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NONLINEAR TRANSMISSION PROBLEM WITH A
DISSIPATIVE BOUNDARY CONDITION OF MEMORY TYPE

DOHERTY ANDRADE, LUCI HARUE FATORI, JAIME E. MUNOZ RIVERA

ABSTRACT. We consider a differential equation that models a material consist-
ing of two elastic components. One component is clamped while the other is
in a viscoelastic fluid producing a dissipative mechanism on the boundary. So,
we have a transmission problem with boundary damping condition of memory
type. We prove the existence of a global solution and its uniformly decay to
zero as time approaches infinity. More specifically, the solution decays expo-
nentially provided the relaxation function decays exponentially.

1. INTRODUCTION

In this paper, we model the oscillation of a solid consisting of two elastic materi-
als. We suppose that a part of the boundary is inside a viscoelastic fluid producing
a dissipative mechanism of memory type while the other part of the boundary is
clamped. The corresponding mathematical equations which model this situation is
called a transmission problem with boundary dissipation.

Boundary dissipation was studied for several authors, see for example, [8 29
111, (30, [, 211, BT B] and the references therein, all of them dealing with frictional
damping. Models with memory dissipation are physically and mathematically more
interesting, physically because our model follows the constitutive equations for ma-
terials with memory and Mathematically because the estimates we need to show
the exponential decay are more delicate and depends on the relaxation function,
see for example [2] and the references therein.

Memory dissipation is produced by the interaction of materials with memory.
Such types of dissipation are subtle and their analysis are more delicate than the
frictional damping, because introduce another type of technical difficulties. So, we
have only a few works in this direction.

In this work we show the existence of solutions of a nonlinear transmission prob-
lem with boundary dissipation of memory type. Moreover we will prove that under
suitable conditions on the relaxation functions the solution will decay uniformly as
time goes to infinity. The transmission problem considered here is

prug — 1 Au+ f(u) =0, in Q;x]0,T], (1.1)
P20t — V2 Av + g(v) =0, in Q9%]0,T7, (1.2)
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with boundary condition

t
0
u(z,t)+ [ k(- T)—udr =0 on T (1.3)
0 v
and satisfying the transmission condition
ou v

= d — =y r;. 1.4
(% v? an 71 8]/ 72 ay on 1 ( )

Additionally we assume that v satisfies Dirichlet boundary condition over I's,
v(z,t) =0, on 'yx]0,T7, (1.5)

and verifies the initial conditions
u(z,0) = up(x), and we(z,0) =wui(z) in

v(z,0) =vo(z), and wvi(z,0) =wvi(x) in Q.

FI1GURE 1. The configuration

The transmission problem ([1.1])-(1.2)) can be consider as a semilinear wave equa-
tion with discontinuous coefficients and discontinuous and non linear terms; that
is, denoting

U u(x), ifx € Ql ) P1, if x € Ql
= xTr) =
v(z), if x € Qo p2, ifx € Qo

if Q if Q
al)= {0 REEM gy Tk e
Yo, if x € Qo, g(z), ifze .

Note that — is equivalent to
p(x)Uy —a(x)AU + F(U) =0, inQx(0,7)
where () = Ql X QQ.

2. EXISTENCE OF SOLUTIONS
Lemma 2.1. For each function o € C' and each ¢ € WH2(0,T), we have

| att=retriire = ~5a@le®F + 50D 5 5 {ale= ([ a)lel}. 1)
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Let a be a function that satisfies
k/

k(0)a+ k' xa= “HO)

(2.2)
By * we denote the convolution product; that is, k * g(-,t) = fot k(t —1)g(-,7)dT.
The function a is called the resolvent kernel of k. Using the Volterra’s resolvent,
we have

9u _ —Lu —a*xu
v k()" !
after performing an integration by parts, the above identity is equivalent to
0 1
8—1: = —mut —a(0)u —a’ *u + a(t)uo. (2.3)
We assume the following hypotheses on a:
a(t) >0, d(t)<0, a'(t)>0, Vt>0 (2.4)
—cod (t) < a”(t) < —c1d(t), VYVt >0, (2.5)

where ¢; are positive constants. To facilitate our calculation we introduce the
following notation

(aDIf)(t) = / alt =) |£(t) — () dr, (2.6)

(a0 f)(t) = / ot — 1) [f(t) — f(7) dr. (2.7)
It follows that .

e )0 = ([ alsas) 1) = @00 (28)

From hypothesis (2.2)), we know that the behavior of a is similar to the behavior of
k. We can find the following Lemma in [28§].
Lemma 2.2. If b and « satisfy b+ a = —b* «, then

(i) Suppose that |a(t)] < cqe™ ™, for all t > 0, for some v > 0, and ¢, > 0,
then for any 0 < e <~ and ¢, <y — €, we have
() < 20 =8 —et s,
Y — &€= Ca
(ii) If o satisfies |a(t)| < ca(14+t)7P, for some p > 1, ¢, > 0 and
1 t
L= swp / (1+8)P(1+1¢—7)P(1+7)Pdr,
Co 0<t<oo JO
then
Ca

<
bl < e

(1+¢t)7P,Vt>D0.
Let us introduce the following two vector spaces
W = {we H (Q) : w(z) =0 on Ty},
V ={(u,v) € H'(Q) x W :u=wv on T }.
Let us consider f,g € C'(R) satisfying

[f(s)] < Cifs]” +Cy and  [g(s)] < Chfs|” + Co, (2.9)
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If'(s)| < Cyls|P~r +Cy and |¢'(s)| < Cys|P~! + Co, (2.10)

where C7 and Cs are positive constants. When the space dimension is n < 2, we
use 1 < p < 0o, and when n > 3, we use 1 < p < ﬁ We also assume that for
s € R,

F(s) = / flo)do >0 and G(s)= / g(o)do > 0. (2.11)
0 0
Let us introduce the definition of weak solution to system (1.1)—(1.5).

Definition 2.3. We say that the couple (u,v) is a weak solution of (L.1)—(1.5)
when

(u,v) € L>=(0,T; V), (us,v;) € L=®(0,T; L*(Q) x L*(Qy)),

and satisfies

T
/ / [prudse + 1 VuVe + f(u)d] dx dt
o Jo,
T
+ /0 /Q2 (204t + 72 VoVY + g(v)] do dt

— /Ql u1(0)dx — /Ql uoqﬁt(O)d:c—i—/Q2 v19(0)dx —/ vot (0)dz

Q2
1 /
- /F <I€(())Ut +a(0u+a *xu— a(t)u0> ¢dr,
for any (¢,1) € C?(0,T;V) such that
O(T) = ¢¢(T') = (T) = ¢ (T) = 0.

To show the existence of strong solutions we need a regularity result for the
elliptic system associated with the problem f. For the reader’s convenience
we recall the following result whose proof can be found in the book by O. A.
Ladyzhenskaya and N. N. Ural’tseva [10, Theorem 16.2].

Lemma 2.4. For any given functions F € L*(Q), G € L*(Qy), g € H/*(I'),
1,72 € RT, then there exists only one solution (u,v), with u € H*(Q) and v €
H?(Qy), to the system
—’}/1Au =F in Ql,
—vwAv =G in o,
v(z) =0 on Ty

ou

o g, onT,
u(z) =v(x) onTly
ou v

— =7=— only.
"M o 72 o 1
The existence result is summarized in the following theorem.

Theorem 2.5. Suppose that f and g are C*-functions satisfying [2.9)-2.11) and
let us take initial data such that

(Uo,”l)()) eV, (Ul,”l)l) S LQ(Ql) X L2(Qg), ug = Oon T'.
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Then, there exists a solution (u,v) of system (1.1)—(1.5), such that
(u,v) € C(0,T; V)N CH0,T; L*(Q) x L*(Q)).

In addition, if the second-order regularity holds, that is, (ug,vo) € H2(1) x H*(Q2)
and (u1,v1) €V, and

Us = %AUO — f(ug) € L* (1)

Vg 1= Z—zAuo —g(vg) € L*(Q2),

satisfying the compatibility conditions
Oug 1
s = —wul —aug onl’
ou ov
o = 72£a
then there exists a strong solution satisfying (u,v) in the space
C(0,T; H*(Q4) x H*(22)) N CH0,T;V) N C*(0,T; L* (1) x L*(Q2)).

up =vg and Y on I'y

Proof. To show the existence of solutions we use the Galerkin method. Let (¢;,w;),
i=1,...,00 be a basis of V and let us write

(™ (1), 0™ (£) = Y ha(t) (1, w5),
i=1
where u™ and v satisfy

. {p1uiioi + VUV + f(u™)p; }dx

+ | {peviiwi + 72V Vw; + g(v™)w; }dx (2.12)
Qo
1 m m ! m m -
=— —ui" +a(0)u™ +a’ xu™ —a(t)ug' | ¢;dl, i=1,2,...,m.
r \k(0)
This is a m-dimensional system of ODEs in h;(t) and has a local solution in t.

With the estimates obtained below, we can extend u™ and v™ to the whole interval
[0,T7.

Weak Solutions. Multiplying the above equation by h%(t) and summing up from
i =1 to m, we have

d 1 1 1
—E™(t) = ——— ™24l 4+ —a/ (¢ deF—f/ "Ou™dT
GE0 = gy [P+ 5a@) [ e =5 [ oo,

where

1
En () :5/9 {p1|u;”|2+fyl|Vum|2+2F(um)}dx+a(t)/r|u|2dF—/Fa’DudF

1
+ 5/ {p2[v]"? + 72| Vo™ |* + 2G(v™) } da.
Q2

Then we deduce that
(u™,v™) is bounded in L>(0,T; H' () x H'(s)), (2.13)
(u",v") s bounded in  L>(0,T; L*(Q;) x L*(Q)), (2.14)
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which imply that
(u™,v™) = (u,v) weakly x in L°°(0,T; H*(Q1) x H*(Q2)),
(uf™, vi™) — (ug,v;) weakly x in L°°(0,T; L*(Q4) x L*(Q)).
Application of the Lions-Aubin’s Lemma [I3, Theorem 5.1], we have
(u™,v™) — (u,v) strongly in L?(0,T; L*(Q) x L*(Qy)),
and consequently

u —u ae in; and f(u™) — f(u) a.e. iny,
v™ — v ae. inQy and g(v™) — g(v) a.e. in Q.
From the growth condition , we have
f(u™) is bounded in L>(0,T; L*(1)),
g(v™) is bounded in L>°(0,T; L*(Q));
therefore,
F(um) = f(u) weakly in L2(0,T5 L(©)),
g(v™) = g(v) weakly in L*(0,T; L*(£2)).

The rest of the proof of the existence of weak solution is a matter of routine.

Strong Solutions. To show the regularity we take a basis of such that (ug,vg)
and (u1,v1) are in B = {(¢i,w;),i € N}. Therefore,

m m m m
Uy =1ug, vy =V, U] =ui, vV =v1, Ym.

Differentiate the approximate equation and multiply by h7(t). Using a similar
argument as before, we obtain

d
*Eén(t)ﬁ/ \f’(um)lu?uﬁ?dwr/ g’ (™) v vt da, (2.15)
dt N Qo

where

1 1
Ep(t) =+ / P+ Va2 de + - / Pl |? + ol Vo P de
2 N 2 Qo
. , (2.16)
+fa(t)/ \u?\QdF—l—f/a’Duz”dF.
2 - 2 Jr

Note that E5*(0) is bounded, in fact is constant, because of our choice of the basis.
Let us estimate the right hand side of (2.16]). From (2.10) we have

/ ™y | da
|95

éﬁ/ |UM‘2(P*1)|u’tﬂ|2dﬂc+@/ \UZ”IzdeFM/ uii [* da.
2 o 2 Q1 2

Q

But since (p— 1) <2/(n—2) and L + 1 =1 with r =n/2 and s = n/(n — 2), we

see that
N 1/r
/ |um‘2(p_1)|U;n|2d1‘§ (/ ‘um|2 dl‘) (/ ‘u;n
Q1 Ql Q

1

2*clx) 1/5,
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where 2* = 2n/(n — 2). Then from Sobolev imbeddings and (2.13)) there exists a
constant C' > 0 such that

/ RO 2 dr < O+ C [ |V de.
(921 (951

It follows that
[ 1smaride <00 [ i+ (vurp) .
Q1 (951
and similarly
| gemride <0 [ (o + Ivor Py e
Qa Q2
Hence, from (2.15)) and the Gronwall inequality we conclude that
(u",v") is bounded in L*(0,T; H*(Q;) x H'(Q2)),
(uf?,vf) s bounded in  L>(0,T; L*(Q1) x L*(y)),
which imply that
(u;n’vtm> - (Ut,’Ut) Weakly * in LOO(OaTyHl(QI) X Hl(Q2))a
(U, o) = (ug,vyy) weakly * in  L(0,T; L*(1) x L*(2)).

Therefore, (u,v) satisfies (1.1)-(1.5). Moreover
ou 1

= fwut —a(0)u —a’ *u + a(t)uo.
Integrating by parts,
Ou _ L
ov k)T

Since u; is bounded in H'(€), 9% € H3(T'). So we have

—71Au =uy — f(u) € LQ(Ql),
—’}/QA’U = Vgt — g(U) S LQ(QQ)
ou__ o
v " ov

ou
3, € HY2().

Then using Lemma we have the required regularity to (u,v). (Il

u=v and inI'y

v=0 in Iy,

3. ASYMPTOTIC BEHAVIOR

In this section we prove that the solution decay exponentially as time approaches
infinity. First, we need some preliminaries results.

Lemma 3.1. Suppose that the initial data satisfies the second order regularity as
in Theorem 2.5, then

d _ 1 2 a/(t) 2 1 "
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E(t) = f/ p1lue* + 71 |Vul? + 2F (u)dz + v / a(t)|ul* — a'Tudl
= r (3.1)

1
45 [ paludl +02lVoP + 26(0)ds
2

Proof. Multiply by wu: equation (L.1)) and by v; equation (1.2), summing up and
using identity (2.3) and Lemma we get the result. O

Let f and g be such that

0< F(s / FO)e < ——s(s), (3.2)
1
< <
0< () = / o0t < - s(5), (33)
F(s) < G(s) (3.4)
where [,m > 1. Note that odd polynomials satisfy (3.2)-(3.3)). Let
1 m—1
J < mln{l R 1} (3.5)

and

Jo(t) = / p1ruq - Vudx + / p2vrq - Vo dz.
Ql 92

Lemma 3.2. Under the hypothesis of Lemma consider q(x) = v —x¢ € C1(Q),
Y1 > Y2 and p1 > pa. Then any strong solution of E,E satisfies

d 2 2
%Jo _'yl/aq Vu dm—?/q v|Vul da:—|—2/q~1/|ut| dr
—g/ p1lue? — yilulPde +n F(u)dx—’yl/ |Vu|? do
(o2 921 031

G(v)dx — 2 / |Vv|?d.

n
——/ palvel? — 12|Vl dz + n
2 Qs

QQ Q2
Proof. Using equation (1.1),
da wa O g
dt o, P1 tQkax
ou ou
:/ pluttqka dI+/ plutqk'aitdl’
oN o Tk
ou ou 8|ut|2
= Auqy, —dx — —d
/9171 ugk 5 -4 f( )Qk +2/q ak
ou Ou 'yl 9 Oqy, 2
— g —dI — = Vu|?dl + — Vu
7 /891 90 % 9y 2 o, qxvi|Vul + 7 2 o, Or k| |°d
oq
—/ F(u )qkykdf+/ F(u —d + = / Qv |ug|2dT
PR 2 Joq,
_Mn Aqp,

ou
2
dx — Vu - Vap— dz.
9 Qla k|ut| T 71 o u Qkaxk X
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So we have,

d ou ou Ou T 9
— —dx = —qp—dI' — — Vu|“dl’
dt /Ql P1ULGL ozr =M . &/Qk dr 2 Jso, qrvk|Vu|

- / qrviF(u)dl + % qkyk|ut|2df
691 891
1 9q (3.6)
- 7/ T, (Pl = Vel da
oqr, / ou
+ F dr — Vu - Vq,—dx.
/91 (u )8 Ly % B

Similarly using equation (|1.2)), we obtain

d ov ov  Ov
— de = — ar + = Vo|2dl
i /92 P2ULq)— D Y2 0 81/% D + 2 20, arVe| V|

—|—/ v G(v)dl — % qkuk|vt|2df
Fl l—‘1

1 0
_5/ Qk {p2|vt| —’}/2|V1}| }d.f

an ov
+ o, T%G(v)dx — Yo o, Vu - qu%dx.

Using that Vu = 8“1/ + V,;u and v = 0 on I'y we have from and . that

d

%Jo()

:'yl/@q'Vudel/q'V|Vu|2dF+&/ q - vlug|* dl
- Ov 2 2 Jr,

ou

+— o —q-Vyudl'— = | q-v|V, u|2d1"+p21/q v|ug|* dl

Iy

— q-vF(u )dff— qou\—\zdF
/801 2 T 8V

v
-y [ ——q-V-: vde + 2 q-v|V,v/*dl
r, v 2 Jr,

+/ q'uG(v)dFJrﬂ q-1/|%\2dI‘
Fl 2 1_‘1
1 Aqy

=2 [ uaevar+ 2 [ qevigipar— 5 [ Gl - (Ve ds
2 2 Jr, | Oy,

g Ou 1 Oq 9
+/QIF< o dxm/ﬂlwwkaxkdocQ/ S (alur? = pal TP

Iqk ov
+ G(v)=—dx — Vv -V —dx
2 ( )8(£k Y2 o C]ka Tr

Since ©w = v in I'y then V,u = Vv in I'y; therefore,

@JO()

0
:%/—uq-VudF—ﬂ/q~V|Vu|2dF+& q - v|ug|? dT
r Ov 2 Jr 2 Jr
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Tyl ey Iu o — 2
- |—| ( ) | q-v|Veul?dl
5 2 ),
—i—(p 2p2)/ q-u|ut|2dF—/q-uF(u)dF
r r

- / 0 vIF() ~ Gu)]dr + 2
Ty I

v
q- V|$|2dF

n

—7/ p1|ut|2—71|Vu|2dx—|—n/ F(u)dx
2 Ql Q1

5 G(v)dx —")/2/ |Vo|2dz.

Qo

n
—’yl/ |Vu|2d1;—f/ p2|vt\2—’yg\Vv|2dx+n
Ql QQ

Qg

Using that (z — ) - v > 0 in T' then we conclude our proof. O

Lemma 3.3. Under the hypothesis in Lemma
d
a{ pluutdx +/ pgvtvd:r}
Qo
= / p1|ut| — 1 |Vul?dz —l—’yl/ G ar
1951

(ﬂuﬁMw+1/ pﬂvﬂz—vﬂVdex—l/ g(v)vdz.
Q4

Qo Qo

Proof. Multiply (1.1)) by « and (1.2) by v and summing up the product the our
result follows. O

Let us define the functional
n—2ao
D(t) = Jo(t) + ( 5 )[/ pruude —|—/ pgvtvdaﬂ
1951 Qo

where we consider ¢(z) = x — z( as before.

Lemma 3.4. Under the hypotheses of Lemmas[3.1] and[3.3, there exists a positive
constant dg such that

y<C / ‘8u
where

1 1
Eo(t) = 7/9 p1ug)® + 71| Vul* + F(u)ds + 5/9 p2|ve|® + 2| V| + G(v)dz.
1 2

2 n—=9 ou p1 9
ar — 71 . T
5 )Vl/pu@z/d doEo(t) + 5 /Fq v|ug|=dl,

2
Proof. From Lemma [3.2] and Lemma [3.3] we have,
d
—d(t
dt ®)

1o}
<c/|“%P~{/pmﬁ+mNWM+/pm#+wwwM}
Q1 Q

2

+n | F(udx +n | G(v)dx— (n—(5> f(u)udm
Qq Q2 2
(”;5)/9 g(oyeds + ("2 71/7 a4 2 [ g vufrar,




EJDE-2006/53 NONLINEAR TRANSMISSION PROBLEM 11

Using the hypotheses on F and G, we obtain

n—2a0

n n—2a
n F(u)dx — fluw)udz < — fu)udx
| Fa [ e < (L - "50) [ s
f(w)udz,
Q
where by our assumption on § we have that o > 0. Similarly
n—2a
n | Gder——— [ gvde < -0 [ g(v)vde.
Qo 2 Qg Q3
From where it follows that
d ou n—29 ou
—d(t) < —[2dl —dI'
dt ()_%/FI8V| +( 2 )’yl F“au
1)
~3 [/Q p1lul? + 71| Vul?dz —&—/Q palve|® + 72|Vv|2dx]
1 2

- a/ uf(u)de — B | vg(v)dz + Py / q - v|ug|?dl,
N Qs 2 Jr

which implies that for dp = min {$, a(m + 1), B(L + 1)}, we have

ou o n—2o0 ou p1 2
< — —dI' — = - )
U_MA%JMW( )%ly%ﬂ %%@+2£QWWMF

O
Theorem 3.5. With hypotheses in Lemma there erists a positive constants
such that any strong solution satisfies

E(t) < CE(0) exp(—d1t),
provided - holds.

Proof. Note that from (1.3)) and (| we have

ou 1 ,
= —mut —a(t)u —a'Qu

from where it follows

94p < of s luf? - a®(@)uf® + o' Oul?).
E2(

Since

momZ—’/ "t — s){u(s) — u(t)}ds|”

/ la’(t — s) |ds>|a’|Du

From this inequality and (2.5)) it follows that

ou|?

2l < hoflul + a(t)|ul® + 'Ol (3.8)
12
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On the other hand,
0 0
|/u—udf|§</|u|2dF /; ui2g
r ov r
< 51/ |u|?dT + Cj, /{\ut| + a(t)\u|2 + a'Ou}dl’ (3.9)
r r

< 51/ |u|?dl’ + C'/{Iu,g|2 + |u|* + o'Ou}dr.
r r

Since

/ |u|? dl" < C/ |Vul? + |Vo|? de,
r Q

we have that L(t) = NE(t) + ®(¢) satisfies

d N N N
A <— 71/| wg[2dD 4 21 71“ /| 2dr — “/a"mudr
it > s
—6 ou
—on( )+p1/q V‘Ut|2d1—‘

Using (4.2)) and we conclude that

d Ny 17 50
< —
dtﬁ(t) (k( 02 / | |2dT — ( 2) /Fa Oudll 5 Eo(t)
d

do
@ﬁ( ) < —§E( ) < —cL(t).

N”Yl
(3.10)

from where our conclusion follows. (|
We remark that standard density arguments, the above result is also valid for
weak solutions.
4. POLYNOMIAL RATE OF DECAY

Here our attention turns to the uniform rate of decay when k decays polynomially
as (14 ¢)~P. In this case we will show that the solution also decays polynomially
with the same rate. Let us consider the following hypotheses:

0<a(t) < bo(l+1t)77,
—bia'TE(t) < d(t) < —baa'tF (D), (4.1)
b—a' (D7 < a”(t) < ba[—a ()71

where p > 1 and b; > 0 for ¢ = 0,...,4. The following lemmas will play an
important role in the sequel.

Lemma 4.1. Let m and h be integrable functions, 0 < r <1 and q > 0. Then, for
t>0,

/\mt—s s)|ds

1—r a/(a+1) o [t 1/(a+1)
([ imte—op+ == pistas)” ([ ma = srimcstas) "
0 0
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Proof. Let
o(s) := [m(t =)' T R(s) [T, w(s) = m(t — 8)| 7 |h(s)] 7.

Applying Holder’s inequality to |m(s)h(s)| = v(s)w(s) with exponents § = ¢/(q+1)
for v and 6* = g + 1 for w our conclusion follows. a

Lemma 4.2. Let ¢ € L>=(0,T; L*(T)). Then, forp>1,0<r <1 andt >0, we
have

1(+(1 LYPESY
1 1
/ o [0gar)

. TR GFD 1
<o [ W astoleg i) a0,

while for r = 0 we get

Zif
/ ld/ |D¢dr

<2 [ 166 Mo + 1166 M) [l PO
Proof. The above inequalities are a immediate consequence of Lemma taking
m(s) = ), hs) = [ lo(ta) = s 0Pl g = (1 =)+ 1),
This concludes our assertion. ]

Theorem 4.3. With the hypotheses in Lemma[3.1] and Lemma[3.3, if the resolvent
kernel a(t) satisfies condition (4.1), then there is a positive constant ¢ such that

C

E(t) < WE(O).
Proof. Note that from (1.3]) and we have
% = —ﬁut —a(t)u —a'Qu
from which it follows
Gl < 2 gyl + Ol + 0P},

Since

la/Qul? = ’/ (t — s){u(s) —u(t }ds / la’ (t Pds)[ /)"y O,
and , it follows that

oul?

| < Roflul? + [—a) 5 ()uf? + [T Ou}. (4.2)
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On the other hand,

)/ Sudr| < /\u|2dr /|a“|2dr
r
351/|u|2dr+51/{|ut|2+[—a/]1+%(t)|u|2+[—a']1+%mu}dr
I T

< c/ (el + Jul? + [~/ $0u ) dr.
N

(4.3)
Since
/ lu? dT" < c/ |Vul|? 4+ |Vv|? da,
r Q
we have L(t) = NE(t) + ®(t) which satisfies
d N N N
L) 71/| ff2ar + =L 71“ /| 2dr — ;1/[_a’]1+%mudr
r
ou 2, -6 Ju
1+p ou
+C/ Dudl"—i—C/} ( 5 )71 Fuaydl"
— 7E0( )+ p1 / q- u|ut|2d1“.
r
Using (4.2) and (4.3), we conclude that
d N N
L) <~ (12 - ) / g 20 — (X1 ) /[—a']%mudr
dt k(0) r 2 r
5 (4.4)
0
— —FE
© Eo(t),
from where we have that for N large enough we get
4wy < - / fug[2ar — 1 /[—a']“%mudr ~ 25, (4.5)
dt - 2k(0) 4 Jr 2
Let us fix 0 < r < 1 such that m <r<gy +1 In this condition from hypothesis
we have
oo , (o) 1 )
A [_a] SC/O W<O® fOrZ:172,3,4.
Using this estimate in Lemma
I+ =
/ [—a/]"+ 71 Oudl > ¢E(0)” T=G+D ( / [—a’]DudF) T (4
r r
On the other hand, since the energy is bounded we have
E(t)l—’_i(l*'r')l(zﬂrl) < cE(o)iu—v-)l(pH) E(¢). (4.7

Substitutinn ([@6)-(@7) in {@E3), we arrive to
%E(t) < —cE(0)” TG E(t)1+(1—r>1(p+1)
1+—21
— cE(O)fm </[*a’]DudF> T=nGFD
r

Since there exists positive constants satisfying

coB(t) < L(t) < c1 E(1), (4.8)
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we obtain p
Ly ———C pe)tumem, (4.9)
dt L£(0)T=PGFD

Therefore, using a Gronwall’s type argument we conclude that

L(t) < mc(oy (4.10)

Since (1 —7)(p+ 1) > 1 we get, for t > 0, the following bounds
tHu(ta ')H%Z(I‘) < Ctﬁ(t) < 00,

t [e'e)
AuwawémScA L(t) < oo

Using the above estimates in Lemma 4.2 with r = 0, we get

1 ot
/[—a’]1+mljudf > %(/[—a’]lﬂudf) i
r E(0)»+1 \Jr

Using these inequalities and the same arguments as in the derivation of (4.9), we

have

d C 1
K p——r
dt E(O) T

i~

From where we obtain £(¢) < WE(O). Then inequality (4.8)) implies E(t) <
ﬁE (0), which completes the proof. O

We remark that by standard density arguments, the above result is also valid
for weak solutions.
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