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On a nonlinear coupled system

with internal damping ∗

R. F. Apolaya, H. R. Clark, & A. J. Feitosa

Abstract

The purpose of this paper is to establish existence, uniqueness, and
asymptotic behavior of solutions of a non-linear coupled system with vari-
able coefficients, with coupling of a non-linear wave equation, and a linear
heat equation in a smooth-bounded-open domain of Rn.

1 Introduction

The nonlinear wave equation with thermo-elastic coupling is given by the system
of equations

u′′(x, t)− µ(t)∆u(x, t) +
n∑
i=1

∂θ

∂xi
(x, t) + γ|u(x, t)|ρu(x, t) = 0 (1.1)

θ′(x, t)−∆θ(x, t) +
n∑
i=1

∂u′

∂xi
(x, t) = 0 in Q, (1.2)

with initial and boundary conditions

u(x, 0) = u0(x), u′(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω, (1.3)

u(x, t) = 0, θ(x, t) = 0 on Γ×]0,∞[, (1.4)

where u is displacement, θ is absolute temperature, ∆ denotes the Laplace
operator, µ is a positive real function of t, γ and ρ are positive real numbers,
the temporal partial derivative is represented by ′, Ω is a smooth-bounded-open
set in Rn with C2 boundary Γ, and Q = Ω×]0,∞[.
The non-linearity |v|ρv usually appears in relativistic quantum mechanic

(see Segal [10] or Schiff [9]), and has been considered by various authors for
hyperbolic, parabolic and elliptic equations. Lions [4] studied the wave equation
with the same non-linearity, i.e., |v|ρv, in a smooth-bounded-open domain Ω
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of Rn with n ∈ N, and proved existence and uniqueness of solution using both
Faedo-Galerkin’s and Compactness’ methods.
Clark at al [1] investigated the system (1.1)-(1.2) with γ equal to zero and

feedback-homogeneous conditions over a part of the boundary Γ. They estab-
lished global existence of strong and weak solutions by Faedo-Galerkin’s method
using a particular basis of the space H10 (Ω) ∩H

2(Ω) intruduced by Medeiros &
Milla Miranda [6] and the exponential stability of total energy associated to the
weak solution using Komornik-Zuazua’s method [2].
Based in the theory developed in the papers of Clark at al [1] and Lions

[4] (Theorems 1.1, 1.2 and 1.3), we will prove that the system (1.1)-(1.4) has
a unique global strong solution, a unique global weak solution, and the total
energy associated to these solutions is asymptotically stable.
The outline of this article is as follows. In Section 2, the basic notations

are laid out and global existence of strong and weak solutions are issued, whilst
exponential decay is aired in Section 3.

2 Notation and strong-weak solutions

In the sequel Lp(Ω), 1 ≤ p <∞, will denote the collection of L-functions which
are pth-integrable over Ω. For m ∈ N, the space Hm(Ω) is the Sobolev class of
the functions of the spatial variable x which along with their first m derivatives
belong to L2(Ω) (see, for exemple, Sobolev [11] or Medeiros & Milla Miranda [7])
and the closure in Hm(Ω) of the space D(Ω) of test functions on Ω is denoted
by Hm0 (Ω). The inner product and norm of H

m
0 (Ω) and L

2(Ω) are represented
by ((·, ·)), ‖·‖ and (·, ·), | · |, respectively. ByWm,p(0,∞) we denote the Sobolev
space of the functions of the temporal variable t.
Let X be a Banach space, T a positive real number or T = +∞ and

1 ≤ p ≤ ∞, denotes by Lp(0, T ;X) the Banach space of all measurable functions
u :]0, T [−→ X , such that t 7→ ‖u(t)‖X is in Lp(0, T ), with norm

‖v‖p =
( ∫ T
0

‖v(t)‖pXdt
)1/p

, if 1 ≤ p <∞,

and if p =∞, then
‖v‖∞ = ess sup

t∈[0,T ]
‖v(t)‖X .

To obtain the existence and uniqueness of global solution of the mixed prob-
lem (1.1)-(1.4) we suppose the additional hypotheses about µ and ρ:

µ ∈W 1,1(0,∞), µ(t) ≥ µ0 > 0 and µ′(t) ≤ 0. (2.1)

ρ is any finite-positive real number if n = 1, 2 and

ρ ≤ 2
n−2 if n ≥ 3. (2.2)

Note, for later use, that if ρ satisfies (2.2) then H10 (Ω) has continuous injection
into Lρ+2(Ω).
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The constant γ is considered only to get the asymptotic behavior of the total
energy of solutions. Thus, it imposes the hypothesis (3.1) fixed in the section 3.

Now we can present the existence results of the initial- and boundary-value
problem (1.1)-(1.4). Thus, the global strong solution is guaranteed by

Theorem 2.1 (Strong solution) Let µ be the fuction defined by (2.1). Let
ρ be the given real-positive constant satisfying (2.2) and suppose also γ a real-
positive number. If

u0, θ0 ∈ H10 (Ω) ∩H
2(Ω) and u1 ∈ H10 (Ω),

then the system (1.1)-(1.4) has a unique solution {u, θ} such that

u and θ ∈ L∞
(
0,∞;H10 (Ω) ∩H

2(Ω)
)
, (2.3)

u′ ∈ L∞
(
0,∞;H10 (Ω)

)
and θ′ ∈ L2

(
0,∞;H10 (Ω)

)
, (2.4)

u′′ ∈ L∞
(
0,∞;L2(Ω)

)
, (2.5)

and the equations (1.1) and (1.2) are given in the sense of L∞
(
0,∞;L2(Ω)

)
.

Proof. Existence. To show the global existence of solution we will use both
the Faedo-Galerkin’s and Compactness’ methods. We consider (wj)j∈N an or-
thonormal basis of H10 (Ω) ∩ H

2(Ω), and denote by Vm = [w1, w2, w3, · · · , wm]
the subspace of H10 (Ω) ∩H

2(Ω) spanned by the m first vectors of (wj)j∈N. In
these conditions, the approximated system associated to system (1.1) (1.2) is
given by

(u′′m(t), v) + µ(t)((um(t), v)) +
n∑
i=1

(
∂θm

∂xi
(t), v

)
+ γ (|um(t)|

ρum(t), v) = 0, (2.6)

(θ′m(t), w) + ((θm(t), w)) +

n∑
i=1

(
∂u′m
∂xi
(t), w

)
= 0, (2.7)

where v and w belong to Vm.

Let um(0) = u0m, u
′
m(0) = u1m, and θm(0) = θ0m be. Hence, u0m, u1m,

and θ0m belong to Vm, and satisfy

u0m −→ u0 strongly in H10 (Ω) ∩H
2(Ω), (2.8)

θ0m −→ θ0 strongly in H10 (Ω) ∩H
2(Ω), (2.9)

u1m −→ u1 strongly in H10 (Ω). (2.10)

Under these conditions, the system (2.6) (2.7) has a local solution {um(t), θm(t)}
over the interval [0, tm[. This interval will be extended to any interval [0,∞[
thanks to the first estimate below.
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Estimate I. Substituting v by 2u′m(t) and w by 2θm(t) in (2.6) and (2.7)

respectively, using Green’s formula in the term
∑n
i=1

(
∂u′m
∂xi
(t), θm(t)

)
and inte-

grating over [0,t[, 0 ≤ t ≤ tm, we get

E1(t) + 2

∫ t
0

‖θm(s)‖
2ds =

∫ t
0

µ′(s)‖um(s)‖
2ds+ |u1m|

2 + |θ0m|
2

+µ(0)‖u0m‖
2 +

2γ

ρ+ 2

∫
Ω

|u0m|
ρ+2dx,

where

E1(t) = |u
′
m(t)|

2 + |θm(t)|
2 + µ(t)‖um(t)‖

2 +
2γ

ρ+ 2

∫
Ω

|um(t)|
ρ+2dx.

From (2.8)-(2.10) and (2.1) there is a positive constant k, independent of m
such that

E1(t) + 2

∫ t
0

‖θm(s)‖
2ds ≤ k for all t ≥ 0. (2.11)

Hence, we can extent the approximate solutions {um(t), θm(t)} on the whole
interval [0,∞[ independent of m and t.

Estimate II. Differentiating the equations (2.6) and (2.7) with respect to t,
replacing v by 2u′′m(t) and w by 2θ

′
m(t), we have according to (2.1) that

d

dt

{
|u′′m(t)|

2 + µ(t)‖u′m(t)‖
2 + |θ

′

m(t)|
2
}
+ 2‖θ

′

m(t)‖
2 (2.12)

≤ −2γ(ρ+ 1)

∫
Ω

|um(t)|
ρu′m(t)u

′′
m(t)dx − 2µ

′(t)((um(t), u
′′
m(t))).

Now, let us make an analysis about the term −2µ′(t)((um(t), u′′m(t))). In the
equation (2.6) replacing v by 2u′′m(t) we can write

−2µ(t)((um(t), u
′′
m(t))) = 2|u′′m(t)|

2 + 2

n∑
i=1

∫
Ω

∂θm

∂xi
(t)u′′m(t)dx

+2γ

∫
Ω

|um(t)|
ρum(t)u

′′
m(t)dx .

Multiplying both sides by µ
′(t)
µ(t) and using (2.1) we obtain

−2µ′(t)((um(t), u
′′
m(t))) ≤ 2

µ′(t)

µ(t)

n∑
i=1

∫
Ω

∂θm

∂xi
(t)u′′m(t)dx (2.13)

+2γ
µ′(t)

µ(t)

∫
Ω

|um(t)|
ρum(t)u

′′
m(t)dx.
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Substituting (2.13) in (2.12) it follows

d

dt
E2(t) + 2‖θ

′

m(t)‖
2 ≤ −2γ(ρ+ 1)

∫
Ω

|um(t)|
ρu′m(t)u

′′
m(t)dx

+
2µ′(t)

µ(t)

n∑
i=1

∫
Ω

∂θm

∂xi
(t)u′′m(t)dx

+
2γµ′(t)

µ(t)

∫
Ω

|um(t)|
ρum(t)u

′′
m(t)dx,

where
E2(t) = |u

′′
m(t)|

2 + µ(t)‖u′m(t)‖
2 + |θ

′

m(t)|
2.

Hence, we can write

d

dt
E2(t) + 2‖θ

′

m(t)‖
2 ≤ 2γ(ρ+ 1)

∫
Ω

|um(t)|
ρ|u′m(t)||u

′′
m(t)|dx

+
2|µ′(t)|

µ(t)

n∑
i=1

∫
Ω

∣∣∣∣∂θm∂xi (t)
∣∣∣∣ |u′′m(t)|dx (2.14)

+
2γ|µ′(t)|

µ(t)

∫
Ω

|um(t)|
ρ+1|u′′m(t)|dx.

Now, we are going to make an analysis on the second member of (2.14) in order
to apply the Gronwall’s inequality. By using the Hölder’s generalized inequality
for the case 1q +

1
n +

1
2 = 1 we get from hypothesis (2.2) the following continuous

injections:

• If n = 1, 2 then H10 (Ω) ↪→ Lq(Ω) for all q > 0.

• If n ≥ 3 then ρ ≤ 2
n−2 . Thus, H

1
0 (Ω) ↪→ Lq(Ω) where q = 2n

n−2 . Conse-

quently, as q ≥ ρ + 2 then H10 (Ω) ↪→ Lρ+2(Ω), and since nρ ≤ q then it
also follows that H10 (Ω) ↪→ Lnρ(Ω).

Using the two items above and the estimate I in the first term of right-hand
side of (2.14) yields∫

Ω

|um(t)|
ρ|u′m(t)||u

′′
m(t)|dx

≤

[∫
Ω

|um(t)|
ρndx

]1/n [∫
Ω

|u′m(t)|
qdx

]1/q [∫
Ω

|u′′m(t)|
2dx

]1/2
= ‖um(t)‖

ρ
Lρn(Ω)‖u

′
m(t)‖Lq(Ω)|u

′′
m(t)|L2(Ω) (2.15)

≤ c0‖um(t)‖
ρ

H10 (Ω)
‖u′m(t)‖H10 (Ω)|u

′′
m(t)|

≤ c1‖u
′
m(t)‖|u

′′
m(t)|.

Substituting (2.15) and applying Cauchy-Schwarz’s inequality in the last two
integrals in the right-hand side of (2.14) we have

d

dt
E2(t) + 2‖θ

′

m(t)‖
2 ≤ 2c1γ(ρ+ 1)‖u

′
m(t)‖|u

′′
m(t)|
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+
2
√
n

µ(t)
|µ′(t)|‖θm(t)‖|u

′′
m(t)|

+
2γ

µ(t)
|µ′(t)|‖um(t)‖

ρ+1|u′′m(t)| .

Hence, (2.1), and usual inequalities yields

d

dt
E2(t) + 2‖θ

′

m(t)‖
2

≤
c1γ(ρ+ 1)

µ0
µ(t)‖u′m(t)‖

2 +
c1γ(ρ+ 1)

µ0
µ(t)|u′′m(t)|

2 +

√
n

µ0
|µ′(t)|‖θm(t)‖

2

+

√
n

µ0
|µ′(t)||u′′m(t)|

2 +
γ

µ0
|µ′(t)|‖um(t)‖

2(ρ+1) +
γ

µ0
|µ′(t)||u′′m(t)|

2.

Let ν(t) be the function given by

ν(t) =
1

µ0

{
c1γ(ρ+ 1)µ(t) + (

√
n+ γ)|µ′(t)|

}
,

then it implies

d

dt
E2(t) + 2‖θ

′

m(t)‖
2 ≤ ν(t)

{
‖u′m(t)‖

2 + |u′′m(t)|
2
}

+

√
n

µ0
|µ′(t)|‖θm(t)‖

2 +
γ

µ0
|µ′(t)|‖um(t)‖

2(ρ+1).

From (2.11) there exists a constant c2 independent of m and t such that

d

dt
E2(t) + 2‖θ

′

m(t)‖
2 ≤ ν(t)

{
‖u′m(t)‖

2 + |u′′m(t)|
2
}

+

√
n

µ0
|µ′(t)|‖θm(t)‖

2 +
c2γ

µ0
|µ′(t)|.

Now, integrating over the interval [0, t[, using again (2.1), (2.11), and observing
that u′′m(0) and θ

′
m(0) are bounded in L

2(Ω) we conclude that there exists a
constant c independent of m and t such that

E2(t) + 2

∫ t
0

‖θ
′

m(s)‖
2ds ≤ c+

∫ t
0

ν(s)
{
‖u′m(s)‖

2 + |u′′m(s)|
2
}
ds.

From (2.1) it follows that ν belongs to L1(0,∞). Thus, applying the Gronwall’s
inequality we obtain

E2(t) + 2

∫ t
0

‖θ
′

m(s)‖
2ds ≤ k for all t ≥ 0. (2.16)
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Limit of the approximated solutions. From (2.11) and (2.16) it is possible
to take the limit in the nonlinear system (2.6) (2.7). In fact, from (2.11) we
obtain

(um) is bounded in L∞
(
0,∞;H10 (Ω)

)
,

(u′m) is bounded in L∞
(
0,∞;L2(Ω)

)
.

Hence, we have in particular, that the sequences (um)m∈N and (u
′
m)m∈N are

bounded in L2
(
0, T ;H10(Ω)

)
and L2

(
0, T ;L2(Ω)

)
respectively. Thus, by com-

pact injection of H1(Ω×]0, T [) into L2(Ω×]0, T [) it follows by Lions-Aubin’s
theorem that there exists a subsequence of (um), which we denote as the origi-
nal sequence such that

um −→ u strong in L2
(
0, T ;L2(Ω)

)
,

whence, um −→ u in Ω×]0, T [ almost everywhere. Hence,

|um|ρum −→ |u|ρu in Ω×]0, T [ almost everywhere. (2.17)

From (2.11) we also have that

(um) is bounded in L∞
(
0, T ;Lρ+2(Ω)

)
. (2.18)

From (2.17), (2.18) and Lions’ lemma (cf. Lions [4], lemma 1.3) we obtain

|um|
ρum −→ |u|

ρu weak star in L∞(0, T ;Lp
′

(Ω)), (2.19)

where p = ρ+ 2. Since T any positive real number then the convergence (2.19)
is also held for all t ∈ [0,∞[.
We still can obtain from (2.11) and (2.16) the following convergences

um −→ u weak star in L∞(0,∞;H10 (Ω)),

u′m −→ u′ weak star in L∞(0,∞;H10 (Ω)),

u′′m −→ u′′ weak star in L∞(0,∞;L2(Ω)),

θm −→ θ weak in L2(0,∞;H10 (Ω)),

θ′m −→ θ′ weak in L2(0,∞;H10 (Ω)).

(2.20)

By using (2.19) and (2.20), we can take the limit in the system (2.6) (2.7),
and the statement (2.4) and (2.5) are given by these convergences.
The regularity (2.3) is guaranteed by results on elliptic regularity (see, for

instance, Medeiros & Milla Miranda [7] or Nirenberg [8]) in view of

∆u =
1

µ

{
u′′ +

n∑
i=1

∂θ

∂xi
+ γ|u|ρu

}
belongs to L2(0,∞;L2(Ω))

and

∆θ = θ +
n∑
i=1

∂u′

∂xi
belongs to L2(0,∞;L2(Ω)).
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From the two previous results we can conclude that equations (1.1) and (1.2)
are given in the sense of L∞(0,∞;L2(Ω)) As a consequence of (2.3)-(2.5), the
functions u, u′ and θ are continuous. (see Lions & Magenes [5] Vol. I, Cap. 1).
Therefore, the initial conditions (1.3) are well defined. ♦

Uniqueness. If {u, θ} and {û, θ̂} are solutions of (1.1)-(1.4), then for all ϕ
and ξ belong to L2

(
0,∞;L2(Ω)

)
the functions v = u− û and w = θ− θ̂ satisfy

(v′′(t), ϕ) + µ(t)((v(t), ϕ)) +

n∑
i=1

(
∂w

∂xi
(t), ϕ

)

+γ (|u(t)|ρu(t)− |û(t)|ρû(t), ϕ) = 0,

(w′(t), ξ) + ((w(t), ξ)) +

n∑
i=1

(
∂v′

∂xi
(t), ξ

)
= 0,

v(0) = 0, v′(0) = 0 and w(0) = 0 .

When we replace ϕ for 2vt and ξ for 2w we obtain

d

dt

{
|v′(t)|2 + µ(t)‖v(t)‖2 + |w(t)|2

}
+ 2‖w(t)‖2

+2γ

∫
Ω

(|u(t)|ρu(t)− |û(t)|ρû(t)) v′(t)dx = 2µ′(t)‖v(t)‖2.

Using the hypothesis (2.1) we can write

d

dt

{
|v′(t)|2 + µ(t)‖v(t)‖2 + |w(t)|2

}
+ 2‖w(t)‖2 (2.21)

≤ 2γ

∫
Ω

||u(t)|ρu(t)− |û(t)|ρû(t)| |v′(t)|dx .

Applying the mean value theorem we get∫
Ω

||u(t)|ρu(t)− |û(t)|ρû(t)| |v′(t)|dx

≤ (ρ+ 1)

∫
Ω

sup
0≤t≤T

{|u(t)|ρ, |û(t)|ρ} |v(t)||v′(t)|dx.

By using Hölder’s generalized inequality for the case 1q +
1
n +

1
2 = 1, there exists

a constant c > 0 such that∫
Ω

||u(t)|ρu(t)− |û(t)|ρû(t)| |v′(t)|dx

≤ c
{
‖|u|ρ‖Ln(Ω) + ‖|û|

ρ‖Ln(Ω)
}
‖v(t)‖Lq(Ω)‖v

′(t)‖L2(Ω).

As ‖ |z|ρ ‖Ln(Ω) = ‖z‖
ρ
Lnρ(Ω) and nρ ≤ q, then using the same argument of the

estimate II we obtain ‖ |z|ρ ‖Ln(Ω) ≤ c‖z‖
ρ

H10(Ω)
for all z ∈ H10 (Ω).
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On the other hand, the estimate (2.11) implies that ‖z(t)‖ρ
H10 (Ω)

is bounded

for all t ≥ 0. Therefore, a positive real constant c exists such that

∫
Ω

||u(t)|ρu(t)− |û(t)|ρû(t)| |v′(t)|dx ≤ c‖v‖H10 (Ω)|v
′|L2(Ω). (2.22)

Substituting (2.22) in (2.21) and integrating from 0 to t we get

|v′(t)|2 + µ(t)‖v(t)‖2 + |w(t)|2 + 2

∫ t
0

‖w(s)‖2ds

≤ γ

∫ t
0

{
|v′(s)|2 + c2‖v(s)‖2

}
ds.

As µ(t)
µo
≥ 1 then choosing k = max

{
γ, c2

µ0

}
yields

|v′(t)|2 + µ(t)‖v(t)‖2 + |w(t)|2 + 2

∫ t
0

‖w(s)‖2ds

≤ k

∫ t
0

{
|v′(s)|2 + µ(s)‖v(s)‖2

}
ds.

Finally, by Gronwall’s inequality it follows that v(t) = w(t) = 0 on [0,∞[.
Hence, Theorem 2.1 is established ♦

Now, we shall present a result of the global existence and uniqueness of weak
solution for the system (1.1)-(1.4).

Theorem 2.2 (Weak solution) Let the assumptions of Theorem 2.1 about µ,
ρ, and γ be satisfied. If p = ρ+ 2 and

u0 ∈ H
1
0 (Ω) ∩ L

p(Ω), u1 ∈ L
2(Ω) and θ0 ∈ H10 (Ω),

then the system (1.1)-(1.4) has a unique solution {u, θ} such that

u ∈ L∞
(
0,∞;H10 (Ω) ∩ L

p(Ω))
)
, u′ ∈ L∞

(
0,∞;L2(Ω)

)
, (2.23)

u′′ ∈ L2
(
0,∞;H−1(Ω) + Lp′(Ω)

)
, (2.24)

θ ∈ L∞
(
0,∞;L2(Ω)

)
∩ L2

(
0,∞;H10 (Ω)

)
, (2.25)

θ′ ∈ L2
(
0,∞;H−1(Ω)

)
, (2.26)

and the equation (1.1) is given in the sense of L2
(
0,∞;H−1(Ω) + Lp′(Ω)

)
and

(1.2) is given in the sense of L2
(
0,∞;H−1(Ω)

)
.
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Proof. Existence. The demonstration of existence of a weak solution is made
by the same method utilized to get the strong solution. However, we now
consider the basis (wj)j∈N in the space H

1
0 (Ω)∩L

p(Ω), and the initial conditions
sastisfying

u0m −→ u0 strongly in H10 (Ω) ∩ L
p(Ω), (2.27)

θ0m −→ θ0 strongly in H10 (Ω), (2.28)

u1m −→ u1 strongly in L2(Ω). (2.29)

Under these conditions, we have that the system (2.6) (2.7) has a local solution
{um(t), θm(t)} on the interval [0, tm[, and this solution will be extended over the
whole interval [0,∞[ independent of m and t thanks to estimate (2.30) above.
Using the same procedure used to get estimate I of Theorem 2.1, we get

|u′m(t)|
2 + |θm(t)|

2 + µ(t)‖um(t)‖
2 (2.30)

+
2γ

p

∫
Ω

|um(t)|
pdx+ 2

∫ t
0

‖θm(s)‖
2ds ≤ k for all t ≥ 0.

Hence, there exist subsequences of (um)m∈N and (θm)m∈N, which we denote as
the original sequences, and functions u : Ω×]0,∞[→ R and θ : Ω×]0,∞[→ R
such that

um −→ u weak star in L∞(0,∞;H10 (Ω) ∩ L
p(Ω)), (2.31)

u′m −→ u′ weak star in L∞(0,∞;L2(Ω)), (2.32)

θm −→ θ weakly in L2(0,∞;H10 (Ω)). (2.33)

From (2.31)-(2.33) we can take the limit in (2.6) (2.7) yielding

−

∫ ∞
0

(u′(t), v)φ′(t)dt+

∫ ∞
0

µ(t)((u(t), v))φ(t) (2.34)

+

n∑
i=1

∫ ∞
0

(
∂θ

∂xi
(t), v

)
φ(t)dt + γ

∫ ∞
0

(|u(t)|ρu(t), v)φ(t)dt = 0,

−

∫ ∞
0

(θ(t), w)φ′(t)dt+

∫ ∞
0

((θ(t), w))φ(t)dt (2.35)

+

n∑
i=1

∫ ∞
0

(
∂u′

∂xi
(t), w

)
φ(t)dt = 0,

where v and w belong to H10 (Ω) and φ belongs to D(0,∞).
Hence, following the same procedure of Clark at al [1] (Theorem 4.1) we can

conclude

u′′ − µ∆u +
n∑
i=1

∂θ

∂xi
+ γ|u|ρu = 0 in L2

(
0,∞;H−1(Ω) + Lp

′

(Ω)
)
,

θ′ −∆θ +
n∑
i=1

∂u′

∂xi
= 0 in L2

(
0,∞;H−1(Ω)

)
. (2.36)
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The statements (2.23)-(2.26) are consequences of (2.36) and of convergences
(2.31)-(2.33).

The functions u, u′ and θ are continuous, thanks to (2.23)-(2.26). Thus, the
initial conditions (1.3) are verified.

Uniqueness. From (2.23)2 and (2.24) the duality 〈u′′, u′〉 does not make sense.
Thus, it is necessary to utilize the regularization’s method of Ladyzhenskaya-
Visik [3], see also Lions [4] (Theorem 1.2, pp. 14), and we proceed such as in
the demonstration of uniqueness of Theorem 2.1 Therefore, Theorem 2.2 has
been proven ♦

3 Asymptotic behavior

The aim of this section is to prove that the total energy associated to solutions
of (1.1)-(1.4) has exponential decay when the time t goes to +∞. To reach our
goal we will utilize the method of Komornik-Zuazua [2].

The total energy of the system (1.1)-(1.4) is given by

E(t) = |u′(t)|2 + µ(t)‖u(t)‖2 + |θ(t)|2 +
2γ

ρ+ 2

∫
Ω

|u(t)|ρ+2dx.

To obtain the asymptotic behavior of the energy E(t) it is necessary to consider
the following hypothesis about the constant γ,

γ ≤
µρ+10
2ckρ

, (3.1)

where µ0 and k are fixed in (2.1) and (2.11) respectively, and c is the constant
of continuous injection of H10 (Ω) into L

ρ+2(Ω). From estimate I and hypothesis
(2.1) it is easy to see that the energy E(t) is not increasing in view of

d

dt
E(t) ≤ −‖θ(t)‖2 for all t ≥ 0. (3.2)

The asymptotic behavior of the energy of our system is given by

Theorem 3.1 If the constant γ satisfies the hypothesis (3.1) then the energy
E(t) associated to weak solution of the system (1.1)-(1.4), guaranteed by Theo-
rem 2.2, satisfies

E(t) ≤ E(0) exp(−ωt) for all t ≥ 0, (3.3)

where ω is a real-positive number defined in (3.23).



12 On a nonlinear coupled system with internal damping EJDE–2000/64

Proof. First we get (3.3) for the energy E(t) given by the strong solutions
of (1.1)-(1.4) guaranteed by Theorem 2.1. Thus, the stability result for the
energy associated to the weak solution is established without difficulty by density
arguments. Let us consider the auxiliary real function

ψ(t) = 2 (u′(t), (x · ∇)u(t)) + (n− 1) (u′(t), u(t)) for all t ≥ 0, (3.4)

where x ∈ Rn is nonzero, “·” denotes the usual scalar product in Rn, and n ∈ N.
Differentiating ψ(t) with respect to t we obtain

ψ′(t) = 2 (u′′(t), (x · ∇) u(t)) + 2 (u′(t), (x · ∇)u′(t))

+(n− 1) (u′′(t), u(t)) + (n− 1) |u′(t)|
2
.

Replacing u′′(t) by µ(t)∆u(t)−
∑n
i=1

∂θ
∂xi
(t)− γ|u(t)|ρu(t) in the identity above

it implies

ψ′(t) = 2µ(t)

∫
Ω

∆u(t) (x · ∇)u(t)dx− 2
n∑
i=1

∫
Ω

∂θ

∂xi
(t) (x · ∇)u(t)dx

−2γ

∫
Ω

|u(t)|ρu(t) (x · ∇)u(t)dx + 2

∫
Ω

u′(t) (x · ∇) u′(t)dx

+(n− 1)|u′(t)|2 + (n− 1)µ(t)

∫
Ω

∆u(t)u(t)dx (3.5)

−(n− 1)
n∑
i=1

∫
Ω

∂θ

∂xi
(t)u(t)dx − γ(n− 1)

∫
Ω

|u(t)|ρ+2dx.

Our next objective is to limit each term of the right-hand side of (3.5). In
the following steps we will use the Green’s formula and the boundary conditions
(1.4) several times.
Step 1: First term of (3.5). Since u(t) ∈ H10 (Ω) ∩ H

2(Ω), the Green’s
formula we have

2

∫
Ω

∆u (x · ∇)udx = 2

n∑
i,j=1

∫
Ω

∂

∂xi

(
∂u

∂xi

)
xj

∂u

∂xj
dx

= −2
n∑
i,j=1

∫
Ω

∂u

∂xi

∂

∂xi

(
xj

∂u

∂xj

)
dx (3.6)

= −2
n∑
i=1

∫
Ω

(
∂u

∂xi

)2
dx− 2

n∑
i,j=1

∫
Ω

∂u

∂xi
xj

∂2u

∂xi∂xj
dx.

However,

−2
n∑
i,j=1

∫
Ω

∂u

∂xi
xj

∂2u

∂xi∂xj
dx

= 2

n∑
i,j=1

∫
Ω

∂u

∂xi

∂

∂xj

(
xj
∂u

∂xi

)
dx
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= 2

n∑
i,j=1

∫
Ω

∂u

∂xi

∂xj

∂xj

∂u

∂xi
dx+ 2

n∑
i,j=1

∫
Ω

∂u

∂xi
xj

∂2u

∂xj∂xi
dx.

Thus,

−2
n∑
i,j=1

∫
Ω

∂u

∂xi
xj

∂2u

∂xi∂xj
dx =

n∑
i,j=1

∫
Ω

∂u

∂xi

∂xj

∂xj

∂u

∂xi
dx (3.7)

= n

n∑
i=1

∫
Ω

(
∂u

∂xi

)2
dx.

Substituting (3.7) in (3.6) yields

2µ(t)

∫
Ω

∆u(t) (x · ∇) u(t)dx = −(2− n)µ(t)‖u(t)‖2. (3.8)

Step 2 Second term of (3.5).

−2
n∑
i=1

∫
Ω

∂θ

∂xi
(t) (x · ∇)u(t)dx ≤

nr2Ω
µo
‖θ(t)‖2 +

n∑
i=1

µo

4n
‖u(t)‖2 (3.9)

=
nr2Ω
µo
‖θ(t)‖2 +

µ(t)

4
‖u(t)‖2 ,

where rΩ = ‖x‖L∞(Ω).
Step 3 Third and eighth terms of (3.5).

−2γ

∫
Ω

|u(t)|ρu(t) (x · ∇)u(t)dx

= −2γ
n∑
i=1

∫
Ω

|u(t)|ρu(t)xi
∂u

∂xi
(t)dx

= 2γ

n∑
i=1

∫
Ω

∂

∂xi
(|u(t)|ρu(t)xi)u(t)dx

= 2γρ
n∑
i=1

∫
Ω

|u(t)|ρ+1xi
∂

∂xi
|u(t)|dx

+2γ

n∑
i=1

∫
Ω

|u(t)|ρu(t)xi
∂u

∂xi
(t)dx+ 2γ

n∑
i=1

∫
Ω

|u(t)|ρ+2dx.

Observe that

2γρ

n∑
i=1

∫
Ω

|u(t)|ρ+1xi
∂

∂xi
|u(t)|dx =

2γρ

ρ+ 2

n∑
i=1

∫
Ω

∂

∂xi

(
|u(t)|ρ+2

)
xi dx

= −
2nγρ

ρ+ 2

∫
Ω

|u(t)|ρ+2dx .
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Thus,

−2γ

∫
Ω

|u(t)|ρu(t) (x · ∇) u(t)dx = −
nγρ

ρ+ 2

∫
Ω

|u(t)|ρ+2dx+ nγ

∫
Ω

|u(t)|ρ+2dx.

Hence, adding the third and eighth terms of (3.5) yields

−2γ

∫
Ω

|u(t)|ρu(t) (x · ∇)u(t)dx− γ(n− 1)

∫
Ω

|u(t)|ρ+2dx (3.10)

= −
nγρ

ρ+ 2

∫
Ω

|u(t)|ρ+2dx+ γ

∫
Ω

|u(t)|ρ+2dx.

As H10 (Ω) is continuously embedded into L
ρ+2(Ω) then there exists a real posi-

tive constant c such that

γ

∫
Ω

|u(t)|ρ+2dx ≤ γc‖u(t)‖ρ+2 = γc‖u(t)‖ρ‖u(t)‖2.

From (2.11) we have ‖u(t)‖ρ ≤ kρ

µρ0
for all t ≥ 0. Therefore,

γ

∫
Ω

|u(t)|ρ+2dx ≤
γckρ

µρ0
‖u(t)‖2.

As µ(t)
µo
≥ 1 then

γ

∫
Ω

|u(t)|ρ+2dx ≤
γckρ

µρ+10
µ(t)‖u(t)‖2.

Substituting this expression in (3.10), we obtain

−2γ

∫
Ω

|u(t)|ρu(t) (x · ∇) u(t)dx− γ(n− 1)

∫
Ω

|u(t)|ρ+2dx (3.11)

≤ −
nγρ

ρ+ 2

∫
Ω

|u(t)|ρ+2dx+
γckρ

µρ+10
µ(t)‖u(t)‖2.

Step 4: Fourth term of (3.5).

2

∫
Ω

u′(t) (x · ∇)u′(t)dx =
n∑
i=1

∫
Ω

xi
∂

∂xi
[u′(t)]2dx = −

n∑
i=1

∫
Ω

[u′(t)]2dx.

Hence,

2

∫
Ω

u′(t) (x · ∇)u′(t)dx = −n|u′(t)|2 .

Step 5: Sixth term of (3.5).

(n− 1)µ(t)

∫
Ω

∆u(t)u(t)dx = (1 − n)µ(t)‖u(t)‖2. (3.12)
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Step 6: Seventh term of (3.5).

−(n− 1)
n∑
i=1

∫
Ω

∂θ

∂xi
(t)u(t)dx ≤

λ1n(n− 1)2

µo
‖θ(t)‖2 +

n∑
i=1

µo

4nλ1
|u(t)|2

≤
λ1n(n− 1)2

µo
‖θ(t)‖2 +

µ(t)

4
‖u(t)‖2,(3.13)

where λ1 is defined by |v|2 ≤ λ1‖v‖2 for all v ∈ H10 (Ω). Substituting (3.8)-(3.13)
in (3.5) yields

ψ′(t) ≤ −|u′(t)|2 −

(
1

2
−
γckρ

µρ+10

)
µ(t)‖u(t)‖2 (3.14)

+

(
nR2Ω + λ1n(n− 1)

2

µo

)
‖θ(t)‖2 −

nγρ

ρ+ 2

∫
Ω

|u(t)|ρ+2dx.

The constant 12 −
γckρ

µρ+10

is positive thanks to the hypothesis (3.1). Now, multi-

plying (3.14) for a suitable ε and taking into account that −‖θ‖2 ≤ − 1
λ1
|θ|2, for

all θ ∈ H10 (Ω) then we have from (3.2) and (3.14) that

E′(t) + εψ′(t) ≤ −ε|u′(t)|2 − ε

(
1

2
−
γckρ

µρ+10

)
µ(t)‖u(t)‖2

−
1

λ1

[
1− ε

(
nr2Ω + λ1n(n− 1)

2

µo

)]
|θ(t)|2 (3.15)

−ε
nγρ

ρ+ 2

∫
Ω

|u(t)|ρ+2dx.

Let ε and τ be real positive numbers such that

ε = min

{
µ0

nr2Ω + λ1n(n− 1)
2
,
1

τ0

}
, (3.16)

τ = min

{
µρ+10 − 2γckρ

2µρ+10
,
µ0 − ε

[
nr2Ω + λ1n(n− 1)

2
]

µoλ1ε
,
nρ

2

}
, (3.17)

where τ0 is defined in (3.19). Taking into account (3.16) and (3.17) in (3.15) we
get

E′ε(t) ≤ −ετE(t) for all t ≥ 0, (3.18)

where Eε(t) = E(t) + εψ(t).
On the other hand,

|εψ(t)| ≤ ε

{
1

µo
|u′(t)|2 + r2Ωµo‖u(t)‖

2 +
n− 1

2µo
|u′(t)|2 +

(n− 1)µo
2

|u(t)|2
}

≤ ε

{
n+ 1

2µo
|u′(t)|2 +

[
2r2Ω + λ1(n− 1)

2

]
µ(t)‖u(t)‖2

}
.
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Choosing

τ0 = max

{
2µo
n+ 1

,
2

2r2Ω + λ1(n− 1)

}
, (3.19)

it follows

|εψ(t)| ≤ ετ0E(t) for all t ≥ 0. (3.20)

Note that

|Eε(t)− E(t)| ≤ ε|ψ(t)| for all t ≥ 0. (3.21)

From (3.20) and (3.21) we have

(1− ετ0)E(t) ≤ Eε(t) ≤ (1 + ετ0)E(t) for all t ≥ 0. (3.22)

From (3.18) and (3.22) we obtain

E′(t) ≤ −ωE(t) or all t ≥ 0 , (3.23)

where ω = ετ/(1 − ετ0). From (3.16) it follows that 1 − ετ0 is a real positive
number. Thus, there exists a real positive number ω satisfying (3.3). Therefore,
the proof of Theorem 3.1 is complete ♦

Acknowledgement We want to thank the anonymous referee of this journal
and Professor Julio G. Dix for pointing out some corrections on the first version
of this paper.

References

[1] Clark, H. R., San Gil Jutuca, L. P. & Milla Miranda, M., On a mixed
problem for a linear coupled system with variable coefficients, Eletronic
Journal of Differential Equations, Vol. 1(1998), No. 04, pp. 1-20.

[2] Komornik, V., Zuazua, E., A direct method for boundary stabilization of
the wave equation, J. Math. Pure et Appl., 69(1990), pp. 33-54.

[3] Ladyzhenskaia, O. A., Visik, M. I., Boundary value problems for partial dif-
ferential equations and certain classes of operator equations, A.M.S. Trans-
lations Series 2 10, (1958), pp. 223-281.
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