ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. 2000(2000), No. 64, pp. 1-17.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu  ftp ejde.math.unt.edu (login: ftp)

On a nonlinear coupled system
with internal damping *

R. F. Apolaya, H. R. Clark, & A. J. Feitosa

Abstract

The purpose of this paper is to establish existence, uniqueness, and
asymptotic behavior of solutions of a non-linear coupled system with vari-
able coefficients, with coupling of a non-linear wave equation, and a linear
heat equation in a smooth-bounded-open domain of R™.

1 Introduction

The nonlinear wave equation with thermo-elastic coupling is given by the system
of equations

n

u(z,t) — p(t) Au(z, t) Z xt )+ ylu(z, ) |Pu(z,t) =0 (1.1)

n

0'(z,t) — AO(z,t) + )=0 in Q, (1.2)

with initial and boundary conditions
uw(z,0) =u’(z), u/(z,0)=ul(x), 60(z,0)=60%4z) in Q, (1.3)
u(z,t) =0, 6(z,t) =0 on I'x]0,o00], (1.4)

where v is displacement, 6 is absolute temperature, A denotes the Laplace
operator, p is a positive real function of ¢, v and p are positive real numbers,
the temporal partial derivative is represented by ’,  is a smooth-bounded-open
set in R™ with C? boundary I', and Q = 2x]0, o0|.

The non-linearity |v|°v usually appears in relativistic quantum mechanic
(see Segal [10] or Schiff [9]), and has been considered by various authors for
hyperbolic, parabolic and elliptic equations. Lions [4] studied the wave equation
with the same non-linearity, i.e., |v|?v, in a smooth-bounded-open domain 2
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of R™ with n € N, and proved existence and uniqueness of solution using both
Faedo-Galerkin’s and Compactness’ methods.

Clark at al [1] investigated the system (1.1)-(1.2) with v equal to zero and
feedback-homogeneous conditions over a part of the boundary I". They estab-
lished global existence of strong and weak solutions by Faedo-Galerkin’s method
using a particular basis of the space H}(Q) N H?(Q) intruduced by Medeiros &
Milla Miranda [6] and the exponential stability of total energy associated to the
weak solution using Komornik-Zuazua’s method [2].

Based in the theory developed in the papers of Clark at al [1] and Lions
[4] (Theorems 1.1, 1.2 and 1.3), we will prove that the system (1.1)-(1.4) has
a unique global strong solution, a unique global weak solution, and the total
energy associated to these solutions is asymptotically stable.

The outline of this article is as follows. In Section 2, the basic notations
are laid out and global existence of strong and weak solutions are issued, whilst
exponential decay is aired in Section 3.

2 Notation and strong-weak solutions

In the sequel LP(2), 1 < p < oo, will denote the collection of L-functions which
are pth-integrable over Q. For m € N, the space H™() is the Sobolev class of
the functions of the spatial variable x which along with their first m derivatives
belong to L?({2) (see, for exemple, Sobolev [11] or Medeiros & Milla Miranda [7])
and the closure in H™(Q) of the space D(Q) of test functions on  is denoted
by H{*(Q). The inner product and norm of H*(2) and L?(f2) are represented
by ((+,-)), ||| and (-, -), |-|, respectively. By W™P(0, c0) we denote the Sobolev
space of the functions of the temporal variable t.

Let X be a Banach space, T' a positive real number or T = +oo and
1 < p < oo, denotes by LP(0,T; X ) the Banach space of all measurable functions
u :)0, T[— X, such that ¢ — [Ju(t)||x is in L”(0,T"), with norm

T /p
Ioll, = ([ looligar) . it 1<p <o

and if p = oo, then
[v]loo = esssup ||v(t)| x-
te[0,T
To obtain the existence and uniqueness of global solution of the mixed prob-
lem (1.1)-(1.4) we suppose the additional hypotheses about p and p:

peWhi(0,00), wut)>p >0 and p/'(t) <O0. (2.1)
p is any finite-positive real number if n = 1,2 and
p<E if n>3. (2.2)

Note, for later use, that if p satisfies (2.2) then Hg(£2) has continuous injection
into LPT2(Q).
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The constant v is considered only to get the asymptotic behavior of the total
energy of solutions. Thus, it imposes the hypothesis (3.1) fixed in the section 3.

Now we can present the existence results of the initial- and boundary-value
problem (1.1)-(1.4). Thus, the global strong solution is guaranteed by

Theorem 2.1 (Strong solution) Let p be the fuction defined by (2.1). Let
p be the given real-positive constant satisfying (2.2) and suppose also vy a real-
positive number. If

ug, 0o € HH(Q)NH2(Q) and uwy € HI(Q),

then the system (1.1)-(1.4) has a unique solution {u,0} such that

u and § € L™ (0,00; H} () N H3(Q)) , (2.3)
u' € L™ (0,00; H3 () and 6" € L*(0,00; H} (), (2.4)
u” € L (0,00; L*()) , (2.5)

and the equations (1.1) and (1.2) are given in the sense of L> (0, 00; L*(1)).

Proof. Ezistence. To show the global existence of solution we will use both
the Faedo-Galerkin’s and Compactness’ methods. We consider (w,);en an or-
thonormal basis of H(Q) N H2(Q), and denote by Vi, = [w1, w2, ws, -+, W]
the subspace of Hg(Q) N H?(2) spanned by the m first vectors of (w;);jen. In
these conditions, the approximated system associated to system (1.1) (1.2) is
given by

?99; (t)’”> +7 (Jum (8)|Pum(t),v) = 0, (2.6)

(Wl (6),0) + (1), 0)) + 3 (

i=1

#0000 + (Ol ) + Y (G200, ) <o .)

where v and w belong to V,,.
Let 1w (0) = wom, u,,(0) = U1m, and 6,,(0) = 6o, be. Hence, ugm, tim,
and 6Oy,,, belong to V,,, and satisfy

uom — ug strongly in  H}(Q)N H2(), (2.8)
Oom — 0o strongly in HE(Q) N H?(Q),
Uim —> w1 strongly in  H}(Q). (2.10)

Under these conditions, the system (2.6) (2.7) has a local solution {um, (t), 0., (¢)}
over the interval [0,%,,[. This interval will be extended to any interval [0, co[
thanks to the first estimate below.
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Estimate I. Substituting v by 2u],(t) and w by 26,,(¢) in (2.6) and (2.7)
respectively, using Green’s formula in the term ) ;- ; (%Lw’"i’(t), Gm(t)> and inte-
grating over [0,t[, 0 < t < t,,, we get

t
f+2 / 16 (s)|ds = / () 1t ()2 + [tz ? + o2
0
2y
+1(0 m2+—/um”+2da},
) o+~ [ fuon
where

Er(t) = [, () + [0m (1)* + pa(8) [ (1) ||2+p+2/ [t (1) .

From (2.8)-(2.10) and (2.1) there is a positive constant k, independent of m
such that

t
Er(t) + 2/ 10,(s)[2ds <k for all £ >0, (2.11)
0

Hence, we can extent the approximate solutions {u,(t), 6,,(¢t)} on the whole
interval [0, co[ independent of m and ¢.

Estimate II. Differentiating the equations (2.6) and (2.7) with respect to t,
replacing v by 2u! (t) and w by 26, ,(t), we have according to (2.1) that

Gy + (0 s O + 16,0 (0 } + 2065, (0)1? (212)

< =2v(p+ 1)/Q [t ()P, (£) g, () — 200" (£) (i (8), 0, (2))).-

"

Now, let us make an analysis about the term —2u/(t)((wm (t),ur,(t))). In the
equation (2.6) replacing v by 2u!., (¢t) we can write

~2u)((n(0), (@) = 2y (OF +23 [ Tl (e
2 [ fum O un (O (0o

Multiplying both sides by £ (t)) and using (2.1) we obtain

n

O Oin0) < 2 > I OTACCICED
l(t) Py u” >
0Bl [ 0w )
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Substituting (2.13) in (2.12) it follows

Loy + 200, < —27(p+1)/QIum(t)l”%(t)%(t)dx

dt
2 () = [ 90,
+ 0 > /Q B, ™ ()l (t)ds

i=1

where

:

Ex(t) = [up, ()% + p(®) |, (0)]17 + 16, (0.

Hence, we can write

LB+ 20,07 < 2o+ 1) / (D17l (8) [l ()]

8301 ‘| rt)|de  (2.14)

2'y|u | e (D () da
s /Q|m<t>| ul (1)

Now, we are going to make an analysis on the second member of (2.14) in order
to apply the Gronwall’s inequality. By using the Holder’s generalized inequality
for the case %—i— % —1—% = 1 we get from hypothesis (2.2) the following continuous
injections:

o If n = 1,2 then H&(Q) — L1(Q) for all ¢ > 0.

e If n > 3 then p < —25. Thus, Hj() — L9(Q) where ¢ = -2%. Conse-

quently, as ¢ > p + 2 then HY(Q) — LPT2(Q), and since np < q then it
also follows that Hg(Q) < L™°(1).

Using the two items above and the estimate I in the first term of right-hand
side of (2.14) yields

[ lun@ Pl @)l (0)ds
Q

UQ |um(t)|’md4 v [/Q I%(t)wdm} /g VQ |u’,’n(t)|2d4 »

[ ()1 om0y 1t () Lo (2 [t (8) [ 22 ) (2.15)
o[t (811 2y 12t () g 2y [t (2]
cx [, (8) [ ety (£)]-

Substituting (2.15) and applying Cauchy-Schwarz’s inequality in the last two
integrals in the right-hand side of (2.14) we have

IAN I IA

IN

LB(0) 200017 < 2e7(p+ 1)l (1) 1)
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2\/ﬁ , 7
I OOl 1)

20 () () ()]

p(t)

Hence, (2.1), and usual inequalities yields

d -
2 P2 (0) 200, (0]

IN

c1y(p+1 cy(p+1
Dy, )2 + LD )2 +
Ho ko
n v v
YO OF + 21 O (120D + L @]l ()2
Ho Ko Ho

%wnnem(t)n?

Let v(t) be the function given by

v(t) :—{cw p+ Du(t) + (Vn+7) ' @)},

then it implies

L)+ 206,012 < vt ) Ulrn O + ur, (8)7}

dt
Vn v
X[ ()10 (D)1 + — |1 ()| ()|
Mo Ho

From (2.11) there exists a constant ¢ independent of m and ¢ such that

d :
—Ba(t) +2[0,, (017 < v() {lupn @I + lun ()]}

dt
n coy
+—\/_Iu'(lﬁ)III(%n(t)II2 + =] (8)].
Mo Ho

Now, integrating over the interval [0, [, using again (2.1), (2.11), and observing
that u/, (0) and 6,(0) are bounded in L?(Q2) we conclude that there exists a
constant ¢ independent of m and ¢ such that

E2<t>+2/0 H%(S)IIQdSSCJr/ ) {lut ()12 + [ ()2} ds.

From (2.1) it follows that v belongs to L'(0, 00). Thus, applying the Gronwall’s
inequality we obtain

t
Es(t) + 2/ 16,.(s)|?ds <k for all ¢>0. (2.16)
0
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Limit of the approximated solutions. From (2.11) and (2.16) it is possible
to take the limit in the nonlinear system (2.6) (2.7). In fact, from (2.11) we
obtain

(um) is bounded in L (0,00; H}(2)) ,
(ul,) is bounded in L (0,00; L*(Q2)).

Hence, we have in particular, that the sequences (um),,cy and (uj,),,cy are
bounded in L? (0,T; H§(2)) and L? (0,T; L*(£2)) respectively. Thus, by com-
pact injection of H'(2x]0,T) into L?(2x]0,T|) it follows by Lions-Aubin’s
theorem that there exists a subsequence of (u,,), which we denote as the origi-
nal sequence such that

U —> w  strong in L2 (O,T; L2(Q)) ,
whence, u,, — u in Q2x]0,T[ almost everywhere. Hence,
[t [P, — |ulPu in Qx]0,T[ almost everywhere. (2.17)
From (2.11) we also have that
(um) is bounded in L (0,T; LP2(Q2)) . (2.18)
From (2.17), (2.18) and Lions’ lemma (cf. Lions [4], lemma 1.3) we obtain
|t [Pty — |ulPu weak star in  L>(0,T; LP (Q)), (2.19)

where p = p+ 2. Since T any positive real number then the convergence (2.19)
is also held for all ¢ € [0, co].
We still can obtain from (2.11) and (2.16) the following convergences
um —> u  weak star in  L°°(0, 00; H}(2)),

ul, — v’ weak star in  L>(0,00; H} (D)),

u! — v’ weak star in  L°°(0, 00; L2(Q)), (2.20)
0 — 60  weakin L%(0, 00; H}(R2)),
0, — ¢  weak in L?(0, 00; H} (Q2)).

By using (2.19) and (2.20), we can take the limit in the system (2.6) (2.7),
and the statement (2.4) and (2.5) are given by these convergences.

The regularity (2.3) is guaranteed by results on elliptic regularity (see, for
instance, Medeiros & Milla Miranda [7] or Nirenberg [8]) in view of

1 n
Au=y {u " ; aaai + wlul”“} belongs to  L?(0, 00; L*(22))

and

n /
AO =6+ Z g—z belongs to  L?(0, 00; L*(9)).
i=1
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From the two previous results we can conclude that equations (1.1) and (1.2)
are given in the sense of L°°(0,00; L2(2)) As a consequence of (2.3)-(2.5), the
functions w, u’ and 6 are continuous. (see Lions & Magenes [5] Vol. I, Cap. 1).
Therefore, the initial conditions (1.3) are well defined. &

Uniqueness. If {u,0} and {i,0} are solutions of (1.1)-(1.4), then for all ¢
and ¢ belong to L2 (0, 00; L2(Q)) the functions v = v — 4 and w = 0 — 0 satisfy

v(0)=0, 2 (0)=0 and w(0)=0.

When we replace ¢ for 2v; and € for 2w we obtain

{lv OF + u@)llo@))* + lw@)*} + 2w ()]
+27/Q (lu(®)|Pu(t) — [a@)[Pa(®) ' (t)dz = 2u'(#)]o(t)]|*.
Using the hypothesis (2.1) we can write
p7 {lv OF + @) o@)* + lw@)*} + 2[lw(®)]? (2.21)
< 27/ [lu(®)[Pu(t) — |at)[ alt)] [v'(t)|dx.
Q
Applying the mean value theorem we get
/Q [lu(®)|Pu(t) — [a(t)["at)| o' (t)|dz
< (ot 1)/ sup {Ju(t)]?, [a(t)|} [o(t)| V' (t)|dz.
Q 0<t<T

By using Hélder’s generalized inequality for the case % + % + % = 1, there exists
a constant ¢ > 0 such that

/ [[u()Pu(t) — la(t)[Pa(t)] [o' (t)|dz
C{|||u|pl|Ln(Q + llal?] n Q)} [|v(t ||L’1(Q [[v'(t )||L2(Q)

As |[2|? || pr) = ||z|\‘£np(9) and np < ¢, then using the same argument of the

estimate IT we obtain || |2]7 || 1n(q) < c|\z||§{é for all z € H} ().

(O]
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On the other hand, the estimate (2.11) implies that Hz(t)||§{1(ﬂ) is bounded
(0]
for all t > 0. Therefore, a positive real constant ¢ exists such that
/;HUG)VU(Q-—|ﬂ@N”@@)HUTtﬂdwSSCHUHHMQﬂvWL%Q)- (2.22)

Substituting (2.22) in (2.21) and integrating from 0 to ¢ we get

IU@F+M@WﬁW”Hw@F+2AIW@N%8

< yA{W@W+www@W}m.

As % > 1 then choosing k£ = max {% ;—Z} yields

O + wOIOI + ol +2 [ ()|
tv'sz s)|lv(s)|?) ds.
<k [ {WEP Ol d

Finally, by Gronwall’s inequality it follows that v(¢t) = w(t) = 0 on [0, co[.
Hence, Theorem 2.1 is established &

Now, we shall present a result of the global existence and uniqueness of weak
solution for the system (1.1)-(1.4).

Theorem 2.2 (Weak solution) Let the assumptions of Theorem 2.1 about i,
p, and ~y be satisfied. If p = p+ 2 and

up € Hy () NLP(Q), wuy € L*(Q) and 6y € HH(Q),

then the system (1.1)-(1.4) has a unique solution {u,0} such that

u € L™ (0,00; Hy () N LP(Q))), ' € L™ (0,00; L*()), (2.23)
u”’ € L* (0,00; H () + L¥'(Q)) , (2.24)

0 € L™ (0,00; L*(2)) N L? (0, 00; Hy (), (2.25)

0’ € L* (0,00, H (), (2.26)

and the equation (1.1) is given in the sense of L? (0,00; H1(Q) + L¥'(2)) and
(1.2) is given in the sense of L? (0,00;H’l(Q)),
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Proof. Existence. The demonstration of existence of a weak solution is made
by the same method utilized to get the strong solution. However, we now
consider the basis (w;) en in the space H} (Q)NLP(Q), and the initial conditions
sastisfying

Uom — up strongly in  Hg(Q) N LP(Q), (2.27)
Oom — 0o strongly in  HE(Q), (2.28)
Urm — up  strongly in  L%(Q). (2.29)

Under these conditions, we have that the system (2.6) (2.7) has a local solution

{um/(t), 0 (t)} on the interval [0, ¢,,[, and this solution will be extended over the

whole interval [0, co[ independent of m and ¢ thanks to estimate (2.30) above.
Using the same procedure used to get estimate I of Theorem 2.1, we get

|ury ()% 4 10 (8)* + p2(8) [ (1) 2 (2.30)
2 t
+—’V/ |ty (£)[P e + 2/ 0m(s)|2ds < & forall t>0.
P Ja 0
Hence, there exist subsequences of (U )men and (0., )men, which we denote as

the original sequences, and functions u : 2x]0,00[— R and 0 : 2x]0,00[— R
such that

Uy — u weak star in  L>(0, 00; H} () N LP(Q)), (2.31)
ul, — u'  weak star in  L>(0, o0; L*()), (2.32)
0 — 0 weakly in L*(0, 00; Hy (). (2.33)

From (2.31)-(2.33) we can take the limit in (2.6) (2.7) yielding

- /M(U’(t),v)qﬁ’(t)dt + /OO () ((u(t), v))o(t) (2.34)
0 0

30 [T (St ) o+ [ Qurun.oowi = o

- " 08), w)e (D)t + / " (0(1), w)(t)dt (2.35)
0 0
n </ ou’

where v and w belong to Hi () and ¢ belongs to D(0,c0).
Hence, following the same procedure of Clark at al [1] (Theorem 4.1) we can
conclude

u’ — pAu+ ; aa—i +yuffu=0 in L2 (0,oo;H*1(Q) + L”'(Q)) ,

n /
RN ES g;‘ =0 in L2 (0,00, H (). (2.36)
i1 Ot
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The statements (2.23)-(2.26) are consequences of (2.36) and of convergences
(2.31)-(2.33).

The functions u, v’ and 6 are continuous, thanks to (2.23)-(2.26). Thus, the
initial conditions (1.3) are verified.

Uniqueness. From (2.23), and (2.24) the duality (u”,u’) does not make sense.
Thus, it is necessary to utilize the regularization’s method of Ladyzhenskaya-
Visik [3], see also Lions [4] (Theorem 1.2, pp. 14), and we proceed such as in
the demonstration of uniqueness of Theorem 2.1 Therefore, Theorem 2.2 has
been proven &

3 Asymptotic behavior

The aim of this section is to prove that the total energy associated to solutions
of (1.1)-(1.4) has exponential decay when the time ¢ goes to +00. To reach our
goal we will utilize the method of Komornik-Zuazua [2].

The total energy of the system (1.1)-(1.4) is given by

E(t) = [/ () + u(t)[u@®)]? + 10()* + —/ |u(t)|"+? da.
To obtain the asymptotic behavior of the energy E(t) it is necessary to consider

the following hypothesis about the constant =,

p+1
Ho

7S 2ckr’

(3.1)

where o and k are fixed in (2.1) and (2.11) respectively, and c¢ is the constant
of continuous injection of Hg () into LP*%(Q). From estimate I and hypothesis
(2.1) it is easy to see that the energy F(t) is not increasing in view of

—E@®) < —6@®)|? for all ¢ > 0. (3.2)

The asymptotic behavior of the energy of our system is given by

Theorem 3.1 If the constant v satisfies the hypothesis (3.1) then the energy
E(t) associated to weak solution of the system (1.1)-(1.4), guaranteed by Theo-
rem 2.2, satisfies

E(t) < E(0)exp(—wt) for all t>0, (3.3)

where w is a real-positive number defined in (3.23).
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Proof. First we get (3.3) for the energy E(t) given by the strong solutions
of (1.1)-(1.4) guaranteed by Theorem 2.1. Thus, the stability result for the
energy associated to the weak solution is established without difficulty by density
arguments. Let us consider the auxiliary real function

() =2 (), (z-V)u®t)) + (n—1) (W (t),u(t)) forall ¢>0, (3.4)

where x € R" is nonzero, “-” denotes the usual scalar product in R", and n € N.
Differentiating 1 (t) with respect to ¢ we obtain

Pt = 20'®),(z V)ut) +2 (@), (z- V) (1)
+(n = 1) (W (1), u(t) + (n — 1) [u/ ().
Repla(iing u”(t) by p(t)Au(t) — >0, aafi (t) — vy|u(t)|Pu(t) in the identity above
it implies
W) = 2u(t) /Q Au(t) (z - t)dx — 22 / 8% V) u(t)dx
_27/ ()Pt (2 - V) u(t)de + 2/ ') (- V) (H)de

= DO+ (=D /Au (3.5)
—(n—-1 Z/ 8301 t)dx —y(n —1) /|u (t)[P2dz.

Our next objective is to limit each term of the right-hand side of (3.5). In
the following steps we will use the Green’s formula and the boundary conditions

(1.4) several times.
Step 1: First term of (3.5). Since u(t) € Hg(2) N H2(), the Green’s

formula we have
ou
2 Z / Ox; (81:1) xjaac dz

-2 Z / 91; Oz; ( T 9z, )dw (36)

i,j=1

=3 [ (%

de —2 ———dx.
i> Z/@mz 81:1830]

i,j=1

2/Au(x-V)uda:
Q

ou 0 ou
= 2 Z / 8:1:1851:] <x]8—xl> de
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S Ou Ox; Ou
= — —dx.
21‘;1/9 Ox; 0x; 8x1d T+ 2 Z / ox; i 833]8301

Thus,

- ou  0%u Ou Oz; Ou |
_2i§:1/§; 8—%37]‘ 0x;0x; v = Z / Ox; Ox; 8331 (3.7)

- ”Z/ (fm)

Substituting (3.7) in (3.6) yields
2pu(t) /Q Au(t) (z - V) u(t)de = —(2 = n)u(t) u(®)]*. (3-8)

Step 2 Second term of (3.5).

—ZZ/ 8301 V) u(t)dz

IA

1 ||2+Z“° oI (9)
_ nrg 2 () 2
- M—?||0(t)|| +T|\u(t)ll ,

where 7o = ||z o ()
Step 3 Third and eighth terms of (3.5).

~2 [ (O u(®) (- V) u(tydo
= Y [ poluvn g0

@) u(t)z:) u(t)dz
- 27p2/|u (O a5 lu(0)do
—|—2fyZ/ |u(t)[Pu(t) d:c—|—2fyZ/ lu(t)|PH2da.

Observe that

En 9 290 < o
i = —F p+2\ .

2
. ”W’/ u(t)]P2da .
p+2 /g
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Thus,

oy / u(OPu) - V) u(t)de = 225 / ()| 2dz 4y / fu(t) | 2.

Hence, adding the third and eighth terms of (3.5) yields
—27/ lu(®)Pu(t) (z - V) u(t)de —y(n — 1)/ lu(t)|PT2dx (3.10)

_ n1p2/| |p+2dm+7/ lu(t)|P*2dz.
p

As H} () is continuously embedded into LP*2(Q) then there exists a real posi-
tive constant ¢ such that

7/ u(®)|P 2 da < yellu(®)[|* = yellu(®)]|lu(®)]]*.
Q

From (2.11) we have ||u(t)]|? < < for all ¢ > 0. Therefore,

7 [ futt)
3 [ futt)

Substituting this expression in (3.10), we obtain

¥ P
o llu@®)]”.

As % > 1 then

yck?
< —ra®)u)]*.
0

—27/ lu(®)|Pu(t) (z - V) u(t)de —y(n — 1)/Q lu(t)|PT2dx (3.11)

< _me /|u
p+2

Step 4: Fourth term of (3.5).

l l _ - -iul 21,__ o 21,
Q/Qu(t)(x.V)u(t)dm—;/szaxi[ (6)]2de = Z/ﬂ[ (£)]2da.

Hence,

( Mu®)].

2/Qu’(t) (- V) (t)de = —nlu (1)]? .

Step 5: Sixth term of (3.5).

(n—1)u / Au(t = (1 - n)u®)|lu@)]?. (3.12)
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Step 6: Seventh term of (3.5).

An
-3 [ g = 2o

)\171( - ) ( )
TH@(t)II2 + Tl\u(t)ll27(3'13)

where A is defined by |v]|? < Aq|jv||? for all v € HJ(£2). Substituting (3.8)-(3.13)
in (3.5) yields

IA

v < WP - (i—ﬂ> w0 )] (3.14)
Ho
nRZ + Ain(n —1)2 2 P )P 2da.
+ (M2 =i o - 27 [ pta

The constant 1 — Z,ff_z is positive thanks to the hypothesis (3.1). Now, multi-
0

plying (3.14) for a suitable € and taking into account that —||6]|? < —A—11|9|2, for
all @ € H(Q) then we have from (3.2) and (3.14) that

E(t) + /() < —e|u'<t>|2—e(§—35—_’if> ) (o)
0

1 {1 . (m«g + Al”(" - UQ)] 0P (3.15)

|p+2dm

p+2

Let € and 7 be real positive numbers such that

. o 1
= — 3.16
€ min { ’[’L’r?l T )\1’[’L(’I’L — 1)27 TO} ) ( )
R N —e[nrg + Mn(n —1)2
-~ min § B2k po el U ep |
2ubt PoA1€ 2

where 79 is defined in (3.19). Taking into account (3.16) and (3.17) in (3.15) we
get
El/(t) < —eTE(t) forall t>0, (3.18)
where E(t) = E(t) + e(t).
On the other hand,

O] < ef oW OF + uolu@I + R + S

2 o + [0 D] g uo ).

210

IN
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Choosing
210 2
_ 3.19
7o max{n+1, 27“(21—1—)\1(71—1)}’ (3:.19)
it follows
lew(t)| < eroE(t) forall t>0. (3.20)
Note that
|Ec(t) — E(t)| <e€|y(t)] forall t>0. (3.21)

From (3.20) and (3.21) we have

(1 - ero)E(t) < E.(t) < (1 +erg)E(t) forall ¢ > 0. (3.22)

From (3.18) and (3.22) we obtain

E'(t) < —wE(t) orallt>0, (3.23)

where w = e7/(1 — e1g). From (3.16) it follows that 1 — erp is a real positive
number. Thus, there exists a real positive number w satisfying (3.3). Therefore,
the proof of Theorem 3.1 is complete O
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