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Introduction
Cancer is the second leading cause of death in the United 
States. In 2019, there is an estimated 1 762 450 new cancer 
cases diagnosed and 606 880 cancer deaths in the United 
States. Even with advanced technology and medicine, 1 in 3 
cancer cases are terminal.1 However, cancer mortality can be 
reduced if the disease is detected and treated early; in fact, can-
cer can be reduced or controlled by implementing evidence-
based strategies for cancer prevention, early detection of cancer, 
and proper treatment of cancer patients.2 Thus, it is very 
important to identify genetic and epigenetic factors associated 
with cancer so that medical professionals will be able to more 
effectively identify and treat cancer cases. DNA methylation is 
an important epigenetic event that is associated with cancer. In 
this article, we will study and compare co-methylation patterns 
in cancerous and normal breast samples in an attempt to under-
stand whether co-methylation of certain degrees and/or in cer-
tain genomic regions is associated with breast cancer. Next, we 
will review the definition and roles of DNA methylation.

In a mammalian genome, DNA methylation is the covalent 
bonding of a methyl group (CH3) to a cytosine base in a dinu-
cleotide 5′–CG–3′, or a CG site (also known as a CpG site, 
which is a cytosine base linked to a guanine base by a phos-
phate bond in the DNA sequence).3 DNA methylation of 
some CG sites may be related to gene expression loss, especially 
for some key tumor suppressor genes (TSGs). It usually 

restricts transcription factors from gaining access to the gene 
promoter and therefore turns off gene transcription. This func-
tion of DNA methylation often associates with chromatin 
structure changes. The chromatin becomes more condensed 
instead of remaining open and functional as is required for 
gene transcription.3 DNA methylation has also been shown to 
potentially affect gene control via other means. It may stimu-
late transcription elongation, impact splicing, and alter the 
activities of enhancers, which are regions of DNA that can pro-
mote transcription.4,5 In promoter regions, the methylation of 
CpG islands (regions rich in CG sites) can also be associated 
with long-term silencing of gene expression.6,7 Although both 
methylation and mutation can silence TSGs, methylation is 
potentially reversible.3,8 Thus, ongoing biomedical research is 
attempting to use demethylating agents to treat cancer cells, 
because these agents can activate TSGs and suppress tumor 
proliferation.9

Because DNA methylation plays a key role in regulating the 
expression of some genes, it is necessary to study methylation 
patterns thoroughly to fully understand cancerous DNA. 
Co-methylation, or spatial correlation, is an important type of 
methylation patterns.10-16 Generally speaking, there are 2 main 
types of co-methylation12,16: between-sample (BS) co-methyl-
ation and within-sample (WS) co-methylation. The BS co-
methylation describes the methylation similarity or correlation 
of CG sites or genes across a set of samples and in different 
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genomic locations (eg, genes can be on different chromo-
somes).17-21 For this type of co-methylation, the WGCNA R 
package22 is often used to find co-methylated CG sites, genes, 
or modules.23-25 WS co-methylation describes the degree of 
methylation over distance, ie, similar methylation patterns in 
nearby CG sites located in the same chromosome of 1 single 
sample.11,14,26-28 In addition to the above description, in the 
Introduction of Sun and Sun,16 there is a clear explanation of 
the difference between WS and BS co-methylation patterns.

As mentioned above, consecutive CG sites in a chromosome 
region tend to have similar methylation, un-methylation, or 
partial methylation patterns. This WS co-methylation pattern 
decreases as the genomic distance increases.11-13,29,30 The rela-
tionship between co-methylation decay and genomic distance 
can vary in different cell types and tissues. This relationship is 
also disputable due to the reports of different levels of co-
methylation decay.12,15 Although co-methylation has been 
studied in different cell types and tissues, to the best of our 
knowledge, it has not been well studied yet in normal breast 
tissues and breast cancer cell lines using the whole genome 
bisulfite sequencing (WGBS) data. In addition, previous stud-
ies investigate WS co-methylation patterns by considering CG 
sites with different methylation levels/states all together. 
However, the co-methylation patterns of unmethylated, par-
tially methylated, and highly/fully methylated sites can have 
very different co-methylation patterns. Conducting WS co-
methylation studies without separating CG sites with different 
methylation levels will lead to inaccurate results. Therefore, 
CG sites with different methylation levels/states should not be 
considered together when studying WS co-methylation. In this 
article, we will conduct WS co-methylation for breast tissues 
using WGBS data by considering CG sites with different 
methylation levels/states separately. Note that there is a publi-
cation on co-methylation for breast cancer by Akulenko and 
Helms.17 However, their study is for BS co-methylation, not 
for WS co-methylation, and they use the Illumina 27K array 
data, not the WGBS data. An Illumina 27K data set can only 
have methylation signals for 0.1% of what WGBS data set can 
include.

We will focus on studying WS co-methylation patterns in 
breast tissues. Because there are not many WGBS data publicly 
available for normal breast tissues and breast cancer cell lines, 
we will conduct the analysis using 3 currently available sam-
ples: 1 normal breast sample and 2 breast cancer cell lines. In 
particular, we will conduct statistical analyses to address several 
questions. How different are the WS co-methylation patterns 
in cancerous and normal samples? Are the co-methylation pat-
terns of various methylation levels/states (eg, no/low, partial, or 
high/full methylation) different? How often does a methyla-
tion state (low, high, or partial methylation state) remain the 
same in cancerous and normal samples? Are the length distri-
butions of cancerous and normal co-methylation regions the 
same? If not, to what degree do they differ and what is the 

significance of these differences? To answer these questions, we 
will study the relationship of WS co-methylation patterns of 
consecutive CG sites across a chromosome and compare co-
methylation patterns in both cancerous and normal samples.

To the best of our knowledge, this research work is the first 
study that focuses on investigating breast tissue WS co-methyl-
ation patterns by considering different methylation states sepa-
rately using WGBS data. Analyses based on WGBS data can 
provide a more comprehensive understanding of WS co-meth-
ylation patterns. Studying cancerous and normal breast samples’ 
co-methylation patterns will also allow us to further understand 
how specific co-methylation patterns are associated with breast 
cancer. Answers to the above questions can add to the under-
standing of the causes or hallmarks of breast cancer. Furthermore, 
an increased understanding of co-methylation patterns in dif-
ferent samples may also help researchers recover lost informa-
tion in low-coverage methylation sequencing data31 and even 
lead to more efficient methylation sequencing.12 To simplify our 
writing for the rest of this article, when we use “co-methyla-
tion,” we mean “WS co-methylation.”

Method
Data and methylation state definition

We use publicly available DNA methylation sequencing data 
(GSE29127 and GSM3526804) generated for normal human 
mammary epithelial cells (HMECs) and 2 breast cancer cell 
lines, HCC195432 and MCF7.33 The raw sequencing reads of 
these samples are generated using the WGBS technique and 
are saved in the FASTQ format. BRAT-bw,34 a publicly avail-
able software package, is used to preprocess and align raw 
sequencing reads with the reference genome hg19. After pro-
cessing the raw sequencing data, each methylation data set 
includes information on chromosome number, base position, 
sequencing coverage, and methylation ratio (MC ratio) (see 
Table 1). Sequencing coverage refers to the number of times a 
nucleotide is read or sequenced. A relatively high sequencing 
coverage may indicate more accurate sequencing results; thus, 
we choose to use the base positions or CG sites with at least 
3× coverage for more accurate results.

The MC ratio for each base position in a chromosome 
ranges from 0 to 1, where 0 indicates no methylation and 1 
indicates full methylation. To remove the impact of sequencing 
error and to simplify the analysis, we define 4 methylation 
states: “A” for no methylation or low methylation levels in the 
range of [0, 0.25), “B” for low partial methylation levels in the 
range of [0.25, 0.5), “C” for high partial methylation levels in 
the range of [0.5, 0.75), and “D” for full methylation or high 
methylation levels in the range of [0.75, 1]. “NA” is used for 
missing data. We define methylation states for all CG sites and 
then add them as an additional column to our data. We also 
calculate the distances between consecutive CG sites and add 
them to our data.
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As for which chromosome or region to study, our explora-
tive analysis on a short chromosome has shown similar patterns 
and answers when comparing with the long chromosome anal-
ysis. In addition, because our focus is WS co-methylation for 
nearby CG sites, not BS co-methylation in a whole genome, 
using 1 chromosome is sufficient to address the questions of 
interest. Therefore, we only focus on chromosome 1, as it is the 
longest chromosome.

Two analysis methods

We first determine the methylation state of each CG site as A, 
B, C, or D based on its methylation level as mentioned before. 
The methylation states A, B, C, and D represent low (or no), 
low partial, high partial, and high (or full) methylation, respec-
tively, as explained above. We then study WS co-methylation 
patterns using 2 different analysis methods. First, we study how 
often or how frequently a methylation state (eg, A) remains the 
same (eg, AA) or changes to other methylation states (eg, AB, 
AC, or AD). Second, we investigate how long each region of a 
specific methylation state is (eg, AAAA . . .). We conduct anal-
yses under several different sets of conditions, including differ-
ent distance levels. Next, we use the chi-square test and the 
Wilcoxon rank sum test to determine whether the differences 
we observe between normal and cancerous DNA are statisti-
cally significant. The key novelty of our methods is that we 
study the WS co-methylation patterns by studying CG sites 
with different methylation states (A, B, C, and D) separately 
for breast tissues. The co-methylation patterns of CG sites that 
have different methylation levels can be different. When con-
sidering the CG sites that have different methylation levels 
together, the co-methylation analysis results will not be accu-
rate. Therefore, we conduct our analysis for each methylation 
level/state separately to obtain accurate co-methylation analy-
sis results for breast tissues.

Method 1: analyze the relationship between methylation state 
changes and distance.  We first look at consecutive pairs of CG 
sites to see whether there is a pattern in how often 1 

methylation state remains the same or changes to another 
methylation state. We divide our data based on the distance 
between consecutive CG sites to determine whether the 
observed patterns are only present among CG sites that are a 
short distance from each other or these patterns are also appar-
ent over a longer distance. We first study the CG sites in the 
distance intervals [0, 200), [200, 500), and [500, Infinite [or 
Inf ]). We then conduct further analysis using distance intervals 
incremented by 50: [0, 50), [50, 100), [100, 150), and so on, to 
[500, Inf ). The distance is measured by the number of bases 
between consecutive CG sites. For example, when using the 
distance interval [0, 50), we select CG sites that are 0 to 50-base 
away from the next consecutive CG site. Our results for these 
distance intervals are shown in the “Results” section.

Method 2: analyze the distribution of co-methylation region 
length.  We investigate the WS co-methylation patterns by 
studying the distribution of the co-methylation region length. 
We identify the co-methylation regions that have the same 
methylation state (eg, AAAAA or BBBBB). We then count 
the number of CG sites in each region and calculate the length 
of each region. Note that the co-methylation regions of differ-
ent methylation states/levels can have different co-methylation 
patterns (eg, different co-methylation region lengths). We will 
study different methylation states/levels separately. In addition, 
the co-methylation regions of different methylation states/lev-
els may have different numbers of CG sites, and most of these 
regions may consist of a small number of CG sites. We will 
conduct further analysis on numbers of CG sites in all co-
methylation regions.

Results
Results of method 1

Our method 1 analysis results are summarized in Tables 2 to 5 
and Figures 1 and 2. The first portion of our analysis is shown 
in Table 2 and Figures 1 and 2. Table 2 indicates how often 1 
methylation state changes to another when the distance levels 
between 2 consecutive CG sites are 0 ~ 200 bases, 200 ~ 500 

Table 1.  Sample section of chromosome 1 breast cancer data.

chr Position Sequence 
coverage

MC ratio Methylation 
state

Distance

chr1 534314 6 0.666667 C 12

chr1 534326 3 1 D 3

chr1 534329 4 1 D 14

chr1 534343 4 0.25 B 17

chr1 534360 4 0.75 D 45

chr1 534405 3 0.666667 C 31

chr1 534436 0 NA NA 108

Abbreviation: MC, methylation ratio.
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Table 2.  Frequency of each methylation state change between consecutive CG Sites.

Distance State (%) A B C D

Normal breast tissue (HMEC) [0, 200) A 74.023 6.737 6.401 12.839

B 19.504 15.226 18.13 47.14

C 11.33 10.798 18.947 58.925

D 3.726 4.656 9.664 81.953

[200, 500) A 25.517 13.172 17.084 44.226

B 17.459 13.454 18.274 50.813

C 14.065 11.868 17.02 57.047

D 8.4 7.476 12.754 71.37

[500, Inf) A 20.769 13.505 18.161 47.565

B 17.769 14.098 18.916 49.218

C 15.841 12.355 16.92 54.884

D 9.554 7.78 12.704 69.962

Cancerous breast tissue (HCC1954) [0, 200) A 78.109 8.521 5.177 8.192

B 29.762 21.303 18.234 30.701

C 13.009 13.128 20.433 53.43

D 2.802 2.941 7.187 87.07

[200, 500) A 61.845 12.098 8.824 17.233

B 32.744 15.121 15.946 36.189

C 18.333 11.779 16.348 53.54

D 6.382 5.335 9.774 78.509

[500, Inf) A 63.188 12.141 8.801 15.869

B 34.707 16.363 15.401 33.53

C 20 13.03 16.145 50.825

D 7.72 5.704 10.39 76.186

Cancerous breast tissue (MCF7) [0, 200) A 80.565 7.379 5.035 7.02

B 25.821 22.294 20.165 31.719

C 10.358 11.716 22.022 55.904

D 1.71 2.219 6.713 89.357

[200, 500) A 53.536 13.723 12.088 20.654

B 28.046 14.891 17.737 39.326

C 16.117 11.487 17.55 54.845

D 5.562 5.336 11.264 77.838

[500, Inf) A 57.04 13.038 11.614 18.308

B 31.504 15.667 17.877 34.953

C 18.535 12.939 18.586 49.941

D 7.735 6.562 13.143 72.56

Abbreviation: HMEC, human mammary epithelial cell.
Distance is the number of base pairs between 2 consecutive CG sites. Cells show the percentages of CG sites with a specific methylation state remaining the same or 
changing to a different state in the next consecutive CG site.
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bases, and larger than 500 bases respectively. For example, in 
Table 2, the cell in the A% row and the A column of the nor-
mal data [0, 200) is 74.023%, which means that the methyla-
tion state A remains as the state A 74.023% of the time, 
whereas the cell in the A% row and then B column of the nor-
mal data [0, 200) means that 6.737% times that the state A 

changes to state B. The percentages are out of the row total. We 
summarize the patterns observed for the 0 ~ 200 base interval 
in Table 2.

First, for methylation states A and D (ie, the A% and D% 
rows), in both the normal (HMEC) and cancerous (HCC1954 
and MCF7) data, the largest percentages occur in the AA and 

Table 3.  Methylation state changes in chromosome 1 for normal and cancerous data.

A B C D

Normal (HMEC) A count 233 808 24 568 24 753 52 697

A% 69.622 7.316 7.371 15.692

B count 24 443 19 061 23 208 60 942

B% 19.148 14.932 18.18 47.74

C count 24 709 22 917 38 791 121 969

C% 11.857 10.997 18.615 58.53

D count 52 596 60 721 121 570 973 855

D% 4.351 5.023 10.058 80.568

Cancerous (HCC1954) A count 328 514 39 165 24 707 40 949

A% 75.80% 9.00% 5.70% 9.50%

B count 39 096 26 029 22 900 40 656

B% 30.40% 20.20% 17.80% 31.60%

C count 24 581 22 795 34 766 93 966

C% 14.00% 12.90% 19.70% 53.40%

D count 40 813 40 416 93 585 1 068 796

D% 3.30% 3.30% 7.50% 85.90%

Cancerous (MCF7) A count 236 253 25 277 18 400 27 103

A% 76.947 8.233 5.993 8.827

B count 25 372 19 960 18 880 31 782

B% 26.431 20.793 19.668 33.108

C count 18 502 18 807 34 024 89 049

C% 11.537 11.726 21.214 55.523

D count 26 903 31 898 89 217 1 079 114

D% 2.192 2.599 7.27 87.938

Abbreviation: HMEC, human mammary epithelial cell.
The number in each cell represents the count or percentage of CG sites that display the specific methylation change.

Table 4.  0-Inf chromosome 1 chi-square test results.

Value A B C D

P-values ~0 ~0 ~0 ~0

chi-square 11 756.38 9951.727 1570.923 30 424.83

The input of this chi-square test is shown in Table 3 with no restriction on the distance between CG sites. A, B, C, and D columns represent the results of tests conducted 
for each of the 4 methylation states.
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DD cells, indicating that low or high methylation states tend to 
remain in the same state. However, these AA and DD percent-
ages are higher in breast cancer cell lines (eg, 74.023% of AA 
for the normal breast sample HMEC, but 78.109% for 
HCC1954 and 80.565% for MCF7). This shows that co-
methylation regions of A states and D states tend to be longer 
in cancerous data than in normal data.

Second, for the partial methylation state B (ie, the B% row), 
it is more likely to become a D state in the normal HMEC 
sample (47.14%) than in the cancerous samples (30.701% for 
HCC1954 and 31.719% for MCF7). For the partial methyla-
tion state C, it has a similar pattern for the CD cells of the 3 
samples. In fact, the CD% in the normal sample HMEC is 
higher than in 2 cancerous samples, 58.925% for the normal 
HMEC, 53.43% for the HCC1954, and 55.904% for the 
MCF7. For the B% row, the 4 transitions (BA, BB, BC, and 
BD) are more evenly distributed in 2 cancerous samples than in 
the normal sample.

Next, we summarize the patterns observed for the [200, 
500) and [500, Inf ) intervals. First, when the distance level 
increases, the AA% drops more dramatically in the normal 
HMEC sample than in the HCC1954 and MCF7. In fact, 
compared with the 0 ~ 200 base interval, in the HMEC, the 
AA% changes from 74.023% to 20.769%, ie, the difference is 
about 50%. In the HCC1954, the AA% changes from 78.109% 
to 63.188%, ie, the difference is just about 15%. In the MCF7, 
the AA% changes from 80.565% to 57.04%, ie, the difference 
is just about 23%. Although there is a large difference when 
comparing the cancerous with the normal samples based on 
the AA%, there is a small difference when comparing them 
using the DD%. Second, when the distance level increases, B% 
and C% rows do not change as dramatically as the A% row 

does, especially in the normal HMEC sample. Finally, when 
comparing the percentages in all distance levels, we find that as 
the distance level increases, the percentages decrease in some 
cells but increase in others. At the last distance level, the 500 ~ 
Inf interval, the patterns differ greatly when compared with the 
[0, 200) interval, as there is a large distance between 2 consecu-
tive sites (ie, >500 bases) in the last distance level.

After analyzing percentages of methylation-state-change 
using the distance levels of [0, 200), [200, 500), and [500, Inf ), 
we find that between the distance intervals [0, 200) and [200, 
500), there is a dramatic change in both normal and cancerous 
co-methylation patterns. It is unclear at what distance-level the 
co-methylation pattern starts to decay or change in breast tis-
sues. We want to zoom in to pinpoint exactly where this drop 
occurs. We then use the distance intervals increased by 50 to 
get a closer look at the patterns (see Figure 1). These intervals 
are [0, 50), [50, 100), [100, 150), and so on, to [500, Inf ). We 
further decrease the distance intervals to 10 to get an even 
closer look: [0, 10), [10, 20), [20, 30), and so on, to [90, 100). 
We compare the percentage methylation-state-change in 2 
ways: percentage occurrence of CG pairs with the same first 
base (eg, AAs, ABs, ACs, and ADs; comparing graphs in 1 row 
of Figures 1 and 2), and percentage occurrence in cancerous vs 
normal data (comparing within each graph of Figures 1 and 2). 
We will explain the comparison results below.

In Figure 1, when comparing the breast cancer cell lines 
(gray and brown) with the normal sample (yellow), the AA and 
AD plots show that they have dramatic differences, but overall, 
the 2 cancer cell lines have similar co-methylation patterns. In 
the BA, BD, and DD plots, there are certain differences too, 
but not as much as the AA and AD plots. In addition, we 
observe similar trends as shown in Table 2. That is, the 

Table 5.  P-values of chr1 chi-square test with smaller distance restrictions.

Distance interval A B C D

0-10 0 0 7.63E–291 0

10-20 5.41E–283 0 2.10E–155 0

20-30 1.46E–255 1.30E–244 5.16E–72 0

30-40 1.06E–282 4.12E–210 8.51E–42 0

40-50 4.78E–252 1.29E–122 4.21E–21 0

50-60 1.28E–240 4.22E–95 1.38E–13 0

60-70 2.47E–235 1.68E–84 4.72E–11 0

70-80 3.46E–239 5.96E–55 7.17E–15 3.45E–295

80-90 1.58E–222 2.42E–49 4.62E–08 6.62E–228

90-100 5.45E–211 1.48E–52 6.53E–07 3.84E–206

100-Inf 0 0 1.72E–99 0

Each “E-number” means “10–number.” For example, 5.41E–283 = 5.41 × 10–283. Shown are test results using data with restrictions on distance between CG sites. Distance 
levels are shown in the first column. All distance intervals show a significant difference between normal and cancerous data.
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cancerous AA and DD state pairs and the normal DD state 
pairs have the highest percentages. For example, the 2 cancer-
ous lines (gray for HCC1954 and brown for MCF7) in the AA 
state pair (or plot) are higher than the 2 cancerous lines in AB, 
AC, and AD graphs. In Figure 1, we also discover that the per-
centage of occurrence changes within the first 100 base pairs in 
each set of CG pairs. The most dramatic changes are shown in 
the AA and AD state pairs (the first and last plots of the top 
panel/row of Figure 1), where the likelihood of high and low 
methylation CG pairs changes significantly within the first 100 
base pairs. Next, we zoom in to observe and pinpoint the pat-
terns in the first 0 to 100 base regions by doing a similar 

analysis for the intervals [0, 10), [10, 20), [20, 30), and so on, to 
[90, 100). We observe that the percentage of occurrence for the 
CG pairs AA and DD actually changes within 20 base pairs 
(eg, the AA, AD, BD, and DD plots of Figure 2).

Figure 2 is a zoomed-in analysis of the 100-base pattern 
shown in Figure 1. In Figure 2, we find that when the distance 
level is less than 20 base pairs, the AA plot shows that the 2 
cancer cell lines and the normal (HMEC) sample are similar. 
After 20 base pairs, the normal AA state pair frequency (yel-
low line) dips below the 2 cancerous AA lines (gray for 
HCC1954 and brown for MCF7) (see the AA plot of Figure 2). 
We also find that the AD state pairs in normal and cancerous 

Figure 1.  Methylation state changes between consecutive CG sites based on 50 base intervals. HMEC indicates human mammary epithelial cell.
This figure displays the percentage of methylation state changes with an initial methylation state of A, B, C, and D. The horizontal axis is the distance between 
consecutive CG sites. The vertical axis is the percentage of occurrence on a 0 to 1 scale. The lines of 3 colors are for HMEC (yellow), HCC1954 (gray), and MCF7 
(brown), respectively.
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data have similar percentage of occurrences when the distance 
sub-interval is less than roughly 10 base pairs (see the AD plot 
of Figure 2), but when the distance increases, there is a dra-
matic difference between the breast cancer lines (gray and 
brown) and the normal sample (yellow). The normal and can-
cerous frequencies for the DD state pair show that the 2 can-
cer cell lines (gray and brown) are very similar, and they are 
different from the normal sample (yellow), see the DD plot of 
Figure 2. In addition, when looking at the partial methylation 
state B row (ie, the second row of the Figure 2), the zoomed-in 
analyses of the BA and BD plots also show that cancer cell 
lines are very different from the normal sample. The 

methylation state C row (ie, the third row of the Figure 2) does 
not show that obvious difference between cancerous and nor-
mal samples.

Figures 1 and 2 show that co-methylation patterns in nor-
mal and cancerous samples are different. However, it is unclear 
whether these differences are statistically significant. Therefore, 
we use the chi-square test to investigate these differences. Table 
3 shows the count and percentage of all CG sites in chromo-
some 1 (not just CG sites selected based on specific intervals). 
We run the chi-square test on the count data (in Table 3) from 
our method 1 to compare cancerous and normal samples. In 
Table 4, we display the chi-square test performed on count data 

Figure 2.  Methylation state changes between consecutive CG sites based on 10 base intervals. HMEC indicates human mammary epithelial cell.
The figure displays the percentage of methylation state changes with an initial methylation state of A, B, C, and D. The horizontal axis is the distance between 
consecutive CG sites. The vertical axis is the percentage of occurrence on a 0 to 1 scale. The lines of 3 colors are for HMEC (yellow), HCC1954 (gray), and MCF7 
(brown), respectively.
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with no distance restrictions, which is for all the CG sites in 
chromosome 1. The test is conducted for all 3 samples, and it 
shows significant results.

We use our method 1 analysis data to further investigate if 
there is also a significant difference between CG sites that are 
within a certain distance level. That is, we will conduct this test 
using the [0, 50), [50, 100), . . . , [450, 500) 50-base distance 
intervals. The results of these tests are that P-values in all inter-
vals A, B, C, and D are extremely small in the chromosome 1 
analysis (P-values are not shown here). Therefore, we conclude 
that the co-methylation patterns in the cancerous and normal 
samples are significantly different even for CG sites that are 
just 50 bases away. We additionally test our data using the chi-
square test to see whether co-methylation patterns within 
much smaller 10-base distance-levels continue to show the sig-
nificant difference between cancerous and normal samples. In 
Table 5, we show our test results on the 10-base intervals (ie, [0, 
10), [10, 20), . . . ). These results show that the normal and can-
cerous data sets are statistically different.

Results of method 2

As mentioned before, we will conduct the method 2 analysis. 
That is, we investigate the WS co-methylation patterns by 
studying the distribution of the co-methylation region length. 
In particular, we will study the WS co-methylation region 
length for 4 methylation states (A, B, C, and D) separately. We 
identify the co-methylation regions that have the same meth-
ylation state (eg, AAAAA or BBBBB), and then count the 
number of CG sites in each region and calculate the length of 
each region. For example, we may report a DDDD region of 

length 100 base pairs, which represents a region that consists of 
4 consecutive CG sites with methylation state “D” and its 
length is 100 bases. We identify all possible A, B, C, and D 
methylation-state regions. We also calculate the length and 
count of each region (“count” means the number of CG sites 
within a region). All method 2 analysis results are shown in 
Table 6. This table shows that the medians of cancer co-meth-
ylation region length is larger than the median of the normal 
sample by more than a 100 base pairs for both the A and D 
methylation states. In fact, for the methylation state A region, 
the median length is 116 bases for the normal HMEC sample, 
but it is 206 and 207 bases for 2 cancer cell lines HCC1954 and 
MCF7, respectively. For the methylation state D region, the 
median length is 189 base pairs for the normal HMEC sample, 
but it is 247 and 275 base pairs for the 2 cancer cell lines. This 
indicates that lengths of cancerous co-methylation A or D 
regions are consistently greater than the lengths of normal co-
methylation regions, with the difference growing larger in 
higher quantiles (eg, 75% or third quarter). For the partial 
methylation state B and C regions, Table 6 shows that the par-
tial methylation region length ranges from 46 to 63 base pairs 
(see the fifth or the median column of the B and C states). 
There is not an obvious difference for the partial methylation 
region length.

Table 6 also shows that the majority (about 75%) of co-
methylation regions are at most 288 (for state A), 161 (for state 
B), 162 (for state C), and 499 (for state D) base pairs in the 
normal HMEC sample. For the breast cancer cell line 
HCC1954, the majority (about 75%) of co-methylation regions 
are at most 573 (for state A), 147 (for state B), 147 (for state C), 
and 711 (for state D) base pairs. For the breast cancer cell line 

Table 6.  Co-methylation region length summary.

State Minimum First quarter Median Mean Third quarter Maximum

Normal data (HMEC) A 2 42 116 223.6 288 5493

B 2 22 61 132.7 161 2576

C 2 24 63 133.2 162 3278

D 2 55 189 394.3 499 13 700

Cancerous data (HCC1954) A 2 62 206 503.4 573 18 750

B 2 16 46 125.5 147 2805

C 2 17 51 121.9 147 2013

D 2 66 247 584.3 711 100 300

Cancerous data (MCF7) A 2 67 207 394.3 504 11 780

B 2 20 56 136.4 168 3347

C 2 22 62 138.7 175 2473

D 2 75 275 565.5 728 18 410

Abbreviation: HMEC, human mammary epithelial cell.
Shown are co-methylation region length summaries for normal and cancerous data separately.
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MCF7, the majority (about 75%) of co-methylation regions 
are at most 504 (for state A), 168 (for state B), 175 (for state C), 
and 728 (for state D) base pairs. That is, most of the co-meth-
ylation regions are very short. However, for both the normal 
and cancerous samples, a small proportion of the co-methyla-
tion regions are very long, which can be as long as several thou-
sand base pairs (see the last column of the Table 6). For example, 
even the partial methylation regions can be 2000 to 3000 base 
pairs; for the no/low (state A) and high/full (state D) co-meth-
ylation regions, they can be as long as 5000 and even more than 
10 000 base pairs.

Our method 2 analysis results in Table 6 show that co-
methylation patterns, especially the length of co-methylation 
regions of methylation states A and D, are different in normal 
and cancerous samples. Next, we use the Wilcoxon rank sum 
test to investigate whether these differences are statistically sig-
nificant. We conduct the test twice: first comparing cancer with 
normal using the co-methylation region length data and then 
comparing cancer with normal using the count data (see Table 
7). Each count is the number of CG sites per region. Table 7 
shows that there is a significant difference for each methyla-
tion-state region.

As for the co-methylation region length, our median result 
of methylation state A of the normal HMEC sample listed in 
Table 6 is 116. This result is close to the co-methylation region 
length reported in Guo et al,29 which is an average of 95 base 
pairs and is calculated based on a correlation method. However, 
if we look at the co-methylation region length of the methyla-
tion state B, C, and D, they are not the same no matter if we use 
the median or the mean. This difference may be due to the 
reasons shown below.

First, Guo et al did the analysis by considering the no/low 
methylation (ie, the methylation state A) regions, 2 types of 
partial methylation (methylation states B and C) regions, and 
high/full methylation (ie, methylation state D) regions together. 
That is, their result of the “average 95 base pairs” is a “pooled” 
analysis of all types of co-methylation regions. However, our 
analysis considers these 4 types of regions separately. As shown 
in Table 6, co-methylation regions of different methylation 
states (A, B, C, and D) have different lengths. To obtain accu-
rate analysis results, it is better to consider these 4 different 
methylation states separately.

Second, Guo et al calculated methylation haplotype blocks 
based on regions with at least 3 CG sites, but we calculate the 
length for co-methylation regions that have a minimum of 2 
CG sites. Note that, in our original analysis, we calculate the 
co-methylation region length calculation for regions with at 
least 4 CG sites. Later, we change it to analyze co-methylation 
region of at least 2 CG sites. We make this change to be con-
sistent with the co-methylation analysis we conducted in a 
recent publication.16 Another reason for this change is that we 
find that there are a large proportion of co-methylation regions 
with just 2 CG sites; including them or not can affect the co-
methylation region length summary. We will discuss this in 
detail below (see Table 8).

When we study co-methylation region length and the num-
ber of CG sites belonging to each region, we find that many 
co-methylation regions have only 2 or 3 CG sites (see Table 8). 
Therefore, when we calculate the co-methylation region length 
for each methylation state, the selection of a minimum number 
of CG sites can affect the results. For example, Table 8 shows 
that, for the co-methylation regions of the methylation state A, 
46.3% of them consist of just 2 CG sites (ie, AA) for the 
HMEC sample. For the methylation states B, C, and D of the 
HMEC samples (ie, BB, CC, and DD), they are 83.4%, 80.5%, 
and 28.2% (see the third column of the HMEC sample in 
Table 8). It is important to include the co-methylation region 
with only 2 CG sites in the study. Therefore, we use the mini-
mum of 2 CG sites in this study and in our recent publica-
tion.16 Without including the 2-CG site co-methylation 
region, the length could be longer than the reported one.

Discussion
We have conducted analyses to study WS co-methylation pat-
terns by comparing 1 normal breast sample and 2 breast cancer 
cell lines. Our analysis results will allow researchers to better 
understand co-methylation, which can aid in future discovery 
and understanding of how co-methylation patterns may be 
related to the onset of cancer. However, our study has some 
limitations. The first limitation is that the current study is only 
based on 3 samples: 1 normal breast sample and 2 breast cancer 
cell lines. Therefore, the results of this study may not be gener-
alized or applied to the population level due to the lack of rep-
licates and samples. However, our results are still useful for the 

Table 7.  Wilcoxon rank sum test results.

A B C D

Co-methylation region length

P-values 0 1.42E–40 9.05E–69 0

Chi-square 3583.585 183.5097 313.3517 4959.549

Number of CG sites in each co-methylation region

P-values 1.07E–157 5.80E–71 2.74E–21 0

Chi-square 722.87 323.4529 94.69338 6575.451
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reasons and benefits listed below. Although analysis results on 
WS co-methylation over distance are reported,11,14,26-28 they 
are disputable.12,15 In addition, WS co-methylation is not well 
studied for breast tissues yet. In particular, previous studies do 
not conduct WS co-methylation analysis by considering differ-
ent methylation states (no/low, partial, and high/full methyla-
tion) separately. Therefore, it is necessary and important to 
conduct this preliminary analysis, which allows for the initial 
focus to be on a specific sample before working with multiple 
samples. This preliminary analysis can provide insights for us 
to build more accurate models to identify WS co-methylation 
patterns of multiple samples. Our analysis results can also pro-
vide helpful insight and information for methylation data 

analyses based on hidden Markov models.35-41 However, the 
distribution of co-methylation region lengths is often unknown. 
Our WS co-methylation analysis results can provide useful 
information on this aspect. Meanwhile, we do plan to study the 
WS co-methylation patterns using multiple samples in each of 
the 2 groups (normal vs cancerous) in the near future. In fact, 
we recently published a paper on the analysis of co-methyla-
tion patterns of multiple normal samples/tissues.16 The second 
limitation is that WS co-methylation patterns may also be 
related to genomic context.11-13,30 To simplify our analysis, we 
choose not to consider this relationship when comparing can-
cerous data with normal data. We plan to consider the genomic 
context in another co-methylation project.

Table 8.  Summary of number of CG sites in different co-methylation regions.

2 CGs 3 CGs 4 CGs 5 CGs 6 CGs >6 CGs

HMEC A count 16 680 5964 2922 1680 1153 7620

A% 46.3 16.6 8.1 4.7 3.2 21.2

B count 13 147 2115 378 92 16 14

B% 83.4 13.4 2.4 0.6 0.1 0.1

C count 24 954 4767 968 225 55 32

C% 80.5 15.4 3.1 0.7 0.2 0.1

D count 58 092 37 016 24 969 17 915 13 088 54 715

D% 28.2 18 12.1 8.7 6.4 26.6

HCC1954 A count 19 413 9316 5487 3551 2640 13 048

A% 36.3 17.4 10.3 6.6 4.9 24.4

B count 15 005 3301 844 255 90 60

B% 76.7 16.9 4.3 1.3 0.5 0.3

C count 20 892 4354 1045 263 99 65

C% 78.2 16.3 3.9 1 0.4 0.2

D count 36 875 23 435 16 334 12 360 9402 54 911

D% 24.1 15.3 10.7 8.1 6.1 35.8

MCF7 A count 16 173 7922 4562 2799 1888 7995

A% 39.1 19.2 11 6.8 4.6 19.3

B count 11 204 2437 619 211 68 92

B% 76.6 16.7 4.2 1.4 0.5 0.6

C count 20 012 4283 1032 290 92 87

C% 77.6 16.6 4 1.1 0.4 0.3

D count 34 363 21 931 15 550 11 632 9066 56 394

D% 23.1 14.7 10.4 7.8 6.1 37.9

Abbreviation: HMEC, human mammary epithelial cell.
Rows 2 to 9 are for the normal sample HMEC. Rows 10 to 17 are for the cancer cell line HCC1954. Rows 18 to 25 are for the cancer cell line MCF7. For each sample, the 
top row is number of CG sites in each type of co-methylation region, ie, 2 CG sites, 3 CG sites, and so on. For each sample, “A count” and “A%” are the total number and 
percentage of co-methylation regions of methylation states “A.” For example, for the HMEC sample, in the “2 CGs” column, “A count” is 16 680, and “A%” is 46.3. These 2 
numbers mean that, among all the AA . . . A type co-methylation region, 16 680, ie, 46.3%, of them have only 2 CGs.
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The main reason for the first limitation mentioned above is 
that we could not find additional publicly available WGBS 
data of normal or cancerous breast samples. For example, 
although there are 12 359 methylation data generated and 
posted on The Cancer Genome Atlas Program (TCGA) web-
site, they are all Illumina array data: 9756 Illumina 450K and 
2603 Illumina 27K array data sets. When we search the GEO 
data sets using “breast bisulfite WGBS,” we can only find 6 
items, which are mainly the data used in this study. However, to 
address this limitation, we have conducted some further analy-
sis by showing the co-methylation patterns of the 3 breast sam-
ples with the other 8 different normal tissues (see Figure 3). 
This figure is similar to Figure 1, to which the additional 8 

different tissues are added. These 8 tissues are bladder, gastric, 
lung, psoas, sigmoid colon, small bowel, spleen, and thymus of 
the sample STL0001.42 The co-methylation patterns of these 8 
tissues are reported in our recent publication.16 We conduct 
this further analysis as an indirect way to show our analysis 
results. In Figure 3, the overall patterns of the 11 samples have 
some similarities and differences as well. The AA and AD 
plots show that normal breast sample HMEC (yellow line) has 
a more similar pattern with the other 8 normal tissues than 
with the 2 cancer cell lines (gray and brown lines). In the BA, 
CA, BD, and CD plots, we find that the breast samples are dif-
ferent from the other 8 tissues of the STL0001. This difference 
may be due to some sample or sequencing differences.

Figure 3.  Comparison of co-methylation patterns of 11 samples. HMEC indicates human mammary epithelial cell.
In each plot, the 11 lines represent the 11 samples/tissues (HMEC, HCC1954, MCF7, and the 8 tissues of the STL0001). Each plot is for a state pair, ie, AA, AB, AC, AD, 
BA, BB, and so on.
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As for the coverage level in our analysis, we use all CG sites 
with at least 3× coverage. If the data sets that we use have very 
low coverages, eg, with an average of 3× or 4× coverage, then 
using a minimum of read depth of 3× will not be meaningful, 
and the results will not be reliable. However, the coverage of 
our 3 data sets are 27-fold (HMEC), 20-fold (HCC1954), and 
36-fold (MCF7). Using the cutoff value of 3× coverage will 
not affect our analysis results much. In fact, we have conducted 
our analysis for 2 different coverage levels: ⩾3× and ⩾6×. 
The analysis results regarding co-methylation patterns are 
almost the same except that the lengths of co-methylation 
regions of the 3× and 6× levels are different. This difference is 
related to part of our method 2 conclusion. That is, the co-
methylation region length of ⩾6× data is shorter than the co-
methylation region length ⩾3× data. This is expected because 
less CG sites are selected when using ⩾6× data. As for the 
method 1 conclusion, they are the same. We have this consist-
ency because our method 1 conclusion is based on “percentage,” 
ie, how frequently 1 methylation state changes to another state. 
When the coverage level is increased, the “count” may become 
smaller, but the overall percentage is the same or similar in a 
whole chromosome.

In our WS co-methylation analysis, we consider CG sites 
with different methylation states/levels (A, B, C, and D) sepa-
rately. That is, we group CG sites based on their methylation 
levels first before any further analysis. This type of method can 
be called a binning approach. For both WS and BS co-methyl-
ation analyses, the Pearson correlation-based method can be 
used when the sample size is relatively large. Next, we explain 
the benefits/advantages and downsides/disadvantages of using 
the binning approach against the Pearson correlation method 
on modeling data. First, when there are a large number of sam-
ples in each group of cancerous or normal samples, the Pearson 
correlation method can be used. For example, using the corre-
lation-based method, Guo et al29 studied WS correlation and 
Mallona et al15 investigated BS co-methylation. When analyz-
ing a small number of samples in each group (cancerous or 
normal), the binning approach can be used, but the Pearson 
correlation method cannot be used because not enough data 
can be used to calculate the correlation. The binning approach 
of studying WS co-methylation can provide helpful input for 
methylation analyses based on hidden Markov models.37-41 
Second, the binning approach can help to remove the impact of 
noise because DNA sequencing data can be very noisy; the 
Pearson correlation estimates can be easily affected by outliers. 
Third, the binning approach can help to investigate WS co-
methylation patterns, especially co-methylation region of dif-
ferent methylation states, ie, A, B, C, and D. We have shown 
that the co-methylation patterns of these 4 different methyla-
tion states are different (see Table 6). Therefore, our method is 
useful and important for studying the co-methylation patterns 
accurately and thoroughly. Furthermore, it is better to study the 
co-methylation patterns for partial methylation sites separately 

because changes in partially methylated domains are hallmarks 
of cell differentiation.43

Conclusions
In this article, we conduct analyses to study breast tissue WS 
co-methylation patterns using WGBS data. We analyze nor-
mal and cancerous breast tissue methylation data in an attempt 
to determine whether normal and cancerous breast samples 
have significantly different WS co-methylation patterns. To do 
so, we assign each CG site a methylation state (A, B, C, and D) 
based on methylation signal levels. We find that WS co-meth-
ylation patterns change even within a short 50-base distance. 
We also show that the co-methylation patterns of 4 methyla-
tion levels/states (A, B, C, D) are different both within a breast 
sample and between different samples (normal vs cancerous 
breast samples). Using our methods, not only do we show that 
co-methylation patterns of normal and cancerous breast sam-
ples are significantly different, but also pinpoint the specific 
range of distances between CG sites, in which different co-
methylation patterns occur. We also show that the co-methyl-
ation lengths of 4 different methylation states are different. To 
the best of our knowledge, this study is the first one that con-
ducts a “zoomed-in” analysis for breast tissue co-methylation 
patterns by considering different methylation states (A, B, C, 
and D) separately. Our research may provide a deep under-
standing of co-methylation patterns. The presence of these 
specific co-methylation patterns may help tumor biologists 
more easily locate genes associated with cancer, which may 
contribute to more efficient and effective cancer diagnoses.
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