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GENERALIZED EIGENFUNCTIONS OF RELATIVISTIC
SCHRÖDINGER OPERATORS I

TOMIO UMEDA

Abstract. Generalized eigenfunctions of the 3-dimensional relativistic Schrö-

dinger operator
√
−∆+V (x) with |V (x)| ≤ C〈x〉−σ , σ > 1, are considered. We

construct the generalized eigenfunctions by exploiting results on the limiting
absorption principle. We compute explicitly the integral kernel of (

√
−∆ −

z)−1, z ∈ C \ [0, +∞), which has nothing in common with the integral kernel

of (−∆ − z)−1, but the leading term of the integral kernels of the boundary

values (
√
−∆−λ∓ i0)−1, λ > 0, turn out to be the same, up to a constant, as

the integral kernels of the boundary values (−∆−λ∓ i0)−1. This fact enables

us to show that the asymptotic behavior, as |x| → +∞, of the generalized

eigenfunction of
√
−∆ + V (x) is equal to the sum of a plane wave and a

spherical wave when σ > 3.

1. Introduction

This is the first part of a paper, consisting of two parts, on the operator
√
−∆ + V (x), x ∈ R3, (1.1)

with a short range potential V (x), the operator which we shall call the relativistic
Schrödinger operator. The first part, the present paper, is concerned with asymp-
totic behaviors, as |x| → +∞, of the generalized eigenfunctions of

√
−∆ + V (x),

whereas the second part [28] deals with the completeness of the generalized eigen-
functions, i.e., the eigenfunction expansion for the absolutely continuous spectrum.

We remark here that a prototype of generalized eigenfunction expansions is pro-
vided by the Fourier inversion formula

u(x) = (2π)−n/2

∫
Rn

eix·kû(k) dk,

where eix·k should be regarded as a generalized eigenfunction of the Laplace oper-
ator −∆x in the sense that eix·k satisfies −∆xe

ix·k = |k|2eix·k, but does not belong
to L2(Rn

x). It has to be noted that the absolutely continuous spectrum of −∆ is
given by the interval [0,+∞).
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Although relativistic Schrödinger operators have received a substantial amount
of attention in recent years, there have been only a few works on the decay of
eigenfunctions associated to the discrete spectra of these operators; see Nardini
[16, 17] Carmona-Masters-Simon [4] and Helffer-Parisse [8]. And it is a surprise
that up to now there seems to have been no results on asymptotic behaviors of
the generalized eigenfunctions of these operators and on the completeness of the
generalized eigenfunctions.

For the purpose of making a comparison, let us briefly recall some results of Ikebe
[7] on the asymptotic behaviors of the generalized eigenfunctions of the Schrödinger
operator

−∆ + V (x), x ∈ R3

in connection with the eigenfunction expansion for the absolutely continuous spec-
trum. In [7], the generalized eigenfunction of −∆ + V (x) was constructed as a
solution to the Lippmann-Schwinger equation

ϕ(x, k) = eix·k − 1
4π

∫
R3

ei|k||x−y|

|x− y|
V (y)ϕ(y, k) dy, (1.2)

the solution being unique if ϕ(x, k) − eix·k belongs to C∞(R3
x), the space of all

continuous functions vanishing at infinity. Then the generalized Fourier transform,
whose kernel is the generalized eigenfunctions obtained, was introduced and the
generalized Fourier inversion formula, i.e., the eigenfunction expansion for the ab-
solutely continuous spectrum of the operator −∆ + V (x) was established.

Ikebe’s discussions on asymptotic behaviors of the generalized eigenfunctions
were based upon the Lippmann-Schwinger equation (1.2). Roughly speaking, we
see that his assumption on the potential function is that V (x) is locally Hölder
continuous and V (x) = O(|x|−σ), σ > 2, at infinity (see Ikebe [7, §1] for the
precise description of his assumption).

It is apparent that the term

1
4π

· e
i|k||x−y|

|x− y|
in (1.2) comes from the integral kernel of the resolvent of −∆:

(−∆− z)−1u(x) =
1
4π

∫
R3

ei
√

z|x−y|

|x− y|
u(y) dy, Im

√
z > 0

for z ∈ C\ [0,+∞). In other words, the limiting absorption principle for −∆ shows
that the boundary value of the resolvent (−∆−z)−1, as z = λ+ iµ (λ, µ > 0) tends
to λ+ i0, is expressed as the integral operator

(−∆− λ− i0)−1u(x) =
1
4π

∫
R3

ei
√

λ|x−y|

|x− y|
u(y) dy.

It was also shown in [7], by appealing to the Lippmann-Schwinger equation (1.2),
that if σ > 3 then the generalized eigenfunction has the asymptotics

ϕ(x, k) = eix·k + f(|k|, ωx, ωk)
ei|k||x|

|x|
+ o(

1
|x|

) (1.3)

as |x| → +∞, where ωx = x/|x|, and ωk = k/|k|. From the view point of physics,
(1.3) is interpreted to mean that ϕ(x, k) is asymptotically equal to a superposition
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of the incoming plane wave eix·k and the outgoing spherical wave ei|k||x|/|x| (cf.
Yafaev [29, §1.3]).

What we have recalled above indicates that computing the integral kernel of
(
√
−∆ − z)−1 is naturally a starting point to investigate asymptotic behaviors of

the generalized eigenfunctions of
√
−∆ + V (x). Our computations show that the

integral kernel of the resolvent of
√
−∆ is given by

(
√
−∆− z)−1u(x) =

∫
R3
gz(x− y)u(y) dy

for z ∈ C \ [0,+∞), where

gz(x) =
1

2π2|x|2
+

z

2π2|x|
[
sin(z|x|) ci(−z|x|)− cos(z|x|)si(−z|x|)

]
(see Section 2). For the definitions of the cosine and sine integral functions ci(z)
and si(z), see Subsection 11.1 in Appendix.

The integral kernel gz(x− y) has nothing in common with the integral kernel of
(−∆− z)−1, but if we take the limit of gz(x− y) as z approaches the positive half
of the real axis (z = λ+ iµ→ λ+ i0), then the term

λ

2π
· e

iλ|x−y|

|x− y|
emerges as the leading term of gλ+i0(x− y), which is actually the integral kernel of
the boundary value (

√
−∆− λ− i0)−1:

(
√
−∆− λ− i0)−1u(x) =

∫
R3
gλ+i0(x− y)u(y) dy, λ > 0,

where

gλ+i0(x) =
λ

2π
· e

iλ|x|

|x|
+

1
2π2|x|2

+mλ(x),

mλ(x) = O(|x|−2) as |x| → +∞.

(1.4)

This fact enables us to investigate asymptotic behaviors of the generalized eigen-
functions of

√
−∆ + V (x) by utilizing the integral equation which we shall call the

modified Lippmann-Schwinger equation.
Unfortunately, the term 1/(2π2|x|2) in (1.4) is quite troublesome. The reason

for this is that our generalized eigenfunctions must be bounded functions of x since
they are expected to be distorted plane waves in physics terminology. However, the
integral operator

1
2π2

∫
R3

1
|x− y|2

u(y) dy,

which is known as the Riesz potential, cannot be a bounded operator from Lp(R3)
to L∞(R3) for any p ≥ 1 (see Stein [23, p. 119]). To overcome this difficulty, we
shall introduce a few inequalities for the Riesz potentials in Section 5, one of which
actually gives an estimate of L∞-norm of the Riesz potential .

We should like to remark here that one might ignore the formula −∆xe
ix·k =

|k|2eix·k plays a significant role in discussing the generalized eigenfunction expansion
for the Schrödinger operator −∆ + V (x), because the formula is so trivial. On the
contrary, it is far from trivial to show that√

−∆xe
ix·k = |k|eix·k (in the distribution sense). (1.5)
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Indeed, the left hand side of (1.5) is formally defined by∫
eix·ξ|ξ|δ(ξ − k) dξ,

where δ(·) is the delta function and the symbol |ξ| of
√
−∆ is singular at the origin

ξ = 0. Therefore, making sense of the expression
√
−∆xe

ix·k is one of the main
tasks in the present paper, and it will be accomplished in Section 8 with the aid of
a theorem in Section 6.

Assumptions. Throughout this paper we shall assume that V (x) is a real-valued
measurable function on R3 satisfying

|V (x)| ≤ C〈x〉−σ, σ > 1, (1.6)

though σ will be required to satisfy the assumption σ > 2 when we investigate
asymptotic behaviors of the generalized eigenfunctions in precise manners. We
emphasize that we do not require any smoothness assumption on the potential
V . Although we could allow some local singularities of V in the sense that V (x)
behaves like |x− x0|−β with 0 < β < 1 near some isolated points x0’s, we shall not
do so for the sake of simplicity.

The plan of the paper is as follows. In Section 2, we compute the integral
kernel of the resolvent (

√
−∆ − z)−1 for z ∈ C \ [0,+∞). In Section 3, we derive

expressions of the boundary values (
√
−∆ − λ ∓ i0)−1 on the half positive axis in

terms of the boundary values (−∆ − λ ∓ i0)−1. The expressions will be used in
Section 6. In Section 4, we compute the integral kernels of (

√
−∆ − λ ∓ i0)−1.

In order to show that our generalized eigenfunctions are bounded functions, we
shall prove some inequalities, in Section 5, for the Riesz potential and the integral
operator appearing as a part of (

√
−∆− λ∓ i0)−1. In Section 6, we establish the

radiation conditions for
√
−∆, which implies that the second term of the generalized

eigenfunction of
√
−∆+V (x) is a spherical wave in a certain sense. In Section 7, we

establish the radiation conditions for
√
−∆ +V (x), which is of some interest on its

own. We construct the generalized eigenfunctions of
√
−∆+V (x), and characterize

them as unique solutions to the modified Lippmann-Schwinger equations in Section
8. In Section 9, we show that the generalized eigenfunctions are bounded functions
of x, and continuous functions of the both variables x and k. Our discussions
here are based on the modified Lippmann-Schwinger equations. In Section 10,
we give estimates on the difference between the generalized eigenfunction and the
plane wave when σ > 2. Also, we give estimates on the difference between the
generalized eigenfunction and the sum of a plane and a spherical waves when σ > 3.
In Appendix, we illustrate some properties of the cosine and sine integral functions,
and prove inequalities for a convolution which are used several times in the present
paper.

It is worthwhile to mention that all the results and the discussions in Sections
3, 6 and 7 remain valid for the n-dimensional case with n ≥ 2 with trivial changes.
However, we shall confine our attention, throughout the present paper, to the 3-
dimensional case for the sake of clarity of description.

Notation. We introduce the notation which will be used in the present paper.
Although the discussions in the present paper will be made for the 3-dimensional
case, the notation introduced here are given in the n-dimensional setting.
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For x ∈ Rn, |x| denotes the Euclidean norm of x and

〈x〉 =
√

1 + |x|2.

The Fourier transform of a function u is denoted by Fu or û, and defined by

[Fu](ξ) = û(ξ) = (2π)−n/2

∫
Rn

e−ix·ξu(x) dx.

For s and ` in R, we define the weighted L2-space and the weighted Sobolev space
by

L2,s(Rn) = {f | 〈x〉sf ∈ L2(Rn)},

H`,s(Rn) = {f | 〈x〉s〈D〉`f ∈ L2(Rn)}

respectively, where D stands for −i∂/∂x and 〈D〉 =
√

1 + |D|2 =
√

1−∆. When
s = 0, we write L2(Rn) = L2,0(Rn) and H`(Rn) = H`,0(Rn). The inner products
and the norms in L2,s(Rn) and H`,s(Rn) are given by

(f, g)L2,s =
∫

Rn

〈x〉2sf(x)g(x) dx

‖f‖L2,s = {(f, f)L2,s}1/2

and

(f, g)H`,s =
∫

Rn

〈x〉2s〈D〉`f(x)〈D〉`g(x) dx

‖f‖H`,s = {(f, f)H`,s}1/2

respectively.
By C∞0 (Rn) we mean the space of C∞-functions of compact support. By S(Rn)

we mean the Schwartz space of rapidly decreasing functions, and by S ′(Rn) the
space of tempered distributions. For a pair of f ∈ S ′(Rn) and ψ ∈ S(Rn), we
denote the duality bracket by 〈f, ψ〉. For a pair of f ∈ L2,−s(Rn) and g ∈ L2,s(Rn),
we define the anti-duality bracket by

(f, g)−s,s :=
∫

Rn

f(x)g(x) dx.

For a pair of Hilbert spaces H and K, B(H,K) denotes the Banach space of all
bounded linear operators from H to K. We set B(H) = B(H,H).

For a selfadjoint operator T in a Hilbert space, σ(T ) and ρ(T ) denote the spec-
trum of T and the resolvent set of T respectively. The point spectrum, i.e., the
set of all eigenvalues of T , will be denoted by σp(T ). The essential spectrum, the
continuous spectrum and the absolutely continuous spectrum of T will be denoted
by σess(T ), σc(T ) and σac(T ) respectively.

2. Integral kernels of the resolvents of H

This section is devoted to the computation of the resolvent kernel of H0 =
√
−∆

on R3. We shall start with the definition of the operator H0, and the description
of its basic properties from the view point of spectral theory.

Let H0 be the selfadjoint operator in L2(R3) given by

H0 :=
√
−∆ with domain H1(R3).
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Since H0 is unitarily equivalent, through the Fourier transform F , to the multipli-
cation operator by |ξ|× in L2(R3

ξ), it follows from Kato [10, p. 520, Example 1.9]
that H0 is absolutely continuous, and that

σ(H0) = σac(H0) = [0,∞).

Furthermore, we see thatH0 restricted on C∞0 (R3) is essentially selfadjoint. Indeed,
with a C∞−function χ satisfying

χ(ξ) =

{
1 if |ξ| ≤ 1,
0 if |ξ| ≥ 2,

we can decompose
√
−∆ into a regular part and a singular part:
√
−∆ = (1− χ(D))

√
−∆ + χ(D)

√
−∆,

which enables us to regard
√
−∆ as a sum of a essentially selfadjoint operator

on C∞0 (R3) (see Nagase and Umeda [15, Theorem 3.4]) and a bounded selfadjoint
operator. The resolvent of H0 will be denoted by

R0(z) = (H0 − z)−1 (z ∈ ρ(H0) = C \ [0,∞)).

By virtue of the fact that R0(z) = F−1(|ξ| − z)−1F . it would be possible to
obtain the resolvent kernel, i.e., the integral kernel of R0(z) by direct computation
of [F−1(|ξ|−z)−1](x). We shall, however, avoid this computation. Instead, we take
advantage of the fact that the strongly continuous semigroup generated by −H0

is expressed as a convolution with the Poisson kernel (Stein [23, p. 61], Strichartz
[24, p. 50]):

e−tH0u(x) = Pt ∗ u(x) =
∫

R3
Pt(x− y)u(y) dy, t > 0, u ∈ L2(R3),

where
Pt(x) =

t

π2(t2 + |x|2)2
. (2.1)

We then take the Laplace transform of e−tH0 to get the resolvent:

R0(z) =
∫ +∞

0

etze−tH0 dt if Re z < 0.

Thus we need the following prerequisite.

Lemma 2.1. If Re z < 0, then∫ +∞

0

etz t

π2(t2 + a2)2
dt =

1
2π2a2

+
z

2π2a
[sin(za) ci(−za)− cos(za) si(−za)],

where a is a positive constant.

Proof. Since
t

(t2 + a2)2
=

d

dt

{
− 1

2(t2 + a2)

}
,

we get, by integration by parts,∫ +∞

0

etz t

(t2 + a2)2
dt =

1
2a2

+
z

2

∫ +∞

0

etz 1
t2 + a2

dt. (2.2)

Applying the formula (11.4) in Appendix to the integral on the right-hand side of
(2.2) and noting the remark after the formula (11.4), we obtain the lemma. �
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In accordance with Lemma 2.1, we need to introduce two functions, which con-
stitute the integral kernel of R0(z) as we shall see in Theorem 2.3 below.

Definition 2.2. For z ∈ C \ [0,+∞), we define

`z(x) :=
z

2π2|x|
[
sin(z|x|) ci(−z|x|)− cos(z|x|) si(−z|x|)

]
, (2.3)

gz(x) :=
1

2π2|x|2
+ `z(x). (2.4)

By G0 we mean the operator defined by

G0u(x) :=
1

2π2

∫
R3

1
|x− y|2

u(y) dy. (2.5)

By Gz we mean the operator defined by

Gzu(x) := Gz ∗ u(x) =
∫

R3
gz(x− y)u(y) dy. (2.6)

Note that G0 is the Riesz potential. See Stein [23, p. 117], in which I1 is the
same as the operator G0 in the present paper. Note also that (2.3), (2.4) and
Lemma 2.1 yield ∫ +∞

0

etz t

π2(t2 + |x|2)2
dt = gz(x) (2.7)

if Re z < 0.

Theorem 2.3. If z ∈ C \ [0,+∞), then R0(z)u = Gzu for all u ∈ C∞0 (R3).

Proof. It is sufficient to show that

(R0(z)u, v)L2 = (Gzu, v)L2 (2.8)

for all z ∈ C \ [0,+∞) and all u, v ∈ C∞0 (R3).
As mentioned before Lemma 2.1, we have

(R0(z)u, v)L2 =
∫ +∞

0

etz(e−tH0u, v)L2 dt

=
∫ +∞

0

etz
{∫

R3

( ∫
R3
Pt(x− y)u(y) dy

)
v(x) dx

}
dt

(2.9)

if Re z < 0. In order to make a change of order of integration in (2.9), we shall
show that the function etzPt(x − y)u(y)v(x) is absolutely integrable with respect
the variables x, y and t if Re z < 0 and u, v ∈ C∞0 (R3). To this end, we see (by
integration by parts as in (2.2)) that∫ +∞

0

et(Re z) t

(t2 + a2)2
dt =

1
2a2

+
Re z

2

∫ +∞

0

et(Re z) 1
t2 + a2

dt

≤ 1
2a2

+
|Re z|
2a2

∫ +∞

0

et(Re z) dt

=
1
a2
.
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This estimate, together with (2.1), implies∫∫∫
R6×(0,∞)

∣∣∣etzPt(x− y)u(y)v(x)
∣∣∣ dx dy dt

≤ 1
π2

∫∫
R6

|u(y)v(x)|
|x− y|2

dx dy

=
1
π2

∫
R3
|v(x)| dx

( ∫
|x−y|≤1

+
∫
|x−y|≥1

) |u(y)|
|x− y|2

dy

≤ 1
π2
‖v‖L1

(
‖u‖L∞

∫
|y|≤1

1
|y|2

dy + ‖u‖L1

)
< +∞.

Therefore, we can make a change of order of integration in (2.9), and we get

(R0(z)u, v)L2 =
∫

R3

{∫
R3

( ∫ +∞

0

etz t

π2(t2 + |x− y|2)2
dt

)
u(y) dy

}
v(x) dx (2.10)

when Re z < 0. If we apply Lemma 2.1 to the integral with respect to the t variable
in (2.10 ) and appeal to (2.7), we obtain

(R0(z)u, v)L2 = (Gzu, v)L2 on {z ∈ C | Re z < 0}. (2.11)

Differentiating ∫∫
R6
gz(x− y)u(y)v(x) dxdy

with respect to z under the sign of integration (recall (2.3), (2.4) and that u,
v ∈ C∞0 (R3)), we can deduce that (Gzu, v)L2 is a holomorphic function of z in
C \ [0,+∞). In view of the fact that (R0(z)u, v)L2 is also a holomorphic function
of z in C \ [0,+∞), (2.11) implies that (2.8) holds on C \ [0,+∞) for all u, v ∈
C∞0 (R3). �

Remark. Since R0(z) is a bounded operator in L2(R3) for any z ∈ C \ [0,+∞),
Theorem 2.3 implies that so is Gz. On the other hand, it is a well-known fact (Stein
[23, Chapter V, §1.2]) that the Riesz potential G0 cannot be a bounded operator
in L2(R3). This makes it difficult to show directly from (2.3)–(2.6) that Gz is a
bounded operator in L2(R3).

3. Properties of the resolvents of H

This section is devoted to investigating properties of the resolvents of H0 =√
−∆. We put emphasis on expressions of the extended resolvents R±0 (z) in the

forms which will be useful for establishing the radiation conditions for
√
−∆ as well

as
√
−∆ + V (x).

We shall begin with the limiting absorption principle for
√
−∆, which assures

the existence of the extended resolvents R±0 (z), that is, the existence of the bound-
ary values of R0(z) on the positive axis. The limiting absorption principle for√
−∆ +m2 was first proved by Umeda [25] in the case where m > 0. The results in

[25] were greatly generalized by Ben-Artzi and Nemirovski [3], where they were able
to treat

√
−∆. Actually, Theorem 3.1 below is a corollary to results in Ben-Artzi

and Nemirovski [3, Section 2], which is based on a general theory developed by
Ben-Artzi and Devinatz [2].

Theorem 3.1 (Ben-Artzi and Nemirovski [3]). Let s > 1/2. Then
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(i) For each λ > 0, there exist the limits

R±0 (λ) = lim
µ↓0

R0(λ± iµ) in B(L2,s,H1,−s).

(ii) The operator-valued functions R±0 (z) defined by

R±0 (z) =

{
R0(z) if z ∈ C±

R±0 (λ) if z = λ > 0

are B(L2,s, H1,−s)-valued continuous functions, where C+ and C− are the
upper and the lower half-planes respectively:

C± = {z ∈ C | ±Im z > 0}.

Theorem 3.2 below gives representation formulae for the extended resolvents
R±0 (z) of

√
−∆ in terms of the extended resolvents Γ±0 (z) of −∆ (see Agmon [1,

Section 4] for the limiting absorption principle for −∆). The advantage of Theorem
3.2 is that its representation formulae are convenient tools to derive the radiation
conditions for

√
−∆, which we shall need in later sections. It should be noted that

Theorem 3.2 provides an alternative proof of Theorem 3.1.

Theorem 3.2. Let s > 1/2. Suppose that b > a > 0, and define

Dab := {z = λ+ iµ ∈ C | a ≤ λ ≤ b, |µ| ≤ a

2
}.

Then there exist operator-valued functions A(z) and B(z) such that
(i) A(z) is a B(L2,s)-valued continuous function on C,
(ii) B(z) is a B(L2,s,H1,−s)-valued continuous function on Dab,
(iii) R±0 (z) = Γ±0 (z2)A(z) +B(z) for all z ∈ D±

ab, where

D±
ab := {z ∈ Dab | ±Im z ≥ 0}.

Following the idea in Umeda [25, Section 2], we shall give a proof of Theorem
3.2 by means of a series of lemmas. We first note that for z ∈ C±

R0(z) = F−1
[ |ξ|+ z

|ξ|2 − z2

]
F

= F−1
[ 1
|ξ|2 − z2

]
F · F−1

[
z + γ(ξ)|ξ|

]
F + F−1

[(
1− γ(ξ)

)
|ξ|

|ξ|2 − z2

]
F ,

(3.1)

where γ is a C∞0 -function, which will be specified soon. It is easy to see that

3
4
a2 ≤ Re z2 ≤ b2 for ∀z ∈ Dab, (3.2)

and that
±Im z2 > 0 for ∀z ∈ Dab ∩ C± (3.3)

In view of (3.2) and (3.3), we choose γ ∈ C∞0 (R3) so that

γ(ξ) =

{
1 if 1

2a
2 ≤ |ξ|2 ≤ 3

2b
2

0 if |ξ|2 ≤ 1
4a

2 or 2b2 ≤ |ξ|2.

One can easily find that∣∣∣|ξ|2 − z2
∣∣∣ ≥ 1

4
a2 for ∀z ∈ Dab, ∀ξ ∈ supp[1− γ], (3.4)
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and that ∣∣∣|ξ|2 − z2
∣∣∣ ≥ 1

3
|ξ|2 if z ∈ Dab, |ξ|2 ≥

3
2
b2. (3.5)

In accordance with (3.1), we now define A(z) and B(z) by

A(z) := F−1
[
z + γ(ξ)|ξ|

]
F = zI + F−1

[
γ(ξ)|ξ|

]
F (3.6)

and

B(z) := F−1
[ (1− γ(ξ))|ξ|

|ξ|2 − z2

]
F (3.7)

respectively. With

Γ0(z) = (−∆− z)−1, z ∈ C \ [0,+∞), (3.8)

we have

R0(z) = Γ0(z2)A(z) +B(z) for ∀z ∈ Dab with Im z 6= 0 (3.9)

by (3.1). In order to treat A(z) and B(z) in weighted L2-spaces and weighted
Sobolev spaces, we need terminology and a boundedness result on pseudo-
differential operators in these spaces.

Definition 3.3. A C∞-function p(x, ξ) on Rn × Rn is said to be in the class Sµ
0,0

(µ ∈ R) if for any pair α and β of multi-indices there exists a constant Cαβ ≥ 0
such that ∣∣∣( ∂

∂ξ

)α( ∂

∂x

)β

p(x, ξ)
∣∣∣ ≤ Cαβ〈ξ〉µ.

The class Sµ
0,0 is a Fréchet space equipped with the seminorms

|p|(µ)
` = max

|α|,|β|≤`
sup
x,ξ

{∣∣∣( ∂

∂ξ

)α( ∂

∂x

)β

p(x, ξ)
∣∣∣〈ξ〉−µ

}
(` = 0, 1, 2, · · · ).

For p(x, ξ) ∈ Sµ
0,0, a pseudodifferential operator p(x,D) is defined by

p(x,D)u(x) = (2π)−n/2

∫
eix·ξp(x, ξ)û(ξ) dξ.

It is well-known (Kumano-go [12, Theorem 1.3, p. 57]) that p(x,D) maps S(Rn)
continuously into itself, and by duality, maps S ′(Rn) into itself.

Lemma 3.4. Let p(x, ξ) belong to S−m
0,0 for some integer m ≥ 0, and let s ∈ R.

Then there exist a nonnegative constant C = Cms and a positive integer ` = `ms

such that
‖p(x,D)u‖Hm,s ≤ C|p|(−m)

` ‖u‖L2,s

for all u ∈ S(Rn).

Proof. We first prove the lemma in the case where m = 0. If s ≥ 0, the lemma
is a special case of [25, Lemma 2.2], where 〈x〉sp(x,D)〈x〉−s was shown to be a
bounded operator in L2(Rn), of which norm is estimated by a constant times |p|(0)`

with some integer `.
If s < 0, we consider 〈x〉−s

p∗(x,D)〈x〉s, where p∗(x,D) is a formal adjoint
operator of p(x,D) in the sense that

(p(x,D)u, v)L2 = (u, p∗(x,D)v)L2 , u, v ∈ S(Rn).

It is well-known that the symbol p∗(x, ξ) of the operator p∗(x,D) belongs to S0
0,0

(see [12, Theorem 2.6, p. 74]), and that each seminorm of p∗(x, ξ) is estimated by a
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seminorm of p(x, ξ) (see [12, Theorem 2.5, p. 73]). Hence, for all u and v in S(Rn),
we have∣∣∣(〈x〉sp(x,D)〈x〉−s

u, v)L2

∣∣∣ =
∣∣∣(u, 〈x〉−s

p∗(x,D)〈x〉sv)L2

∣∣∣
≤ ‖u‖L2‖〈x〉−s

p∗(x,D)〈x〉−(−s)
v‖L2

≤ ‖u‖L2C|p∗|(0)` ‖v‖L2 (because −s > 0)

≤ ‖u‖L2C ′|p|(0)`′ ‖v‖L2 ,

where in the second inequality the result in the preceding paragraph was used.
We have thus shown that for s < 0, the operator 〈x〉sp(x,D)〈x〉−s is bounded in
L2(Rn), and its norm is estimated by a constant times |p|(0)`′ with some integer `′.

All that remains is to prove the lemma in the case where m is a positive integer.
This can be done in the same manner as in the proof of [25, Lemma 2.2]. We omit
the details. �

We now turn to the proof of Theorem 3.2. Note that s in Lemma 3.5 below can
be negative. This is due to Lemma 3.4

Lemma 3.5. For any s ∈ R, A(z) is a B(L2,s)-valued continuous function on C.

Proof. Since the support of the function γ is away from the origin, it is evident that
γ(ξ)|ξ| ∈ C∞0 (R3), which one can regard as a subset of S0

0,0. Then it follows from
Lemma 3.4 that γ(D)|D| defines a bounded operator in L2,s(R3). This immediately
implies the lemma, because of the fact that A(z) = zI + γ(D)|D|. �

Lemma 3.6. For any s ≥ 0, B(z) is a B(L2,s,H1,−s)-valued continuous function
on Dab.

Proof. In order to decompose the symbol of B(z) into a regular part and a singular
part, we shall use the same function χ ∈ C∞0 (R3) as in the beginning of Section 2.
We thus define

B1(z) := F−1
[ (1− γ(ξ))(1− χ(ξ))|ξ|

|ξ|2 − z2

]
F ,

B2(z) := F−1
[ (1− γ(ξ))χ(ξ)|ξ|

|ξ|2 − z2

]
F .

It is obvious that
B(z) = B1(z) +B2(z). (3.10)

Therefore, it is sufficient to show that both B1(z) and B2(z) are B(L2,s,H1,−s)-
valued continuous functions on Dab.

As for B1(z), we note that the symbol of B1(z) is a C∞-function, and we shall
apply Lemma 3.4. To this end, we exploit the inequalities (3.4) and (3.5), and
obtain ∣∣∣( ∂

∂ξ

)α{(
1− γ(ξ)

)(
1− χ(ξ)

)
|ξ|

|ξ|2 − z2

}∣∣∣ ≤ Cα〈ξ〉−1−|α| (3.11)

for all α, where Cα is a constant independent of z ∈ Dab. It then follows from
(3.11) and Lemma 3.4 with m = 1 that for every s ∈ R

‖B1(z)u‖H1,s ≤ Cs‖u‖L2,s , u ∈ S(R3), (3.12)
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where Cs is a constant independent of z ∈ Dab. Therefore, for each z ∈ Dab, B1(z)
can be extended to a bounded operator from L2,s(R3) to H1,s(R3). In a similar
fashion, we can see that for z, z′ ∈ Dab∣∣∣( ∂

∂ξ

)α{ (1− γ(ξ))(1− χ(ξ))|ξ|
|ξ|2 − z2

− (1− γ(ξ))(1− χ(ξ))|ξ|
|ξ|2 − z′2

}∣∣∣
≤ Cα|z − z′|〈ξ〉−3−|α|

(3.13)

for all α, where the constant Cα is independent of z, z′ ∈ Dab. Lemma 3.4 with
m = 3, together with (3.13), gives

‖{B1(z)−B1(z′)}u‖H3,s ≤ Cs|z − z′|‖u‖L2,s , u ∈ S(R3),

for every s ∈ R, where Cs is a constant being uniform for z, z′ ∈ Dab. In particular,
B1(z) is a B(L2,s,H1,s)-valued continuous function on Dab for every s ∈ R. As a
result, we can deduce that B1(z) is a B(L2,s,H1,−s)-valued continuous function on
Dab for every s ≥ 0.

As for B2(z), we exhibit it as a product of a pseudodifferential operator with a
smooth symbol and a pseudodifferential operator with a singular symbol:

B2(z) = F−1
[ (1− γ(ξ))
|ξ|2 − z2

]
F · F−1

[
χ(ξ)|ξ|

]
F =: B2,1(z) ·B2,2.

Note that B2,1(z) can be treated in a similar fashion to B1(z), and one can deduce
that for every s ∈ R

‖B2,1(z)u‖H2,s ≤ Cs‖u‖L2,s , u ∈ S(R3), (3.14)

where Cs is a constant independent of z ∈ Dab, and that

‖{B2,1(z)−B2,1(z′)}u‖H4,s ≤ C ′s|z − z′|‖u‖L2,s , u ∈ S(R3),

for every s ∈ R, where C ′s is a constant independent of z, z′ ∈ Dab. In particu-
lar, B2,1(z) is a B(L2,s,H2,s)-valued continuous function on Dab for every s ∈ R.
Taking into account the fact that χ(ξ)|ξ| is a bounded function, we see that for
s ≥ 0,

‖B2,2u‖L2,−s ≤ ‖B2,2u‖L2

≤ (max
ξ
χ(ξ)|ξ|)‖u‖L2

≤ (max
ξ
χ(ξ)|ξ|)‖u‖L2,s .

Hence we have B2,2 ∈ B(L2,s, L2,−s) for every s ≥ 0, which implies that B2(z) =
B2,1(z)B2,2 is a B(L2,s,H2,−s)-valued continuous function on Dab for every s ≥ 0.
Summing up the arguments, we have completed the proof of the lemma. �

It is clear that we have actually showed the following assertion in the proof of
Lemma 3.6.

Corollary 3.7. There exist a B(L2,s,H1,s)-valued continuous function B1(z) on
Dab for every s ∈ R and a B(L2,s,H2,−s)-valued continuous function B2(z) on Dab

for every s ≥ 0 such that B(z)u = B1(z)u+B2(z)u for all u ∈ L2,s(R3) with s ≥ 0.

Proof of Theorem 3.2. Assertions (i) and (ii) are special cases of Lemmas 3.5 and
3.6 respectively, since we assume s > 1/2 in the theorem. To prove assertion (iii),
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we recall a well-known result by Agmon [1, Theorem 4.1]: the extended resolvents
Γ±0 (z) defined by

Γ±0 (z) =

{
Γ0(z) if z ∈ C±

Γ±0 (λ) if z = λ > 0
(3.15)

are B(L2,s,H2,−s)-valued continuous function on C± ∪ (0,+∞) provided that s >
1/2. In view of assertions (i) and (ii), the theorem follows from this fact and (3.9),
together with (3.3). �

It is worthwhile to improve assertion (ii) of Theorem 3.2.

Theorem 3.8. Under the same assumptions and with the same notation as in
Theorem 3.2, the operator-valued function B(z) has the following property: If 0 ≤
s < 5/2 and t < s − 3/2, then B(z) is a B(L2,s, H1,t)-valued continuous function
on Dab.

Proof. We utilize the decomposition (3.10) of B(z) made in the proof of Lemma
3.6, where it was actually shown that B1(z) is a B(L2,s, H1,s)-valued continuous
function on Dab for any s ∈ R (see Corollary 3.7). It is therefore sufficient to prove
that B2(z) has the property described in the theorem.

We use the same factorization as in the proof of Lemma 3.6:

B2(z) = B2,1(z)B2,2.

It is apparent that we have shown in the proof of Lemma 3.6 that B2,1(z) is a
B(L2,s, H2,s)-valued continuous function on Dab for every s ∈ R. Since B2,2 is
equal to a pseudodifferential operator χ(D)

√
−∆, we can apply Umeda [26, Lemma

5.2]. Thus we see that B2,2 ∈ B(L2,s, L2,t) if 0 ≤ s < 3/2 + 1 and t < s − 3/2. It
then follows that B2(z) is a B(L2,s, H2,t)-valued continuous function on Dab under
the assumption of the theorem. �

4. Integral kernels of R±0 (λ)

In this section, we shall derive the integral kernels of the boundary values R±0 (λ)
of the resolvent R0(z) on the positive half axis (recall that the existence of R±0 (λ)
was assured in the previous section). We have to start with examining the boundary
values of the complex variable function ci(−z), z ∈ C \ [0,+∞), since the integral
kernel gz(x) of R0(z) contains the term ci(−z|x|) as was shown in Section 2. In
connection with the integral kernel gz(x), it is worthwhile noting that all of sin(z),
cos(z) and si(z) are entire functions, but ci(z) is a many-valued function with
a logarithmic branch point at z = 0; we shall choose the principal branch (see
Subsection 11.1 in Appendix).

By (11.1) in Appendix and the definition of the function he(z) introduced in
Appendix, we have

ci(−z) = −iArg(−z)− γ − log|z|+ he(z) (4.1)

for z ∈ C \ [0,+∞). It follows from (4.1) that if λ > 0, then

ci(−(λ± iµ)) → ±iπ + ci(λ) as µ ↓ 0, (4.2)

where we have used that fact that he is an even function, as is remarked in Appen-
dix.
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We now turn to the boundary values of `z(x) on the positive axis (see (2.3) for
the definition of `z(x)). Putting z = λ± iµ with λ, µ > 0, we take the limit of `z(x)
as µ ↓ 0. We then see that

`z(x) →
λ

2π2|x|
[
sin(λ|x|){±iπ + ci(λ|x|)} − cos(λ|x|){−π − si(λ|x|)}

]
(4.3)

for each x 6= 0 as µ ↓ 0, where we have used (4.2) and (11.3) in Appendix. By the
fact that e±iλ|x| = cos(λ|x|)± i sin(λ|x|), we get

`z(x) →
λ

2π
· e

±iλ|x|

|x|
+mλ(x), (4.4)

for each x 6= 0 as µ ↓ 0, where

mλ(x) :=
λ

2π2|x|

[
sin(λ|x|) ci(λ|x|) + cos(λ|x|) si(λ|x|)

]
. (4.5)

In accordance with (2.4) in Section 2, we define

g±λ (x) :=
1

2π2|x|2
+

λ

2π
· e

±iλ|x|

|x|
+mλ(x). (4.6)

(Recall that gλ+i0(x) in Introduction, which is exactly the same as g+
λ (x) defined

above.) It follows immediately from (2.4), (4.4) and (4.6) that for λ > 0

gλ±iµ(x) → g±λ (x), x 6= 0 (4.7)

as µ ↓ 0. From the view point of the time independent theory of scattering, it
is very important that the leading term of (4.6) at infinity is the second term
λe±iλ|x|/(2π|x|), which is the same, up to a constant, as the integral kernels of the
boundary values of the resolvent Γ0(z) of −∆ on R3.

We finally state a result on the integral representations of the boundary values
of the resolvent R0(z).

Theorem 4.1. Let s > 1/2. If λ > 0, then

(R±0 (λ)u, v)−s,s =
∫

R3

{∫
R3
g±λ (x− y)u(y) dy

}
v(x) dx

for all u and v ∈ C∞0 (R3).

Proof. It follows from (2.6) and Theorem 2.3 that

(R0(λ± iµ)u, v)L2 =
∫

R3

{∫
R3
gλ±iµ(x− y)u(y) dy

}
v(x) dx, (4.8)

where µ > 0. Since R±0 (z) defined in Theorem 3.1 are B(L2,s, L2,−s)-valued con-
tinuous functions on C± ∪ (0,+∞) respectively, we see that

(R0(λ± iµ)u, v) → (R±0 (λ)u, v)−s,s (4.9)

as µ ↓ 0. As for the right hand side of (4.8), we shall apply the Lebesgue dominated
convergence theorem. To this end, we first note that gz(x) is locally integrable.
More precisely, in view of (2.3), (2.4), (4.1) and the fact that he(z) and si(z) are
entire functions, we find that for each pair of λ > 0 and a > 1, there corresponds a
positive constant Cλa, independent of µ with 0 < µ < 1, such that

|gλ±iµ(x)| ≤ Cλa

{
1/|x|2 if |x| ≤ 1
1 if 1 ≤ |x| ≤ a.

(4.10)
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Since u and v lie in C∞0 (R3), it follows from (4.10) that

|gλ±iµ(x− y)u(y)v(x)| ≤ Cλuv


|u(y)v(x)|
|x− y|2

if |x− y| ≤ 1

|u(y)v(x)| otherwise
(4.11)

where Cλuv > 0 is a constant, being dependent on λ, u and v, but independent
of µ with 0 < µ < 1. Note that the function on the right hand side of (4.11) is
integrable on R3 × R3. By virtue of (4.7) and (4.11), we can apply the Lebesgue
dominated convergence theorem, and see that∫∫

R6
gλ±iµ(x− y)u(x)v(y) dxdy →

∫∫
R6
g±λ (x− y)u(x)v(y) dxdy (4.12)

as µ ↓ 0. Combining (4.8) with (4.9), (4.12) gives the theorem. �

It follows from Theorem 4.1 that the integral operators defined by

G±λ u(x) :=
∫

R3
g±λ (x− y)u(y) dy, u ∈ C∞0 (R3) (4.13)

can be extended to bounded operators from L2,s(R3) to H1,−s(R3) for s > 1/2,
since R±0 (λ) ∈ B(L2,s,H1,−s) for s > 1/2, and

R±0 (λ)u = G±λ u, u ∈ C∞0 (R3). (4.14)

5. Estimates on the integral operators

In this section, we consider the Riesz potential G0 (see (2.5)) and the integral
operators K±

λ , Mλ defined by

(K±
λ u)(x) :=

λ

2π

∫
R3

e±iλ|x−y|

|x− y|
u(y) dy, (5.1)

(Mλu)(x) :=
∫

R3
mλ(x− y)u(y) dy. (5.2)

(For the definition of mλ(x), see (4.5)). Our task here is to derive estimates of
these operators in weighted L2-spaces as well as pointwise estimates of (G0u)(x),
(K±

λ u)(x) and (Mλu)(x) for u belonging to some weighted L2-space or to a suitable
class of functions. We shall apply these estimates in the later sections in order to
examine asymptotic behaviors of the generalized eigenfunctions of

√
−∆+V (x) on

R3. In connection with this, it is important to notice that we have formal identities

R±0 (λ) = G±λ = G0 +K±
λ +Mλ, (5.3)

which hold at least on C∞0 (R3); see (4.6), (4.13) and (5.17). It is well-known (Stein
[23, p. 119]) that the inequality

‖G0u‖L∞ ≤ C‖u‖Lp

cannot hold for any p ≥ 1. Furthermore, we make a remark that if one defines

u0(x) :=

{
1/|x| |x| ≤ 1
0 otherwise

then u0 ∈ L2,s(R3) for all s ∈ R, and (G0u0)(0) = +∞. In spite of these facts, we
need to find a class of functions u for which (G0u)(x) are bounded functions of x.
Actually, we shall obtain two sufficient conditions (see Lemmas 5.2 and 5.3 below),
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either of which is suitable for showing the boundedness of generalized eigenfunctions
of
√
−∆+V (x) on R3. It is also well-known (Stein [23, p. 119]) that the inequality

‖G0u‖Lq ≤ C‖u‖Lp

holds only if q−1 = p−1 − 3−1 in the context of the present paper. When p = 2, we
actually have

‖G0u‖L6 ≤ C‖u‖L2 . (5.4)

On the other hand, we are going to show a few boundedness results on G0 in the
framework of weighted L2-spaces as well as in some other frameworks.

Lemma 5.1. Let s > 3/2. Then
(i) G0 ∈ B(L2,s, L2).
(ii) G0 ∈ B(L2, L2,−s).

Proof. Let u ∈ L2,s(R3). Since s > 3/2, the Schwarz inequality gives∫
R3
|u(x)| dx =

∫
R3
〈x〉−s · 〈x〉s|u(x)| dx ≤ Cs‖u‖L2,s , (5.5)

hence u ∈ L1(R3). With B = {x | |x| ≤ 1} and E = {x | |x| ≥ 1}, we decompose
the function 1/(2π2|x|2) into two parts:

1
2π2|x|2

=
1B(x)
2π2|x|2

+
1E(x)
2π2|x|2

=: hB(x) + hE(x), (5.6)

where 1B(x) and 1E(x) are the characteristic functions of the sets B and E respec-
tively. It is clear that hB(x) ∈ L1(R3) and hE(x) ∈ L2(R3), and that

G0u = hB ∗ u+ hE ∗ u. (5.7)

If we regard u as a function belonging to L2(R3), we can apply the Young inequality
(see Stein [23, p. 271]) to hB ∗ u, and obtain

‖hB ∗ u‖L2 ≤ ‖hB‖L1‖u‖L2 ≤ ‖hB‖L1‖u‖L2,s . (5.8)

If we regard u as a function belonging to L1(R3) (recall (5.5)), we can also apply
the Young inequality to hE ∗ u, and obtain

‖hE ∗ u‖L2 ≤ ‖hE‖L2‖u‖L1 ≤ Cs‖hE‖L2‖u‖L2,s , (5.9)

where we have used (5.5). Combining (5.7)–(5.9), we conclude that assertion (i) is
true.

To prove assertion (ii), we note that G0 is symmetric on C∞0 (R3):

(G0u, v)L2 = (u,G0v)L2 for u, v ∈ C∞0 (R3),

which, together with assertion (i), implies

|(u,G0v)L2 | ≤ ‖G0u‖L2‖v‖L2 ≤ C‖u‖L2,s‖v‖L2 (5.10)

for all u, v ∈ C∞0 (R3). We can regard the left hand side of (5.10) as the anti-duality
bracket (u,G0v)s,−s. Hence, by the density argument, it follows from (5.10) that

‖G0v‖L2,−s ≤ C‖v‖L2

for all v ∈ C∞0 (R3). This yields assertion (ii). �
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Lemma 5.2. If u satisfies

|u(x)| ≤ C〈x〉−`, ` > 1, C > 0, (5.11)

then

|G0u(x)| ≤ C`‖〈·〉`u‖L∞ ×


〈x〉−(`−1) if 1 < ` < 3,
〈x〉−2 log(1 + 〈x〉) if ` = 3,
〈x〉−2 if ` > 3.

Proof. It is evident from the definition (2.5) that we have

|G0u(x)| ≤
1

2π2
‖〈·〉`u‖L∞

∫
R3

1
|x− y|2〈y〉`

dy. (5.12)

If we apply Lemma 11.1 in Appendix, with n = 3, β = 2 and γ = `, to the function
defined by the integral on the right hand side of (5.12), then the lemma follows. �

Lemma 5.3. Suppose that

u ∈ L2(R3) ∩ Lq(R3), q > 3. (5.13)

Then there exists a constant Cq, independent of u, such that

‖G0u‖L∞ ≤ Cq(‖u‖L2 + ‖u‖Lq ) (5.14)

Proof. We exploit the same decomposition of G0u as in (5.7). If we apply the
Hölder inequality to hB ∗ u, we obtain

|hB ∗ u(x)| ≤ 1
2π2

{∫
|x−y|≤1

1
|x− y|2p

dy
}1/p

‖u‖Lq , (5.15)

where p−1 = 1 − q−1. Since q > 3, it follows that 2p < 3. Hence the inequality
(5.15), together with the assumption (5.13), implies that hB ∗ u(x) is a bounded
function. Similarly, if we apply the Schwarz inequality to hE ∗ u, we can deduce
that hE ∗ u(x) is a bounded function. Summing up, we have shown the inequality
(5.14). �

In order to derive estimates of the operator Mλ, we need the inequality

| sin(ρ) ci(ρ) + cos(ρ) si(ρ)| ≤ const.(1 + ρ)−1, 0 < ρ < +∞, (5.16)

which follows from the inequalities in the subsections 11.1 and 11.2 in Appendix.
The inequality (5.16), together with (4.5), immediately implies that for each λ > 0,
there is a positive constant Cλ such that

|mλ(x)| ≤ Cλ|x|−1〈x〉−1. (5.17)

It is apparent that one can take the constant Cλ in (5.17) to be uniform for λ in
each compact interval in (0,+∞).

Lemma 5.4. There exists a positive constant C ′λ, being uniform for λ in each
compact interval in (0,+∞), such that

|Mλu(x)| ≤ C ′λ‖u‖L2 (5.18)

for all u ∈ L2(R3).

Proof. It follows from (5.17) that mλ ∈ L2(R3). Applying the Schwarz inequality
to the right hand side of (5.2) gives the lemma. �
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Lemma 5.5. Let s > 3/2. Then there exists a constant Csλ such that

|Mλu(x)| ≤ Csλ(〈x〉−2 + 〈x〉−s)‖u‖L2,s

for all u ∈ L2,s(R3), Csλ being uniform for λ in each compact interval in (0,+∞).

Proof. Let u ∈ L2,s(R3). We first note that Mλu(x) satisfies the inequality (5.18),
since we can regard u as an element in L2(R3). Hence, we have

|Mλu(x)| ≤ C ′λ‖u‖L2,s . (5.19)

We shall show the inequality

|Mλu(x)| ≤ CλC̃s(|x|−2 + 〈x〉−s)‖u‖L2,s , (5.20)

where Cλ is the same constant as in (5.17) and C̃s is a constant depending only on
s. The inequality (5.20), together with the inequality (5.19), gives the lemma. In
order to show (5.20), we decompose Mλu(x) into three terms:

Mλu(x) = I(x) + II(x) + III(x), (5.21)

where

I(x) :=
∫
|y|≤|x|/2

mλ(x− y)u(y) dy, (5.22)

II(x) :=
∫
|y|≥|x|/2, |x−y|≥|x|/2

mλ(x− y)u(y) dy, (5.23)

III(x) :=
∫
|y|≥|x|/2, |x−y|≤|x|/2

mλ(x− y)u(y) dy. (5.24)

To deal with I(x), we note that |x− y| ≥ |x| − |y| ≥ |x|/2 if |y| ≤ |x|/2. This fact,
together with (5.17), yields

|I(x)| ≤ Cλ

∫
|y|≤|x|/2

|x− y|−2|u(y)| dy

≤ 4Cλ|x|−2

∫
|y|≤|x|/2

|u(y)| dy

≤ 4CλCs|x|−2‖u‖L2,s ,

(5.25)

where we have used (5.5) in the last inequality and the constant Cs is the same one
as in (5.5). It follows from (5.17) that

|II(x)| ≤ Cλ

∫
|x−y|≥|x|/2

|x− y|−2|u(y)| dy ≤ 4CλCs|x|−2‖u‖L2,s . (5.26)

To get an estimate of III(x), we should note that if |x − y| ≤ |x|/2, then |y| ≥
|x| − |x− y| ≥ |x|/2, hence 〈y〉 ≥ 〈x〉/2. By using this fact and (5.17), we have

|III(x)| ≤ Cλ

∫
|x−y|≤|x|/2

|x− y|−1〈x− y〉−1|u(y)| dy

≤ Cλ

{∫
|x−y|≤|x|/2

〈y〉−2s

|x− y|2〈x− y〉2
dy

}1/2

‖u‖L2,s

≤ 2sCλ〈x〉−s‖u‖L2,s ,

(5.27)

where we have used the Schwarz inequality in the second inequality. Finally we
deduce from (5.21) – (5.27) that (5.20) is verified. �
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As an immediate corollary to Lemma 5.5, we obtain a boundedness result on the
operator Mλ.

Lemma 5.6. If s > 3/2, then Mλ ∈ B(L2,s, L2). Moreover, the operator norm of
Mλ is bounded by a constant Csλ, which is uniform for λ in each compact interval
in (0,+∞).

We shall close this section with estimates of the operator K±
λ .

Lemma 5.7. Let s > 1/2. Then there exists a positive constant Cs such that

|K±
λ u(x)| ≤ Csλ‖u‖L2,s


〈x〉−(s−1/2) if 1/2 < s < 3/2,
〈x〉−1{log(1 + 〈x〉)}1/2 if s = 3/2,
〈x〉−1 if s > 3/2

for all u ∈ L2,s(R3).

Proof. Let u ∈ L2,s(R3). Then applying the Schwarz inequality to (5.1), we have

|K±
λ u(x)| ≤

λ

2π

{∫
R3

1
|x− y|2〈y〉2s

dy
}1/2

‖u‖L2,s . (5.28)

We now apply Lemma 11.1 in Appendix with n = 3, β = 2 and γ = 2s > 1, and
obtain the lemma. �

As an immediate consequence of Lemma 5.7, we obtain a boundedness result on
the operators K±

λ .

Lemma 5.8. If s > 1, then K±
λ ∈ B(L2,s, L2,−s). Moreover, the operator norms

of K±
λ are bounded by Csλ, where Cs is a constant depending only on s.

Summing up all the results of Lemma 5.1(ii) and Lemmas 5.4 and 5.7, we see
that (5.3) hold on L2,s(R3), s > 1/2, i.e.,

R±0 (λ)u = G±λ u = G0u+K±
λ u+Mλu (5.29)

for all λ > 0 and all u ∈ L2,s(R3) with s > 1/2.

6. Radiation conditions for
√
−∆

This section is devoted to discussing radiation conditions for
√
−∆ on R3. The

main result in this section is Theorem 6.5.
It is well-known that the radiation condition( ∂

∂r
− iλ

)
u = O(r−2) as r = |x| → ∞

was first introduced in order to single out an outgoing solution of the Helmholtz
equation (−∆ − λ2)u = f in R3, where λ > 0. The outgoing solution is the one
which behaves as eiλr/r at infinity. In the present paper we shall exploit the Ikebe-
Saitō’s formulation of the radiation conditions for the Helmholtz equation, which we
regard as a special case of the time-independent Schrödinger equations investigated
in Ikebe-Saitō [9, Theorems 1.4, 1.5 and Remark 1.6]. See also Saitō [20], [21] and
Pladdy-Saitō-Umeda [18] for the formulation of the radiation conditions.

Theorem 6.1 (Ikebe and Saitō [9]). Let 1/2 < s < 1.
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(i) Suppose that u belongs L2,−s(R3) ∩H2
loc(R3) and satisfies the equation

(−∆− λ2)u = 0, λ > 0, (6.1)

and, in addition, that u satisfies either the outgoing radiation condition( ∂

∂xj
− iλωj

)
u ∈ L2,s−1(R3), j = 1, 2, 3, (6.2)

or the incoming radiation condition( ∂

∂xj
+ iλωj

)
u ∈ L2,s−1(R3), j = 1, 2, 3, (6.3)

where ω = x/|x|. Then u vanishes identically.
(ii) Suppose that f ∈ L2,s(R3) and λ > 0. Then v+(λ, f) := Γ+

0 (λ2)f and
v−(λ, f) := Γ−0 (λ2)f satisfy the equation

(−∆− λ2)u = f, λ > 0 (6.4)

with the outgoing radiation condition (6.2) and the incoming radiation con-
dition (6.3) respectively. For the definition of Γ±0 (z), see (3.8) and (3.15).

It is not difficult to find radiation conditions for
√
−∆ in a formal manner,

because it is easy to see that
√
−∆(

√
−∆u) = −∆u is formally valid. Actually a

difficulty arises if one tries to make sense of
√
−∆(

√
−∆u) for u ∈ L2,−s(R3) with

s < 0. The difficulty comes from the fact that the symbol |ξ| is singular at the
origin ξ = 0 (see Lieb-Loss [14, §7.15]). In order to overcome the difficulty, we need
to clarify the function spaces to which

√
−∆u belongs when u belongs to L2,−s(R3)

with s < 0. The clarification was made in Umeda [26]. We reproduce [26, Theorem
5.8] for the reader’s convenience.

Theorem 6.2 ([26]). Let ` ∈ R. If s and t satisfy either

s ≥ 0, t < min{1, s− 3/2} (6.5)

or
−5/2 < s < 0, t < s− 3/2, (6.6)

then
√
−∆ is a bounded operator from H`,s(R3) to H`−1,t(R3).

With the aid of Theorem 6.2, we shall first make sense of
√
−∆(

√
−∆u) for

u ∈ S(R3).

Lemma 6.3. If ϕ ∈ S(R3), then
√
−∆(

√
−∆ϕ) ∈ H−1,t(R3) for all t < 1, and

√
−∆(

√
−∆ϕ) = −∆ϕ in S ′(R3). (6.7)

In particular,
√
−∆(

√
−∆ϕ) ∈ S(R3) if ϕ ∈ S(R3).

Proof. Let ϕ ∈ S(R3). By virtue of [26, Theorem 4.4], we find that
√
−∆ϕ ∈

L2,s(R3) for any s < 5/2. It follows from Theorem 6.2 that
√
−∆(

√
−∆ϕ) makes

sense, and that
√
−∆(

√
−∆ϕ) belongs to H−1,t(R3) for all t < 1. It follows, in

particular, that
√
−∆(

√
−∆ϕ) ∈ S ′(R3).

To prove (6.7), we take a test function ψ ∈ S(R3). By definition of the action of√
−∆ on distributions we have

〈
√
−∆(

√
−∆ϕ), ψ〉 = (

√
−∆ϕ,

√
−∆ψ)−s,s (6.8)

if −5/2 < s < 5/2. (It follows from [26, Theorem 4.4] that the mapping ψ 7→
(
√
−∆ϕ,

√
−∆ψ)−s,s is a continuous linear functional on S(R3), because one can
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regard
√
−∆ϕ as a function belonging to L2,−s(R3) for any s > −5/2, and because

one finds that

|(
√
−∆ϕ,

√
−∆ψ)−s,s| ≤ ‖

√
−∆ϕ‖L2,−s‖

√
−∆ψ‖L2,s

for any s with −5/2 < s < 5/2.) It is clear that we can regard the right hand side
of (6.8) as the inner product in L2(R3), and we have

〈
√
−∆(

√
−∆ϕ), ψ〉 = (

√
−∆ϕ,

√
−∆ψ)L2

= (|ξ|F [ϕ], |ξ|F [ψ])L2
ξ

= (−∆ϕ,ψ )L2

= 〈−∆ϕ,ψ〉,
where we have used the Plancherel formula twice. This proves (6.7). �

Lemma 6.4. Suppose that ` ∈ R and 0 < s < 1. If u ∈ H`,−s(R3), then
√
−∆(

√
−∆u) = −∆u in S ′(R3). (6.9)

Proof. Let u be in H`,−s(R3). Since S(R3) is dense in H`,−s(R3), we can choose
a sequence {ϕj} ⊂ S(R3) so that ϕj → u in H`,−s(R3) as j → ∞. It follows from
Theorem 6.2 that √

−∆ϕj →
√
−∆u in H`−1,t(R3) (6.10)

for any t < −s − 3/2. In view of the hypothesis that 0 < s < 1, we can find that
(6.10) holds for any t satisfying −5/2 < t < −s − 3/2. Therefore, it follows from
Theorem 6.2 again that

√
−∆(

√
−∆ϕj) →

√
−∆(

√
−∆u) in H`−2,t(R3) (6.11)

for any t < −s− 3. In particular, we have

−∆ϕj →
√
−∆(

√
−∆u) in S ′(R3), (6.12)

where we have used Lemma 6.3. On the other hand, by using the fact that ϕj → u
in H`,−s(R3), we obtain

−∆ϕj → −∆u in S ′(R3). (6.13)

Combining (6.12) with (6.13) gives (6.9). �

We shall now establish the radiation conditions for
√
−∆ in the same formulation

as in Theorem 6.1.

Theorem 6.5. Let 1/2 < s < 1.
(i) Suppose that u belongs to L2,−s(R3) ∩H1

loc(R3) and satisfies the equation

(
√
−∆− λ)u = 0 in S ′(R3), λ > 0, (6.14)

and, in addition, that u satisfies either of the outgoing radiation condition
(6.2) or the incoming radiation condition (6.3). Then u vanishes identi-
cally.

(ii) Suppose that f belongs to L2,s(R3) and that λ > 0. Then u+
0 (λ, f) :=

R+
0 (λ)f and u−0 (λ, f) := R−0 (λ)f satisfy the equation

(
√
−∆− λ)u = f in S ′(R3) (6.15)

with the outgoing radiation condition (6.2) and the incoming radiation con-
dition (6.3) respectively.



22 T. UMEDA EJDE-2006/127

A very important consequence of Theorem 6.5 is the fact that the radiation
conditions (6.2) and (6.3) characterize the boundary values R+

0 (λ) and R−0 (λ) re-
spectively.

In order to prove Theorem 6.5, we need to prepare two lemmas. One might
regard the equality (6.16) below as straightforward. Unfortunately, this is not the
case. Indeed, there exists a difficulty to make sense of

√
−∆R±0 (λ)f . The reason

for this difficulty is the same as the ones mentioned before Theorem 6.2, namely,
the fact that R±0 (λ)f merely belong to L2,−s(R3) with s > 1/2. Nevertheless we
can prove, with the aid of theorems in Umeda [26], that (6.16) is true.

Lemma 6.6. Suppose that λ > 0 and f ∈ L2,s(R3), s > 1/2. Then

(
√
−∆− λ)R±0 (λ)f = f in S ′(R3). (6.16)

Proof. We can assume, without loss of generality, that 1/2 < s < 5/2. It then
follows from Theorem 6.2 (cf. [26, Theorem 4.6]) that

√
−∆R±0 (λ)f make sense.

In order to show (6.16), we take a test function ψ ∈ S(R3). We then have

〈(
√
−∆− λ∓ iµ)R0(λ± iµ)f, ψ〉 = 〈f, ψ〉 (6.17)

for all µ > 0, since R0(λ ± iµ)f belong to H1(R3), the domain of the selfadjoint
operator H0, and since

(
√
−∆− λ∓ iµ)R0(λ± iµ)f = (H0 − (λ± iµ))R0(λ± iµ)f = f.

By definition of the action of
√
−∆ on L2,−s(R3), the left hand side of (6.17)

becomes

(R0(λ± iµ)f,
√
−∆ψ)−s,s − (R0(λ± iµ)f, (λ∓ iµ)ψ)−s,s. (6.18)

(Note that
√
−∆ψ ∈ L2,t(R3) for any t < 5/2; see [26, Theorem 4.4].) It follows

from Theorem 3.1 that

lim
µ↓0

(R0(λ± iµ)f,
√
−∆ψ)−s,s = (R±0 (λ)f,

√
−∆ψ)−s,s (6.19)

Combining (6.18), (6.19) with (6.17), we conclude that

(R±0 (λ)f,
√
−∆ψ)−s,s − (R±0 (λ)f, λψ)−s,s = 〈f, ψ〉

for any test function ψ ∈ S(R3). This completes the proof. �

Lemma 6.7. Suppose that 1/2 < s < 1 and λ > 0. If u belongs to Ran
(
R+

0 (λ)
)
,

then u satisfies the the outgoing radiation condition (6.2). Similarly, if u belongs
to Ran

(
R−0 (λ)

)
, then u satisfies the incoming radiation condition (6.3).

Proof. We only give the proof for u ∈ Ran
(
R+

0 (λ)
)
. The proof for u ∈ Ran

(
R−0 (λ)

)
is similar.

By assumption, one can find an f ∈ L2,s(R3) such that u = R+
0 (λ)f . It follows

from Theorem 3.2, together with Corollary 3.7, that there exist A(λ) ∈ B(L2,s),
B1(λ) ∈ B(L2,s, H1,s) and B2(λ) ∈ B(L2, H2) such that

u = Γ+
0 (λ2)A(λ)f +B1(λ)f +B2(λ)f. (6.20)

By Theorem 6.1(ii), the first term on the right hand side of (6.20) satisfies the
outgoing radiation condition (6.2). Since B1(λ)f ∈ H1,s(R3), it is straightforward
to see that ( ∂

∂xj
− iλωj

)
B1(λ)f ∈ L2,s(R3) ⊂ L2,s−1(R3), j = 1, 2, 3,
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that is, the second term on the right hand side of (6.20) satisfies (6.2). Finally,
since B2(λ)f ∈ H2(R3), it follows that( ∂

∂xj
− iλωj

)
B2(λ)f ∈ H1(R3) ⊂ L2,s−1(R3), j = 1, 2, 3,

where we have used the assumption that s < 1. Hence the last term on the right
hand side of (6.20) satisfies (6.2). �

Proof of Theorem 6.5. It follows from (6.14) that
√
−∆u = λu, hence

√
−∆u be-

longs to L2,−s(R3) with 1/2 < s < 1. By Lemma 6.4, it makes sense to consider√
−∆(

√
−∆u), and we see that u satisfies

(−∆− λ2)u = 0 in S ′(R3),

which implies that −∆u = λ2u belongs to L2
loc(R3). Therefore, we find that u ∈

H2
loc(R3). It is evident that we can apply Theorem 6.1(i) and obtain assertion (i)

of the theorem.
Assertion (ii) of the theorem is an immediate consequence of Lemmas 6.6 and

6.7. �

7. Radiation conditions for
√
−∆ + V

This section is devoted to discussing radiation conditions for
√
−∆ + V on R3.

As mentioned in Introduction, we assume that V (x) is a real-valued measurable
function on R3 satisfying (1.6). Under this assumption, it is obvious that V =
V (x)× is a bounded selfadjoint operator in L2(R3), and that H := H0 + V defines
a selfadjoint operator in L2(R3), of which domain is H1(R3). For z ∈ ρ(H), we
write

R(z) = (H − z)−1.

It is clear that H is essentially selfadjoint on C∞0 (R3), since H is a bounded self-
adjoint perturbation of H0, which is essentially selfadjoint on C∞0 (R3) (see Section
2). Since V is relatively compact with respect to H0, it follows from Reed-Simon
[19, p. 113, Corollary 2] that

σess(H) = σess(H0) = [0,+∞).

Before establishing the radiation conditions for
√
−∆+V (x), we need to remark

that σp(H) ∩ (0,+∞) is a discrete set. This fact was first proved by Simon [22,
Theorem 2.1] in a general setting, and later recovered by Ben-Artzi and Nemirovsky
[3, Theorem 4A] also in a general setting. Moreover, Simon [22, Theorem 2.1] proved
that each eigenvalue in the set σp(H) ∩ (0,+∞) has finite multiplicity.

To formulate the main theorem in this section, we exploit a result, which is a
special case of Ben-Artzi and Nemirovsky [3, Theorem 4A].

Theorem 7.1 (Ben-Artzi and Nemirovski [3]). Let σ > 1 and s > 1/2. Then
(i) The continuous spectrum σc(H) = [0,+∞) is absolutely continuous, except

possibly for a discrete set of embedded eigenvalues σp(H) ∩ (0,+∞), which
can accumulate only at 0 and +∞.

(ii) For any λ ∈ (0,+∞) \ σp(H), there exist the limits

R±(λ) = lim
µ↓0

R(λ± iµ) in B(L2,s, H1,−s).
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(iii) The operator-valued functions R±(z) defined by

R±(z) =

{
R(z) if z ∈ C±

R±(λ) if z = λ ∈ (0,+∞) \ σp(H)

are B(L2,s, H1,−s)-valued continuous functions.

We now state the main result in this section, which establishes the radiation
conditions for

√
−∆ + V (x).

Theorem 7.2. Let σ > 1 and 1/2 < s < min(σ/2, 1).
(i) Suppose that u belongs to L2,−s(R3) ∩H1

loc(R3) and satisfies the equation

(
√
−∆ + V (x)− λ)u = 0 in S ′(R3), λ ∈ (0,+∞) \ σp(H) (7.1)

and, in addition, that u satisfies either of the outgoing radiation condition
(6.2) or the incoming radiation condition (6.3). Then u vanishes identi-
cally.

(ii) Suppose that f ∈ L2,s(R3) and λ ∈ (0,+∞) \ σp(H). Then u+(λ, f) :=
R+(λ)f and u−(λ, f) := R−(λ)f satisfy the equation

(
√
−∆ + V (x)− λ)u = f in S ′(R3) (7.2)

with the outgoing radiation condition (6.2) and the incoming radiation con-
dition (6.3) respectively.

The same remark after Theorem 6.5 applies to Theorem 7.2, namely, Theorem
7.2 gives the characterization of the boundary values R+(λ) and R−(λ) in terms of
the radiation conditions (6.2) and (6.3) respectively.

We shall give a proof of Theorem 7.2 by means of a series of lemmas, but only
for u satisfying the outgoing radiation condition (6.2). The proof for u satisfying
the incoming radiation condition (6.3) is similar.

Lemma 7.3. Let σ > 1, and suppose that 1/2 < s < σ/2. Then

R±(z)
(
I + V R±0 (z)

)
= R±0 (z) on L2,s(R3), (7.3)

R±0 (z)
(
I − V R±(z)

)
= R±(z) on L2,s(R3) (7.4)

for all z ∈ C± ∪ {(0,+∞) \ σp(H)}.

Proof. We shall give the proof only in the case where the superscripts are “+”, the
plus sign. If z ∈ C+, it is apparent that

(H − z)R0(z) = I + V R0(z) on L2(R3),

(H0 − z)R(z) = I − V R(z) on L2(R3),

from which it follows that

R(z)
(
I + V R0(z)

)
= R0(z) on L2(R3), (7.5)

R0(z)
(
I − V R(z)

)
= R(z) on L2(R3). (7.6)

In order to proceed to the extended resolvents, we now regard that R+
0 (z)

and R+(z) are B(L2,s, L2,−s)-valued continuous functions on C+ ∪ (0,+∞) and
C+ ∪ {(0,+∞) \ σp(H)} respectively. By (1.6), and by the assumption that 1/2 <
s < σ/2, we see that V ∈ B(L2,−s, L2,s), and hence V R+

0 (z) and V R+(z) are
B(L2,s)-valued continuous functions on C+ ∪ (0,+∞) and C+ ∪{(0,+∞) \σp(H)}
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respectively. Therefore, we conclude from (7.5) and (7.6) that the assertion of the
lemma is valid. �

As a corollary to Lemma 7.3, we obtain the following result.

Lemma 7.4. Let σ > 1, and suppose that 1/2 < s < σ/2. Then

Ran
(
R±(z)

)
= Ran

(
R±0 (z)

)
for every z ∈ C± ∪ {(0,+∞) \ σp(H)}.

Lemma 7.5. Let σ > 1, and suppose that 1/2 < s < σ/2. Then(
I −R±(z)V

)(
I +R±0 (z)V

)
= I on L2,−s(R3), (7.7)(

I +R±0 (z)V
)(
I −R±(z)V

)
= I on L2,−s(R3) (7.8)

for every z ∈ C± ∪ {(0,+∞) \ σp(H)}.

Proof. We shall only give the proof of (7.7) in the case where the superscripts are
“+”. The proof of (7.7) in the other case and the proof of (7.8) are similar. First,
we show that for every z ∈ C+,(

I −R(z)V
)(
I +R0(z)V

)
= I on L2(R3). (7.9)

In fact, if u belongs to H1(R3), we then have

(I −R(z)V )u = R(z)(H − z)u−R(z)V u = R(z)(H0 − z)u

and
(I +R0(z)V )u = R0(z)(H0 − z)u+R0(z)V u = R0(z)(H − z)u

(recall that Dom(H) = Dom(H0) = H1(R3)). Hence we get(
I −R(z)V

)(
I +R0(z)V

)
u = R(z)(H0 − z)R0(z)(H − z)u = u

for all u ∈ H1(R3), where we have used the fact that
(
I + R0(z)V

)
u ∈ H1(R3)

when u ∈ H1(R3). Since H1(R3) is dense in L2(R3), we can deduce that (7.9) is
true.

We next work in the weighted L2-spaces. As mentioned in the proof of Lemma
7.3, we have V ∈ B(L2,−s, L2,s). Also, as mentioned in the second half of the proof
of Lemma 7.3, we can regard that R+

0 (z) and R+(z) are B(L2,s, L2,−s)-valued
continuous functions on C+ ∪ (0,+∞) and C+ ∪ {(0,+∞) \ σp(H)} respectively.
Therefore, R+

0 (z)V and R+(z)V are B(L2,−s)-valued continuous functions on C+∪
(0,+∞) and C+ ∪ {(0,+∞) \ σp(H)} respectively. Thus, we can conclude from
(7.9) that (7.7) in the case where the superscripts are the plus sign is true. �

Proof of Theorem 7.2. We first prove assertion (i) of the theorem. Let u belong
to L2,−s(R3) ∩H1

loc(R3) and satisfy the equation (7.1) together with the outgoing
radiation condition (6.2). By (7.1), we have

(
√
−∆− λ)u = −V u in S ′(R3). (7.10)

Since V u belongs to L2,s(R3) by the fact that V ∈ B(L2,−s, L2,s), it follows from
Lemma 6.6 that

(
√
−∆− λ)R+

0 (λ)V u = V u in S ′(R3). (7.11)
Combining (7.10) with (7.11) gives

(
√
−∆− λ)(u+R+

0 (λ)V u) = 0 in S ′(R3). (7.12)
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By virtue of Lemma 6.7 and the fact that R+
0 (λ)V u ∈ H1,−s(R3), it follows that

u+R+
0 (λ)V u belongs to L2,−s(R3) ∩H1

loc(R3) and satisfies the outgoing radiation
condition (6.2). Hence we can apply Theorem 6.5 and conclude that

u+R+
0 (λ)V u = 0. (7.13)

Since u belongs to L2,−s(R3), it follows from (7.13) and Lemma 7.5 that u vanishes
identically.

We next prove assertion (ii). It follows from Lemmas 7.4 and 6.7 that u+(λ, f)
satisfies the outgoing radiation condition (6.2). In order to show that u+(λ, f) is a
solution to the equation (7.2), we follow the idea exploited in the proof of Lemma
6.6. Thus we start with

(
√
−∆ + V − λ− iµ)R(λ+ iµ)f = f, ∀µ > 0,

which implies that

〈(
√
−∆ + V − λ− iµ)R(λ+ iµ)f, ψ〉 = 〈f, ψ〉 (7.14)

for any test function ψ ∈ S(R3). By definition of the action of
√
−∆ on L2,−s(R3),

the left hand side of (7.14) becomes

(R(λ+iµ)f,
√
−∆ψ)−s,s+(V R(λ+iµ)f, ψ)−s,s−(R(λ+iµ)f, (λ−iµ)ψ)−s,s. (7.15)

(Note again that
√
−∆ψ ∈ L2,t(R3) for any t < 5/2.) It follows from Theorem 7.1

that
lim
µ↓0

(R(λ+ iµ)f,
√
−∆ψ)−s,s = (R+(λ)f,

√
−∆ψ)−s,s. (7.16)

Similarly, we have

lim
µ↓0

{(V R(λ+ iµ)f, ψ)−s,s − (R(λ+ iµ)f, (λ− iµ)ψ)−s,s}

= (V R+(λ)f, ψ)−s,s − (R+(λ)f, λψ)−s,s.
(7.17)

Combining (7.14) with (7.15) – (7.17) yields

〈(
√
−∆ + V − λ)R+(λ)f, ψ〉 = 〈f, ψ〉

for any test function ψ ∈ S(R3). Thus we have shown that u+(λ, f) = R+(λ)f
satisfies the equation (7.2). �

8. Generalized eigenfunctions

Two tasks are set in this section. One of them is to construct generalized eigen-
functions of

√
−∆ + V (x) on R3, which are the superposition of plane waves and

solutions of the equation (6.15), for some λ and f , satisfying the outgoing or the
incoming radiation condition. To this end, we shall adopt the idea in Agmon [1]
(cf. Kato and Kuroda [11]). The other task is to show that the generalized eigen-
functions to be constructed are characterized as the unique solutions to integral
equations, which we shall call the modified Lippmann-Schwinger equations.

We shall write the plane wave eix·k as ϕ0(x, k):

ϕ0(x, k) := eix·k. (8.1)

It should be noted that one can easily sees that

−∆xϕ0(x, k) = |k|2ϕ0(x, k),
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which is a starting point when one discusses the generalized eigenfunction expansion
for the Schrödinger operator −∆+V (x). On the contrary, it is not trivial to justify√

−∆xϕ0(x, k) = |k|ϕ0(x, k) in S ′(R3
x), (8.2)

which is formally obvious though. The reason why (8.2) is nontrivial is that ϕ0(x, k)
does not belong to the Sobolev space H`(R3

x) for any ` ∈ R. In fact, the Fourier
transform of ϕ0(x, k) with respect to x is a Delta-function (2π)3/2δ(ξ − k), which
is obviously not a function in L1

loc(R3
ξ), whereas we have

H`(R3) = {f | 〈ξ〉`f̂ ∈ L2(R3
ξ) }

by definition.
By virtue of some results in Umeda [26] we shall be able to make sense of√
−∆xϕ0(x, k) and prove that (8.2) is valid.

Lemma 8.1. For every k ∈ R3, ϕ0(x, k) satisfies the pseudodifferential equation
(8.2).

Proof. It is straightforward to see that ϕ0(x, k) belongs to L2,s(R3
x) for every s <

−3/2. This fact, together with Theorem 6.2, implies that
√
−∆xϕ0(x, k) makes

sense. Taking a test function ψ ∈ S(R3), we get

〈
√
−∆xϕ0(·, k), ψ〉 = (ϕ0(·, k),

√
−∆x ψ)s,−s (8.3)

for all s with −5/2 < s < −3/2, where we have used the fact that
√
−∆x ψ ∈

L2,t(R3) for any t < 5/2. The right hand side of (8.3) equals∫
eix·k√−∆ψ(x) dx = (2π)3/2F [

√
−∆ψ](k) = (2π)3/2|k|F [ψ](k).

Noting that

F [ψ](k) = (2π)−3/2

∫
ϕ0(x, k)ψ(x) dx,

we obtain

(ϕ0(·, k),
√
−∆x ψ)s,−s =

∫
|k|ϕ0(x, k)ψ(x) dx = 〈|k|ϕ0(·, k), ψ〉. (8.4)

Combining (8.4) with (8.3) gives the lemma. �

Following Agmon [1], we define two families of generalized eigenfunctions of√
−∆ + V (x) on R3 by

ϕ±(x, k) := ϕ0(x, k)−R∓(|k|){V (·)ϕ0(·, k)}(x) (8.5)

for k with |k| ∈ (0,+∞)\σp(H). Note that the second terms on the right hand side
of (8.5) make sense, provided that |V (x)| ≤ C〈x〉−σ, σ > 2. In fact, V (·)ϕ0(·, k) ∈
L2,s(R3) for all s with 1/2 < s < σ − 3/2.

Theorem 8.2. Let σ > 2. If |k| ∈ (0,+∞) \ σp(H), then both ϕ±(x, k) satisfy the
equation

(
√
−∆x + V (x))u = |k|u in S ′(R3

x). (8.6)
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Proof. As remarked just before the theorem, we see that V (·)ϕ0(·, k) belongs to
L2,s(R3) for all s with 1/2 < s < σ − 3/2. Hence, by Theorem 7.2(ii), we get

(
√
−∆x + V (x)− |k|)

[
R∓(|k|){V (·)ϕ0(·, k)}

]
(x) = V (·)ϕ0(·, k) in S ′(R3

x), (8.7)

which, together with Lemma 8.1 implies

(
√
−∆x + V (x))ϕ±(x, k)

= (
√
−∆x + V (x))ϕ0(x, k)− (

√
−∆x + V (x))

[
R∓(|k|){V (·)ϕ0(·, k)}

]
(x)

= |k|ϕ0(x, k) + V (x)ϕ0(x, k)− V (x)ϕ0(x, k)− |k|
[
R∓(|k|){V (·)ϕ0(·, k)}

]
(x)

= |k|
[
ϕ0(x, k)−R∓(|k|){V (·)ϕ0(·, k)}(x)

]
.

By the definition (8.5), the proof is complete. �

Remark. For each k with |k| ∈ (0,+∞) \ σp(H), the generalized eigenfunctions
ϕ±(x, k) are unique in the following sense: If ϕ̃+(x, k) (resp. ϕ̃−(x, k)) satisfies
the equation (8.6), and in addition, ϕ̃+(x, k)− ϕ0(x, k) (resp. ϕ̃−(x, k)− ϕ0(x, k))
belongs to L2,−s(R3) ∩ H1

loc(R3), 1/2 < s < min(σ/2, 1), and satisfies the incom-
ing radiation condition (6.3) (resp. the outgoing radiation condition (6.2)), then
ϕ̃+(x, k) = ϕ+(x, k) (resp. ϕ̃−(x, k) = ϕ−(x, k)). This is a direct consequence of
assertion (i) of Theorem 7.2.

We are in a position to show that the generalized eigenfunctions ϕ+(x, k) and
ϕ−(x, k), defined by (8.5), are characterized as the unique solutions to the integral
equations

ϕ(x) = ϕ0(x, k)−
∫

R3
g−|k|(x− y)V (y)ϕ(y) dy , (8.8)

ϕ(x) = ϕ0(x, k)−
∫

R3
g+
|k|(x− y)V (y)ϕ(y) dy (8.9)

respectively. (Recall that g±λ (x − y) are the integral kernels of the boundary val-
ues R±0 (λ). See Theorem 4.1.) We call (8.8) and (8.9) the modified Lippmann-
Schwinger equations, because the leading terms of g±λ (x− y) are the same, up to a
constant, as the integral kernels of the Lippmann-Schwinger equations, namely,

g±λ (x− y) =
λ

2π
· e

±iλ|x−y|

|x− y|
+O(|x− y|−2) as |x− y| → +∞.

(Recall (4.6) and (5.17).)
Our generalized eigenfunctions ϕ±(x, k) are expected to behave like the plane

wave ϕ0(x, k), which belongs to L2,−s(R3) only for s > 3/2. Thus it is natural to
take L2,−s(R3), with s > 3/2, to be the space of functions in which we deal with
the integral equations (8.8) and (8.9). It is evident from Theorem 4.1 that (8.8)
and (8.9) can be formally rewritten in the forms

(
I + R−0 (|k|)V

)
ϕ = ϕ0(·, k) and(

I+R+
0 (|k|)V

)
ϕ = ϕ0(·, k) respectively. For these reasons, we prepare the following

lemma, which is a variant of Lemma 7.5. The only difference between Lemmas 7.5
and 8.3 lies in their assumptions. In Lemma 8.3, s is allowed to be greater than
3/2.

Lemma 8.3. Let σ > 2, and suppose that 1/2 < s < σ−1/2. Then the conclusions
of Lemma 7.5 hold.
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Proof. We only give the proof of (7.7) in the case where the superscripts are the
plus sign. The proof of (7.7) in the other case and the proof of (7.8) are similar.

It is obvious that we shall follow the line of the proof of Lemma 7.5. By assump-
tion, we can choose t so that

1/2 < t < min(s, σ − s). (8.10)

We note that R+
0 (z) and R+(z) can be regarded as B(L2,t, L2,−t)-valued continuous

functions on C+∪(0,+∞) and C+∪{(0,+∞)\σp(H)} respectively, as mentioned in
the proof of Lemma 7.3. From this fact, we can deduce that R+

0 (z) and R+(z) are
B(L2,t, L2,−s)-valued continuous functions on C+ ∪ (0,+∞) and C+ ∪ {(0,+∞) \
σp(H)} respectively, since −s < −t. In view of (8.10) we have V ∈ B(L2,−s, L2,t).
Therefore, R+

0 (z)V and R+(z)V are B(L2,−s)-valued continuous functions on C+∪
(0,+∞) and C+∪{(0,+∞)\σp(H)} respectively. Recalling (7.9), which was shown
to be valid for all z ∈ C+, we conclude that (7.7) in the case where the superscripts
are “+” holds. �

Theorem 8.4. Let σ > 2, and suppose that 3/2 < s < σ − 1/2. If |k| ∈
(0,+∞)\σp(H), then ϕ+(x, k) and ϕ−(x, k) are the unique solution of the modified
Lippmann-Schwinger equations (8.8) and (8.9) in L2,−s(R3

x) respectively.

Proof. We shall give the proof only for ϕ+(x, k). It follows from the definition (8.5)
that

ϕ+(·, k) =
(
I −R−(|k|)V

)
ϕ0(·, k), (8.11)

where we regard ϕ0(·, k) as a function belonging to L2,−s(R3
x). Combining (8.11)

with (7.8), we have (
I +R−0 (|k|)V

)
ϕ+(·, k) = ϕ0(·, k), (8.12)

from which we obtain

ϕ+(·, k) = ϕ0(·, k)−R−0 (|k|)V ϕ+(·, k). (8.13)

Since the integral kernel of R−0 (|k|) is given by g−|k|(x− y), we conclude from (8.13)
that ϕ+(x, k) satisfies the modified Lippmann-Schwinger equation (8.8). Unique-
ness follows from (8.12) and (7.7). �

9. Continuity of the generalized eigenfunctions

The aim of this section is to prove Theorem 9.1 below. Our discussions are based
on the results in Section 5. We emphasize that the estimate (9.1) below is highly
nontrivial. This is because the kernels g±|k|(x − y) in (8.8) and (8.9) involve the
Riesz potential (recall (4.6)).

Theorem 9.1. Let σ > 2. Then the generalized eigenfunctions ϕ±(x, k) defined by
(8.5) have the following properties:

(i) For each interval [a, b] ⊂ (0,+∞) \ σp(H), there exists a constant Cab,
depending on a and b, such that

|ϕ±(x, k)| ≤ Cab (9.1)

for all (x, k) ∈ R3 × {k | a ≤ |k| ≤ b}.
(ii) ϕ±(x, k) are continuous functions on R3

x ×
{
k | |k| ∈ (0,+∞) \ σp(H)

}
.
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We shall give a proof of Theorem 9.1 by means of a series of lemmas. Hence,
throughout the present section we shall assume that

σ > 2

without saying so every time. We shall first prepare a few lemmas and then prove
assertion (i) of Theorem 9.1. We shall next show a few lemmas, of which combina-
tion directly gives a proof of assertion (ii) of Theorem 9.1. The estimate (9.1) will
be essential in the discussions for the proof of assertion (ii).

Lemma 9.2. If s > 3/2, then ϕ±(·, k) are L2,−s(R3
x)-valued continuous functions

on
{
k | |k| ∈ (0,+∞) \ σp(H)

}
.

Proof. We note that ϕ0(·, k) is L2,−s(R3
x)-valued continuous function on R3

k. On
the other hand, for any t with 1/2 < t < σ − 3/2, V (·)ϕ0(·, k) is L2,t(R3

x)-valued
continuous function on R3

k (see the assumption (1.6)). This fact, together with
Theorem 7.1 (iii), implies that R∓(|k|){V (·)ϕ0(·, k)} are L2,−t(R3

x)-valued contin-
uous functions on

{
k | |k| ∈ (0,+∞) \σp(H)

}
. Since t can be taken to be less than

s, it follows that R∓(|k|){V (·)ϕ0(·, k)} are L2,−s(R3
x)-valued continuous functions

on
{
k | |k| ∈ (0,+∞) \ σp(H)

}
. In view of definition (8.5), we have proved the

lemma. �

Lemma 9.3. If s > 3/2, then V (·)ϕ±(·, k) are L2,σ−s(R3
x)-valued continuous func-

tions on
{
k | |k| ∈ (0,+∞) \ σp(H)

}
.

The proof of this lemma is a direct consequence of Lemma 9.2 and the assumption
(1.6).

In the rest of this section, we assume that s satisfies the inequalities
3
2
< s < σ − 1

2
. (9.2)

To prove assertion (i) of Theorem 9.1, we need intermediate estimates, which only
assure that, for each k, ϕ±(x, k) are sums of bounded functions of x and func-
tions of x belonging to L6(R3) ∩ L2,−t(R3) for all t > 3/2. To derive the in-
termediate estimates mentioned above, we appeal to Theorem 8.4; assuming that
|k| ∈ (0,+∞) \ σp(H), we have

ϕ±(x, k) = ϕ0(x, k)−G∓|k|
(
V (·)ϕ±(·, k)

)
(x), (9.3)

(see (4.13) and (4.14) for the notation G∓|k|). According to the identities (5.3), we
then decompose ϕ±(x, k) into two parts:

ϕ±(x, k) = ψ±0 (x, k) + ψ±1 (x, k), (9.4)

where

ψ±0 (x, k) := ϕ0(x, k)−K∓
|k|

(
V (·)ϕ±(·, k)

)
(x)−M|k|

(
V (·)ϕ±(·, k)

)
(x), (9.5)

ψ±1 (x, k) := −G0

(
V (·)ϕ±(·, k)

)
(x). (9.6)

Lemma 9.4. Suppose that [a, b] ⊂ (0,+∞) \ σp(H). Then there exists a constant
Cab, depending on a and b, such that

|ψ±0 (x, k)| ≤ Cab (9.7)

for all (x, k) ∈ R3 × {k|a ≤ |k| ≤ b}.
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Proof. Let k satisfy a ≤ |k| ≤ b. Appealing to the definition (9.5), we have

|ψ±0 (x, k)| ≤ 1 + |K∓
|k|

(
V (·)ϕ±(·, k)

)
(x)|+ |M|k|

(
V (·)ϕ±(·, k)

)
(x)|

≤ 1 + Cb‖V (·)ϕ±(·, k)‖L2,σ−s + Cab‖V (·)ϕ±(·, k)‖L2 ,
(9.8)

where we have used Lemmas 5.7 and 5.4 (note that σ− s > 1/2 by (9.2)). Here we
note that the constants C and Cab in (9.8) are independent of k with a ≤ |k| ≤ b.
Lemma 9.3, together with (9.8), implies the lemma. �

Lemma 9.5. Let |k| ∈ (0,+∞) \ σp(H). Then we have

ψ±1 (·, k) ∈ L6(R3) ∩ L2,−t(R3)

for every t > 3/2. Moreover, for each compact interval [a, b] ⊂ (0,+∞) \ σp(H)
and each t > 3/2, there corresponds a positive constant Ctab such that

‖ψ±1 (·, k)‖L6 + ‖ψ±1 (·, k)‖L2,−t ≤ Ctab

for all k with a ≤ |k| ≤ b.

Proof. Since σ − s > 1/2 by (9.2), it follows from Lemma 9.3 that V (·)ϕ±(·, k)
∈ L2(R3). Then the definition of ψ±1 and the inequality (5.4) show that

‖ψ±1 (·, k)‖L6 ≤ C‖V (·)ϕ±(·, k)‖L2 , (9.9)

where C is a constant independent of k. Similarly, the definition of ψ±1 and Lemma
5.1(ii) give

‖ψ±1 (·, k)‖L2,−t ≤ Ct‖V (·)ϕ±(·, k)‖L2 (9.10)
for every t > 3/2, where the constant Ct is dependent on t but independent of k.
The assertions of the lemma now follow from (9.9), (9.10) and Lemma 9.3. �

Proof of assertion(i) of Theorem 9.1. In view of (9.4) and Lemma 9.4, it is suffi-
cient to show that there exists a constant Cab such that

|ψ±1 (x, k)| ≤ Cab (9.11)

for all (x, k) ∈ R3 × {k|a ≤ |k| ≤ b}. It follows from (9.4) and (9.6) that

ψ±1 (x, k) = −G0

(
V (·)ψ±0 (·, k)

)
(x)−G0

(
V (·)ψ±1 (·, k)

)
(x). (9.12)

We apply Lemma 9.4 to the first term on the right hand side of (9.12) and appeal
to the definition (2.5) of G0, and obtain∣∣G0

(
V (·)ψ±0 (·, k)

)
(x)

∣∣ ≤ ‖V (·)〈·〉σ‖L∞

2π2

∫
R3

Cab

|x− y|2〈y〉σ
dy, (9.13)

where the constant Cab is the same as in (9.7), and is independent of k with a ≤
|k| ≤ b. By virtue of Lemma 11.1 in Appendix, the function of x defined by the
integral on the right hand side of (9.13) is bounded on R3. Thus the first term on
the right hand side of (9.12) possesses the desired estimate. To handle the second
term on the right hand side of (9.12), we shall apply Lemma 5.3. In view of the
assumption that |V (x)| ≤ C〈x〉−σ with σ > 2, it follows from Lemma 9.5 that

‖V (·)ψ±1 (·, k)‖L2 ≤ C‖ψ±1 (·, k)‖L2,−σ ≤ Cσab (9.14)

for all k with a ≤ |k| ≤ b. If we regard V (x) as a bounded function, then Lemma
9.5 enables us to find a constant C ′ab such that

‖V (·)ψ±1 (·, k)‖L6 ≤ C‖ψ±1 (·, k)‖L6 ≤ C ′ab (9.15)
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for all k with a ≤ |k| ≤ b. Combining (9.14) and (9.15) with Lemma 5.3 yields

‖G0

(
V (·)ψ±1 (·, k)‖L∞ ≤ C ′σab + C ′′ab (9.16)

for all k with a ≤ |k| ≤ b. The estimate (9.11) now follows from (9.12), (9.13) and
(9.16). �

To prepare lemmas, of which combination will directly give the proof of assertion
(ii) of Theorem 9.1, it is convenient to write

ψ±0κ(x, k) := −K∓
|k|

(
V (·)ϕ±(·, k)

)
(x), (9.17)

ψ±0µ(x, k) := −M|k|
(
V (·)ϕ±(·, k)

)
(x). (9.18)

According to (9.4)–(9.6), we then have

ϕ±(x, k) = ϕ0(x, k) + ψ±0κ(x, k) + ψ±0µ(x, k) + ψ±1 (x, k). (9.19)

Lemma 9.6. ψ±0κ(x, k) are continuous on R3
x ×

{
k | |k| ∈ (0,+∞) \ σp(H)

}
.

Proof. Let (x0, k0) be an arbitrary point in R3
x ×

{
k | |k| ∈ (0,+∞) \ σp(H)

}
. We

shall show that

ψ±0κ(x, k) → ψ±0κ(x0, k0) as (x, k) → (x0, k0). (9.20)

Let ε > 0 be given. One can then choose r > 0 so that

|k0|
2π

‖V ‖L∞

{
sup

y∈R3, |k−k0|≤r

|ϕ±(y, k)|
}∫

|y|≤2r

1
|y|

dy < ε. (9.21)

Note that, by virtue of assertion (i) of Theorem 9.1, the supremum in (9.21) is
finite. To show (9.20), we write

ψ±0κ(x, k)− ψ±0κ(x0, k0)

= {ψ±0κ(x, k)− ψ±0κ(x0, k)}+ {ψ±0κ(x0, k)− ψ±0κ(x0, k0)}
=: I±0κ(x, k) + II±0κ(k).

(9.22)

If |x− x0| ≤ r and |k − k0| ≤ r, we then have, appealing to the definition (5.1),

|I±0κ(x, k)|

≤ 2
|k|
|k0|

ε+
|k|
2π

{
sup

y∈R3, |k−k0|≤r

|ϕ±(y, k)|
}

×
∫

R3

∣∣∣{1E(x,2r)(y)
e±i|k||x−y|

|x− y|
− 1E(x0,2r)(y)

e±i|k||x0−y|

|x0 − y|

}
V (y)

∣∣∣ dy,
(9.23)

where E(x, 2r) = {y | |x− y| > 2r} and we have used (9.21). We note here that

1E(x,2r)(y)
1

|x− y|
≤ 3

2
× 1E(x0,r)(y)

1
|x0 − y|

(9.24)

whenever |x−x0| ≤ r. Hence, the integrand in (9.23) is bounded, for all (x, k) with
|x− x0| ≤ r, by the function

5
2
× 1E(x0,r)(y)

1
|x0 − y|

|V (y)| (9.25)
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which is in L1(R3
y) (recall that we made the assumption (1.6) with σ > 2). Hence

we can apply the Lebesgue dominated convergence theorem to the integral in (9.23),
and deduce that

lim sup
(x,k)→(x0,k0)

|I±0κ(x, k)| ≤ 2ε. (9.26)

In a similar fashion to (9.23), if |k − k0| ≤ r, we have

|II±0κ(k)|
≤ |K∓

|k|
(
V (·)ϕ±(·, k)

)
(x0)−K∓

|k0|
(
V (·)ϕ±(·, k)

)
(x0)|

+ |K∓
|k0|

(
V (·)ϕ±(·, k)

)
(x0)−K∓

|k0|
(
V (·)ϕ±(·, k0)

)
(x0)|

≤
( |k|
|k0|

+ 3
)
ε+

1
2π

∫
R3

∣∣∣1E(x0,2r)(y)
1

|x0 − y|

×
∣∣∣|k|e∓i|k||x0−y| − |k0|e∓i|k0||x0−y|

∣∣∣∣∣V (y)ϕ±(y, k)
∣∣ dy

+
|k0|
2π

∫
R3

∣∣∣1E(x0,2r)(y)
e∓i|k0||x0−y|

|x0 − y|
V (y)

∣∣∣|ϕ±(y, k)− ϕ±(y, k0)
∣∣ dy.

(9.27)

The first integral in (9.27) is estimated by{∫
R3

∣∣∣1E(x0,2r)(y)
|V (y)|2〈y〉2s

|x0 − y|2

×
∣∣∣|k|e∓i|k||x0−y| − |k0|e∓i|k0||x0−y|

∣∣∣2dy}1/2

‖ϕ±(·, k)‖L2,−s

(9.28)

In view of (9.2), it follows that

1E(x0,2r)(y)
|V (y)|2〈y〉2s

|x0 − y|2
∈ L1(R3

y).

Therefore, applying the Lebesgue dominated convergence theorem to the integral
in (9.28) and appealing to Lemma 9.2, we see that the first integral in (9.27) tends
to 0 as k approaches k0. Also, the second integral in (9.27) is estimated by{∫

R3

∣∣∣1E(x0,2r)(y)
|V (y)|2〈y〉2s

|x0 − y|2
∣∣∣2dy}1/2

‖ϕ±(·, k)− ϕ±(·, k0)‖L2,−s ,

which tends to 0, by Lemma 9.2, as k approaches k0. Thus, we have shown that

lim sup
(x,k)→(x0,k0)

|II±0κ(k)| ≤ 4ε. (9.29)

Combining (9.22), (9.26) and (9.29), we deduce that

lim sup
(x,k)→(x0,k0)

|ψ±0κ(x, k)− ψ±0κ(x0, k0)| ≤ 6ε. (9.30)

Since ε is arbitrary, (9.30) implies (9.20). �

Lemma 9.7. ψ±0µ(x, k) are continuous on R3
x ×

{
k | |k| ∈ (0,+∞) \ σp(H)

}
.

Proof. The proof is similar to that of Lemma 9.6. Let (x0, k0) be an arbitrary point
in R3

x ×
{
k | |k| ∈ (0,+∞) \ σp(H)

}
. We shall show that

ψ±0µ(x, k) → ψ±0µ(x0, k0) as (x, k) → (x0, k0). (9.31)
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To show this, we first need to appeal to the definition (4.5) of mλ(x) and the
inequality (5.16). We then have

|mλ(x)| ≤ const.
2π2

· λ
|x|

(1 + λ|x|)−1 ≤ const.′
λ

|x|
, (9.32)

where const. is the same as in (5.16) and const.′ := const./2π2.
Let ε > 0 be given. We choose r > 0 so that

const.′|k0|‖V ‖L∞

{
sup

y∈R3, |k−k0|≤r

|ϕ±(y, k)|
}∫

|y|≤2r

1
|y|

dy < ε. (9.33)

Similarly to (9.22), we write

ψ±0µ(x, k)− ψ±0µ(x0, k0)

= {ψ±0µ(x, k)− ψ±0µ(x0, k)}+ {ψ±0µ(x0, k)− ψ±0µ(x0, k0)}
=: I±0µ(x, k) + II±0µ(k).

(9.34)

If |x− x0| ≤ r and |k− k0| ≤ r, then it follows from the definition (5.2) and (9.32),
(9.33) that

|I±0µ(x, k)|

≤ 2
|k|
|k0|

ε+
{

sup
y∈R3, |k−k0|≤r

|ϕ±(y, k)|
}

×
∫

R3

∣∣∣{1E(x,2r)(y)m|k|(x− y)− 1E(x0,2r)(y)m|k|(x0 − y)
}
V (y)

∣∣∣ dy.
(9.35)

Noting (9.32) and (9.24), we find that the integrand in (9.35) is bounded by the
function

5
2
× 1E(x0,r)(y)

const.′(|k0|+ r)
|x0 − y|

|V (y)| ∈ L1(R3
y) (9.36)

for all (x, k) with |x − x0| ≤ r, |k − k0| ≤ r. Therefore, the Lebesgue dominated
convergence theorem applied to the integral in (9.35) gives

lim sup
(x,k)→(x0,k0)

|I±0µ(x, k)| ≤ 2ε. (9.37)

Here we have used the fact that m|k|(x) is continuous on
{
R3

x \ {0}} × R3
k. In a

similar manner to (9.35), if |x− x0| ≤ r and |k − k0| ≤ r, then we have

|II±0µ(k)|

≤
( |k|
|k0|

+ 3
)
ε

+
∫

R3

∣∣∣1E(x0,2r)(y)
(
m|k|(x0 − y)−m|k0|(x0 − y)

)∣∣∣∣∣V (y)ϕ±(y, k)
∣∣ dy

+
∫

R3

∣∣∣1E(x0,2r)(y)m|k0|(x0 − y)V (y)
∣∣∣|ϕ±(y, k)− ϕ±(y, k0)

∣∣ dy.
(9.38)

The first integral in (9.38) is estimated by{∫
R3

1E(x0,2r)(y)
∣∣(m|k|(x0 − y)−m|k0|(x0 − y)

)
V (y)〈y〉s

∣∣2 dy}1/2

× ‖ϕ±(·, k)‖L2,−s .

(9.39)
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In view of the inequality (5.17) and the continuity of m|k|(x), as mentioned after
(9.37), we can apply the Lebesgue dominated convergence theorem to the integral
in (9.39), and deduce that the first integral in (9.38) tends to 0 as k approaches k0.
Also, the second integral in (9.38) is estimated by{∫

R3
1E(x0,2r)(y)

∣∣m|k0|(x0−y)V (y)〈y〉s
∣∣2 dy}1/2

‖ϕ±(·, k)−ϕ±(·, k0)‖L2,−s , (9.40)

which tends to 0, by Lemma 9.2 and the inequality (5.17), as k approaches k0.
Thus we have shown that

lim sup
(x,k)→(x0,k0)

|II±0µ(x, k)| ≤ 4ε.

By the same arguments as in the end of the proof of Lemma 9.6, we conclude that
(9.31) is verified. �

Lemma 9.8. ψ±1 (x, k) are continuous on R3
x ×

{
k | |k| ∈ (0,+∞) \ σp(H)

}
.

The proof of this lemma is similar to the proof of Lemmas 9.6 and 9.7. Actually
it is much easier because the integral kernel of the operator G0 is independent of
the variable k (recall the definitions (2.5) and (9.6)). For this reason, we omit the
proof of Lemma 9.8.

Proof of assertion (ii) of Theorem 9.1. The assertion is a direct consequence of
(9.19) and Lemmas 9.6, 9.7, and 9.8. �

10. Asymptotic behaviors of the generalized eigenfunctions

We shall first show that the generalized eigenfunctions ϕ±(x, k), defined by (8.5),
are distorted plane waves, and give estimates of the differences between ϕ±(x, k)
and the plane wave ϕ0(x, k) = eix·k (Theorem 10.1). We shall next prove that
ϕ±(x, k) are asymptotically equal to the sums of the plane wave and the spherical
waves e∓i|x||k|/|x| under the assumption that σ > 3, and shall give estimates of the
differences between ϕ±(x, k) and the sums mentioned above (Theorem 10.2).

In view of the definition (8.5) and Theorem 7.2(ii), it is clear that ϕ−(x, k) (resp.
ϕ+(x, k)) is the sum of the plane wave eix·k and the solution of the equation (7.2)
with the outgoing radiation condition (6.2) (resp. the incoming radiation condition
(6.3)). However, the radiation conditions (6.2) and (6.3) are generalizations of the
radiation condition mentioned in the beginning of Section 6, and this generalization
makes it unclear that

R∓(|k|){V (·)ϕ0(·, k)}(x)
behave as e∓i|x||k|/|x| at infinity. Theorem 10.2 shows that this is indeed the case
if σ > 3.

We should like to remark that what makes the discussions below possible is the
estimate (9.1).

Theorem 10.1. Let σ > 2. If |k| ∈ (0,+∞) \ σp(H), then

∣∣ϕ±(x, k)− ex·k∣∣ ≤ Ck


〈x〉−(σ−2) if 2 < σ < 3,
〈x〉−1 log(1 + 〈x〉) if σ = 3,
〈x〉−1 if σ > 3,

(10.1)
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where the constant Ck is uniform for k in any compact subset of

{k | |k| ∈ (0,+∞) \ σp(H)}.

Proof. In view of (9.19), it is sufficient to show that all of ψ±0κ(x, k), ψ±0µ(x, k) and
ψ±1 (x, k) satisfy the estimates (10.1).

By assertion(i) of Theorem 9.1 and the definitions (9.17) and (5.1), we have

|ψ±0κ(x, k)| ≤ |k|
2π
‖〈·〉σV (·)ϕ±(·, k)‖L∞

∫
R3

1
|x− y|〈y〉σ

dy. (10.2)

If we apply Lemma 11.1 in Appendix, with n = 3, β = 1 and γ = σ, to the integral
on the right hand side of (10.2), we can deduce from assertion(i) of Theorem 9.1
and(10.2) that ψ±0κ(x, k) satisfy the desired estimates. By the definitions (9.18),
(5.2) and the inequality (5.17), we get

|ψ±0µ(x, k)| ≤ C|k|‖〈·〉σV (·)ϕ±(·, k)‖L∞

∫
R3

1
|x− y|2〈y〉σ

dy, (10.3)

where the constant C|k| is the one specified in (5.17). Similarly, by the definition
(2.5), we obtain

|ψ±1 (x, k)| ≤ 1
2π2

‖〈·〉σV (·)ϕ±(·, k)‖L∞

∫
R3

1
|x− y|2〈y〉σ

dy. (10.4)

Lemma 11.1 with n = 3, β = 2 and γ = σ now gives

|ψ±0µ(x, k)|+ |ψ±1 (x, k)| ≤ C ′k


〈x〉−(σ−1) if 2 < σ < 3,
〈x〉−2 log(1 + 〈x〉) if σ = 3,
〈x〉−2 if σ > 3,

(10.5)

where the constant C ′k is uniform for k in any compact subset of {k | |k| ∈ (0,+∞)\
σp(H)}. �

Theorem 10.2. Let σ > 3, and suppose that |k| ∈ (0,+∞) \ σp(H). Then for
|x| ≥ 1 we have ∣∣∣ϕ±(x, k)−

(
eix·k +

e∓i|k||x|

|x|
f±(|k|, ωx, ωk)

)∣∣∣
≤ Ck


|x|−(σ−1)/2 if 3 < σ < 5,
|x|−2 log(1 + |x|) if σ = 5,
|x|−2 if σ > 5,

(10.6)

where ωx = x/|x|, ωk = k/|k|,

f±(λ, ωx, ωk) = − λ

2π

∫
R3
e±iλωx·yV (y)ϕ±(y, λωk) dy, (10.7)

and the constant Ck is uniform for k in any compact subset of {k | |k| ∈ (0,+∞) \
σp(H)}.

We shall give a proof of Theorem 10.2 by means of a series of lemmas.

Lemma 10.3. Let σ > 3. Then∣∣ϕ±(x, k)−
(
eix·k + ψ±0κ(x, k)

)∣∣ ≤ Ck〈x〉−2,

where Ck is a constant uniform for k in any compact subset of {k | |k| ∈ (0,+∞) \
σp(H)}.
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This lemma is a direct consequence of (10.5) and (9.19).
In view of Lemma 10.3, it is apparent that we need to evaluate the differences

ψ±0κ(x, k)− e∓i|k||x|

|x|
f±(|k|, ωx, ωk), (10.8)

which are equal to

|k|
2π

∫
R3

{e∓i|k|(|x|−ωx·y)

|x|
− e∓i|k||x−y|

|x− y|

}
V (y)ϕ±(y, |k|ωk) dy (10.9)

by (9.17), (5.1) and (10.7). Thus we are led to consider the following two integrals:

1
|x|

∫
R3
eia(|x|−ωx·y)u(y) dy, (10.10)∫

R3

eia|x−y|

|x− y|
u(y) dy, (10.11)

and their difference. The same integrals as in (10.10) and (10.11) were discussed in
Ikebe [7, §3], though our arguments below are slightly different from those of [7],
and our estimates are slight refinements of those of [7].

Lemma 10.4. Let a ∈ R and let u satisfy

|u(x)| ≤ C〈x〉−σ, σ > 3. (10.12)

Then for |x| ≥ 1 we have∣∣∣ ∫
|y|≥

√
|x|
eia(|x|−ωx·y)u(y) dy

∣∣∣ ≤ C1‖〈·〉σu‖L∞ |x|−(σ−3)/2, (10.13)

∣∣∣ ∫
|y|≥

√
|x|

eia|x−y|

|x− y|
u(y) dy

∣∣∣ ≤ C2‖〈·〉σu‖L∞ |x|−(σ−1)/2, (10.14)

where the constants C1 and C2 are independent of a.

Proof. It follows that∣∣∣ ∫
|y|≥

√
|x|
eia(|x|−ωx·y)u(y) dy

∣∣∣ ≤ ∫
|y|≥

√
|x|
‖〈·〉σu‖L∞ |y|−σ dy

≤ C1‖〈·〉σu‖L∞ |x|−(σ−3)/2.

(10.15)

To show (10.14), we decompose the integral in (10.14) into two parts:∫
|y|≥

√
|x|

eia|x−y|

|x− y|
u(y) dy =

{∫
F0(x)

+
∫

F1(x)

}eia|x−y|

|x− y|
u(y) dy, (10.16)

where

F0(x) := {y ∈ R3| |y| ≥
√
|x|, |x− y| ≤ |x|

2
},

F1(x) := {y ∈ R3| |y| ≥
√
|x|, |x− y| ≥ |x|

2
}.

If y ∈ F0(x), then

|y| = |x− (x− y)| ≥ |x| − |x− y| ≥ |x|
2
,
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hence we have∣∣∣ ∫
F0(x)

eia|x−y|

|x− y|
u(y) dy

∣∣∣ ≤ ∫
F0(x)

1
|x− y|

‖〈·〉σu‖L∞ |y|−σ dy

≤ ‖〈·〉σu‖L∞2σ|x|−σ

∫
|x−y|≤|x|/2

1
|x− y|

dy

= C ′‖〈·〉σu‖L∞ |x|−(σ−2).

(10.17)

If y ∈ F1(x), then |x− y| ≥ |x|/2; therefore∣∣∣ ∫
F1(x)

eia|x−y|

|x− y|
u(y) dy

∣∣∣ ≤ ∫
|y|≥

√
|x|

2
|x|
‖〈·〉σu‖L∞ |y|−σ dy

≤ C ′′‖〈·〉σu‖L∞ |x|−(σ−1)/2.

(10.18)

Since σ−2 > (σ−1)/2, we conclude from (10.16)–(10.18) that the inequality (10.14)
holds. �

In view of (10.10), (10.11) and Lemma 10.4, we now need to consider the integral∫
|y|≤

√
|x|

( 1
|x|
eia(|x|−ωx·y) − eia|x−y|

|x− y|

)
u(y) dy. (10.19)

To get an estimate on the integral (10.19), we split it into two parts:

1
|x|

∫
|y|≤

√
|x|

(
eia(|x|−ωx·y) − eia|x−y|

)
u(y) dy (10.20)

+
∫
|y|≤

√
|x|

( 1
|x|

− 1
|x− y|

)
eia|x−y|u(y) dy, (10.21)

and evaluate these two integrals separately.

Lemma 10.5. Under the same assumptions as in Lemma 10.4, we have∣∣∣ 1
|x|

∫
|y|≤

√
|x|

(
eia(|x|−ωx·y) − eia|x−y|

)
u(y) dy

∣∣∣
≤ C3|a|‖〈·〉σu‖L∞


|x|−(σ−1)/2 if 3 < σ < 5,
|x|−2 log(1 + |x|) if σ = 5,
|x|−2 if σ > 5

(10.22)

for |x| ≥ 1, where the constant C3 is independent of a.

Proof. We start with simple remarks that

|x− y| = |x|
(
1− 2

ωx · y
|x|

+
|y|2

|x|2
)1/2

(10.23)

and ∣∣(1 + ρ)1/2 − (1 +
ρ

2
)
∣∣ ≤ √

2
2
ρ2, ρ ≥ −1

2
. (10.24)

It is easy to see that ∣∣− 2
ωx · y
|x|

+
|y|2

|x|2
∣∣ ≤ 1

2
(10.25)
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if
√
|x| ≥ 5 and |y| ≤

√
|x|. Hence, it follows from (10.23)–(10.25) that∣∣|x− y| − (|x| − ωx · y)

∣∣ ≤ 3
√

2
|y|2

|x|
(10.26)

when
√
|x| ≥ 5 and |y| ≤

√
|x|. Using the inequality

|eiα − eiα| ≤ |α− β|, α, β ∈ R,

we have ∣∣∣ ∫
|y|≤

√
|x|

(
eia(|x|−ωx·y) − eia|x−y|)u(y) dy∣∣∣

≤
∫
|y|≤

√
|x|

∣∣a(|x| − ωx · y)− a|x− y|
∣∣‖〈·〉σu‖L∞〈y〉−σ dy (10.27)

≤ 3
√

2|a|‖〈·〉σu‖L∞
1
|x|

∫
|y|≤

√
|x|
|y|2〈y〉−σ dy (10.28)

when
√
|x| ≥ 5. Here we have used (10.26) in the second inequality (10.28). Now

we have∫
|y|≤

√
|x|
|y|2〈y〉−σ dy ≤ 2σ/2

∫
|y|≤

√
|x|

(1 + |y|)2−σ dy (because 〈y〉 ≥ 1√
2
(1 + |y|))

= 2σ/2 × 4π
∫ √

|x|

0

(1 + r)−σ+4 dr (10.29)

≤ 2(σ+4)/2π ×


|x|−(σ−5)/2

5− σ
if 3 < σ < 5,

log(1 + |x|) if σ = 5,
1

σ − 5
if σ > 5,

(10.30)

where we have used spherical polar coordinates in (10.29). Combining (10.30) with
(10.28) yields the desired inequalities. �

Lemma 10.6. Under the same assumptions as in Lemma 10.4, we have∣∣∣ ∫
|y|≤

√
|x|

( 1
|x|

− 1
|x− y|

)
eia|x−y|u(y) dy

∣∣∣
≤ C4‖〈·〉σu‖L∞


|x|−σ/2 if 3 < σ < 4,
|x|−2 log(1 + |x|) if σ = 4,
|x|−2 if σ > 4

(10.31)

for |x| ≥ 1, where the constant C4 is independent of a.

Proof. If
√
|x| ≥ 5 and |y| ≤

√
|x|, then the inequality (10.26) implies∣∣|x− y| − |x|

∣∣ ≤ |y|+ 3
√

2
|y|2

|x|
.

Also, if
√
|x| ≥ 5 and |y| ≤

√
|x|, we then have

|x− y| ≥ |x| − |y| ≥ |x| − |x|
5

=
4
5
|x|.
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Using these two inequalities, we arrive at∣∣∣ ∫
|y|≤

√
|x|

( 1
|x|

− 1
|x− y|

)
eia|x−y|u(y) dy

∣∣∣
≤

∫
|y|≤

√
|x|

5
4
· 1
|x|2

(
|y|+ 3

√
2
|y|2

|x|
)
‖〈·〉σu‖L∞〈y〉−σ dy

=
5‖〈·〉σu‖L∞2σ/2

4

×
( 1
|x|2

∫
|y|≤

√
|x|

(1 + |y|)1−σ dy + 3
√

2
1
|x|3

∫
|y|≤

√
|x|

(1 + |y|)2−σ dy
)

(10.32)

provided that
√
|x| ≥ 5. By introducing spherical polar coordinates, we obtain

∫
|y|≤

√
|x|

(1 + |y|)1−σ dy ≤ 4π


|x|−(σ−4)/2

4− σ
if 3 < σ < 4,

log(1 + |x|) if σ = 4,
1

σ − 4
if σ > 4.

(10.33)

Combining (10.32) with (10.33) and (10.30), we conclude that the desired inequal-
ities are verified. �

Proof of Theorem 10.2. We write

ϕ±(x, k)−
(
eix·k +

e∓i|k||x|

|x|
f±(|k|, ωx, ωk)

)
= ϕ±(x, k)−

(
eix·k + ψ±0κ(x, k)

)
+

(
ψ±0κ(x, k)− e∓i|k||x|

|x|
f±(|k|, ωx, ωk)

)
= ϕ±(x, k)−

(
eix·k + ψ±0κ(x, k)

)
+

|k|
2π

· 1
|x|

∫
|y|≥

√
|x|
e∓i|k|(|x|−ωx·y)V (y)ϕ±(y, |k|ωk) dy

− |k|
2π

∫
|y|≥

√
|x|

e∓i|k||x−y|

|x− y|
V (y)ϕ±(y, |k|ωk) dy

+
|k|
2π

· 1
|x|

∫
|y|≤

√
|x|

(
e∓i|k|(|x|−ωx·y) − e∓i|k||x−y|)V (y)ϕ±(y, |k|ωk) dy

+
|k|
2π

∫
|y|≤

√
|x|

{ 1
|x|

− 1
|x− y|

}
e∓i|k||x−y|V (y)ϕ±(y, |k|ωk) dy,

where we have used the fact that (10.8) equals (10.9), and decomposed the integral
in (10.9) into four parts. Now the conclusion of the theorem follows from assertion(i)
of Theorem 9.1 and Lemmas 10.3–10.6. �

11. Appendix

In this appendix we shall derive a few formulae and estimates concerning the
cosine integral and the sine integral functions for the reader’s convenience, the
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formulae and estimates which seem not to be found in the literature. We begin
with the definitions of these functions and some basic facts (cf. [5] and [6]).

11.1. The cosine integral function . The definition is

ci(ρ) = −Ci(ρ) =
∫ +∞

ρ

cos t
t

dt, ρ > 0

(cf. [5, p. 386]). We have

| ci(ρ)| ≤ const.

{
ρ−1 if ρ ≥ 1,
1 + | log ρ| if 0 < ρ ≤ 1.

The estimate for ρ ≥ 1 follows from

ci(ρ) = − sin ρ
ρ

+
cos ρ
ρ2

− 2
∫ +∞

ρ

cos t
t3

dt,

which can be shown by repeated use of integration by parts. The estimate for
0 < ρ ≤ 1 follows from [6, p. 145, Formula (6)].

The cosine integral function ci(ρ) has an analytic continuation ci(z), which is a
many-valued function with a logarithmic branch-point at z = 0 (see [6, p. 145]).
In this paper, we choose the principal branch:

ci(z) = −γ − Log z −
∞∑

m=1

(−1)m

(2m)!2m
z2m, z ∈ C \ (−∞, 0], (11.1)

where γ is Euler’s constant and |Im Log z| < π. Note that the power series

he(z) :=
∞∑

m=1

(−1)m

(2m)!2m
z2m

on the right hand side of (11.1) is an entire function and satisfies that he(−z) =
he(z), i.e., he(z) is an even function.

11.2. The sine integral function . The definition is

si(ρ) = −
∫ +∞

ρ

sin t
t

dt, ρ > 0

(cf. [5, p. 386]). Since

si(ρ) = −π
2

+
∫ ρ

0

sin t
t

dt,

we can show, by integration by parts, that

| si(ρ)| ≤ const.(1 + |ρ|)−1.

Moreover, we see that si(ρ) has an analytic continuation si(z):

si(z) = −π
2

+
∞∑

m=0

(−1)m

(2m+ 1)!(2m+ 1)
z2m+1. (11.2)

It follows from (11.2) that si(z) is an entire function and satisfies that

si(−z) = −π − si(z) (11.3)

(cf. [6, p. 145]).
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11.3. Laplace transforms. In computing the resolvent kernel of
√
−∆ in Section

2, we applied the following formula∫ +∞

0

e−pt 1
t2 + a2

dt = −1
a
{ci(ap) sin(ap) + si(ap) cos(ap)}, (11.4)

where Re p > 0, a > 0 (cf. [5, p. 269, Formula(46)]).
For the purpose of applications in Section 2, it is convenient to replace p in (11.4)

with −z. We thus have the function

−{ci(−z) sin(−z) + si(−z) cos(−z)} = sin(z) ci(−z)− cos(z) si(−z),

which is holomorphic in C \ [0,+∞).

11.4. Estimates of a convolution. We have often encountered the convolution
of the form

Φ(x) :=
∫

Rn

1
|x− y|β〈y〉γ

dy

in the previous sections, and used Lemma 11.1 below several times. Although the
results exhibited in Lemma 11.1 are well-known, it appears neither in a convenient
form for our purpose (see Ikebe [7]) nor in an accessible form (see Kuroda [13] which
is written in Japanese) in the literature. For this reason, we reproduce the results
here for the reader’s convenience.

Lemma 11.1. If 0 < β < n and β + γ > n, then Φ(x) is a bounded continuous
function satisfying

|Φ(x)| ≤ Cβγn


〈x〉−(β+γ−n) if 0 < γ < n,

〈x〉−β log(1 + 〈x〉) if γ = n,

〈x〉−β if γ > n,

where Cβγn is a constant depending on β, γ and n.

We shall divide the proof into four steps.
Step 1. Φ(x) is a continuous function on Rn.

Proof. Let x0 be an arbitrary point in Rn, and let ε > 0 be given. Since 0 < β < n,
we can choose r > 0 so that ∫

|y|≤2r

1
|y|β

dy < ε. (11.5)

We then decompose Φ(x) into two parts:

Φ(x) =
( ∫

B(x,2r)

+
∫

E(x,2r)

) 1
|x− y|β〈y〉γ

dy =: Φb(x) + Φe(x), (11.6)

where B(x, 2r) = {y||x − y| ≤ 2r} and E(x, 2r) is the same as in the proof of
Lemma 9.6. By (11.5), we get

0 < Φb(x) < ε (11.7)

for all x ∈ Rn. It follows from the definition of Φe(x) that

Φe(x)− Φe(x0)

=
∫

Rn

{
1E(x,2r)(y)

1
|x− y|β〈y〉γ

− 1E(x0,2r)(y)
1

|x0 − y|β〈y〉γ
}
dy.

(11.8)
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Note that the inequality (9.24) implies that

1E(x,2r)(y)
1

|x− y|β
≤

(3
2
)β × 1E(x0,r)(y)

1
|x0 − y|β

whenever |x− x0| ≤ r. Hence, the integrand in (11.8) is bounded by{(3
2
)β + 1

}
× 1E(x0,r)(y)

1
|x0 − y|β〈y〉γ

,

in absolute value, for all x with |x − x0| ≤ r. Since β + γ > n, by assumption of
the lemma, we see that the function in (11.4) belongs to L1(Rn

y ). Therefore, the
Lebesgue dominated convergence theorem is applicable to the right hand side of
(11.8) and shows that

lim
x→x0

(
Φe(x)− Φe(x0)

)
= 0.

Combining this with (11.6) and (11.7), we deduce that

lim sup
x→x0

∣∣Φ(x)− Φ(x0)
∣∣ ≤ 2ε.

Since ε was arbitrary, this completes the proof of the step 1. �

To establish the desired inequalities, we make another decomposition of Φ(x):

Φ(x) = Φ1(x) + Φ2(x) + Φ3(x),

where

Φ1(x) =
∫
|y|≤|x|/2

1
|x− y|β〈y〉γ

dy,

Φ2(x) =
∫
|x|/2<|y|≤2|x|

1
|x− y|β〈y〉γ

dy,

Φ3(x) =
∫

2|x|<|y|

1
|x− y|β〈y〉γ

dy.

Since Φ(x) is bounded on each compact subset of Rn by continuity of Φ(x), it is
sufficient to get estimates of Φi’s for |x| ≥ 1.
Step 2. For |x| ≥ 1, we have

|Φ1(x)| ≤ Cβγn


|x|−(β+γ−n) if 0 < γ < n,

|x|−β log(1 + 〈x〉) if γ = n,

|x|−β if γ > n.

Proof. Note that |x− y| ≥ |x|/2 if |y| ≤ |x|/2. This fact implies that

Φ1(x) ≤ 2β |x|−β

∫
|y|≤|x|/2

1
〈y〉γ

dy.

If 0 < γ < n, then we get, using spherical polar coordinates,∫
|y|≤|x|/2

1
〈y〉γ

dy ≤ ωn

∫ |x|/2

0

r−γ+n−1 dr =
ωn2−γ+n

n− γ
|x|−γ+n,
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where ωn denotes the area of the unit sphere in Rn. Similarly, if γ = n, we then
have ∫

|y|≤|x|/2

1
〈y〉γ

dy ≤ ωn

∫ |x|/2

0

(1 + r√
2

)−γ

rn−1 dr

≤ ωn2γ/2

∫ |x|/2

0

(1 + r)−1 dr

≤ ωn2γ/2 log
(
1 +

|x|
2

)
,

where we have used the inequality 〈y〉 ≥ (1 + |y|)/
√

2. If γ > n, we evidently have∫
|y|≤|x|/2

1
〈y〉γ

dy ≤
∫

Rn

1
〈y〉γ

dy < +∞.

Summing up, we conclude that the desired inequalities for Φ1(x) hold. �

Step 3. For |x| ≥ 1, we have

|Φ2(x)| ≤ Cβγn|x|−(β+γ−n).

Proof. Let B∗(x) and E∗(x) be the sets defined by

B∗(x) := {y ∈ Rn | |x− y| < |x|
2
},

E∗(x) := {y ∈ Rn | |x|
2
< |y| ≤ 2|x|, |x− y| ≥ |x|

2
}.

Then we have

Φ2(x) =
∫

B∗(x)

1
|x− y|β〈y〉γ

dy +
∫

E∗(x)

1
|x− y|β〈y〉γ

dy.

Since B∗(x) is a subset of the annulus {y | |x|/2 < |y| ≤ 2|x| }, it follows that

〈y〉 ≥ 1√
2
(1 + |y|) ≥ 1

2
√

2
|x| (∀y ∈ B∗(x)),

which gives ∫
B∗(x)

1
|x− y|β〈y〉γ

dy ≤ 23γ/2|x|−γ

∫
|x−y|<|x|/2

1
|x− y|β

dy

=
23γ/2+β−nωn

n− β
|x|−γ−β+n.

If y ∈ E∗(x), then |x− y| ≥ |y|/4; therefore∫
E∗(x)

1
|x− y|β〈y〉γ

dy ≤ 4β

∫
|x|/2<|y|≤2|x|

1
|y|β+γ

dy

=
4βωn

β + γ − n
(2β+γ−n − 2−β−γ+n)|x|−β−γ+n.

Summing up, we obtain the desired inequality for Φ2(x). �

Step 4. For |x| ≥ 1, Φ3(x) satisfies the same inequality as Φ2(x):

|Φ3(x)| ≤ Cβγn|x|−(β+γ−n).
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Proof. If 2|x| < |y|, then it follows that

|x− y| ≥ |y| − |x| ≥ |y|
2
.

Hence we have

Φ3(x) ≤ 2β

∫
2|x|<|y|

1
|y|β+γ

dy =
2−γ+nωn

β + γ − n
|x|−β−γ+n.

This completes the proof. �

It is evident that Lemma 11.1 follows from the steps 1–4.
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Henri Poincaré, Phys. théor. 60 (1994) 147–187.
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