0}) which is supported in {(t,z,y) €
R? |z >0 and t > 0} and flat on = = 0.
Find a solution w, (¢, z,y) € C§°({(t,z,y) € R | z > 0}) satisfying
"Lycwe = h(t,z,y) in{(t,z,y) €R® |z >0} (4.18)
where h(t,z,y) € C°({(t,z,y) € R? | z > 0}). )
Since the plane ut+x = 0 (1 > —oy) is space like for Lo ., we see that a solution

of (4.17) uc(t,z,y) vanishes for ¢ < 0. Hence, similarly to the case of the part a)
of Proposition 4.2, the following lemma implies the part a) of Proposition 4.6.

Lemma 4.7. The family of solutions {uc(t,z,y)}o<e<1 to (4.17) is bounded in
Hig({(tz,y) € R? |2 > 0}).
Similarly to the case (4.13), let X > 0 satisfy

X > sup z.
(t,,y)Esupp h(t,z,y)

For any X; and X5 satisfying X; < X5 and any tg, if 0 < v < 4(%5)(1)’ the surface
r—v(t—1t)? = X1 in {(t,z,y) € R3 | 2 < X5} is space like and on the closed
domain
{(t,z,y) €R3 |2 < Xo, z —v(t —19)* > X1}

the coefficients of *Ls . are bounded. Then ‘Lo . has the finite propagation speed
independent of 0 < & < 1 there. Hence we see that a solution of (4.18) w(t, z,y)
vanishes if x > X and that there exists a compact set F' such that the solution
we(t, z,y) of (4.18) satisfies

supp we(t, z,y) N {(t,z,y) €R3> |z >0and t > 0} C F.
Hence, similarly to the case of the part b) of Proposition 4.2, the following lemma
implies the part b) of Proposition 4.6.

Lemma 4.8. The family of solutions {we(t,x,y)}o<e<1 to (4.18) is bounded in
H>*{(t,z,y) €ER3 |z >0 and t > 0}).
5. PROOF OF LEMMAS 4.4, 4.5, 4.7, AND 4.8

In this section also, we use the method of Oleinik [5] in order to draw the a priori
estimates for Ly ., 'Ly ., Lo and "Ly . that are uniformly valid for 0 < ¢ < 1. Let
L?,a = 8,*,81 - B<t7 Z, y>ai - tgk+1‘r§l+1f42(ta z, y)ag

Since
2§R(L(1)7Eu, Opu) =0, (Opu, Opu) — 20, R(B(t, x, -)Opu, Opu)

+ 0y(B(t, T, ") Ozu, Opu) + t?k“xglﬂat(Az (t,z,-)0yu, Oyu) + R
(5.2)
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where
|R| < C(e2 a2 ([|0yull® + 100ul?) + |0zulll| O]l + [[0zul?),  (5.3)

we have

O (6_7(t+”’:)t;M(||8tu||2 — 2R(B(t, z,")0yu, Opu)))

+ 0, (er(HM)t;M((B(t, ,)0pu, Opu) + 2R 22 (Ay (¢, 2, ) Oyu, Oyu)))

+ e_"’(t+”$)"yat€_M ||8tu||2 — 26_7(t+‘”)'yot€_M§R(B(t, x, ) Oyu, Opu)

e ) (4 MM (B(t, 3, )0y, 0,0)

+ e 1D (o (M — 2k — 1)L )to M3k 24 Ay (8, 2, ) Dyu, Dyu)

< 2e YR MR(LY u, Dpu) + C (e 7R ML (19, u)1? + (| 0pul|)

+ e TN ([0, ull|Dpull + ([Daull?))-
(5.4)

Since 1/0g9 > B(t,z,y) > 09, we see that the plane t + o1z = T where 01 = 0¢9/2,
is space like. Then by integrating (5.4) on Ar = {(t,z) € R? |t > 0, # >
0 and ¢t + o1z < T} with T > 0, we obtain the following (see for example §24.1 of
[2]). When v > 70 with some vy > 0 and M > 2k + 1, for any smooth u(t, z,y)
satisfying u(t,0,y) = 0 and vanishing if ¢ <0 or |y| is large, we have

6_7(t+‘711)’yt_M Au||? + ||0zul|?) dt dx

€

Ar

+ / e=10+0) L =M=1)19 412 dt do
Arp

—|—/ e YD) (a4 (M — 2k — 1))t- MF2R 2009, 0|12 dt da
Ar

<C e"’“"“’lmt;MHL?’EuH ||Opul| dt dex.
Ar

Similarly to (3.10), we have
Bu (e AT |u||2) 4 e I M (o 4 ML)

— 1) 41— 2
< RN (a4 = o).
vy
Hence, we obtain for v > max{vyo, 1} and M > 2k 4 2
/ e VDM (|| Opul|* + | Opull® + Jull®) + 21 ([ 0wu]® + [|ul?)) dt da
At

b [ e A2 ) ol it d
T

<O [ e N (ULl o]+ o) di
T

Since HL%Eu — Ly cul| < C’(t’;xfs“‘lﬂayuH + ||uH) and

1 2
el < (= ol + Lol (65
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there exists a y; > 0 such that if v > v, and M > 2k + 2

[ PN ol + ol + Jul®) + £ (10l + ) e d
T
*/A eI NIRRT (g 1Y) |0, ul di de

T

<C e V@) =M1, ||| O] dt da
Ar
(5.6)

which implies

/ EM(0ul? + 10wl + [ul?)dtde < c/ M| Ly ol dt da.
AT

AT

Since [0, B(t,x,y) " L1 ] is equal to

b(t,z,y)0:0; — (2k + V)tLt2F a2 ay(t, x y)8
— 2 2 gy (t, 2, y)0; + er(t, @,y)0y + colt, @, y)
and [0y, B(t,x,y) 'Ly ] is equal to
IN)(t, x,y)0,0p — t§k+1x§l+1a2y(t, x, y)aj + &1 (t,z,y)0y + Co(t, z,y)

where as(t,z,y) = B(t,z,y) ' As(t,z,y) and b(t,z,y), b(t,z,y), ¢j(t,x,y) and
¢;(t,z,y) (j = 1,2) are bounded smooth function on Ap x R, then it follows from
(5.6) where u(t,x,y) is replaced by du(t, z,y) or dyu(t,z,y) that there exists a
~9 > 0 such that for v > 75 and M > 2k + 2,

[ e O ((15Rul + 10:00al? + [0l + 10,0l + 10,05
Ar
+ 1 0yull® + [lul?) + t?k“a:il“ﬂwjun?) dt dz

<C [ e DM (0,Ly ull? + 10, Ly cull® + | Ly cul?) dt de,
AT
where we used

JogulaBul < 5= Wl + S Il

Similarly for any positive integer N, there exists a yx > 0 such that if v > 5 and
M >2k+2

Joem O e XD or ool dede
a1+j<N and j<N-1 a1+j<N-1
/ t+a1z M+2k:+ll,zl+1,y”aé\/u”2 dt dx

C/ e HID M (N 90 9 (Ly ) %) dt dar

a1 +j<N-1

Since

8% = B(t7x7y)_l(L1,E - awat
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22 Ay (8w, y)0) — tEalT Ay (8 m,y)0y — ao(t, z,y),

we obtain from (5.7)

/ MY 19 ez apul?) dida
Ar

ai+az+j<N
JSN-T

<c [ M > 105192209 Ly cul|?) dt dz.  (5.8)

Ar artas+j<N—1
az<max{N-2,0}

Hence, taking into account the proof of Lemma 3.2, we see from (5.8) that for
any integer M; > 0 there exists an integer Ms > 0 such that for any u(t,z,y) €
C>{(t,z,y) € R? | x > 0} satisfying u(¢,0,y) = 0 and that u(t,z,y) = 0 if |y| is
large or ¢t < 0,

/A( > 1971092 0%ul) dt da

T artaz+j<M;

SC/ Z 107109200 Ly cul|® dt dz.  (5.9)
A

T artaz+j<Ms

Since solutions {uc(t,z,y)} of (4.12) have a finite propagation speed that is in-
dependent of ¢, as the proof of Lemma 2.3 we see from (5.9) that Lemma 4.4 is
valid.

For the proof of Lemma 4.5, we first remark that by substracting some com-
pactly supported function in C*°{(¢,z,y) € R® | z > 0} that is independent of &,
the problem (4.13) is reduced to that with g(¢,y) = 0. In the following we assume
it. Similarly to (5.4) it follows from (5.2) that, with o1 = 0¢/2,

— 8, (Y (|| 9pul|® — 2R(B(t, 2, )8y u, Oyu)))

— O ((37("""”1'””)255(B(t7 z,)0pu, Oyu)) — Oy (e'Y(H””’)tngxng(Ag(t, x,-)0yu, Oyu))
+ Dot ([|0pul|? — 2R(B(t, @, ) Opu, dyu))

+ D) (yt 1! (B(t, x, ) Dy, Dp)

+ D (ot + (2 + 2 22 (Aot 3, )0y, Oyu)

< —26_"’(t+"1“‘)t5%(L?’5u, Ou)

+ O (TR (| 9yul® + 0pul®) + Tt (| 0pull | Ol + [10zul®)),

from which and from
2

=0 (eIt Jul|?) + T (y L) [ < 67(””1“’)155(% l[ll® + = [|Opul|?)
Y

we obtain the following estimate valid for any u(t, z,y) in C§°({(¢,z,y) € R3 | x >
0 and ¢t > 0}), vanishing when ¢ > T or x > T with some T > 0 and satisfying
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u(t,0,y) = 0; there exists a 79 > 0 such that for v > g
[ et (10l + fo,ul? + ) + £ ([0cul? + u]?)) de dz
Dr

+ /D YD) (yt 4 (2k + 2))t2F 122019, u | dt dx
T

<c [ DL o] dede
Dt

where Dy = [0,7] x [0,T]. Hence we see from the estimate on Drp
I*Lyeu— LY cull < CotEal™|0yull + Cr(l|dwull + [|ull)

and (5.5) that there exists v, > 0 such that for v > v,
[ (10l + ol + ) + (0l + alP)) de ds
Dr

+/ V) (yp 4 1) 2R 1204 |2 dt de (5.10)
Dr
<C YDt ULy ul|||Opul| dt de,
Dt
which implies
/ tg(HatquJr||8xu||2+|\u||2)dtdx+/ 254252000 9|12 dt da
DT DT
< c/ £ L2 dt da
Dr

From the expression of [0y, B(t,z,y) "' 'Ly .| and [9,, B(t,z,y) ' 'L ] and (5.10),

we get
e n N (of T ogull® + 1105 0 0,ull® + (|05 0Jul|?) dt d

/DT a1+5<1

+ / TR 20200 52| dit da
Dr

C .
<= | ey N 0710) Ly cul® dt da
7 JDr a1 +7<1

Here ~ is large. In general for any integer N > 0 we obtain
. 1 . .
/ Um0 0dul|? + (05 0] O ul® + 1|05 Oul?) dt da:
Dr a1+j<N
—|—/ e'Y(H‘”m)tnga:ng||8;V+1u||2dt dx
Dt

> 10809 Ly cul? dtda (5.11)

< g/ e’Y(t-‘rUlfﬂ)tE
Y JDr a1 4 <N

Here also 7 is large. Since
892: = B(tv T, y)_l( tLl,s + tgk—i_l‘rgl—i_lAQ(tv z, y)ai

+ l1<t7 $7y76t78y)3x + l2<t7 xay7at76y)at + l3(t7xaya 815767;))
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where [;(t,z,y,0:,0y) (j = 1,2,3) is a first order differential operator, then from
(5.11) follows the estimate

/ta S (95 oz adulf? + 0 5 0l + 1107 9%ul?) dt da

a1 tas+j<N

+ t2k+2 20141 aN-l—l 2 dtd
/| R 5.12)
<Cc | t > 195199209 Ly cul|? dt de.

Dr artaz+j<N
az<max{N-1,0}

From Lemma 3.4 and (5.12) we see that for any integer M; > 0 there exists an
integer My > 0 such that

/ |05 922 05 u)? dt da
Dr 041+012+]<M1
< 0/ 07199203 'Ly cul|® dt dz.  (5.13)
Dr a1+a2+J<M2

Since the constant C' of the estimate above (5.13) is independent of 0 < ¢ < 1,
(5.13) implies that Lemma 4.5 is valid.
Now we prove Lemmas 4.7 and 4.8. Let

LY. = 0,0, + B(t,x,y)02 — 2¥ a2 Ay (t, 2, 9)0,

Since R
2§R(L8,Eu,6wu) =0:(0zu, Oput) + Op (B(t, x, ) Oput, Oz 1) (5.15)
+ t?k+1x§l+18Z(A2(t, z,-)0yu, Oyu) + R '
where
|R| < C (25 a2 (|0yull? + [|00u)l?) + [|0:ull?), (5.16)

we have for any u(¢, z,y) vanishing for large |y|,
at(e—"/(t+rc)t€—MIE—MHawuHQ) 1+ 9, (6_7(t+m)t;Mx;M(B(t7 z, .)81»% awu))
+ 9 (e (He)y T MA2RALy = MA2IHL (A (¢, 2, ) Dy, Dyu))
+ e (it 4 MM e M| 9|
+ e () (yxe + Mx’s)t;Mx;Mfl(B(t, x, ) Ozptt, Oz t)
+ e~ () (yxe + (M — 21 — 1)x’5)t€_M+2k+1x€_M+21(Ag(t, x,-)0yu, Oyu)
< 2677(t+x)t;Mx;M§R(Eg7Eu, O u)
+ 06_7(t+w) (t;NI+2k+lx5—M+2l+l(”ayu”2 + Hamu||2) + tE_MxE_MHamU”2)

Noting
O (e MM u|?) 4 e DM g M (3 + M, w’l)IIUIIQ

< et My M( lull* + I\é’quIQ), (5.17)
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we see that, if v > 7 with some vy and M > 2]+ 2, we have for any u(¢, x,y) which
is flat on the plane ¢ = 0 and on the plane = 0 and vanishes for large |y|,

/D e VM M (o + 1) 100ull? + (y + 22 ) (10ull® + [[ull?)) dt de
T

" / e (g 4 1)t IR M gy |12 di da (5.18)
Dt
<O [ e MM L8 | 0pul| di de

Dr

where D = [0,T] x [0,T]. Since ||f18’5u — Ly.ul| < C (tkal |0 ul| + |Jul|) and

kol Y 1
att oyul ol < (LTI o) + Tt losul®),

then from (5.18) there exists a 7 > 0 such that if v > v, and M > 2[4+ 2, we have

/D e MM (y([|0,ull? + ull?) + ¢ Opul|? + 22 (|00ul® + [[ul®)) dt dee
T
" / eV (g 4 1) MRV 9|12 dt dee

Dr

<C ; e VR =My =M L) u|||0,pul|dt d (5.19)
T

which implies

|t ol -l deds < € [tV Ll e d

DT DT
Since [0, l~/2’5] is equal to

bi(t, )02 — (21 + Dalt?* a2 Ay (t, 2,y)0;
- t§k+1x§l+lf42w(ta x, y)ag + cl,l(t7 z, y)ay + 6170(ta x, y)a
[0r, Lo.] =ba(t, 2, )07 — (2k + DtLtZ*a2 1 Aa(t, 2, 1))
- t§k+1$gl+1A2t (t7 x, y)as + 02,1(t7 x, y)ay + C2.0 (t7 x, l/)7

and [y, L ] is equal to

bs(t, m,y)0 — 2 a2 Ay (8, 2, 9) 02 + c31(t,2,y)0y + cs0(t, 2, y)
where b;(t,z,y), ¢;x(t,z,y) (j =1,2,3, k =1,2) are bounded smooth function on
Drp x R, then it follows from (5.19) with dyu(t,z,y), Owu(t, z,y) or dyu(t,x,y) in
the place of u(t, z,y) that there exists a o > 0 such that if v > 75 and M > 2142
/ e Mg My (|02ull + (102 0pul|® + (1020
Dt
+10zull® + 10cu]l* + 10y ul® + [[ul®) dt dz

+ /D e—’y(t+x)t6—M+2k+le—M+21+1,yH85,“”2 dt dz
T

<C [ e M(19, Lo cul|? + (|0 Locul|* + |0y Lo cul|? + || Lo cul|?) dt dz,
Dr
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where we used
k 1 k el 1

e ogulllozull < 27 e (35 e |Ogull” + 75 Hlozul?)

and
1

2/
In general for any positive integer N, there exists a vy > 0 such that if v > vy
and M > 2] + 2, we have

/e—v<t+w>t;Mx;M( o o ottojult.a,y)|?
Dr artaz+j=N-1

+ > 195 95207 u||?) dt da

a1+az+j<N-1

202 DRl 0: D] < 2502 (LR + =t 0s D)),

(5.20)
+ /D efv(tJrac)t;MJr2l~c+11,;M4r2l+1||8lll\fu(t7 z, y)H2 dt dz
T
C C
< S ey MM (N 195102209 Ly cul|?) dt da.
Dt

a1taz+j<N-1

When u(t,z,y) is flat on © = 0 and on t = 0, Lemma 3.2 and (5.20) imply that
for any integer M; > 0 there exists an integer My > 0 such that

3 / joroee il drdr < C Y / 105202209 Ly | di .
ar1tas+i<M, 7 PT a1tas+j<M, Y PT
(5.21)
Since the right hand side h(t,z,y) of (4.17) is flat on « = 0, we remark that the
solution u.(t,z,y) to (4.17) is also flat on © = 0. Therefore we see through the
similar argument of the proof of Lemma 2.3 that the estimate (5.21) and the finite
propagation speed that is independent of 0 < € < 1 show that Lemma 4.7 is valid.
Finally we prove Lemma 4.8. We can draw from (5.15) and (5.16) the following
estimate for any u(t, z,y) vanishing for large |y|;

- 8t(67(t+m)t€x5\|8xu||2) — Oy (67(t+x)t8x5(3(t, x, ) Ogu, axu))
— O (YT ZRF 2202 (A (1, 2, ) Dyu, Oyu) + €Y Tt (v + Lt 21| D2
+ "D p (v + 2l ) (B(t, 2, -)Opu, Bpu)
+ &) (yae + (20 + 2)al )2 22 (Ag(t, 2, ) Dyu, Dyu)
< —267(t+’”)t5335%([~/8’6u,awu)
+ 0D ((Z222(||0u)| + |1 0pul®) + tewe | 0pul®),

from which and from
— (Tt Jul?) + Tt ea (y + alal ) |ul|?

2
< e Gl + Z0ul),

we obtain the following estimate for any u(t,z,y) in C°({(t,x,y) € R® | x >
0 and ¢ > 0}) vanishing when ¢ > T or > T with some T > 0 with some T > 0;
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there exists a y9 > 0 such that for v > 7y

/ Dt ({00l + ul]?) + 22 (100u]2 + ull?) + ¢ 0pu]2) dt da
Dr
i / 1) (e + (20 + 2)) 222 |0yl dt da

Dr

<C VDt ||LY _ul|||0pul dt da.
Dr ’
Hence, we see from the estimate on Dr
I*Locu — L3 cul| < CotkaltM(|0yull + Cr([[0aull + ul)
and (5.17) that there exists v; > 0 such that for v > v,
e (y (10wl + ) + a2 N0pul? + ) + 12Oyl di
T

+ / YD) (g 1)2 222040 9, )| dt da
Dt

gc/ O FDt x| Lo cul|||Opul| dt dz,
Dr
(5.22)
which implies
/ teae (||0yul® + ||ull?) dt dx + / 2202021 9, || dt da
DT DT

SC’/ tew.||' Ly cul|® dt d.
Dr

Similarly to the estimates for I~/2,5, we obtain from (5.22) the following; for any
integer N > 0 we have

/tgxg S (o oest ol + 0 000 ul) dt du
Dr a1tas+j<N

+ /D 2R 222 9N | dt da (5.23)
T

<C | texe > [0810520)  Lycul)? dt da.
Dr a1taz+i<N

From Lemma 3.4 and (5.23) we see that for any integer M; > 0 there exists an
integer Ms > 0 such that

/ ST oo oiul? dida

Dr artaz+j<M;
< c/ > 107109209 Lo cul* dt dw. (5.24)
DT oy taz+j<Ms

Since the constant C' of the estimate above (5.24) is independent of 0 < ¢ < 1,
(5.24) implies that Lemma 4.8 is valid. Then the proof of Theorem 1.2 is complete.
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