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UNIQUENESS FOR DEGENERATE ELLIPTIC SUBLINEAR
PROBLEMS IN THE ABSENCE OF DEAD CORES

JORGE GARCIA-MELIAN

ABSTRACT. In this work we study the problem
—div(|VuP72Vu) = Af(u)

in the unit ball of RN, with v = 0 on the boundary, where p > 2, and X is a
real parameter. We assume that the nonlinearity f has a zero 4o > 0 of order
k > p—1. Our main contribution is showing that there exists a unique positive
solution of this problem for large enough A and maximum close to @4g. This
will be achieved by means of a linearization technique, and we also prove the
new result that the inverse of the p-Laplacian is differentiable around positive
solutions.

1. INTRODUCTION

In this paper we are concerned with the nonlinear eigenvalue problem
—Apu=Af(u) inQ

u=0 on 0, (1.1)

where A,u = div(|Vu[P~2Vu), p > 2, stands for the p-Laplacian operator, Q C RY
is a bounded domain, A a real parameter and f a C' function with a positive zero
g (see hypotheses (H) below).

In the semilinear case p = 2 (where A, reduces to the usual Laplacian), problems
like have been widely considered in the literature. An important number of
works (cf. for instance [2], [5l T3] T4l [15] and references therein) deal with nonlinear-
ities f(u) with a positive zero g, and their interest is focused on positive solutions
u with v < %y and maxwu close to 4g. The important matter is then to show that
such solutions are unique for large A, and to ascertain their qualitative behaviour
as A — +00.

The results obtained in the semilinear case heavily rely on the use of lineariza-
tion around positive solutions. However, when trying to use the same tools with
problems like we encounter an important difficulty: the formal linearization
of A, around a solution v becomes degenerate at points where Vu vanishes. Since
it is a really hard task for the moment to locate the set of critical points of positive
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solutions, we are restricting our attention to a symmetric situation, where 2 = B,
the unit ball in RY. That is, we will consider

—Apu=Af(u) inB

vw=0 on dB. (1.2)

In this setting — actually the more general one of rotationally invariant domains of
RY — some problems slightly more general than (1.2)) were studied in [7]. Concretely,
the function f was allowed to depend on A:

—Apu=Af(A\u) inB

vw=0 on dB. (1.3)

The main assumption on f was the existence of a zero ug > 0 of order k < p — 1.
It was proved there the existence of a unique family of solutions {uy} with the
property that uy < 4y and
lim wu) =1, uniformly on compacts. (1.4)
A——+00
It is important to notice that condition was crucial in [7] in order to obtain
uniqueness. That is, it is possible to construct functions f in such a way that
problem admits two families of positive solutions, one of them not verifying
() (sce ).

We shall presently consider the complementary case in which f has a positive
zero g of order k > p — 1, therefore closing the analysis started in [7]. It turns out
that this situation is similar to the semilinear phenomenology. Firstly, the solutions
do not have a dead core (see Remark[1.2](a)). And secondly, it is sufficient to search
for families of solutions {uy} with maxuy — g as A — 400 to obtain uniqueness
— and we have as a consequence condition .

The most important fact in this regard is that we can linearize around positive
solutions, this being a novelty in the context of the p-Laplacian.

We will assume throughout that f satisfies the following hypotheses, which will
be termed as hypotheses (H):

(H1) f e CYR)

(H2) f has a zero @ of order k > p — 1; that is, for some positive constant ~,

flw)

lim z =

U—Ug— (ﬂo — U)
(H3) F(u) < F(i) if 0 < u <@g, where F(u) = [ f(s)ds.
(H4) f'(u) <0in [ag — €, o] for some & > 0.
(H5) f has a finite number of zeros in the interval [0, @g].
Note that condition (H3) is necessary in order to have a family of solutions {uy}
with maxuy — g as A — —+o0.
Our main result can be stated in the following way:

Theorem 1.1. Assume f verifies hypotheses (H). Then there exist ng > 0, A* > 0
such that the problem (1.2))

—Apu=Af(u) in B
u=0 ondB



EJDE-2004/110 UNIQUENESS FOR DEGENERATE ELLIPTIC PROBLEMS 3

has a unique positive solution uy with ug—ny < maxuy < g, if A > \*. Moreover,
uy 18 a radial function, the family {ux} verifies condition , and we obtain the
following exact estimate for the boundary layer near 0B:

lim AP (1) = (o F(i)) 7, (1.5)

A—+o0
where F(tp) = foﬁo f(s)ds.

Remark 1.2. (a) Condition (H2) on f guarantees that solutions with maxu < @
also verify maxu < 4o (cf. [6]), that is, dead cores do not arise even for large A.
This case is complementary to the one treated in [7].

(b) The results in Theorem are also valid when problem in considered
in an annulus. This will be shown elsewhere.

(¢) The boundary layer estimate can be shown to be valid even for general
domains Q (without any knowledge of uniqueness). See [6] and [7] for related
situations.

(d) The symmetry of solutions for problems like will play an important
role. We refer to §2 for details.

This paper is organized as follows: section 2 is devoted to some symmetry consid-
erations. In section 3, after proving the existence of a family of positive solutions,
we obtain some precise estimates for all possible solutions. Sections 4 and 5 form
the core of the paper: in §4 we show that it is possible to linearize problem
around positive solutions, using this fact in §5 to prove uniqueness.

2. SYMMETRY OF SOLUTIONS

In the semilinear case p = 2, a well known theorem by Gidas, Ni and Niren-
berg (see [10]) asserts that positive solutions to are radially symmetric. Some
attempts to generalize this result to degenerate operators have been made for in-
stance in [3] and [I1]. However, the possible presence of dead cores in the solutions
prevents one to expect a quite general symmetry result.

In a recent paper of Brock ([4]) an almost complete answer to this problem has
been given. Nevertheless it is necessary to impose additional assumptions on f in
order to obtain symmetry of positive solutions. We are showing in this section how
to use the results in [4] to obtain that all positive solutions to in our setting
are radially symmetric, without further conditions on the nonlinear term f. The
following result contains Lemmas 1 and 4, and Remark 1 in [4].

Lemma 2.1. Let u > 0 be a solution to (1.2)). Then there exists m € NU {400}
so that B admits a decomposition:
B =UjL,Cr U{x : Vu(x) = 0},
where Cy, = Bpg, (2x) \ By, (21), for certain z;, € B and 0 < r, < Ry, such that
u(x) = ulp), p=lv—2zl inCy,
0 2.1
L0 inCy. 21)
dp
Moreover, u(z) = wop,, (s) i Br(21) and Vu =0 on 0C, N B. On the other
hand, f(u) =0 on 0BR,(z) N B and if 1, > 0 then f(u) =0 on IB,, (k).

Remark 2.2. This property of the solutions u to (1.2)) is called local symmetry.
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By means of this result, we are defining, for an arbitrary positive solution u to
, a rearrangement u*, that is, a positive radial solution u*, with maxu* =
max u.

Let u be a positive solution to . We claim that max u is attained at some
zr (2 as in Lemma . Indeed, choose 2y € B such that u(zg) = maxwu, and
a sequence x; € 0C; such that dist (z;,29) — infdist(Ck,zo). It is easy to see
that the {z;} can be chosen in such a way that (passing through a subsequence
if necessary) one of the following situations holds: either z; — xo or the segment
[x;,20] is contained in the set {z : Vu(z) = 0}.

In the first case, we have f(u(z;)) = 0 (since z; € C}) and it follows that u(zo)
is an accumulation point of zeros of f unless u(z;) = u(zo) for infinitely many j’s.
Our hypotheses then imply that — passing through a subsequence — u(x;) = u(x).
If x; € OBR;(.,;), we obtain a contradiction to . Hence, z; € 0B,,;(z;). If
r; = 0 for some j, we have z; = z;, as was to be proved. If, on the contrary, r; > 0,
then u(x) > u(z;) in By, (z;), and the maximum is attained in the whole B, (2;),
also showing the claim (notice in particular that {z,} reduces to a single point). In
the second case, we also arrive at u(z9) = u(x;) and the conclusion is the same.

Remark 2.3. The above reasoning also shows that if the maximum is achieved in
2k, then the solution w is radial in Bpg, (zx), which is not clear from Lemma if
ri > 0.

A s

P )

vv

FIGURE 1. A locally symmetric solution u and its rearrangement u*.

Without loss of generality, assume u(z;) = maxwu. In virtue of Lemma
UL = W|9BR, (21) is a zero of f, and u; < u(z1). Now we will define an auxiliary
function @ such that @ < uy in B\ Bpg,(z1), and show that it is possible to choose
another annulus Cy such that 7o > Ry and @ = uy on 0B,,(23). To this aim we
are proceeding as follows: if there is a point x € Cy, k # 1, such that u(z) > uy
then set u = ujppy, (z) in Bg, (z1). Otherwise define & = wu. Clearly, @ < w; in
B\ Bg, (#1).

Now take the sequences z; € 0Bg,(z1) and &; € OC; in such a way that
dist(xj, &;) — infy,; dist (Ck,0BR,(21)). As before, it is possible to choose these
sequences such that two options may arise: |z; —&;| — 0 or [z;,%;] C {x : Vu(z) =
0}. Both of them lead to @(2;) = @(x;) = u; for a subsequence, and &; € 9B, (2;).
Thus, @ = vy in By, (2;) \ Br,(21). As a conclusion, the sequence {&;} reduces to
a point, and r; > Ry, 4 = u1 on 9B, ,(z;). Assume j = 2.
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Repeating the above procedure, we arrive, after a finite number of steps, at
u; = 0 for some [ € N. Denoting by x the characteristic function of a set, we define:
1
u () =Y U+ 2)X{R,_\<|a|<Ri} >
i=1
where Ry = 0 (see Figure 1). The main property of the function u* is the following:

Lemma 2.4. Let u be a positive solution to (1.2]). Then the function u* defined
above is a radial positive solution to (1.2)). Moreover, if Vu* # 0 in B\ {0} then
w* =w and u is a radial function.

Proof. 1t is easy to check that u* is a radial solution to (see Remark .
Thus, assume Vu* # 0 in B\ {0}. According to the definition of u*, consider
Bpr, (z1). If this ball does not coincide with B then in virtue of Lemma we
obtain Vu = 0 on 0Bg, (21), which is a contradiction. Thus, Bg,(z1) = B and
u* = u. This proves the lemma. [l

Remark 2.5. If we knew from the beginning that Vu # 0 in B\ {0}, then Theorem
1 in [3] could also be applied to conclude that w is radial.

3. EXISTENCE AND ESTIMATES OF SOLUTIONS

In this section we are proving that, under the assumptions (H) on f (see §1),

we can guarantee the existence of a family {u)} of positive radial solutions to
(1.2) which in addition verifies (1.4). The first important remark is that, due to

hypotheses (H)2 on the zero of f, positive solutions u to (1.2]) with v < g also
satisfy 0 < u < g (see [0]).
To begin with, notice that if u is a radial solution to (1.2)), then it satisfies (see
§4):
W) = YA ()
W' (0)=0, wu(l)=0.
Setting v(r) = w(A~Y/Pr), this problem is equivalent to

—(erlgpp(u'))' _ ’I"Nilf(u)

3.1
uW'(0)=0, u(\/P)=0. 3.1)
Thus, it is apparent that the Cauchy problem
o erl ’LLI /:erl U
(rY o)) =N () 52)

uw(0) =ug, u'(0)=0,

with ug in a left neighbourhood of %, will play an important role. Let us just
quote that this problem has a unique solution, denoted henceforth as u(-,ug), in an
interval of the form [0, d] (see Theorem 2.1 in [7] and references therein). Moreover,
this solution can be continued as long as u/(-,ug) # 0. It is also worthy of mention
that u(-, %) = tp (Theorem 2.2 in [7]).

Our existence result is the following:

Theorem 3.1. Assume [ satisfies hypotheses (H). Then there exist n > 0, Ao > 0
such that for every A > Ao, problem admits at least a radial positive solution
uy verifying ug —n < maxuy < tg. In addition the family {u)} satisfies and
ul(r) <0 forr > 0.
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Proof. Let us show that there exists n > 0 such that for the solution u = u(-, up)
to the problem with 4y — n < ug < G there exists T' > 0 with u(T") = 0.
First we claim that for every g9 < £ (¢ as in hypothesis (H4) on f), and R > 0,
there exists n = n(eg, R) such that u(r,ug) is defined in [0, R], u'(r,up) < 0 and
u(r,ug) > g — &g if 0 < r < R whenever 4y —n < ug < .
To prove the claim, assume first that there exist sequences ug, — ug— and
rn < R such that u'(r,, ug,) = 0. Since

(i) == ([ (4 flatpran)) dp)

r

and f > 0 in [Gg — €, Ug), it follows easily that u(ry,uo,) < %o —e. Thus, there
exists 7, < r, < R such that u(#,,uo,) = @ —€o. Passing to a subsequence we can
assume 7, — 7o, this also implying that w(#,,uo,) — u(fo,uo) = . This clear
contradiction proves the existence of 7 > 0 such that u(r,up) is defined in [0, R]
and ' (r,up) < 0in [0, R] when 4y —n < ug < Up. The remaining part of the claim
is proved ezactly in the same way.

Now notice that positive solutions to together with their derivatives are
uniformly bounded in r > 0. Indeed, multiplying the equation by u’ and integrating
in [0, r] we arrive at the identity

NP " (s)lP /
WP+ p - 1) [ =y ()~ )
0
so that |u/(r)|P < p'(F(uo) — F(u(r))) if > 0. Choose 7 > 0 and R > 0 to achieve
I p—1
- sk
r

Thus, —¢,(u') = f(u) + (N —1)p,(u')/r > f(u) — 7 if r > R and, as long as
u’ <0, we obtain —¢,(u')v" < (f(u) — 7)u/, that is,

(lu' ()P + p'Fr(u(r))) >0, r>R, (3.3)

where F(u) = F(u) — Tu, and F(u) = [ f(s)ds. Notice that f — 7 has a zero
to(T) < uo with 4g(7) — g as 7 — 0, verifying in addition the energy condition
Fr(u) < Fr (@), 0 <u<a,if u € [up(r) — (1), uo(7)], for some §(7) > 0.

Choose g¢, 7 small so that @g(7) —d(7) < @g—ep. As the claim at the beginning
of the proof shows, we have @o(7) — §(7) < w(R,ug) < tg. Thus if r > R, we
have, in virtue of ([3.3), [u/(r)[? > |W/(R)|P + p' (Fe(u(R)) — F-(u(r))), for r > R. In
particular, v/(r) < 0 always holds, and then

u'(r) <4/ (R), r>R.
Integrating this inequality,
u(r) Su(R)+u'(R)(r—R), r=R,

and we conclude that u has to vanish for some T' = T'(up). We have defined in this
way a continuous mapping T : [tg — 71,%g) — RT. To complete the proof of the
Theorem it suffices to show that T'(ug) — +00 as ug — @— (then the construction
of the family of solutions {ux}a>», is performed in a standard way). Assume on
the contrary that there exists a sequence wug, — g such that T'(ug,) is bounded.
Without loss of generality, we can assume T'(up,) — Tp > 0, and it follows that
Uy := u(, ugn) — U uniformly in [0, 7] as seen before. This contradicts the fact
that w(T(uon ), uon) = 0, finally proving the theorem. O
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Corollary 3.2. Let Ao, n be as in Theorem[3.1l Then every positive solution u to
(1.2) with wp —n < maxu < g and A > X is radial.

Proof. Let u be a positive solution to ([1.2) with g — n < maxu < g and A > Ag,
where 7, A9 are as in Theorem Consider the function u* defined in §2. In
virtue of Lemma, u* is a positive radial solution to and max u* = maxu.
Since the function v(r) = u*(A\~'/Pr) solves

—(r" () = T f(v)
v(0) = maxu, u'(0)=0,

it follows by the uniqueness of this Cauchy problem that u* = u,, for some p > Ao,
where {u,} is the family of functions given by Theorem Thus u*'(r) < 0 for
r > 0, and Lemma [2.4] implies that v = u*, and w is a radial function. (I

In the remaining part of the section we are obtaining estimates for the positive
solutions u to with maxu close to ug and large A.

First of all we are constructing a subsolution of , using ideas from [5]. To
this aim, we are redefining f outside [0, %g]. More precisely, we can assume with
no loss of generality that f is bounded, f < 0 in [Gg, +00), f =0 in (—oo, —1] and
F(u) < F(tg) for —1 <u <0.

Now let € be as in hypothesis (H)4. With no loss of generality, we can assume
that € < n. We can find a value Ay > A such that the solution uy, given by
Theorem satisfies uy, (0) = @y — /2. Thanks to the condition verified by F
(and diminishing e again if necessary), we can produce uy, to reach a value ro > 1
such that uy,(rg) = —1, and v} (r) < 0 if r € (0,70]. Moreover, since f = 0 in
(—o0, —1], uy, satisfies

(Y, ()Y =
u(rg) = -1, wu

0, r>rmrg
L(r0) <0,

=~

that is
POp1=0_,
u(r) = -1+ u}l(ro)%gr‘% p#N
—1+U>\1(T0)7’010g (a)a p:Na

for r > rg, with § = (N —1)/(p — 1). In particular, uy,(r) < 0 if » > 1. This
function will allow us to obtain a subsolution to problem (1.2]).

Lemma 3.3. Let uy, be as before, and define

A1y
Z)\(T) = U), (()\71) p’r) .
Then zy is a subsolution to (L.2)) for A > A;.

Proof. Clearly, zy verifies the equation. Moreover, zy(1) = uy, (\/A1)/?) < 0,
since uy, (r) < 0if r > 1. O

The existence of this subsolution is essential. Indeed, for large enough A, every
positive solution with maximum close to ug lies above it.

Lemma 3.4. There exist 0 < ng < n, Ay > A1 such that every positive solution u
to (1.2) with A > Ay and ug —no < maxu < g verifies u > zx.
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Proof. In virtue of Corollary [3.2] u is a radial solution. Moreover, as seen there,
u = uy, for some p = p(N). It is not hard to show that p(\) — 400 as A — +oo
and maxu — Gp—. Thus, for § > 0 fixed, there exist A, 0 < 19 < n such that A > X
and @p — 1o < maxu < @y imply u(r) > @9 — &/2, for every r € [0,1 — §] (this is
a consequence of condition (L.4)). Since maxzy = iy — £/2, we obtain u > 2 in
[0,1 —¢]. In addition,

A
al) a1 -0) =y, ()1 -9) <0,
1
it A > A\/(1=9)P, > 1—0. Hence, uyx > 2 in [l —4,1], and we can take
A2 = max{A;/(1 — 6)?, A}. This concludes the proof of the Lemma. O

Lemma 3.5. Let ng, Ay be as in Lemmal3.4l Then there exists A > 0 such that
every positive solution u to (1.2) with A > Ao and 4y — no < maxu < g verifies
ulr) >tg—ceif 0 <r < 1—ANL/P,

Proof. Choose e € RY with |e| = 1 and define the family of subsolutions
A1
ug A (7) = uy, (()\71) /p|x — te|) ,

forz € Band t € [0,1— (\/A;)~!/P). Since, in virtue of Lemma u>u e

W
t=0’
are in a position to apply the sweeping principle of the Appendix to conclude that

u > ut’tzl_()\/)\l)fl/p. Let 0 < R < 1 be such that uy,(r) > 49— if 0 <r < R.

Then u(r) > g — ¢ for 0 < r < 1 — (1 — R)(A\/A\1)"*/P. Thus, we can take
A=(1-R)A". O
Remark 3.6. Notice that hypothesis (H)s suffices to guarantee that every family

of positive solutions {uy} to (1.2 such that limy_, ;o maxuy = g verifies (1.4).
This is in contrast with the case 0 < k < p — 1 treated in [7].

4. DIFFERENTIABILITY PROPERTIES

In this section we are showing some auxiliary results, which deal with the lin-
earization of the inverse of the p-Laplacian under radial symmetry.

Let f € C(B) be radially symmetric. Since p > 2, it is well known that for every
m > 0 there exists a unique weak solution u to the equation

—Apu+mu=f inB
u=0 ondB,

which is C4(B) for some 0 < 3 < 1 (cf. [16]). Moreover, u is a radial function, so
that u € C1[0,1], PN =1y, (u') € C1[0,1] and u solves

—(rNrop (W) +mrN =N (r) 0<r <1
u'(0)=0, wu(l)=0,

where / = d/dr. Thus we can define an operator K,, : C[0,1] — C[0,1] given by
u = K, (f), which is compact. For m = 0 it is easily seen that

K(f)(r) = Ko(f)(r) = /T1 @p'(/os(i)N_lf(p) dp) ds.

For simplicity, we still denote K, to the restriction of those operators to C'*[0, 1].
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Back to problem (1.2), taking m > 0 such that f'(u) +m > 0 in [0, 4], then
radial solutions to (1.2 coincide with fixed points of the operator equation

U = K (Af(u) + Amu) .

Denote T)\(u) = Kxm(\f(u) + Amu). Ty is a compact operator in C[0,1], and it
is increasing in the order interval [0, %g]. Our first objective is to show that T} is
differentiable in a neighbourhood of its fixed points in the interval [zy, @] (see §3).
With this in mind, it is convenient to consider first the case m = 0. See Theorem
2.1 in [§] for a related result.

Theorem 4.1. Assume f € C1[0,1] verifies f(0) # 0 and u'(r) #0 if 0 <r < 1,
where u = K f. Then K, as an operator defined in C[0, 1], is Fréchet-differentiable
on f, and

1 1 1 S p
DK(f)g = “Ng(p) dpd 4.1
No= =5 | s |, (O ot pds (1.1)
for every g € C[0,1]. In particular, w = DK (f)g is a solution to the equation
N—=1|, /1p=2,,/\/ PNt
— (N ey = 0 1
PPy = Sy 0<r < )

W (0)=0, w(l)=0.

Proof. Without loss of generality, assume f(0) > 0. Thanks to Theorem 2.1 in [7],
we have

W (r) ~ —CroT, r—0+

with a certain constant C > 0. Thus there exists a constant ¢ > 0 such that
|u/(s)|/sP=T > ¢ for 0 < s <1, and the expression 1) makes sense. Denote it by
R(g). Then

(K (f +9)— K(f) — Rg))'(5)
@p'(/ok (g)N_l(f(p) +g(p))dp) _ (pp,</0‘ (g)N—lf(p) dp)

IS S 7 v
p_1|u,(3)‘p_2/0 (s) g(p)dp‘
1

<

1 / 5
< P2 _ 7’
<= [sl¢(s)] rOTEALE
where £(s) is an intermediate function comprised between fos(g)]\’—1 (f(p)+g(p))dp
and [7'(2)N="f(p) dp. Thus, as |g; — 0 we obtain

€6 = [N )dp =l o)P

uniformly in [0,1]. Let us see that £(s)/s — —|u/(s)[P~!/s uniformly in [0,1] as
lgl1 — 0. Indeed,

L[ EO o+ aondo -1 [ <ok, 4

S S
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and since £(s)/s is an intermediate value, we are done. This implies

(K (f +9) = K(f) = R(9))"(5)|

1 o

p-—lspf1

uniformly as |g[y — 0. In the same way |K(f + ¢g) — K(f) — R(9)|oo = 0(|g]1) as
lgl1 — 0. This proves the differentiability assertion. That w = R(g) is a solution

to (4.2)) is a direct consequence of expression (4.3)). O

Corollary 4.2. Assume f € CY0,1] verifies f(0) # 0 and u/(r) # 0 if 0 <r <1,
where u = K f. Then K is C in a neighbourhood of f in C*[0,1].

Proof. Let us show first that K is differentiable in a neighbourhood of f. Notice
that, in virtue of (4.3), if |g|1 is small, we have that
v (s)[P~
s
in (0,1], where v = K(f + g). As the proof of Theorem shows, this condition

turns out to be sufficient for the differentiability of K on f 4 g. Moreover, for
h € C*0,1],

IN

(o= _ (O ypt2) ), — o1

S S

>c>0

(DK (f +g)h — DK(f)h)'(s)

|
1 1 1 s 1
< p— 1‘|U/(8)|p—2 - |U’(S) ) ‘/0 (g)N_ |h(p)|dp

|p
1 1 1
< — h
<=l werE -
1 spiil p—2 5171?1 p—2
< —‘ A ‘ h
1 ee) Gy

and we obtain, in virtue of (4.3)),
DK(f+g)h—DK(f)h
sup| ( ) ()ls —0

h |h[1
as g — 0 in C*[0, 1]. This proves the corollary. a

As a consequence of the implicit function theorem, we can now obtain the dif-
ferentiability of the operator Ty on its fixed points in the interval [zy, @o].

Corollary 4.3. Let u be a fixed point of the operator Ty in the interval [z, o),
with f(u(0)) #0, and u'(r) # 0 if 0 <r < 1. Then T is C! in a neighbourhood of
u and we have, for every g € C1[0,1], that w = DTy (u)g solves
N1 N-1
7(7,N71|u/|p72w/)/ b \mw =
p—1 p—1

w'(0)=0, w(l)=0.

(Af'(u) + Am)g

Proof. Let us prove that K, is differentiable in a neighbourhood of A f(u) + Amu.
Denote f = Af(u) + Amu. Solving the equation —Apv + Amv = f is equivalent to
solving

Flo, f)=v—K(f = mw) =0.
We will show that the implicit function theorem can be applied in this case. Indeed,
]-'(u,f) = 0, and in virtue of Corollary K is C' in a neighbourhood of f —
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Amu = \f(u) (since f(u(0)) # 0 and u'(r) # 0 for 0 < r < 1). Thus, F is C!
with respect to both variables. Assume there exists g such that D,F(u, f)g =
g+ DK(f — Amu)Amg = 0. Then g solves

TNfl

p—1
9'(0)=0, g¢(1)=0,

and we obtain g = 0. Hence, D,F(u, f) is an isomorphism (notice that D,F(u, f)
is a compact perturbation of the identity).

Implicit function theorem guarantees the existence of a unique C' function R,
such that F(v, f) = 0 implies v = R(f) in a neighbourhood of (u, f). Uniqueness
yields R(f) = Kxm(f), hence Ky,, is C1. In addition,

Dw}_(uaf)DK)\m(f) +Df‘7:(u7f) =0,

so that w = DK ,,,(f)g is a solution to the equation

(VU + S Amg = 0

—(TN_l\u/|p_2w')’+ rN—l/\mw: N-1
p—1 p—1
w'(0)=0, w(l)=0.

The conclusion of this theorem is then a direct consequence of the chain rule. 0O

5. UNIQUENESS

This section is devoted to the proof of Theorem First of all, we need a result
about the eigenvalues of the linearization of the operator T. The spectral radius of
a bounded linear operator L will be denoted by spr(L). We recall that || < spr(L)
for every spectral value of L, in particular for possible eigenvalues p (cf. [17]). We
have the following lemma.

Lemma 5.1. Let u be a fixed point of T in the interval [zx,Uo). If o = spr(DTx(u))
is positive, then o is an eigenvalue of DTy (u) which admits an eigenfunction v such
that v(r) > 0 for 0 <r < 1.

Proof. Let us see that the operator DT)(u) is positive. That is, g > 0 implies
DTy(u)g > 0. Let w = DTy(u)g. Then
FN-1 N-1
—(TN_1|u’|p_2w')’ + o 1)\mw — o1
w'(0)=0, w(l)=0.

(Af'(u) + Am)g

Multiplying this equation by w™ = max{0, —w}, integrating in (0, 1) and perform-
ing an integration by parts in the left-hand side, we obtain
N—-1 N—1

/ (rN M P2 (w')? + . Amw?)dr = / ! (A f'(u) + Am)wgdr <0,
w<0 p—1 w<o P — 1

hence w~ = 0. Thus w > 0 follows.

Since DT (u) is a compact operator, Krein-Rutman’s theorem [I, Theorem 3.1]
guarantees the existence of an eigenfunction v associated to o such that v > 0. Let
us show that v > 0.
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Assume on the contrary that v(rg) = 0 for some 0 < ro < 1. Since v > 0, we
have v'(rg) = 0. Moreover, v satisfies

)= g s [ (8) )+ o)ty

p—1o|u/(r) r
Then, letting [v]oo,s = SUP|,_,y|<s [v(r)], We obtain
[0'(r)] < Clvfoo,s -

for a certain constant C' > 0. After an integration we arrive at |v]so,s < C0]v|c0.5,
and thus v =0 in |r — | < § if § is small. A continuation argument gives v = 0 in
[0, 1], which is clearly impossible. Thus v(r) > 0 if r € [0, 1). O

Remark 5.2. Note that the conclussion of Lemmal5.1]cannot be achieved by means
of the strong maximum principle, since the operator becomes degenerate for r = 0.

Proof of Theorem[I1. As seen in §3, every positive solution to with large A
and maximum close to @ lies in the ordered interval [zy,Uo]. Since the operator
T) is increasing, z) < Th(zx) and T)(ug) < g, it follows that T’ leaves the interval
[2x, TWo] invariant.

Furthermore, T} is compact, and does not have fixed points in the boundary
of the interval. Thus, the Leray-Schauder degree of I — T makes sense. We will
denote it by d(I — T\, (2x,0),0). As usual, the local index of a fixed point u will
be denoted by (I — Tx,u,0).

Since (zy, @) is convex, we have ([I])

d(I - T)\a (Z>\7ﬂ0)70) =1.

Let us show that, for large enough A, every fixed point of T} in the interval [z, 4]
is isolated, and has index 1. This will conclude the proof of the uniqueness assertion
in Theorem [[11

Lemma 5.3. There exists \* > 0 such that for X > X*, every fized point u of T
in the interval [z, Uo) is isolated, and i(I — Tx,u,0) = 1.

Proof. Let u € (z,4p) be a fixed point of T. In virtue of Corollary T
is differentiable on u. To prove the theorem it will suffice with showing that
spr(DTy(u)) < 1, for large A (this implies in particular the isolation of w). Then
since

’L(I — T, u, 0) = (_1)X )

where y stands for the sum of multiplicities of the eigenvalues of DTy (u) greater
than 1 (cf. [I, Theorem 11.4]), the conclusion follows.

Assume on the contrary that there exist sequences A\, — 400, u, > 0 in such a
way that o, = spr(DT), (u,)) > 1. In virtue of Lemma o, has an associated
eigenfunction v,, > 0, which will be normalized by |v,|ec = 1. Notice that f/(u,) <
0in [0,1 — AX, /7], in virtue of Lemma Then v, verifies

’I"N_l

Y Ry <

f/(un)vn <0

in [0,1— AN, 1/p ]. The maximum principle is then applicable to conclude that v,
attains its maximum in [1 — AP, 1]. Choose 1, € [1 — A)\T_Ll/p, 1] such that
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Up(rn) = 1 = maxv,. We introduce the functions

Un(z) = up(1 — )\;1/”3})

Vi(z) = va(1 - )‘:Ll/pl') )
fo<z< )\}/p. Since u,, is a solution to (|1.2)), we have that

vy = [ [ (=) 00 ) s

)\i/p—s

Similarly,

w4 [ G
w(z) = 7
p—1Jo [UL(s)[P=2 /s AP s

% [ FOno)) + (= 1)|Valp) dpds.

n

Now note that U/, # 0 in [O,)\:/p). Hence U,, V, € C?’[O,)\,l/p). Moreover, {U,},
{V,.} are precompact in C?[0,T] for every T > 0. Thus, we can assume U, — U,
V, — V in C2 [0, +00), where

loc
0w = [ ([ @) dp) s

0 0
Vo = [ [T L@ m( )] Vo dpas
-1/, \U/(s)|1’*2 . = P = p)apas,
and @ = lim,,_,cc 0y, (T = 400 is not excluded and then we should set 1/ = 0).
Thus, U, V are solutions to the one-dimensional problems

—op(T') = £(U)

_ _, (5.1)
T(0) = T (+00) = 0,
and
T2y = -~ (Lo em 1)\ TV
(07 = 25 (3@ +m(z - 1)V o)

V(0) = V'(+00) =0,
while 0 < U < 49, 0 < V < 1. Since the functions V,, attain their maxima in
T, = A,ll/p(l —1rn) < A, we obtain that V # 0. Thus V > 0. On the other hand,
notice that U verifies [U|P = p'(F(tu) — F(U)), together with U >0in [0, +00).
Taking derivatives in 1) it follows that U solves the second order equation

T \p—2 TN 1 1=
(TP = = r O,

and consequently U € C2[0, +00).

Choose the least C > 0 such that W := CU —V > 0in [0,A + 1]. W has to
vanish in some point of [0, A 4 1]. Furthermore, W € C?[0, +0c0) and satisfies the
equation

(T prwry = (f'(U)CU’ Lrovomd - 1)v> .
p—1 o o
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The choice of m implies f'(U) +m > 0, and, since 7 > 1,

— 1 —
(TP = = OW
in [0, A + 1]. This implies

_ 1 _

(TP T W 2 (fO)  m)W 20 (5.3)
in [0,A + 1]. Notice that U # 0 in [0,A + 1], and the operator in || becomes
nondegenerate. The strong maximum principle gives us that W > 0 in (0, A + 1).
Moreover, W(0) > 0 and we obtain W(A + 1) = 0. Hopf’s boundary lemma then
provides with W/(A + 1) < 0.

Thus, we can choose ¢ > 0 small so that W < 0in (A+1,A+ 1+ ). We claim
that this inequality holds in (A + 1, +00). If, on the contrary we have §o = sup{d >
0:W<0 in (A+1,A+140)} < o0, we obtain

— 1 _
(U PEWY = O
W(A+1)=W(A+1+6)=0.

Since f/(U) < 0in [A+1, +00), maximum principle implies W > 0 in [A+1, A+1+]
— impossible. Thus W < 0 in [A 4 1, +00). This leads us to

~(TP2wy >0

in [A + 1, +00). Integrating this inequality we arrive at

_ v d
W) WA+ )T @+ [ (5.0
ret [T ()2
and since p > 2, we have lim,_, ;o W(x) = —o0, contradicting W > —1. This
finishes the proof. ([l

It only remains to prove estimate (1.5). Let A, — +oo be an arbitrary se-
quence and define U, as in Lemma As already seen, we can assume U, — U
in C2_[0,+00). Thus, U/(0) — U/(O). The proof is concluded by noticing that

U (0) = (p F(tig)) /7 and U/,(0) = —\/Pu, (1). O
6. APPENDIX

In this Appendix we are providing a generalization of Serrin’s sweeping principle
adequate for our purposes.

Theorem 6.1 (Sweeping principle). Let {ut}icp0,q) C WeP(Q) N CHP Q) be a
family of subsolutions to the problem
—Apu = f(u) inQ

u=0 on 0N, (6.1)

where f is a C' function and Q a smooth bounded domain of RN. Let u > 0 be a
solution to (6.1). Assume that {us} verifies
(1) ur <0 on 0.
(ii) The mapping t — u; € C(Q) is continuous.
(iii) The set {x : Vue(z) = 0} reduces to a single point x,, and for every t we

have Vu(xze) # 0 or u(zy) > ue(xy).
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(iv) u> ut’t:o'

=a

Then u > u
t|t

Proof. Consider the set E = {t € [0,a] : u > w; in Q}. Hypotheses (ii) and (iv)
imply that F is closed and nonempty. Let us show that it is also open.

Indeed, assume ty € E, and define By, := {z € Q\ {z;,} : u(z) = w, (x)}. The
set By, is closed with respect to Q \ {z,}. To prove it is also open, let z¢ € By,.
Since u > uy,, u(xo) = ug, (zo) and xg # xt,, we obtain Vu(xg) = Vg, (x0) # 0.
Thus, choosing m > 0 so that f(u)+ mu is increasing in a neighbourhood of u(xg),

—Apu+ Apuy, + m(u —uyy) >0 in Q,

and since the gradients of w and wu;, do not vanish, we arrive at L(u — ug,) > 0,
where L is an uniformly elliptic operator in a neighbourhood of zg (cf. Appendix
n [I2]). This implies u = u;, in that neighbourhood, and B, is open.

Since Q \ {z¢,} is connected, we should have By, = Q \ {z¢,} or By, = . The
first possibility implies u = uy, in 2, which is impossible since us, < 0 on 9. The
second leads to u > uy, in 2\ {2y, }. Hypothesis (iii) then gives u > us, in Q, and
then u > uy in Q for ¢t ~ ty, that is, E is open.

Finally, the connectedness of [0,a] implies E = [0,a], and u > ut|t

. follows.

This proves the sweeping principle. O
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