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ABSTRACT

FIRST PRINCIPLES STUDY OF STRUCTURAL, ELECTRONIC, AND 

MECHANICAL PROPERTIES OF

LEAD SELENIDE AND LEAD TELLURIDE

by

John E. Petersen III, B.A., B.S.

Texas State University–San Marcos

May 2013

SUPERVISING PROFESSOR: LUISA SCOLFARO

Lead chalcogenides, most notably lead selenide (PbSe) and lead telluride (PbTe), 

have become an active area of research due to their thermoelectric properties. The 

high figure of merit (zT) of these materials has brought much attention to them, due 

to their ability to convert waste heat into electricity. Recent efforts, such as applying 

pressure or doping, have shown an increase in thermoelectric efficiency. Variation in 

application and synthesis conditions gives rise to a need for analysis of structural, 

electronic, and mechanical properties of these materials at different pressures.

x



In addition to the NaCl structure at ambient conditions, lead chalcogenides have a 

dynamic orthorhombic (Pnma) intermediate pressure phase and a higher pressure, yet 

stable, CsCl phase. By altering the lattice constant, the application of external 

pressure is simulated; this has notable effects on total ground-state energy, band gap, 

and structural phase.

Using the Projector Augmented Wave (PAW) Method and the Generalized 

Gradient Approximation (GGA) in Density Functional Theory (DFT), the phase 

transition pressures are calculated by finding the differences in enthalpy from total 

energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, 

and Young's modulus are calculated, and the NaCl phase is studied with typical 

dopants, both n-type (Bi and I) and p-type (Na, In, and Tl). Pugh's ratio is employed 

to give insight on the brittleness of the materials and phases studied. In addition to 

structural and mechanical properties, the band structure and density of states are 

analyzed at varying pressures, paying special note to thermoelectric implications. The 

results presented here will be useful to guide future experiments toward the search for 

structurally stable thermoelectric materials. Several mechanical properties predicted 

here are ready to be confirmed by experimental works.

xi



CHAPTER 1:

INTRODUCTION

1.1. Motivation

It is well known that the world faces an energy crisis due to dependence on a finite 

supply of fossil fuels. Not only does the harnessing of energy from fossil fuels have a 

negative impact on the environment, but much of the energy produced in automobiles, 

refrigeration, and especially industrial plants is lost in waste heat. Harvesting this waste 

heat would increase efficiency in power generation, reducing dependence on fossil fuels 

and ultimately saving money in the process.

Transducing heat into electricity can be achieved by means of thermoelectric 

materials. These materials have the unique property of having a high electrical 

conductivity while their thermal conductivity is low. Generally speaking, when the 

material is exposed to a heat gradient, the electrons (holes) move from the hot (cool) end 

to the cool (hot) end, creating a potential difference, resulting in an electric field. This 

process is known as the Seebeck effect. A thermoelectric device can be used to generate 

electricity by exposing one end to waste heat, while the other end is maintained at 

ambient conditions. 

Efficiency of thermoelectric materials is measured by the figure of merit, a 

dimensionless quantity, which is 
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zT =
S 2 σT
κe+κl

, (1.1.1)

where σ is the electrical conductivity, T is the temperature, κe is the electronic 

contribution to the thermal conductivity,  κl is the lattice contribution to the thermal 

conductivity, and S is the Seebeck coefficient, defined as 

S=
E

∇ T (1.1.2)

(measured in μV/K), where E is the resulting electric field. Unfortunately, 

thermoelectrics do not yet possess a zT value high enough to be commercially viable [1], 

[2]. The difficulty lies in the fact that as S increases, σ decreases. Furthermore, an 

increase in σ leads to an increase in the thermal conductivity as well. 

In the 1990's, interest was renewed in thermoelectric possibilities with the advent 

of nanotechnology. Since then, bulk materials have attracted attention as well, so finding 

bulk materials with a high zT value has become an active area of research in recent years. 

Some thermoelectric materials have a higher zT value in different temperature ranges 

than others. For temperatures up to 475 K, alloys of Bi2Te3 and Sb2Te3 have been found to 

be the most efficient for n-type and p-type devices, respectively, with peak zT values 

being about unity. In the mid-temperature range (500-900 K), group IV-VI materials, 

such as GeTe and PbTe are commonly studied, with both n-type and p-type dopants and a 

zT value as high as ~1.5 in thallium doped p-type PbTe at 773 K [2], [3]. At temperatures 

> 900 K, silicon-germanium alloys, and more recently PbSe, have been found to be the 

most efficient materials, in both n-type and p-type cases, with a zT value predicted to 

peak at about 2.0 for hole-doped PbSe at 1000 K [2], [4].
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In addition to doping, recent studies have found pressure tuning PbTe increases 

the power factor œ,

œ=S 2
σ , (1.1.3)

by a factor of ~10 to up to ~170, at pressures between 2 and 3 GPa [5]. Experimentally, 

pressure is applied by means of a diamond anvil press, exerting quasi-hydrostatic 

pressure. Here, it is found that varying the lattice constant in ab initio calculations 

simulates pressure. It has been shown that the band gap of PbTe and PbSe decreases from 

0.311 eV and 0.278 eV, respectively, at ambient conditions, to an obscure state with no 

band gap at ~3 GPa [6]. In highly conductive materials, zT is solely dependent upon S 

and is determined by 

zT =
S 2

/L

1+
κl
κe

, (1.1.4)

where κl << κe, and L is the constant Lorentz factor 2.4 × 10–8 J2K–2C–2  [2]. Furthermore, 

the peak in S of PbTe has been found to be at the same pressure (2-2.5 GPa) as the peak 

in œ [5]; therefore, the enhancement of the power factor cannot be solely due to the 

increased conductivity. 

Another peak in the power factor was found at 6-6.5 GPa. While ambient PbTe 

and PbSe are found in a rock salt (NaCl) structure, at this pressure, PbTe is in an 

orthorhombic Pnma phase with a band gap similar to that of ambient PbTe [7]. Since the 

conductivity remains about the same, while the power factor increases, the Seebeck 

coefficient must increase, leading to a larger zT value. While now it is clear that PbTe and 

PbSe have an orthorhombic structure at intermediate pressures [5], [7], the phase was 
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previously believed to be a GeS structure [8], [9]. PbS, which is not studied as 

extensively, due to its low potential for thermoelectric applicability, is still believed to 

have a GeS structure [10]. Since applicability is limited and there appears to be ambiguity 

about the atomic positions of the intermediate phase, PbS will not be considered in this 

work. The lead chalcogenides (PbS, PbSe, and PbTe) change phase again at higher 

pressures to a metallic CsCl phase, which has not only been observed under hydrostatic 

pressure but has also been grown on substrate [11], [12]. The thermoelectric applicability 

of this phase is not yet clear. 

By means of ab initio (first principles) calculations, this work will investigate the 

general structural properties, electronic properties, and structural phase transition 

pressures of lead chalcogenides, but thermoelectric properties will not be considered 

explicitly. Since synthesizing under pressure, doping, and exposure to heat can all cause 

mechanical stress to the materials, it is important to understand their resiliency, if they are 

to be used commercially. Ductility is particularly important for commercial use, so 

mechanical properties are calculated for the three phases of PbSe and PbTe, and analysis 

is carried out to predict the ductile or brittle behavior of the materials. For the NaCl 

phase, both the intrinsic materials and doped versions are considered, where Na, In, and 

Tl (p-type) and I and Bi (n-type) are the impurities studied. All results are compared with 

available experimental and theoretical findings of other works.
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1.2 Crystalline Structure of Lead Chalcogenides and their Brillouin Zones

Before looking at the theory behind ab initio calculations and the computational 

package used in this work, it is necessary to look at the atomic structures of the materials 

under question. From the atomic positions, as will be revealed in Sections 2.1 and 2.2, the 

total ground-state energy of the system can be calculated, which is paramount to all first 

principles calculations and analysis. It must be noted that perfect crystalline lattice 

structures are assumed in all calculations of this work. This means that the systems 

calculated have atoms that form a basis structure, or unit cell, that is repeated periodically 

in the x, y, and z directions according to the length of the lattice vectors (a, b, and c, 

respectively). According to the Bloch Theorem, only a unit cell is necessary to calculate 

eigenvalues and total energy of a finite crystalline structure [13]. The theorem states:

ϕn k(r)=e i k⋅r unk (r ) , (1.2.1)

where φ is the one-orbital wave function (see Equation 2.2.15) for a band in the band 

structure, n is the number of the band or orbital in question (equivalent to the i in 

Equation 2.2.15), k is the wave vector for that band, and u is the periodic Bloch function 

that has the same period as the potential energy throughout the crystal. Since it is periodic 

with each unit cell, the wave function is also the same in each unit cell; therefore, the 

Hamiltonian is also periodic with r and the same for each unit cell, where r = r + ai (with 

ai being a unit vector and i corresponding to a 1, 2, or 3 in Equations 1.1.2 and 1.2.3). 

Thus, from only the atomic positions in the unit cell, the number of electrons, and the 

charge of the nuclei, the total energy of the system (of finite unit cells) can be calculated 

by solving the many-body problem (Section 2.1).
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(a)
(b)

(c)

Figure 1.2.1. NaCl Structure and Primitive Cell. (a) contains one FCC cell for each 
ion, in order to visualize how they are interlaced. It is not to be considered a unit cell. 
Bonds are indicated by grey bars. (b) is an eight ion cubic unit cell. (c) is the primitive 
FCC two-ionic-type unit cell. While the FCC symmetry remains, this primitive cell is of 
the triclinic shape, outlined in grey in order to assist the reader in seeing the ionic 
orientation. The Tellurium is in the center of the triclinic cell. The Pb and Te atoms in 
this cell correspond to those of opposite corners in 1.2.1b. Here, original models were 
produced by XCrysden software [14].

The NaCl structure – which is how lead chalcogenides exist in ambient conditions 

– have two interlaced face-centered cubic (FCC) structures. This means that each cation 

and anion form a cube with the respective ion positioned at each face of the cube. Since 

the two FCC structures are interlaced, the opposite ion is positioned half-way in between 

the second nearest neighbors of the same ion type. The cation and anion could be 

replaced, and the structure would be exactly the same. See Figure 1.2.1a. Thus, a simple 

cubic unit cell can be modeled with eight ions total (Figure 1.2.1b). The lattice vectors in 

this case would be of the simple cubic form, with equal magnitudes:
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a1=a i

a2=a j (1.2.2)

a2=ak ,

where i, j, and k are unit vectors in the x, y, and z directions, respectively. This unit cell 

can be reduced to the FCC primitive cell (Figure 1.2.1c), which has a basis of two atoms 

with the following lattice vectors:

a1=
a
2
(i + j )

a2=
a
2
( i+k ) (1.2.3)

a3=
a
2
( j+k ) .

The two above models of the NaCl structure produce the exact same crystalline structure; 

however, the periodicities correspond to the respective lattice vectors [13]. For PbSe, a = 

6.124 Å, and for PbTe, a = 6.462 Å [1].

As mentioned in the previous section, when pressure is applied to PbSe or PbTe, 

structural phase transitions occur. The intermediate phase is an orthorhombic Pnma 

structure with independent directionally orthogonal lattice constants, i.e. 

|a1| ≠ |a2| ≠ |a3|. Lattice constants and ionic positions have been measured experimentally 

[15], [16], and will be compared to this work's calculated values in a following section. In 

Figure 1.2.2a, one can see an overview of the Pnma structure of PbTe, while Figure 

1.2.2b shows the primitive cell. The higher pressure phase is a CsCl phase, or an 

interlaced two-ion-type simple cubic (SC) phase, where the lattice constants
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(a) (b)

Figure 1.2.2. Pnma Crystal Structure and Primitive Cell. (a) shows an overview of the  
Pnma structure of PbTe. (b) shows the primitive cell used in the calculations of this work.  
The above images were produced using XCrysden [14].

(a) (b)

Figure 1.2.3. CsCl Crystal Structure and Primitive Cell. (a) shows an overview of the 
CsCl structure of PbSe and PbTe. (b) shows the primitive cell used in the calculations of 
this work. The SC  cell shape is outlined in grey in order to assist the reader in seeing the  
ionic orientation. Again, Xcrysden was used to produce the images [14].



9

       (a)      (b)     (c)

Figure 1.2.4. Brillouin Zones of the Three Structures. The Brillouin zones and paths of  
(a) the NaCl structure, (b) the orthorhombic structure (Pnma), and (c) the CsCl 
Structure. Images generated by XCrysden [14].

|a1| = |a2| = |a3| are directionally orthogonal. Figure 1.2.3a shows the overall CsCl 

structure of PbSe and PbTe, while Figure 1.2.3b shows the primitive cell.

The first Brillouin zone of the ambient FCC (NaCl or rock salt) structural phase of 

PbSe and PbTe is a body-centered cubic (BCC) cell, which is also the Wigner-Seitz cell 

(however, if the unit cell of Equation 1.2.2 and Figure 1.2.1b is used, the Brillouin zone is 

simple cubic). It has the shape of a truncated octahedron. The path traced through the cell 

when calculating the band structure is X → Γ → L → W → K (Figure 1.2.4a). The 

intermediate pressure orthorhombic (Pnma) phase has an orthorhombic Brillouin zone, 

with a path traced through Γ → Z → T → Y → Γ → X → S (Figure 1.2.4b). The high 

pressure CsCl (SC) phase has an SC Brillouin zone, with a path traced through Γ → X → 

M → Γ → R (Figure 1.2.4c) [13], [17].



CHAPTER 2:

THEORETICAL FUNDAMENTALS OF AB INITIO CALCULATIONS AND THE 

COMPUTATIONAL PACKAGE VASP

2.1 The Many-Body Problem

The positions of the nuclei and electrons and the forces and energies between 

them are crucial in the calculations of this work. While energy is an important concept in 

all branches of physics, it will be evident in Chapter 3 that many properties can be 

calculated from the total energy of a system. Before one can derive other quantities, 

however, one must understand how to calculate the total energy of a system in the first 

place. It is tempting to model the system of particles using classical means; however, 

since the system is evaluated at such a small scale, it is known that quantum constructs 

are necessary to model the system with any accuracy. Nevertheless, it is helpful to review 

the classical picture of the N-body problem before the quantum mechanical many-body 

problem. 

Assuming a stationary system – or, more specifically, a system of particles which 

are in an inertial reference frame – the total energy can be calculated as follows:

E=T +V , (2.1.1)

where T is the total kinetic energy of the system: 

T=
1
2∑i

mi v i
2 ; (2.1.2)

10
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and, V is the sum of the potential energies between all particles:

V=∑
i

V i+
1
2∑i≠ j

V ij , (2.1.3)

where the first term on the right is the external potential energy, and Vij corresponds to 

the potential energy between the ith and jth particle; the ½ is so that forces between two 

particles in the summation are not counted twice. In the systems considered in this work, 

external potential energy will be ignored, due to an absence of external fields, so the 

classical picture of the total energy [18] is

E=
1
2∑i

mi v i
2
+

1
2∑i≠ j

V ij . (2.1.4)

The potential energy between two point particles is purely Coulombic in this case, and 

the total energy becomes [19] (Hartree atomic units will be used throughout this work)

E=
1
2
∑

i

mi v i
2
+

1
2
∑
i≠ j

qi q j

∣r i−r j∣
. (2.1.5)

Since calculations are performed at the quantum level in this study, the N-body 

problem is insufficient to describe the system. The electrons interact via Coulomb two-

body forces, yet they are not localized and are represented by a wave function. Thus, 

quantum mechanical operators are used in the many-body problem as the basis for 

calculating the total energy of a system of nuclei and electrons. A system of atoms, which 

are in a unit cell of a crystal lattice, all have energies which must be summed together in 

order to get the total ground-state energy. The electrons are mobile, and have kinetic 

energy, while the ions are more or less stationary. Furthermore, the masses of the nuclei 

are much larger than the mass of an electron, so the Born-Oppenheimer approximation 
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will be used, and the kinetic energy of the nuclei will be ignored. This approximation 

breaks the sum of the potential energies into constituent parts, as will be shown below.

Throughout the rest of this work, Dirac's bra-ket notation will be used [20], [21], 

where for a given  operator Â and  time independent N-electron ground state wave 

function Φ,

⟨Φ∣Â∣Φ ⟩=Φ
∗
(r ) ÂΦ(r)dr . (2.1.6)

The Schrödinger Equation can be written in this notation, with the Hamiltonian and the 

total ground state energy for an N-electron unit cell (Section 3.2) in the absence of an 

external field (a pure Coulomb system):

⟨Φ∣Ĥ∣Φ ⟩=⟨Φ∣(T̂ +V̂ ne+Û ee)∣Φ ⟩+U nn=Ε , (2.1.7)

where Unn is classical in the Born-Oppenheimer approximation and thus not a quantum 

mechanical operator. The total kinetic energy of the electrons is

T̂=−
1
2∑i=1

N

∇ i
2 . (2.1.8)

The nucleus-electron potentials sum to

V̂ ne=−∑
i , j

Z i

∣r i−r j∣
, (2.1.9)

where the negative sign indicates an attractive potential, Zi corresponds to the charge of 

the nucleus at position ri, and rj is the position of each electron. The electron-electron 

interaction is described by

Û ee=
1
2
∑
i≠ j

1
∣ri−r j∣

. (2.1.10)

The nucleus-nucleus interaction is
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U nn=
1
2
∑
i≠ j

Z i Z j

∣r i−r j∣
, (2.1.11)

where the i and j scripts should not be confused with the previous cases. If Equation 2.1.7 

were written out explicitly, indices would need to be adjusted accordingly. The nucleus-

nucleus potential in Equation 2.1.11 is classical, yet essential in the total energy 

calculation; nevertheless, it is frequently omitted when discussing the total energy. The 

nucleus-electron interaction in Equation 2.1.9 can be written in terms of particle density, 

which is fundamental to electronic structure theory:

n̂(r )=∑
i=1

N

δ(r−ri) ; (2.1.12)

n (r )=
⟨Φ∣n̂(r )∣Φ ⟩

⟨Φ∣∣Φ ⟩
; (2.1.13)

V ne=
⟨Φ∣V̂ ne∣Φ ⟩

⟨Φ∣∣Φ ⟩
= V̂ ne n(r )d3 r . (2.1.14)

2.2 Density Functional Theory

As can be seen from 2.1.12-14, the electronic density is the fundamental variable 

of the many-body problem. This was proposed by Thomas and Fermi at about the same 

time as Hartree (1927-1928) [21]. Without resorting to approximations, Schrödinger's 

equation can only be solved for simple systems. Thomas and Fermi based their 

approximations on the Drude model, which treats electrons as a homogeneous gas. 

Unfortunately, the model of Thomas and Fermi was too crude to be of much use, since it 

neglects exchange and correlation (Section 2.2.2 and 2.2.3). However, it was the basis for 
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the Kohn-Sham self-consistent equations, which are the foundation for modern Density 

Functional Theory (DFT). Before looking at the Kohn-Sham equations, however, it is 

necessary to state the Hohenberg-Kohn theorems which illustrate the importance of 

electron density.

2.2.1 Hohenberg-Kohn Theorems

The first theorem proves by Rayleigh-Ritz's variational principle that Vne is 

determined solely by n(r) [22]. Furthermore, there is only one value for n(r) and one 

value for Vne that corresponds to the electronic density and nucleus-electron potential 

energy of the ground state. In the context of DFT, n(r) refers specifically to the electron 

density of the ground state. Since the ground state N-particle wave function Φ depends 

explicitly on Vne (Equation 2.1.7), it also depends on n(r), and Φ can be found by solving 

the full many-body Schrödinger equation. Then, the ground state energy can be found 

from Equation 2.1.7. 

The second theorem proves, by Rayleigh-Ritz, that for any ñ(r) ≠ n(r) [22], 

E0=E v [n(r)]Ev [ñ (r )] ; (2.2.1)

where

E v [n(r )]=F [n (r )]+ V̂ ne n(r )d3 r+U nn
, (2.2.2)

and 

F [n(r )]=⟨Φ[n(r )]∣T̂ +Û ee∣Φ[n(r )]⟩ . (2.2.3)

Equations 2.2.1-3 require that Ev be a variational functional dependent solely upon the 

electron density function. Therefore, the ground state energy E0 corresponds to the energy 
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of the system with the specific ground state electron density n(r) [21]. These are the 

fundamental mathematical theorems of DFT.

2.2.2 The Kohn-Sham Self-Consistent Equations

It was shown in Section 2.1 how the Hamiltonian of the quantum mechanical 

many-body problem was split up into multiple components to account for the differences 

in mathematical operators involved in calculating the energies in a Coulombic system at 

small scale. In Kohn-Sham theory, one such component, the electron-electron potential 

Uee, must be broken up further in order to account for exchange and correlation. 

Correlation corresponds to a potential energy term that takes into account the probability 

that an electron at position r has a low chance of being close to another electron at r' – 

with n(r) and n(r') being in a dual space within the same volume – and a high chance of 

being farther away, due to the Coulomb repulsion. Here, this probability will be 

represented as g(r, r'). Due to the wavelike nature of electrons, g(r, r') for correlation is 

not simple to calculate and is only known for homogeneous systems. Exchange, on the 

other hand, can be calculated very precisely. Exchange arises from the Pauli Exclusion 

Principle, which states that electrons of the same spin cannot occupy the same position 

(orbital); however, an electron of opposite spin can. Therefore, taking only exchange into 

account leads to a g(r, r') which approaches ½ as r approaches r'. 

The full electron-electron potential Uee can now be written [21] as

U ee=
1
2


n(r )n(r ' )
∣r−r '∣

d 3 r d 3 r '+
1
2


n(r )n(r ')
∣r−r '∣

[ g (r , r ' )−1]d 3 r d 3r ' , (2.2.4)

where the first term on the right-hand side is known as the Hartree potential, which is 
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classical and electrostatic, and the second term on the right-hand side is the combined 

exchange and correlation correction from quantum mechanics, which includes the 

probability g(r, r'). The Hartree potential is the largest contribution to Uee and known 

exactly, followed by the exchange, which can also be calculated precisely, and the 

smallest contribution is the correlation, which must be approximated. Approximation 

methods for exchange and correlation will be discussed further in section 2.2.3, but the 

Kohn-Sham approach will be covered here. Their approximation, as is customarily done 

in modern approximations, combines exchange and correlation into one functional. They 

assert [23] that since the exchange and correlation energy εxc of a single electron in a 

homogeneous electron gas is known, assuming homogeneity of electron density in more 

complicated systems leads to the equation:

E XC= n(r )ϵXC [n(r )]d 3r . (2.2.5)

Electron-electron interactions such as exchange and correlation directly affect the 

kinetic energy; furthermore, the many-body problem does not take electron orbitals into 

account. Since the key variable in the many-body problem is the electronic density, Kohn 

and Sham's idea was to find a system of non-interacting electrons which had the same 

electronic density as that of the interacting system and treat it as homogeneous. Once the 

non-interacting density is exactly the same as the interacting one, the chemical potential μ 

will be the same in both cases; otherwise, charge would flow from one to the other, if 

they were adjacent. Assuming the occupation number of each orbital φ is 2, the density of 

the non-interacting or reference system nR(r) can be found by
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nR(r )=2∑
i=1

N ϕ

∣ϕ i(r )∣
2 , (2.2.6)

where Nφ is the number of orbitals in the volume considered (Nφ = N/2 for a closed-

orbital system). Then, the kinetic energy of this reference system TR[n(r)] (not to be 

confused with the trace of a matrix) could be calculated exactly:

T R[nR(r)]=−∑
i=1

N ϕ

⟨ϕ i∣∇
2∣ϕi ⟩ . (2.2.7)

In open-shell systems, the number of spin up electrons is not the same as the number of 

spin down electrons, and spin density needs to be taken into account:

T R[nR
(r ) , n R

(r )]=−
1
2
∑
σ=1

2

∑
i=1

N ϕ

⟨ ϕ i , σ∣∇
2∣ϕ i ,σ ⟩ . (2.2.8)

Ignoring spin density, the full Kohn-Sham ground-state energy equation becomes 

[20], [21], [23] 

E=−∑
i=1

Nϕ

⟨ ϕi∣∇
2∣ϕ i ⟩−∑

j=1

P


Z j nR(r )

∣r j−r∣
d 3 r+

1
2
∑
j≠k

Z j Z k

∣r j−r k∣

+
1
2


nR(r )nR(r ' )
∣r−r '∣

d 3 r d 3 r '+nR(r )ϵXC [nR(r )]d
3 r

; (2.2.9)

or, more simply,

E−U nn=T R [nR (r )]+ V̂ ne nR(r )d 3 r+nR(r )Û ee nR(r ' )d 3 r+E XC
, (2.2.10)

where V̂ ne
, Û ee

, and Unn correspond to equations 2.1.9, 2.1.10, and 2.1.11 

respectively. To obtain that energy, however, a series of self-consistent equations 

[23] must take an initial approximate nR(r) to iteratively calculate a more accurate nR(r) 

and E. Applying the variational principle to the total ground-state energy, subject to the 

condition
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δnR(r )d 3 r=0 , (2.2.11)

one obtains

[δnR(r )]{V̂ ne+Û ee nR (r ' )d3 r ' +
δT R [nR(r )]

δnR(r)
+μXC [nR (r )]}d3 r , (2.2.12)

where μXC is the exchange and correlation contribution to the chemical potential from the 

homogeneous electron gas of density nR. The first step in the iterative process is to 

calculate

V̂ ne+Û ee nR(r ' )d3 r ' (2.2.13)

from the presumed homogeneous nR. Then, μXC is calculated from

μXC [n(r )]=
δ E XC

δnR(r )
=ϵXC [nR(r )]+nR(r )

∂ ϵXC [nR(r)]

∂ nR(r )
. (2.2.14)

The values from 2.2.13 and 2.2.14 are then substituted into equation 2.2.12, so that 

eigenvalues εi and eigenvector wave functions φi can be found from the set of one-orbital 

Schrödinger equations:

{−
1
2
∇

2
+V̂ ne+Û ee nR(r ' )d3 r ' +μXC [nR (r )]}ϕi [nR(r )]=ϵi ϕ i [nR(r )] . (2.2.15)

A new charge density, nRout(r), that is no longer homogeneous and changes with r, can be 

calculated by:

nRout
(r )=2∑

i=1

N ϕ

∣ϕ i∣
2 . (2.2.16)

The process can be repeated iteratively, achieving a more and more accurate electron 

density (accurate up to ∇
4 ), until the desired accuracy for E and the eigenvalues εi is 

obtained. The computational software Vienna Ab Initio Simulation Package (VASP) [24], 
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[25], which is used for all ground-state energy and eigenvalue calculations in this work, is 

based on these fundamental self-consistent equations (2.2.13-16) of Kohn-Sham theory. 

The importance of the ground-state energy E will be evident throughout the rest of this 

work. Since the final converged electron density changes with r, it also changes with k 

(the reciprocal lattice position vector, briefly discussed in section 1.2), resulting in unique 

eigenvalues εi  for each valence electron at each k point, which are calculated from 2.2.15.

2.2.3 Exchange and Correlation Approximations

Many approximations exist for calculating exchange and correlation, from the 

Local Density Approximation (LDA) introduced by Kohn and Sham to more modern and 

complicated methods, such as the hybrid functional. Here, only LDA, the Generalized 

Gradient Approximation (GGA), and the hybrid functional (HSE) will be considered, 

since they are the focus of this work. As mentioned in the previous section, the 

approximation for exchange and correlation is composed of one term, EXC  (the second 

term on the right-hand side of Equation 2.2.4). Since an electron at r dramatically reduces 

the probability of having another electron at r' being in the vicinity of r, there is a 

fictitious charge depletion about r, known as the exchange-correlation hole (XC hole), 

represented [21] by

n XC (r , r ' )=n (r ' )[g (r , r ' )−1] . (2.2.17)

The XC hole density nXC is non-local, symmetric under exchange of r and r', and contains 

exactly one displaced electron or hole:

nXC (r , r ' )d r '=−1 . (2.2.18)
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In LDA, while the electron density is local, the XC hole is non-local and defined 

by

n XC
LDA(r , r ')=n(r ){g [∣r−r '∣, n(r )]−1} . (2.2.19)

Since n(r) is homogeneous, the pair-correlation function g[|r – r'|, n(r)] depends only on 

the distance between r and r'. The exchange part of g, gX, is known exactly for a 

homogeneous electron gas, and is given by

g X (r , r ' )=1−∑
s=1

2 ∣ns(r , r ' )∣
2

n(r )n (r ' )
, (2.2.20)

where the s indicates that the sum runs over the two spin projections. By numerical 

methods, gC can be solved for exactly, as well [26], and g = gX + gC. The approximation 

in LDA is that the initial n(r) in the self-consistent calculation is homogeneous. The 

exchange-correlation energy is calculated by

E XC
LDA

[n(r )]=n (r )ϵXC
LDA

[n (r )]d r3 , (2.2.21)

where epsilon is the LDA exchange and correlation energy density:

ϵXC
LDA

[n(r )]=
1
2


nXC
LDA

(r , r ' )
∣r−r '∣

d r ' . (2.2.22)

LDA is very successful at approximating total ground-state energy and 

eigenvalues in systems where the electron density is very uniform, such as in metals. 

However, a more accurate picture for more complex systems can be obtained by GGA. 

Rather than treating the initial electron density as homogeneous, GGA uses a gradient 

approximation that assumes a more concentrated electron density for values of r which 

are closer to the nuclei. This is achieved by carrying out an expansion of the electron 
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density in terms of the gradient and higher derivatives. Thus, GGA improves total energy 

calculations over LDA (in most cases) by expanding and softening bonds [27], [28]. 

However, sometimes energies are over-corrected [29]. GGA works best in systems of 

density inhomogeneity [27], [28]. In GGA, the exchange-correlation energy can be 

written [21] as

E XC [n (r )]=n(r)ϵXC
LDA

[n(r )]F XC [n (r ) ,∇ n(r ) ,∇ 2 n(r ) , ...]d3 r ; (2.2.23)

or, more explicitly

E XC [n (r )]={AXC [n(r )]}[n (r )]4 /3 d3 r+
{C XC [n(r )]}∣∇ n (r )∣

2

[n (r )]4 /3 d 3 r , (2.2.24)

where FXC is the gradient expansion correction functional, and AXC and CXC are first and 

third order coefficients of the expansion, respectively. In the case of LDA, FXC is equal to 

one.

In the early years of GGA, it was found that the first order correction actually 

worsens the LDA calculation of the correlation energy [21], [30]. This problem was 

rectified by Langreth and Mehl in 1981 [21], [31]; however, problems remained with the 

exchange energy. When modifying the LDA exchange-correlation density by means of 

FXC, the condition of 2.2.18 – that the electron hole normalizes to negative one – is 

violated. Perdew showed in 1985 [32] that imposing this condition upon the functional 

FXC improves the approximation of the exchange energy dramatically. Numerous GGA 

methods were produced in the literature, and in 1996, the method of Perdew, Burke, and 

Erzenhof (PBE) [27], [28] was introduced, which improved the approximation for 

exchange and correlation energies. The PBE functional gives
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EC
GGA [n (r ) , n(r )]= n(r ) [EC

LDA(rs ,ζ)+H (r s ,ζ , t)]d 3 r , (2.2.25)

where rs is the Wigner-Seitz radius:

r s=(
3

4π n(r )
)

1/3

; (2.2.26)

ζ=
n−n

n
, (2.2.27)

where ζ corresponds to the spin polarization; and

t=
∣∇ n(r )∣

2ϕ(ζ)k s n(r )
. (2.2.28)

Here, 

ϕ(ζ)=
(1+ζ)

2 /3
+(1−ζ)

2/3

2
(2.2.29)

is a spin-scaling factor, and

k s=√ 4 k F
π (2.2.30)

is the Thomas-Fermi screening wave number, and 

k F=[3π
2 n(r )]1/3 , (2.2.31)

is the radius of a sphere in k-space, such that the energy at the surface of the sphere is the 

Fermi energy. To satisfy the conditions of PBE, the Hamiltonian in Equation 2.2.25 is 

given by the ansatz:

H =γϕ
3 ln [1+

β t 2

γ (
1+ At 2

1+ At2
+ A2 t 4 )] , (2.2.32)

where γ = 0.0.1091, β = 0.066725, and the function 
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A=
β

γe−ϵC
LDA

[n (r )]/ γ ϕ
3

−1
. (2.2.33)

For the exchange energy,

E X
GGA

=n(r )ϵX
LDA

[n(r )]F X (s)d 3 r , (2.2.34)

where

F X (s )=1+κ− κ

1+μ s2
/ κ

. (2.2.35)

Here, s is the dimensionless density gradient

s=
∣∇ n(r )∣
2 k F n (r )

, (2.2.36)

μ = 0.21951, and κ = 0.804. Equations 2.2.25 and 2.2.34 summed together give the 

exchange and correlation energy for the PBE form of GGA.

While GGA makes approximations to compensate for any inadequacies of LDA, 

improvements and modifications are inevitable in the evolution of DFT. Since the trends 

of LDA and GGA are opposite in error to that of Hartree-Fock (HF) theory [21], hybrid 

approaches have evolved, where DFT is combined with HF, and the exchange-correlation 

energy is given by

E XC
hyb

=α E X
HF

+(1−α)E X
DFT

+ EC
DFT . (2.2.37)

In this work the hybrid functional used is the HSE functional [33], which differs only 

slightly from Equation 2.2.37, and α = 0.25.



24

2.3 The Projector Augmented Wave (PAW) Method and Pseudopotentials 

With all of the energies taken into account in the Hamiltonian of the many-body 

problem, now it is time to focus on V̂ ne
from Equation 2.1.9. Due to screening from the 

core electrons of atoms, the valence electrons experience a much weaker Coulomb 

potential than the electrons in the core shells. This classical property manifests in the 

wave function of an atom or ion: near the core, in the region of high Coulomb potential, 

the wave function oscillates with high frequency, while in the outer shell or bonding 

region the wave function is smoother with little oscillation. In order to model this 

phenomenon with the augmented-wave methods, the wave function is broken into parts: 

the atomic core, including the core electrons, is handled by a partial-wave expansion in a 

sphere surrounding the atomic nuclei, while the spherical shell surrounding or enveloping 

the core, including the valence electrons, is modeled with plane waves [34]. 

In the linear augmented-plane-wave method (LAPW), the wave function for the 

core is calculated by an ab initio self-consistent method based on atomic potentials from 

local-density-functional theory. The resulting wave function of the core is smoothed out 

into a pseudo wave function, ignoring the oscillation, in such a fashion that outside the 

core it is approximately identical to the real wave function. This is known as the frozen-

core approach [34], [35].

In actuality, the valence wave functions in Hilbert space, which are orthogonal to 

the core, exhibit strong oscillations that make computational calculations difficult. These 

wave functions are the so-called all-electron (AE) wave functions, which are actually 

one-electron Kohn-Sham wave functions and not to be confused with a many-electron 
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wave function. Blöchl developed the PAW method in 1994 [34], which uses a linear 

transformation to map the AE wave functions to a pseudo (PS) Hilbert space, in order to 

make calculations more computationally convenient. A Hilbert space representation 

cannot be perfectly implemented numerically, so the AE wave functions are truncated in 

such a way to eliminate significant error. In order to maintain orthogonality, the PS wave 

functions must be truncated in exactly the same manner. 

The linear transformation occurs inside an augmentation region, which is a region 

analogous to the frozen-core of the LAPW method. Outside of the augmentation region, 

the AE and PS wave functions coincide. Within an augmentation region, each PS one-

electron wave function is composed of partial PS wave functions:

∣∣ϕ̃ ⟩=∑
i

∣∣ψ̃ i ⟩c i
. (2.3.1)

Similarly, each AE one-electron wave function within the augmentation region is 

composed of partial AE wave functions:

∣∣ϕ⟩=Τ∣∣ϕ̃ ⟩=∑
i

∣∣ψ i ⟩c i
, (2.3.2)

where the T denotes the linear transformation from a PS to an AE wave function, and the 

ci is the same coefficient in both 2.3.1 and 2.3.2, determined by

c i=⟨ p̃ i∣∣ϕ̃ ⟩ , (2.3.3)

where p̃ i
are Blöchl's projector functions that minimize the total energy, with the 

condition

⟨ p̃i∣∣ψ̃ j ⟩=δij
. (2.3.4)

From 2.3.1, 2.3.2, and 2.3.3, the full representation of an AE one-electron wave function 
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in the PAW method becomes

∣∣ϕ⟩=∣∣ϕ̃ ⟩−∑
i

∣∣ψ̃i ⟩ ci+∑
i

∣∣ψi ⟩ ci
. (2.3.5)

Once transformed, the PS wave functions are the variational parameters instead of the AE 

wave functions. 

2.4 Relativistic Effects: Scalar Orbital Radius Contraction and Spin-Orbit

Interaction 

The more familiar relativistic effects are those of increasing mass and length 

contraction due to a velocity approaching the speed of light. While electrons in s orbitals 

have zero orbital angular momentum, since

L2∣∣l , m⟩=l(l +1)ℏ
2∣∣l , m⟩ , (2.4.1)

and the quantum number l = 0 in the s orbital [36], the intrinsic angular momentum is 

non-zero. It is the zero orbital angular momentum which is the reason that s orbitals are 

nearer to the nucleus than their counterparts with the same quantum number n. Being 

closer to the nucleus gives them a much higher intrinsic angular momentum, and 

therefore gain the highest velocity [37]. In heavy elements such as mercury and lead, the 

velocity is so great, that relativistic effects need to be taken into account in the 

calculations. With this increase in velocity comes an increase in mass, resulting in orbital 

length contraction, increasing Coulomb attraction, which increases ionization energy. At 

high velocity and momentum, the relativistic kinetic energy becomes (for the moment, 

disusing Hartree units for illustrative purposes):
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T=√ p2 c2+m2 c4−m c2 . (2.4.2)

A McLauren series expansion of 2.4.2 leads to:

T=
p2

2 m
−

p4

8 m3c2 +... , (2.4.3)

so the first order correction to the kinetic energy becomes

T rel=−
p4

8 m3 c2
. (2.4.4)

Equation 2.4.4 is treated as a perturbation in the calculation of PAWs.

Since valence s orbitals must be orthogonal to inner s orbitals, these orbital radii 

contract as well. This effect leads to what is known as an inert pair of s electrons [38], 

where the electrons in the outer s orbital are so deep in energy, that only the outer p 

orbital is available for bonding [37], [39]. For this reason, the bond in PbSe and PbTe is 

ionic. 

The other scalar relativistic effect which affects the s orbitals, in a first order 

correction, is the so called Darwin term. In Dirac theory, an electron is smeared about the 

orbital due to small high frequency fluctuations – this is called zitterbewegung. The result 

is the extra term [40]

Ĥ D=−
e ℏ

2

8m e
2 c2 ∇

2 , (2.4.5)

 which operates on s orbitals when calculating the PAW data.

A high magnitude of the intrinsic angular momentum has another atomic 

relativistic effect, as well – one which is more widely known – spin orbit interaction 

(SOI). Since the intrinsic angular momentum is due to spin, this high velocity has a 



28

noticeable effect on eigenvalues of electrons in the same orbital – a splitting of 

degeneracy. In this case, the vector description of L is required to evaluate the effect, so 

the SOI is negligible in s orbitals; however, the effect can be seen clearly in p and d 

orbitals of heavier elements (Section 3.3). In the calculation of eigenvalues, the spin-orbit 

[20] operator,

Ĥ SO=
ℏ

2

2mrel
2 c2

1
r

dV
dr

L⋅σ , (2.4.2)

is simply added to the other operators on the left-hand side of Equation 2.2.15, where σ 

represents the spinor. The mass mrel denotes the increased relativistic mass of an electron 

with a high magnitude of intrinsic angular momentum at small r. 

2.5 The Vienna Ab Initio Simulation Package (VASP)

From the atomic positions, their respective unit cells mentioned in the previous 

section, and the electronic configuration of the atom(s) in question, using Equations 2.2.6 

and 2.3.5, theoretically, one can solve – by means of the iterative Kohn-Sham method 

(equations 2.2.6-16) – the many-body problem for the unit cell of a solid crystalline 

structure or for a single molecule. The unit cells in Section 1.2 may be considered an 

example, as calculations for any number of systems can be performed in exactly the same 

manner, assuming the atomic positions and PAWs are known. 

Using the initial trial AE wave functions of each valence electron from Equation 

2.3.5, a sub-space diagonalization using the Rayleigh-Ritz variational scheme (see 

Equation 2.2.1) is necessary:
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⟨ϕ j∣Ĥ∣ϕi ⟩=H ij
. (2.5.1)

A straightforward calculation for an exact diagonalization of the resulting Kohn-Sham 

Hamiltonian matrix would be extremely computationally demanding for large systems, 

but a clever approach was suggested by Car and Parrinello in 1985 [41]. They realized 

that both the total potential energy in real space and the kinetic energy in reciprocal space 

are diagonal already. Therefore, a calculation involving fast Fourier transformations 

(FFTs) back and forth from real space to reciprocal space optimizes computational time. 

An even more computationally efficient method is known as the self-consistent cycle 

(SC), where a mixing of the diagonalization of the Hamiltonian matrix using FFTs 

(Section 2.5.1) with an iterative scheme to determine charge density (Section 2.5.2) takes 

place. This method is used by VASP [24], [25]. 

2.5.1 Diagonalization of the Kohn-Sham Hamiltonian Matrix in VASP

In order to minimize computational time, each one-electron wave function is 

optimized at a time. The general idea is to find the error in the trial wave function in each 

iterative step, then that error is added to the trial wave function, resulting in a new trial 

wave function. This process, due to Rayleigh-Ritz, leads to more and more accurate 

eigenvalues, and the process is repeated until the desired accuracy is achieved. The 

eigenvalues are calculated [24], [25] as follows:

ϵn=
⟨ϕn∣Ĥ∣ϕn⟩

⟨ ϕn∣Ŝ∣ϕn⟩
, (2.5.2)

where the operator 
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Ŝ=1+∑
ij

qij∣∣ p̃ j ⟩ ⟨ p̃i∣∣ , (2.5.3)

using the localized projection states from the PAW method (Equations 2.3.3 and 2.3.4), 

with the familiar normalization condition: 

⟨ϕn∣Ŝ∣ϕm ⟩=δnm
. (2.5.4)

The qij in Equation 2.5.3 is defined as

q ij=Qij (r )d 3 r , (2.5.5)

where the Qij terms are localized augmentation functions. To find the error in the 

eigenvalue, the residual vector is introduced:

∣∣R(ϕn)⟩=(Ĥ−ϵn Ŝ)∣∣ϕn⟩ . (2.5.6)

The error in the wave function is given by

∣∣ϕerror ⟩=(
1

Ĥ −ϵn

)∣∣R(ϕn) ⟩ , (2.5.7)

which cannot be solved exactly, since the kinetic energy dominates the Hamiltonian for 

large G vectors in k-space; i.e., 

lim
G→∞

Ĥ =
G2

2
. (2.5.8)

Therefore, an approximation is used that tends to the above limit at large G and is 

constant for small G. The error is added to the trial wave function for the band in 

consideration, and the process begins with the next band. When all eigenvalues and wave 

functions are calculated for each band, the wave functions are orthogonalized by the 

Gram-Schmidt method, resulting in new trial wave functions for the following iteration. 

Finally, an update to the partial occupancies and charge density is performed, and the 
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whole process begins with the new wave functions and charge density, until the desired 

accuracy is reached.

2.5.2 Charge Density Mixing

The electronic density is modified by mixing the input and output charge densities 

in each iteration step. A residual vector of the electronic density is calculated [24], 

[25] by

R [n i n(r )]=nout [ni n(r )]−ni n(r ) , (2.5.9)

where nout is a functional of nin. The charge density calculation is modified from 

Equations 2.2.6 and 2.2.16 in the following manner:

n(r )=∑
n

f n∣ϕn(r )∣
2
+∑

n , i j

f n ⟨ϕn∣∣ p̃ j ⟩⟨ p̃i∣∣ϕn ⟩Qij (r ) , (2.5.10)

where the n's run over all single electron orbitals, and fn is the occupancy number one or 

zero. The essence of the mixing method is as follows:

ni n
m+1

=ni n
m
+ A R[ni n

m
] , (2.5.11)

where m denotes the iteration step, and A can be determined from the eigenvalue (Section 

2.5.1) spectrum. This calculation is very slow, so various schemes for mixing have arisen. 

VASP uses the method of Pulay [24], [25], [42], in which all previous electronic 

densities in the loop are incorporated into the new optimized current density:

n i n
opt

=∑
i

α i ni n
i , (2.5.12)

with the condition that

∑
i

α i=1 . (2.5.13)
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The residual vector in the case of the Pulay method is

R [n i n
opt

]=∑
i

αi R [n i n
i
] . (2.5.14)

The new optimal charge density must minimize the norm of the residual vector:

⟨ R[ni n
opt ]∣∣R [ni n

opt ] ⟩ . (2.5.15)

The process is repeated iteratively, until the desired accuracy is reached.



CHAPTER 3:

STRUCTURAL, ELECTRONIC, AND MECHANICAL PROPERTIES OF PbSe 

AND PbTe

3.1 Parameters of Calculations

All ab initio calculations in this work were performed within DFT (Section 2.2), 

using the PAW method (Section 2.3) [34], via the VASP code (Section 2.5) [24], [25]. The 

PAW data includes the relativistic effects of lead (Section 2.4). The GGA exchange-

correlation functionals of PBE [27], [28] were used. In all calculations, the 5d orbital of 

lead was included in the valence bands. A plane-wave basis set with an energy cut-off of 

308.5 eV was used for complete k point convergence, minimizing total ground-state 

energy for all structures. 

An automatically generated mesh of k points from the Monkhorst-Pack (MP) 

method was used in all self-consistent calculations [43]. It was found that in order to 

achieve minimum total energies, a different MP mesh needed to be used for the different 

phases of the two materials: for PbSe, a 16 x 16 x 16 mesh was used for the NaCl 

structure, a 6 x 10 x 10 mesh was used for the Pnma structure, and a 13 x 13 x 13 mesh 

was used for the CsCl structure; for PbTe, a 15 x 15 x 15 mesh was used for the NaCl 

structure, a 6 x 11 x 8 mesh was used for the Pnma structure, and a 9 x 9 x 9 mesh was 

used for the CsCl phase. In the case of the systems under pressure, cells were relaxed 

with the volumes held constant. In the supercell calculations of Section 3.5, a 3x3x3 MP

33
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mesh was used. All of the systems studied were fully relaxed (ionic and electronic 

relaxations), with forces less than 10-5 eV/Å. 

3.2 General Structural Properties of PbSe and PbTe from Total Energy

Calculations

The lattice constants of the NaCl structures of PbSe and PbTe are well known to 

be 6.124 and 6.462 angstroms, respectively [44]. However, the lattice constants and ionic 

positions of the Pnma and CsCl structures are not as well established. Using data from the 

available literature [11], [12], [15], [45], here, unit cells of varying volume have been 

reproduced and relaxed, via ab initio calculations to minimize forces between ions, and 

total ground-state energies have been calculated. A Birch-Murnaghan [46], [47] curve 

fitting was employed to produce the equation of state:

E (V )=E 0+
9V 0 B0

16
{[(

V 0

V
)

2 /3

−1]

3

B0
'
+[(

V 0

V
)

2/3

−1]

2

[6−4 (
V 0

V
)

2 /3

]} , (3.2.1)

where E is the total ground-state energy, V is the volume of the unit cell, E0 is the 

minimum energy of the curve, V0 is the volume corresponding to that minimum energy, 

B0 is the bulk modulus

B=−V (
∂P
∂V

)
T

, (3.2.2)

evaluated at P = 0, and

B0
' =[(

∂ B
∂ P

)
T

]
B=B0

. (3.2.3)

The subscript T indicates constant temperature. The pressure in Equations 3.2.2 and 3.2.3 
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is given by

P=−(
∂ E
∂V

)
S

, (3.2.4)

where the subscript S denotes constant entropy. Therefore, the minimum of the curve, 

where the material is most stable and has the lowest energy, corresponds to zero pressure. 

The Birch-Murnaghan energy curves for the three phases of PbSe and PbTe can be seen 

in Figures 3.2.1a and 3.2.1b. As would be expected, since it takes energy to exert pressure 

on the materials, the higher-pressure phases have higher total ground-state energies.

Clearly, from equation 3.2.4, calculating total ground-state energy at different 

volumes will yield a different pressure from the derivative [20]. The Murnaghan fit of the 

fully relaxed structures reveals minimized lattice parameters which overestimate 

experimental data by 1.7% for the NaCl structures of both PbSe and PbTe at zero 

pressure. For the Pnma structures, the unit cells were relaxed with the volumes held 

constant, in order to obtain the correct aspect ratios of the lattice parameters. Lattice 

parameters were calculated at the pressures which they were observed experimentally 

(see Table 3.2.1); again, they overestimate by 1.7%. For the CsCl structures, the pressures 

at which the lattice parameters were measured are unclear, since the materials were 

grown on substrates [11], [12]. Here, the lattice parameters were calculated at the 

pressures at which the phase transitions have been found to occur experimentally (see 

Table 3.2.1). In the case of CsCl PbSe, the calculated lattice parameter overestimates 

experimental data by 1.7% again. It is typical for GGA calculations to overestimate 

optimized lattice parameters by 1-2% [20], [21]. In the case of CsCl PbTe, the calculated 
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(a) (b)

Figure 3.2.1. Total Energy vs Volume Curves for the 3 Phases of (a) PbSe and (b) 
PbTe. For the purposes of comparison between the three phases, volumes and energies of  
the eight atom Pnma cells have been divided by four in order to normalize to two ions 
per cell. 

Table 3.2.1. Calculated Lattice Parameters for the Three Phases of PbSe and PbTe 

a. O. Madelung, Semiconductors: Data Handbook, 3rd Edn., Springer, Berlin, Heidelberg (2004).
b. S. Streltsov, A. Manakov, A. Vokhmyanin, S. Ovsyannikov, and V. Shchennikov, J. Phys.: Condens.

Matter 21 (2009) 385501.
c. M. Baleva and E Mateeva, J. Mater. Sci. Lett. 14 (1995) 158.
d. G. Rousse, S. Klotz, A. Saitta, J. Rodriguez-Carvajal, M. McMahan, B. Couzinet, and M. Mezouar,

Phys. Rev. B 71 (2005) 224116.
e. M. Baleva and E Mateeva, , Phys. Rev. B 50 (1994) 8893.

Table 3.2.2 Calculated Atomic Positions of Pb, Se, and Te in Pnma Phases Under 
Pressure. Positions are given as a percentage of unit cell length.

a. S. Streltsov, A. Manakov, A. Vokhmyanin, S. Ovsyannikov, and V. Shchennikov, J. Phys.: Condens.
Matter 21 (2009) 385501.

b. G. Rousse, S. Klotz, A. Saitta, J. Rodriguez-Carvajal, M. McMahan, B. Couzinet, and M. Mezouar,
Phys. Rev. B 71 (2005) 224116.

This Work                      Experimental Data

Material Structure a (Å) b c a (Å) b c

NaCl 0 6.226 0
9.5 11.37 4.24 4.12 9.5
16 3.53 >16

NaCl 0 6.573 0
6.7 8.31 4.57 6.33 6.7
13 3.74 >13

Pressure (GPa) Pressure (GPa)

PbSe 6.124a

Pnma 11.19b 4.17b 4.06b

CsCl 3.49c

PbTe 6.462a

Pnma 8.18d 4.495d 6.23d

CsCl 3.55e

                              This Work
Material Structure Position at 4c site (Pb) Position at 4c site (Se, Te) Position at 4c site (Pb) Position at 4c site (Se, Te)

9.5 (0.1203, 0.25, 0.0006) (0.1331, 0.75, 0.5005)

6.7 (0.5604, 0.25, -0.1977) (0.8205, 0.75, 0.857)

                      Experimental Dataa, b 

Pressure (GPa)

PbSe Pnma (0.1334,0.2500,0.0158)a (0.1201,0.7500,0.5047)a

PbTe Pnma (0.56,0.25,-0.19)b (0.82,0.75,0.87)b
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Figure 3.2.2. z Component of 4c Site Position vs Pressure of Pnma PbTe. Here, it can 
be seen from the positions of the ions at the 4c site that the Pnma structure of PbTe 
relaxes to a distorted FCC structure at about 1 GPa. The instability and atomic shifting 
of the least symmetric phase of PbTe – as it seeks a more symmetric configuration – 
indicates the presence of soft phonon modes. Thus, a phonon contribution to the total 
ground-state energy is predicted.

lattice parameter overestimates experimental results by 5.35%. This larger overestimation 

can be attributed to the unknown pressure exerted upon the material by the substrate 

when it was measured. See Table 3.2.1 for comparison of calculated lattice parameters 

with those of experiment.

The reader may observe from Figure 3.2.1b that the minimum energy of the Pnma 

phase of PbTe occurs at a slightly larger volume than that of the NaCl structure. In the 

NaCl and CsCl structures, the volume of the unit cell can be varied without changing 

atomic orientation relative to the cell; however, in the Pnma structure, the primitive cell's 

ions were found (in this work) to relax to more stable orientations when the volume was 

changed, indicating instability in the structure due to a presence of a soft phonon mode 

[48]. The displacement of the ions is much more pronounced in the PbTe structure than 
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the PbSe structure, and the displacement of the ions in Pnma PbTe at the 4c site is shown 

in Figure 3.2.2. The structure of Pnma PbTe relaxes to a distorted FCC cell at about 1 

GPa. Therefore, the Pnma structure of PbSe is found to be metastable, whereas the Pnma 

structure of PbTe is unstable. In both cases, however, the transitions from NaCl (highly 

symmetric) to Pnma (less symmetric) to CsCl (highly symmetric) indicate the presence of 

soft phonon modes in the NaCl and Pnma structures. It has been shown recently that the 

NaCl structure has soft phonon modes, which have negative values for the Grüneisen 

parameter that contribute to the phase transition from NaCl to Pnma [49]. 

3.3 Structural Phase Transitions of PbSe and PbTe

In this section, the reliable method of plotting the pressure against the enthalpy 

[20], [50] is employed to find the structural phase transition pressures of PbSe and PbTe. 

The enthalpy is calculated as follows:

H =E+PV , (3.3.1)

where V was varied, and P was derived from Equation 3.2.4. The idea is to plot the 

enthalpy for all phases over a range of pressures; then, the structure with the lowest 

enthalpy at that pressure is the most stable. The pressure at which the enthalpy lines cross 

gives the structural phase transition pressure. Since the pressure range for the three 

phases is large, and the differences in enthalpy are rather small, it is easier to see 

transitions from a graph of pressure against the difference in enthalpy [see Figures 3.3a 

and 3.3b]. In this case, the pressure at which the transitions are calculated to occur 

corresponds to when the difference in enthalpy between two phases is zero. 
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As explained in the caption of Figure 3.2, the difference in the calculated 

transition pressures and the experimentally observed transition pressures can be attributed 

to the phonon contribution to the Helmholtz free energy. It is out of the scope of this 

work to calculate the phonon density of states, but the process of finding a more accurate 

transition pressure will be outlined here briefly. From calculations at each step of the 

ionic shifting in the Pnma phase, the phonon density of states can be calculated, using the 

method of Kunc and Martin [51]. Using a quasi-harmonic Debye model, the vibrational 

Helmholtz free energy Avib can be calculated from the phonon density of states [52]. 

Then, enough information is available to calculate the non-equilibrium Gibbs energy:

G∗=E+PV + Avib=H + Avib
. (3.3.2)

The phase transition pressures could then be calculated using the same method as above, 

but with the more accurate non-equilibrium Gibbs energy, instead of the enthalpy. Since 

the NaCl and CsCl phases are stable, Avib should be negligible, and G* would reduce to 

H. However, in the intermediate unstable Pnma phase, Avib should be significant enough 

to shift G* to a lower energy than H, resulting in more accurate transition pressure 

calculations. 
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(a) (b)

Figure 3.3. Enthalpy Difference vs Pressure for the Three Phases of (a) PbSe and (b) 
PbTe. (a) The black line shows the calculated enthalpy difference between the NaCl and 
Pnma phases. For PbSe, the line crosses 0 eV at a pressure of 9.3 GPa, corresponding to 
the structural phase transition from NaCl to Pnma. The arrow indicating 4.5 GPa is 
referring to the experimentally observed phase transition pressure. The difference in 
enthalpy of 0.06 eV can be attributed to the phonon contribution to the Helmholtz free 
energy. According to Equation 3.3.2, this has a direct effect on G*. Similarly, the red line 
shows the calculated enthalpy difference between the Pnma and CsCl phases at various 
pressures, where 19.2 GPa is the calculated phase transition pressure, and 16 is the 
phase transition pressure observed experimentally. Here, the enthalpy difference 
attributed to phonons is 0.05 eV. The graph for PbTe can be read in exactly the same way.  
The reader may notice a curve at the top of the black line. This is due to the shifting of 
ionic position in the Pnma phase of PbTe at various volumes (pressures) during 
relaxation, thus affecting the total ground-state energy calculations.

3.4 Band Structures, Splittings, Band Gaps, and Density of States for PbSe and

PbTe Under Pressure

The band structures of PbSe and PbTe in the NaCl structure (Figures 3.4.1a and 

3.4.1b) are well-known. Using the 2-atom primitive cell of Equation 1.2.3 and Figure 

1.2.1c, the Brillouin zone and common path traced is that of Figure 1.2.4a. As is clear 

from Figure 3.4.1, the band gap is at the L point in both materials, which are narrow-gap 

semiconductors. From the adjacent graph with total density of states (TDOS) and partial 
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(a) (b)

Figure 3.4.1. Band Structure and Density of States of the NaCl Structures of (a) 
PbSe and (b) PbTe. Both structures are narrow-gap semiconductors and are calculated 
at zero pressure, i.e., with lattice parameters which minimize the total energy. The black 
lines in the band structure are without SOI, whereas the red dotted lines are with SOI. In 
both cases the band gap is at the L point, and the conduction bands are dominated by the 
p orbital of Pb, while the valence bands are dominated by p orbitals of Se (a) and Te (b). 
The s orbitals of Se and Te are not significant in the region shown.

densities of states (PDOS), it can be seen that the valence bands are mostly composed of 

the p orbitals of selenium (3.4.1a) and tellurium (3.4.1b). The conduction bands in both 

cases are mostly from the p orbitals of lead.

If one looks closely, the second lowest conduction band (2nd LCB) and the second 

highest valence band (2nd HVB) exhibit splitting at the L point when SOI (Section 2.4) is 

taken into account in the calculation. In these bands, splitting occurs throughout the paths 

traced in the Brillouin zones. The resultant gaps are summarized in Table 3.4 and 

compared to experimental results [53], [54] for the Г and X points. The splitting 

comparisons indicate the accuracy of the method used. 
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Table 3.4 Splittings of 2nd HVB and 2nd LCB in PbSe and PbTe Due to SOI. Splitting 
is measured in eV.

a. T. Grandke, L. Ley, M. Cardona, Phys. Rev. B 18 (1978) 3847.
b. V. Hinkel, H. Haak, C. Mariani, L. Sorba, and K. Horn, Phys. Rev. B 40 (1989) 5549.

The key detail to notice in the band structures of the Pnma phases (Figure 3.4.2) is 

that the band gap becomes indirect. However, from the density of states, it can be seen 

that the character of the bands, i.e., the dominant orbitals contributing to each band, 

remains mostly the same. In PbSe, the lowest point in the LCB can be found between the 

Y and Г points in the Brillouin zone. The highest point in the HVB can be found between 

the Г and Z points. In PbTe, the lowest point in the LCB is between the Г and Z points, 

and the highest point in the HVB is precisely at the T point. Calculating the band gaps at 

varying pressures – using GGA with SOI – in this phase is fairly straightforward, and the 

trend clearly indicates that the band gap decreases with increasing pressure in this phase 

(Figure 3.4.3), as is found experimentally [16]. 

For the NaCl phase, it has been reported recently [55] that the band gap inverts 

when using an LDA calculation with SOI. While the calculations of the band structures in 

Figure 3.4.1 were performed using GGA, it is not always an improvement over LDA, as 

can be seen from the closure of the band gap when including SOI. Furthermore, no 

decipherable trend could be found when varying the pressure with SOI. Therefore, for 

this phase, the HSE functional was employed with SOI, and the trend of decreasing band 

gap with increasing pressure – that has been observed experimentally – is confirmed here 

                        This Work  
NaCl @L point @L point @X @X @X

0.8252 0.2297 0.6259 0.4551 0.6 0.5 0.75 0.55
0.4883 0.5978 1.0531 0.6666 1.15 0.9 1.1 1.1

Experimenta Experimentb

@Gamma @Gamma @Gamma
Eg 2nd LCB Eg 2nd HVB Eg 2nd HVB Eg 2nd HVB Eg 2nd HVB Eg 2nd HVB Eg 2nd HVB Eg 2nd HVB

PbSe
PbTe
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(a) (b)

Figure 3.4.2. Band Structure and Density of States for the Pnma Structures of (a) 
PbSe and (b) PbTe Under Pressure. The band structures of Pnma PbSe at 9.5 GPa and 
PbTe at 6.7 GPa clearly show indirect band gap semiconductors. While the overall 
structure is different in the two cases, the character of the bands is very similar. 

Figure 3.4.3. Energy Band Gap vs Pressure for 
NaCl and Pnma PbSe and PbTe. The overlap 
between the phases is due to the uncertainty of the 
exact transition pressure.
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Figure 3.4.4. Band Structure and Density of States for the CsCl Structures of (a) 
PbSe and (b) PbTe Under Pressure. PbSe at 16 GPa and PbTe at 13 GPa are clearly 
conductors, since the conduction band crosses the Fermi level in both cases. The 
character of the bands remains similar in all phases in both materials. 

theoretically (Figure 3.4.3). While the calculations here overestimate the band gap in the 

NaCl phase with HSE and underestimate the gap in the Pnma case with GGA, the trend is 

clearly linear and in agreement with experiment. Furthermore, the band gap is larger in 

PbTe than PbSe in the NaCl phase, and the gap is larger in PbSe than PbTe in the Pnma 

phase, as in experiment. The measured band gaps of PbSe and PbTe in the NaCl phase at 

4 K are 0.145 eV and 0.1715 eV, respectively [44]. The band gaps of PbSe and PbTe in 

the Pnma phase are unknown at low temperature, but at 273 K they are known for various 

pressures: PbSe peaks at about 0.4 eV at 6 GPa, and PbTe peaks at about 0.1 eV at 7 GPa. 

The CsCl structure was not included in Figure 3.4.3, because as can be seen from Figure 

3.4.4, it is a conductor. However, the thermoelectric applicability of the CsCl phase is 

unknown.
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Figure 3.4.5. Total Density of States for the Three Phases of (a) PbSe and (b) PbTe. 
The Density of states of the Pnma phase has been normalized to 2 atoms in both cases. 
The Pnma and CsCl phases are under pressure. Smearing values are greater here than in  
Figures 3.1.1, 3.1.2, and 3.1.4.

Improvement of thermoelectric efficiency can be predicted by analyzing the rate 

of increase of TDOS near the band gap [56]. For PbTe, the results shown in Figure 3.4.5b 

agree with previous calculations that the Pnma phase has a slightly greater rate of 

increase in TDOS near the VBM than the NaCl phase [57]. However, both the phases 

have a sharp increase at the VBM, so p-type doping could enhance thermoelectric 

efficiency in either case. The increase at the CBM is promising for n-type doping, as well, 

but the increase is not as great. For PbSe, the results shown in Figure 3.4.5a predict an 

enhancement of thermoelectric efficiency with p-type doping in the NaCl phase, while 

the Pnma phase of PbSe looks like a promising candidate for both n-type and p-type 

doping.
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3.5 Mechanical Properties of n- and p-type PbSe and PbTe in the NaCl

Structure

Part of the problem with using PbSe and PbTe in thermoelectric devices is their 

brittle nature. Hardness has been measured for NaCl PbTe and its related alloys, with and 

without dopants, in several cases, and it was found that brittleness is often associated with 

a higher Vicker's hardness value, and a more ductile material – which is a desirable 

attribute in a thermoelectric material –  typically has a lower hardness [55–62]. Doping 

Figure 3.5. Supercell with Impurity. Example of a  
64 atom supercell used in calculations in Section 
3.5. Here, one Pb atom is replaced by one Tl atom, 
resulting in a p-type material. The PbSe supercells 
have the same atomic orientation, with each Te 
atom being replaced by Se. Other impurities 
replace Pb, as well, with the exception of I, which 
replaces a Se or Te atom in PbSe or PbTe, 
respectively.
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the alloy Pb1-xSnxTe, with the p-type impurity Na, is found to decrease the zT value [62–

65]; furthermore, Gelbstein, et al. [61] have found that doping intrinsic PbTe with p-type 

Na increases the hardness and brittleness, while doping with In or PbI2 has no noticeable 

effect.

Since PbSe is found to be brittle [66], but available data in the literature is sparse, 

mechanical properties are calculated here for intrinsic and doped NaCl PbSe and PbTe. In 

order to simulate experimental dopant concentrations of about 1020 cm-3, which is an 

order of magnitude higher than is optimal for practical applications [62], the ab initio 

calculations of this work use 64 atom cubic supercells (Figure 3.5). To achieve lower 

impurity concentrations, larger supercells would need to be used, but the trends can be 

evaluated effectively with concentrations similar to 1020 cm-3. One Pb atom is replaced by 

an impurity, with the exception of I, which replaces one Se or Te. Using Na, In, and Tl (p-

type) and Bi and I (n-type) as dopants, which all contribute either one electron or one 

hole, corresponds to a carrier concentration of approximately 5 x 1020 cm-3. Second-order 

elastic moduli were derived from total ground-state energy calculations (Appendix A). 

From these values, bulk moduli (B), shear moduli (G), Young's moduli (E), and Poisson 

ratios (υ) were calculated using the Reuss-Voigt-Hill method [67] (Appendix B). The 

Pugh ratio, which can be found from G/B, indicates brittleness when G/B > 0.57 and 

ductility for G/B < 0.57 [68]. All of the above quantities are summarized in Table 3.5.1 

and compared, when possible, to experimental values [44], [60].
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Table 3.5.1. Mechanical Properties of NaCl PbSe and PbTe (Doped and Intrinsic). 
Experimental values are for single crystals. For doped systems, x = 0.03125. The lattice 
parameter a is in Å, and elastic constants and moduli are in GPa.

a. O. Madelung, Semiconductors: Data Handbook, 3rd Edn., Springer, Berlin,
Heidelberg (2004). 

b. J. E. Ni, et al. Materials Science and Engineering B 170 (2010) 58–66 .

Before calculating elastic constants for the doped systems, they were calculated in 

the intrinsic 2 atom cells with a dense k point mesh – 16x16x16 for PbSe and 15x15x15 

for PbTe. Finding these values within reasonable range of the experimental values from 

the literature, they were compared to calculations of the intrinsic material using a 64 atom 

unit cell and a 3x3x3 k point mesh. Since all elastic constants in the supercells came 

within 1.3% of values in the 2 atom cells, with the exception of C12 of PbSe, which was 

off by 7.6%, the calculations of the doped systems are more than sufficient for analyzing 

trends. To achieve identical results would require a higher number of k points in the 

supercell, which was not possible in these calculations, due to limitations in

NaCl
Type a C11 C12 C44 B G E Poisson G/B Behavior

Experiment
intrinsic 0.598 brittle

This Work
intrinsic 6.567 103.94 5.4922 14.0466 38.308 23.89 59.34 0.2418 0.624 brittle
intrinsic 6.567 103.234 5.42955 13.8588 38.031 23.65 58.77 0.2424 0.622 brittle

p 6.269 217.786 22.4058 26.3142 87.53 46.02 117.48 0.2763 0.526 ductile

p 6.548 102.677 6.29238 12.6398 38.42 22.4 56.26 0.256 0.583 brittle

n 6.55 104.259 5.69577 10.779 38.55 20.93 53.17 0.2701 0.543 ductile

p 6.544 104.478 5.21232 13.3669 38.3 23.38 58.28 0.2464 0.61 brittle

n 6.563 100.383 6.33108 8.92641 37.68 18.69 48.11 0.2872 0.496 ductile

Experiment
intrinsic

This Work
intrinsic 6.2256 114.833 12.3765 17.1202 46.529 27.05 67.98 0.2565 0.581 brittle
intrinsic 6.2256 114.53 11.4307 16.904 45.797 26.94 67.57 0.2541 0.588 brittle

p 5.938 243.18 32.3728 30.5925 102.64 51.62 132.62 0.2846 0.503 ductile

p 6.202 111.839 10.7301 15.5005 44.43 25.49 64.19 0.2592 0.574 brittle

n 6.202 115.448 9.42395 13.8328 44.77 24.57 62.31 0.268 0.549 ductile

p 6.197 111.654 6.83942 16.3875 41.78 26.7 66.03 0.2366 0.639 brittle

n 6.225 112.339 9.24434 12.6379 43.61 23.15 59.01 0.2745 0.531 ductile

PbTe 6.462a 105.32a 7.02a 13.221a 38.39a 22.95b 58.05b 0.264b

PbTe 2 atom cell
PbTe 64 atom cell
Pb

1-x
Na

x
Te

Pb1-xTlxTe

Pb
1-x

Bi
x
Te

Pb
1-x

In
x
Te

PbTe
1-x

I
x

PbSe 6.124a 123.75a 19.34a 15.92a

PbSe 2 atom cell
PbSe 64 atom cell
Pb

1-x
Na

x
Se

Pb1-xTlxSe

Pb
1-x

Bi
x
Se

Pb
1-x

In
x
Se

PbSe
1-x

I
x
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Table 3.5.2. Elastic Constants and Moduli for the Pnma Structures of PbSe and 
PbTe. Quantities are measured in GPa. 

Table 3.5.3. Elastic Constants and Moduli for the CsCl Structures of PbSe and PbTe. 
Quantities are measured in GPa. 

computational resources. It should be noted that in the Na doped case, the lattice 

parameters decrease by about 5%. It is unclear whether or not this is observed 

experimentally; however, when relaxations are performed without changing lattice 

constants, PbSe and PbTe with the Na impurity are found to be brittle. 

That being said, with the exception of the fully relaxed Na doped system, the 

results calculated here are in excellent agreement with the available experimental data in 

the literature. Looking at the G/B Pugh ratios, it can be concluded that the Na, I, and Bi 

doped materials become significantly more ductile, and In and Tl doped materials retain 

the brittleness of their intrinsic counterparts. Na and In doped PbTe hardness values are 

known experimentally [59], [61] but are not as well-known for Bi and Tl doped PbTe. 

Furthermore, PbSe has not been studied nearly as extensively as PbTe. Low brittleness 

would be particularly important for Tl doped PbSe and PbTe, since they have excellent 

potential thermoelectric applicability. However, the calculations performed in this work 

indicate that both Tl doped PbSe and PbTe are right on the borderline between ductility 

C11 C12 C13 C22 C23 C33 C44 C55 C66
91.9603 22.2255 12.3191 92.272 65.1182 96.3791 18.8646 70.9043 4.40652
67.4009 43.2831 19.9225 73.4444 32.5082 81.4094 65.8156 23.6703 19.8131

B G E Poisson G/B
52.2 21.9 57.65 0.3159 0.42
45.55 26.51 66.6 0.2563 0.582

Pnma

PbSe
PbTe

PbSe
PbTe

C11 C12 C44 B G E Poisson G/B
167.792 57.8421 26.5704 94.49 35.71 95.19 0.3322 0.378
90.4056 69.3775 29.2705 76.39 19.42 53.72 0.3828 0.254

CsCl

PbSe
PbTe
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and brittleness, with PbTe being slightly more brittle and both slightly more ductile than 

their intrinsic materials.

The calculations summarized in Table 3.5.1 were carried out for intrinsic Pnma 

and CsCl PbSe and PbTe, as well. The results are listed in Tables 3.5.2-3. The results 

indicate that all cases are ductile, except for Pnma PbTe. Due to the TDOS of Pnma PbSe 

indicating enhancement of zT by doping, and the finding that Pnma PbSe is more stable 

than its PbTe counterpart, the high ductility of this phase is very promising for 

applications.



CHAPTER 4:

CONCLUDING REMARKS

A summary of DFT was given – using PAWs and employing GGA for exchange 

and correlation – followed by an explanation of how DFT is implemented in the VASP 

code. VASP was used for all calculations of total ground-state energy and eigenvalues in 

this work. Effects of pressure on structural parameters, structural phase transitions, and 

electronic and mechanical properties of PbSe and PbTe were studied and found to agree 

very well with available experimental data, and the predictions found here should foster 

further developments in the field. Pressures were obtained by varying the lattice 

parameters in the three phases of PbSe and PbTe and taking the derivative of the energy 

in the Birch-Murnaghan equation of state.

The calculated lattice parameters agree remarkably well with reported values in 

the literature, for all phases of both materials. The Pnma phase of PbSe was found to be 

metastable, with a TDOS indicating possible thermoelectric enhancement from n-type 

doping, while Pnma PbTe was found to be unstable. Furthermore, the calculated Pugh 

ratio revealed that Pnma PbSe is very ductile, so it is concluded here that further 

thermoelectric studies of PbSe Pnma are warranted. Due to the increased thermoelectric 

possibilities of both materials under pressure, it is important to determine a precise 

transition pressure from NaCl to Pnma. Here, it was found that phonons play an 
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important role in the NaCl and Pnma phases of PbSe and PbTe, and approximations to the 

phonon contribution to the non-equilibrium Gibbs energy in the Pnma phase were made. 

Further studies are under way to determine a more precise phonon contribution to the 

non-equilibrium Gibbs energy of the intermediate phases, and thus find more accurate 

transition pressures in group IV-VI semiconductors. 

Pressure effects on the band structures and band gaps have been calculated for 

PbSe and PbTe, and experimental findings that the band gap decreases with pressure have 

been confirmed. Splitting, of the 2nd HVB and the 2nd LCB bands at various symmetry 

points in the Brillouin zone of zero pressure NaCl PbSe and PbTe, due to SOI, has been 

observed. The differences in eigenvalues at those points have been calculated and 

compared with available experimental results, all confirming the accuracy of the methods 

used.

Calculations of brittleness in doped NaCl PbTe confirm experimental results, 

while those of PbSe are ready to be confirmed by experiment. Thallium doped PbSe and 

PbTe, which have a high zT value, were found to be slightly more ductile than their 

intrinsic counterparts but still brittle. The calculations in this work suggest that Iodine 

doped PbSe and PbTe may withstand pressure without substantial structural damage; 

therefore, their thermoelectric efficiency should be evaluated under pressure in future 

studies.



APPENDIX A:

CALCULATION OF SECOND ORDER ELASTIC MODULI

The elastic constant tensor is a 6x6 matrix, where each term in the matrix has 

units of pressure and is the second derivative of the total ground-state energy between 

atoms [69], with respect to stress tensor components λ, divided by the volume V:

C ij=
1
V

(
∂

2 E
∂λ i ∂λ j

) . (A.1)

The subscripts of λ indicate the six possible variations in atomic position coordinates. For 

example, in a simple cubic system, if i = xx and j = xx, this would correspond to the 

strain on the cube when force is applied in the x direction to the face of the cube that is 

normal to the x axis. Cyx is the strain on the cube when force is applied in the y direction 

to the face of the cube that is normal to the x axis. Czx is analogous to Cyx, etc. This force 

can be applied via ab initio methods by changing the atomic positions to non-equilibrium 

locations. The other three values for i and j (i.e., i = xy and/or j =zx) correspond to 

orthorhombic and monoclinic distortions to the cube. 
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APPENDIX B:

CALCULATION OF B, G, E, AND υ

Following the Reuss-Voigt-Hill approximation [67], B, G, E, and υ are calculated 

from the elastic constants of Appendix A by two different methods and then averaged 

together. Here, Voigt notation will be used, where 1 = xx, 2 = yy, 3 = zz, 4 = xy, 5 = yz, 

and 6 = zx. The following equations were taken directly from Aydin, et al. [70], and have 

been shown to be effective in Pnma symmetries [71]:

BV =
1
9
[C11+C22+C33+2(C12+C13+C 23)] ; (B.1)

GV =
1
15

[(C11+C22+C33)+3(C 44+C 55+C66)−(C12+C13+C23)] ; (B.2)

BR=Δ [C11(C 22+C 33−2C23)+C22(C33−2C13)−2C 33C12

+C12(2C23−C12)C13(2C12−C13)+C23(2C13−C23) ]
−1

; (B.3)

GR=15 {4 [C11(C 22+C33+C23)+C 22(C33+C13)+C33 C12−C12(C 23+C12)

-C13(C12+C13)−C23(C13+C23)] }/Δ+3/(
1

C44

+
1

C55

+
1

C66

)
,(B.4)

where

Δ=C13(C12C23−C13C 22)+C23(C12 C13−C 23C11)+C33(C11 C22−C12
2 ) . (B.5)

Finally,

B=
BV +BR

2
; (B.7)
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G=
GV +GR

2
; (B.8)

E=
9 B G
3B+G

; (B.9)

and,

ν=
3B−2G

2(3B+G)
. (B.10)
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