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Multiplicity results for positive solutions to
non-autonomous elliptic problems *

Ning Qiao & Zhi-Qiang Wang

Abstract

We are concerned with the multiplicity of positive solutions for non-
autonomous elliptic equations with Dirichlet and Neumann boundary con-
ditions. Using Ljusternik-Schnirelmann theory, we show that the number
of solutions is affected by the shape of the potential functions.

1 Introduction

This paper is devoted to the study of multiplicity results for positive solutions to
non-autonomous semilinear elliptic equations with a small diffusion coefficient.
Consider the boundary value problem

—dAu +u = K(z)uP~2u, u>0 inQ, (1.1)
Bu=0 on 09,

where  is a bounded domain; d is a small positive parameter; K(x) > 0 in
and is a C° functionwith0<a<1;2<p<ﬁ—gifN23,p>21fN:1,2;
and Bu is the boundary operator which is either Dirichlet, i.e., Bu = u|sq, or
Neumann, i.e., Bu = %lag.

In recent years, singularly perturbed elliptic problems have been studied
extensively, [13, 14, 7, 9]. Aiming at applications of mathematical models in
biological pattern formations, Lin, Ni and Tagaki discovered the single peaked-
ness of the least-energy solutions for nonlinear autonomous Neumann problems
when a small parameter tends to zero. After that, similar phenomena have been
revealed in singularly perturbed settings for nonlinear Dirichlet problems and
nonlinear Schrodinger equations ([16, 19]). Motivated by the work in [14], Ren
[18] studied least-energy solutions for the non-autonomous Problem (1.1) and
showed that the least-energy solution of (1.1) will develop single peak as d ap-
proaches zero. The location of the peaks is determined by the non-autonomous
term of the equation. Therefore, in most situations the effect of K(z) over-
rides the effect of the geometry of 2. The goal of this note is to establish some
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multiplicity results on the existence of non-constant positive solutions of (1.1)
and to show how the number of positive solutions is affected by the topology
of the preimage of K(z), i.e., by the shape of the graph of K(x). Our work is
motivated by the above mentioned papers, especially by [18]. Define

K; = I;lef%(K(x), Ky = ;Ié%éK(l‘),

and
Ko={z€Q:K(z) = K1}, Kpq ={r € 0Q: K(z) = K3},

closed subsets of Q and 9 respectively.

In the following, we denote by caty, (x,)(Kq) (resp. caty, (k) (Kaa)) the
Ljusternik-Schnirelmann category of Kq in N,(Kq) (resp. Ksq in N.(Kaq)),
where N, (-) denotes the closed r-neighborhood of a set. r > 0 will be chosen
and fixed. Our main results are the following theorems.

Theorem 1.1 Letr > 0 be such that 2r < dist(Kq, 0Q) and assume KqNoS) =
(. Then for d sufficiently small, (1.1) with Dirichlet boundary condition has at
least caty, (k) (Kq) distinct solutions. Furthermore, each solution uq has at
most one local mazimum point Py on Q satisfying

lim sup dist(Py, Kq) = 0.
d—0

Theorem 1.2 Let r > 0 be fized and assume K1 > 257 Ks. Then for d suffi-
ciently small, (1.1) with Neumann boundary condition has at least caty, (k) (Kq)
distinct non-constant solutions. Furthermore, each solution ug has at most one
local mazimum point Py on Q which satisfies

lim sup dist(Py, Kq) = 0.
d—0

Theorem 1.3 Let r > 0 be fized and assume K1 < 257 Ks. Then for d suffi-
ciently small, (1.1) with Neumann boundary condition has at least caty, (i ,q)(Ko0)
distinct nonconstant solutions. Furthermore, each solution uq has at most one
local mazimum point Py on Q which lies on the boundary of Q and satisfies

lim sup dist( Py, Kaq) = 0.
d—0

Theorem 1.4 Let r > 0 be fired and assume K1 = 23 Ky. Then for d suffi-
ciently small, (1.1) with Neumann boundary condition has at least

caty, (ryq) (Koa) + caty, (ko) (Ka) distinct non-constant solutions. Further-
more, each solution ug has at most one local maximum point Py on Q which
satisfies

lim sup dist( Py, Kga U Kq) = 0.
d—0
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Remark If K and N, (Kq) are homotopically equivalent, then one has
caty, (ko) (Ka) = catg,(Kq). This would be the case when the level sets of
K are regular. On the other hand, it is easy to construct examples in which
caty, (kq)(Ka) may depend on 7 and may tend to oo as 7 — 0. In these cases,
the number of solutions for (1.1) tends to oo as d — 0. These features also hold
for the Neumann problems.

2 Preliminaries

Throughout this discussion, let @ € RY be a bounded domain with a smooth
boundary. We seek for positive non-constant solutions of (1.1). To this end,
let H be the Hilbert space Hj(Q) if Bu = ulpq or HY(Q) if Bu = 3%|sq. It is
well known that the solutions of (1.1) correspond to the critical points of the
following functional defined on H,

1

Ja(u) = 5 /Q(al|Vu|2 +u?) dx — %/QK(:U)M” dx . (2.1)

By using the Mountain Pass Theorem ([17]), the authors of [14] and [18]
proved the existence of a positive non-constant solution ug of (1.1). Here, in
order to establish multiplicity results, we consider a constraint problem for J;(u)
on the Nehari manifold (e.g. [23]),

Vi = {ue H\{0}:< Jj(u),u >=0}
{ue H\{0}: /Q(d|Vu|2 +u? — K()[uf)dz = 0}

Clearly, the critical points of J; are in V. We define

cq = uiéléd Ja(u). (2.2)

By standard methods (e.g. [23]), ¢q is achieved and therefore gives rise to a
solution of (1.1). Solutions corresponding to cq are called least-energy solutions
whose behaviors are studied in [18]. We shall prove the existence of multiple
critical points of J4 (therefore multiple solutions of (1.1)) with critical values
close to ¢q. Our strategy is to estimate the topology of a certain level set of Jy,

say
J;‘H_e = {u eVy: Jd(u) <cqg+ E} (23)

for some appropriate ¢ > 0 depending on d. To outline our strategy more pre-
cisely, let us consider the Dirichlet problem. We shall prove that for d sufficiently
small

cat (J34T) >2 cat (Kaq). (2.4)

J;d+€ NT(KQ)

Then standard critical point theory yields the existence of at least 2 caty, (x,)(Kq)
critical points in [c4, c4+€]. An energy estimate shows that none of these critical
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points changes sign in 2. By the maximum principle, these solutions are strictly
positive or negative on €. It follows that there exist at least caty, (k) (Kq) pos-
itive solutions of (1.1). More precise information will be given in §3.

Now, we give some preliminary results. The ground state solution to the
following problem plays an important role in the proof of our main results. First,
we summarize known facts about positive solutions to the equation ([6, 10, 11])

—Aw+w=wPt inRVN, (2.5)
Proposition 2.1 Equation (2.5) has a solution w satisfying
i) we C](RN) N HYRY) and w > 0 in RV,

i) w is spherically symmetric: w(z) = w(r) with r = |z| and dw/dr < 0 for
r>0.

i11) w and its first derivatives decay exponentially at infinity.

i)

Jan (IVw|? + w?)dz " Jen (IVul? + u?)dz
m = P - 11;1 N 2 ’
(Jew lwiP)? WEHT®Y) ([ [ulP)?
and
1 1 p—2 _p_
Iw:—/ Vw2+w2dm——/ wPdr = ——(m)»—2. 2.6
=5 [ Vel +uyio— [ o mE (20

Frequently we rescale the problem (1.1). So that there is a one to one
correspondence between the solutions of (1.1) and solutions of

—Au+u = K(Vdz)|uP~2u in Q4 (2.7)
Bu=0 on 004,

where
Qi={zeRY :Vdz e Q}. (2.8)

Then (2.7) is associated with the functional defined by

1 1
Id(u)=§/ﬂ (|Vu|2+u2)dac—5/ﬂ K(az)|ulPdz forucUs — (2.9)
d d

where
Ug= {u € H'(Q4)\{0} : / (|Vul? +u?)dz = / K(\/Eac)|u|pdac} . (2.10)
Qq Qq
For u € Vy, define o(u)(x) = u(vdz). Then o(u)(z) € Uy. Moreover, the proof
of the following lemma is a simple computation.
Lemma 2.2 For each u € Vy, Iy(o(u)(z)) = d=N/2J4(u), and therefore

. _ g—N/2;
%Zfld d l‘I/ldf Jg.
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3 Asymptotic Estimates

This section is divided into three subsections.

3.A. Dirichlet case

We first consider Dirichlet problems in this subsection so that H = Hj(£2) and
we give some asymptotic estimates as d — 0. Assume Ko N 9Q = 0, i.e.,
max, cq K (z) is attained in the interior of Q. Let 1 be a smooth non-increasing
function on [0, co] such that n(t) = 1,0 <t <1;n(t) =0, ¢t > 2 and |7/| < 2.
Also, let n,(-) = n(%) for r > 0 such that 2r < dist(Kq,09) and let ¢4(y) be
the function on €2 defined by

Ya(y)(z) :aymux—yw-w(%y) €V (3.1)

with y € Kq fixed, where

1

eV (2 = yDw (=21 + Ine(le = ylw(Z2)*)dx ] 72

= To K@l (e — g2 pdz 32
Proposition 3.1 ¢4 € C(Kq, Vy) and
Ja(Wa(y)(@)) = d/?[K (y) "7 2 I(w) + o(1)] (3.3)

as d — 0 uniformly for y € Kq. Here w and I(w) are given in Proposition 2.1.

2
Proposition 3.2 (a) limg,g d=N2¢; = K, " ?I(w), where cq is defined in

(b) Letd, — 0 and u, € U, := Uy, be such that

. p—2 —523
nth;o TS 0. ([Vun? +u2) de = K; P I(w) = A. (3.4)

Then, there exists y, € RN with the property that for any € > 0,3R > 0 such
that

. p—2 2., .2
lim —— [Vun | +ui|de > A—e. (3.5)
n—oo 2p BR(yn) [ n}

Moreover, for every positive and small §, there exists Cs > 0 such that

1
lim sup dist g, ——(N5(Kq)) ) < Cs. 3.6
171111Hsot<13p is (y @( s( Q))) 5 (3.6)

Notice that the center of mass of u € V4(Q2) in terms of the LP norm is

B Jo lufPzdz

= Yu € V.
Jo lulpdz U v

Bw)

Also notice that 3 is continuous in v and 3(u) belongs to the the convex closure
of Q).
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Proposition 3.3 For r > 0 fized, there exist e > 0 and d; > 0 such that for
any 0 < d <dy and 0 < € < €1 we have

Bu) € Ny(Kq) Vue Joated™”,

Proof of Proposition 3.1 Proving that g € C(Kq, Vy) is straightforward.
To prove (3.3), we proceed as follows. First, let us note that

Taa)(a)) = 5 [ (@904 +03)de — = | K@)luapda (3.7

—goﬂ T — wﬂQ T — wx—ny
T y/ﬂ(dlv(m(l yl)(\/a))l + | (] yl)(\/g)l )dz.

By (3.2), we have
s oz~ DR + b — g (37 )da
’ Jo K@)l (ja = yNw(E) [pda ~

Next, we find some estimates for ozZ_Q. Consider the numerator of a§_2,

N= / (dIV (0 (| — wa(%y))'Q + [ne (|2 — y|>w<x¢‘ay>|2>dx.

By definition,

11
V(n,w 2:VTQ-wQ—l—?T-w'VT-Vw-——l——f-VwQ.
IV (nw)|* = |V, n n Jata" |Vw|

Therefore,
N = / n2(|Vw|? + w?)dz + / (d|Vne? - w? 420, - w- Vn, - Vw - Vd)da
Q Q
= L+ 1.

Letz:x—y,h:ﬁandew:Q_—{dy}. Then

5

hvd
I = dN/2/ n2(|7f|) (IVw(R)|* + w?(h)) dh.
Qd,y
By a property of the ground state solution w, Ve > 0, 3R; > 0 such that

hvVd €

/ w2 ) (VP (vem? +w2m) dh < &
Qq4,yN{h:|R|>R1} r

For such R, there exists d; > 0 such that for each d < dj,

|/ (V) (1) v +w2(0) dh
Qq,yN{h:|h|>R1} r

- [ (¥l + ) )an] < 5.
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provided v/di < #-, i.e. Ri/di <r and so n*(|hv/d|/r) = 1. Therefore,

L= dN/2(/ (Vo (B + w(h))dh + o(1)).
]RN
Notice that

L - /(d|Vnr|2~w2+277r-wvnr-Vw'\/a)dm
Q

Q" {hi 25 <[hI< r

|hVd]
r

(V=8 )

2r
Vd

+ 2Vdn(

dN/2 /
Q. "{h: 2= <|h|<

dN/2/ C -V (|Vw(h)[* + w*(h)) dh
Qa,yN{h: 5 <|hI< 25}

)-w(h) - V- Vw)dh

<d4w2(h) +ovdw(h) - 2 |Vw|> dh
} r

r2

IN

2r
Vd

IN

IA

% o(1),
where C' = max{%(\/a +1),1}. For the denominator of af~?, we have

b= /QK<x>|m<|x—y|>w<x‘y>|pdx

v
= e [ KWy

Now, Ve > 0,3dR5 > 0 such that

)P - |w(h)|Pdh.

K(Vdh+y) - |n(

Yo o) P

/Qd,yﬂ{h=h|2R2}

< ma;(K(x)/ |w(h)|Pdh < :.
e Qq,yN{h:|h|>R2} 2

On the other hand, by the continuity of K (x), for the above € and Ry, there exists
4 > 0 such that |K(z) — K(y)| < m whenever |z — y| < d; also, there
R

exists do > 0 with /day < 7 such that if d < dp then |v/dh| < min(8, v/d; Rs).
Hence, for d < ds

(K(Van+y) — K@) lo(h)dn

/Qd,yﬁ{h:h|<R2}

/ K(Vah +y) ~ K () lw(h)Pdn
Qdyyﬂ{htlh‘SRQ}

< ¢

- QI]RN |Ld|pdh RN
€

5"

|w|Pdh
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Therefore,

Vdh

r

K(Vdh+y)|- (=) - [w(h)]” dh

Vdh

r

/Qd,yﬂ{h:hlng}

< / K(Vah+y) - K()| - In(
Qd’yﬂ{htlh‘SRz}
Vdh
+ / K@) - jwmpdn
Qa,yN{h:|h|<R2} r

)P w(h)[” dh

IN

/ K (Vah +y) = K@)l |()]dh

Qq,yN{h:|h|<R2}

+ [ K y)w()Pd
Qa,yN{h:|h|<R2}

< +/ K()|w(h)[? dh.
Qdyyﬂ{htlh‘SRQ}

[\ e)

It follows that
D = dN/? [K(y)/ |lw(h)|Pdh + o(l)] .
]RN

Hence, using (2.5) we obtain

[fmﬂww +w2(h))dh } 2
K (y) Jon [0(R)Pdh + o(1)

= K@) 7 [1+0(1)] (o1)=0 asd— 0).
Finally, using (3.7) we get

Ja(ba(y)(@))
= [K@) 721+ o0(1))] [’%ﬁdm / (Ve(@)]? +w?(2))dz +of1)
/2 (K(y) 77 1w) +o(1))

where the last equality follows from (iv) of Proposition 2.1 &
To prove Proposition 3.2, we need the following results of P.L. Lions([12]).

Lemma 3.4 ([12]) Suppose {u,} is a sequence of measures on RY such that
tn >0, limg, oo fRN pndx = A. Then there is a subsequence {pn} (still denoted
by {n}) such that one of the following three mutually exclusive conditions holds.
(1°) (Compactness) There exists a sequence {yn,} C RN such that for any e > 0
there is R > 0 with the property that

lim Undx > A — €.

"% JBr(yn)
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(2°) (Vanishing) For all R > 0

lim ( sup / pndz) = 0.
Br(y)

n—oo yGRN

(3°) (Dichotomy) There exist a number A, 0 < A < A, a sequence {Ry} going
to infinity, {yn} C RN and two non-negative measures {ul}, {u2} such that
0 < il + 122 < pn, supp(L) C Br, (3), supp(2) © RM\Bgpy (), and as
n— 0o

pn(RY) = A, 2 (RY) » A— A

Lemma 3.5 ([12]) Let R > 0 and 2 < ¢ < 2N/N — 2. If {u,} is bounded in
HY(RYN) and if

sup / |up|?dz — 0 as n— oo,
yERN J Br(y)NQ

then u, — 0 in LP(RN) for 2 < p <2N/N — 2.

Proof of Proposition 3.2 Part (a) is proved in [18][Prop. 3.1] though a
different variational formulation was used in there. To prove part (b), we define
a family of measures on RN by p, = %(|Vun|2 +u2) (with zero extensions
outside Q) and apply (1°) of Lemma 3.1.

Claim 1 For u,, vanishing (2°) in Lemma 3.4 cannot happen. Otherwise, by
Lemma 3.5 there exists a subsequence still denoted by {u,,} going to zero in LP?

for 2 < p <2N/N — 2. Then, using (3.4) we obtain

-2
0 lim p—Kl/ |t |Pd
n—oo  2p RN

-2
> limsupp2p / K(v/dpz)|un|Pdz
RN

n—oo

= A>0.

This contradiction proves Claim 1.

Claim 2 For p,, Dichotomy (3°) in Lemma 3.4 will not occur. Otherwise,
let ¢n, € C§(RYN) such that ¢, = 1 in Bg, (yn), ¢n = 0 in BS; (yn) and
0< ¢, <1,|[Vey| < Ri Let up = dptn + (1 — ¢p)upn =: ul + u?. Then, using
(3°) of Lemma 3.4 we have

[ AVARLY,
SRS
EUET
=
2P

!

(S

and

/in(Ban (yn))
1 (Bsg, (yn))
prn(RY) — A — A,

AVARLY,
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where I, is defined in (2.9).
Let A,, = Bag, (yn)\Bg,, (yn). Then,

p—2
2p Ja,

= 1a(®Y) = 10(Br, (40)) — 10 (B, (4) (3.8)
< un(®Y) = gl ®Y) — 2RY) 50 asn - oo,

(|Vun|* +u?)dz

Thus, by Sobolev embedding theorem, we have [ A, |un[Pdx — 0 as d,, — 0.
Consequently,

/K(\/dna:)|un|pda:

RN

= / K(Vdypx)|ul +u?Pdx
RN

_ / K(«/dnx)|u;|pda:+/ K(v/dna)|u2 Pdz
BRn(yn) B

an (yn)

+/ K(\/dpz)|u,|Pdz (3.9)

Anp

~ / X - K(Vadyz)ulPde + / & Ko [Pdz + of1),
RN RN

where x; and X7 are the characteristic functions on Bg, (yn) and BSp (yn)
respectively. Next, observe that

/ (Vi ? + 12 )de = / (V|2 + (ud)?)dz + / (Va2 ? + (u2))dz + M,
RN RN RN

where M, :=2 [on(Vuy, - Vu2 +uj, - u2)dz — 0 as d, — 0 because of (3.8).
Now,

A = liminf I, (u,)

n—oo

> liminf Iy, (ul) 4+ liminf I, (u?) + o(1)
n—oo

n—oo
> A+ A-A=A,

1 2

(here w,,uZ may not be on the manifold U,). Hence,
A= lim I, (ul),A— A= lim I, (u?). (3.10)
Let
= [ (VP @) de - [ K/l
RN RN
and

%21:/ (|vui|2+(ug)2)dx—/ K(y/dp)|2 [Pda.
RN RN
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By the fact that u,, € Uy, (3.8) and (3.9) we have
Tn = =7+ 0(1). (3.11)

Now, we conclude our proof of Claim 2 by showing that (3.11) leads to a con-
tradiction. Let «,, > 0 be such that oznu,lI € U,. That is,

ag/ K(\/dnx)|u;|pdx=ag/ (IVub[? + (ub)?) da.
RN RN

Case 1: After passing to a subsequence if necessary, assume . < 0. In this
case,

a{’;2/ K(\/dpx)|ul [Pdz / (|Vu,11|2+(u,11)2) dz
RN RN

/ K(y/dno)ul [Pda
RN

It follows that ., < 1. Hence, by the monotonicity of I, on U,, (3.10), and by
Lemma 2.2, we have

IN

AN ¢y, < Iy (anul) < Iy (ul) = A < A,
where cq, is defined in (2.2). This is a contradiction because
d N2y, — A> A

Case 2: A similar argument holds for 'y,% <0.

Case 3: If both 7} and +2 are positive after passing to a subsequence then,
from (3.11) it follows that v} = o(1) and 72 = o(1). If a;, < 1+ o(1), we
apply similar arguments to those used in Cases 1 and 2. Now, suppose that
lim,, oo an = g > 1. We claim that along a subsequence if necessary, we have

lim K(\/dyz)|ul[Pdz > 0.
RN

n—oo

Otherwise,

i, e =l f (Vo (wn)) do =0,
which implies that ~
A= lim 4} =0,

n—oo

that is impossible. Now, since v} = o(1) and a,ul € U,, we have

0 = tim [ [ (VP do - [ K(VdolPds]
= i ek [ K(Wa@upds = [ K/l

= (27?2 =1) lim K(dyz)|ul|Pdz > 0,
RN

n—oo
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again a contradiction. Thus, we have proved that dichotomy cannot happen
and therefore (3.5) holds.

Next, we turn to proving (3.6). If the conclusion were not true, without loss
of generality, we may assume that there is ¢ > 0 with {\/Ld7 |z € Q, K(z) >

K, —a}C \/—(N(S(KQ)) C Q,, such that
L x
nh_{r;()dlst <yn,{\/—d_n |z €, K(z) > Ky — a}) =00

By the first part of the Proposition, there exists v, € RY such that for any
€ > 0,3dR > 0 with

-2
lim 2~ [[Vun|* +ul]de > A—e.
n—oo  2p Br(yn)

Taking €,, — 0 we can find subsequences d,,,, u,,, and R,, — oo such that

x
dist (yn A———=12eQ, K(x)>K; —a}) > 2R,
" V dnm
and
p—2
2p BRm (ynm)

For simplicity, we denote these subsequences by d, and u,. Let w,(z) =
anMr(|z — Yn|)un(z), where oy, is to be chosen such that wy,(x) € U,. Then, it
is easy to see that a,, =& 1 as n — oo and

2
MNm

[V, > +ul dz > A— e, for m large.

lim Iy, (un) = lm Iy, (wy).

n—0o0 n—oo

‘We shall show that
lim Iy, (wn(z)) > (K1 —a) 72 I(w).

n—oo
In fact,
1
I, (wy) = 5/9 (IVw, > + w )dw—;/ﬂ (Vdnz)|wp|Pdx (3.12)
_ p—2, . 2 . 2\ 4
= 5, % (IV(nr - un)® + IR - un|?) dz
P Qn

2
_p2 (o (VR w)P ot e P\ T
2p fQ (Vdnz)|nR - un|Pdx
[ (90 )+ o)

n

P2 s (fg (V- )+ 1 - ) )

an NR - Un|Pdx

Y

2p
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: / (V- wn)? + |11 - 12
Q

o 2(K1 R (fRN(lV(nR - un)|® + nn "Um|2)dm> e
(f]RN [nR - uplPdx)»

- : (VU + u?)de ) 7
> P2 gyt [ e Jre(Vel Ao
w€HIRY) - (fon ulPdz)?

where m is defined in Proposition 2.1. Now we a contradiction follows from

2
Ky 7 I(w) = lim I, (u,) = lim Iy, (wy) > (K1 —a) 72 I(w).

n—oo n—oo

This completes the proof of Proposition 3.2. &

Proof of Proposition 3.3 If this proposition were not true, there would exist
dn, — 0, €, — 0 and u,, € V, such that Jg_ (u,) < cq, + endﬁ[m, cn = Bun) &
N,(Kgq). By Lemma 2.2, v,, = up(v/dnz) € U,, and
_ 2
lim K (v dypx)|vp|Pde = K| P72 I(w).
n—oo

Choose a > 0 such that {z € Q : K(z) > K;—a} C Q. By Proposition 3.2, there

exist a subsequence, still denoted by v,, a sequence y, € RY, and a constant
C, > 0, such that for each € > 0, there is R > 0 with

lim K(\/dpx)|va|Pde > K, "2 I(w) — €

n—oo BR(yn)an

and
nler;odist(yn,{\/id_n 2 €Q, K(z) > K1 —a}) <C,.

Therefore, there exists t, € {z € Q| K(x) > K; — a} such that

lim dist(yn,

nivos Van

By passing to a subsequence, we may assume that ¢, — ¢t € Q with K(¢) >
K7 — a. Without loss of generality, we assume that ¢, = B(u,,) satisfies ¢,, — 0
in RY. By a direct computation we have

Cn
v |Padr = / vy, |Pdz.
| o [
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By the assumption ¢, = 8(un) € N.(Kq), we have t # 0. From (3), we have

K; lim |vnPdz > lim K(v/dpz)|v,|Pdz(3.13)

N0 J BR(yn )N N0 J Br(yn )Ny,

__2
> K 7 I(w) -

It follows that

K, " ?J(w -
lim |vp|[Pdz > 7()—6/214—6/
n—0oo BR(yn)mQ Kl
_ P—2
wheree = =5, A = w For simplicity, we assume that t = (1,2 ... V)

with tl > 0. Wlthout loss of generality, assume

lim |vp[Pdx = B > A.
n—o00 Q.

From (3.13), Ve > 0,3R; > 0 such that

lim |vn|pda: >A—e

n—oo BR
1

Let s = min{y* | (y',%,...,y") € Kq}. Then, for n large we have

1
Gy s =
vn [Pdx z v, [Pdx
T innl o, |vn|

I
SN
=
5
2
=
3
=
S
.
~
g
_|_
S~
=
s
S
=~
8

where we use (3) so that

/ |on|Pda < e.
n\BR1 ( \}Z—n)

Hence, we get

c/ lon[Pdz > (1 — RyJdn) (A — €) — |sle.

n

Letting n — oo and € — 0, we obtain 0 > ¢! > 0, a contradiction. O
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3.B. Neumann case with K; > 20=2/2[,

We shall state three propositions which are analogous to Propositions 3.1-3.3.
The proofs of these results require minor changes from the ones of Section 3.A.
Thus, we will do only sketches in this and the next subsection. We assume that
H = HY(Q), r > 0 such that 2r < dist(Kgq, Q) and

max K (z) > 2" max K (z).
€N o0

Proposition 3.6 Let ¢q4 be given in (3.1). Then g € C(Kq, V4(Q2)) and
Ja(aly)(x) = dVP[K (y)" 72 1(w) + o(1)]

Proof. By (3), Ko N9dQ = 0. Then, the same proof as that of Proposition3.1
works here since 2r < dist(Kq, 9Q). We omit the details. O

_ 2
Proposition 3.7 (a)limg_od "/?c; = K, "2 I(w), where cq is defined in (2.2).
(b) Let d,, — 0 and u,, € U, be such that

_9 2
lim 22 / (IVu,|> +u2) dz = K; " I(w) == B.
n—oo 2p  Jq

Then, there exists y, € RY such that for any ¢ > 0,3R > 0 with

-2
lim p_/ [[Vun|® +ul] dz > B — €
BR(yn)

n—oo  2p

and such that for any § > 0 small there exists Cs > 0 with

1
lim sup dist | ¥, ——=(Ns(K < Cs.
m sup (y \/@( 5 Q))) 5

For the proof of of this proposition we modify the proof of Proposition 3.2
and use the lemma from [21], which is analogous to Lemma 3.5.

Lemma 3.8 Let Q C RY be a bounded domain with smooth boundary. Let
dy, — 0 and u, € H*(2,) such that ||uy| g2 < C for some C > 0 and for all n.
If for some 2 < ¢ < 1\2,—]_\[2 and for some R > 0,

lim sup/ |un|%dz | =0,
"0 \weRN JBr(y)N2n

then

lim |un [Pdz = 0,
n—oo Q’n,

forall2<p<]3—]f2.
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Proof of Proposition 3.7 By Lemma 3.8, we can easily rule out the possibil-
ity of vanishing. Very much similar arguments to that of the proof of Proposition
3.2 show that dichotomy can not happen. Therefore, we get compactness of the
sequence u, of (3.7). To prove (3.7), we first prove that
limy,, o, dist(yp, ﬁ(@@)) — o0. If lim,_, oo dist(yn, ﬁ(aﬁ)) is finite, with-
out loss of generality, we may assume y, € 9€). By compactness, there exists
yn € RY such that for any € > 0, IR > 0 with

lim —— [[Vun|* +ul] de > B —e.

n00 20 JBg(ya)nQ,
Taking €,, — 0 we find subsequences d,,, , uy,, and R, — oo such that

-2

Pz [V, > +u2 ]de > B —en

2P JBay (4np)

for m sufficiently large. For simplicity, we still denote those sequences by d,,
U, , R, and ,,. Because

Bg, (yn) N 2y, —>Rf = {xeRN:a:: (z1,22,...,2N), N > 0}
in measures as n — oo we have
p—2

J 1
|Vun|? +u]de — ~K, " ?I(w) = =B
2p Br(yn)NQn [ ] 27t 2

which contradicts (3). Thus, lim, o dist(yn, %T(a@)) — 00 as n — 0o0. Now

the proof of (3.7) is similar to the proof of (3.6). O

Proposition 3.9 For r > 0, there exist e1 > 0 and di > 0 such that for any
0<d<d; and 0 < € < e we have

Bu) € Np(Kq), Vue Joted™?,

The proof uses the arguments used in proving Proposition 3.3 with minor
changes. We omit it.

3.C Neumann case with K; < 2%1(2

We assume that H = H'() and

max K (z) < 2" max K (x).
€N o0

Since 9 is smooth, there is » > 0 such that for any y € 99, B.(y) N Q is
diffeomorphic to By (0) := {x € B1(0) | ¥ > 0}. Let r > 0 be fixed. Then for
y € Kaq, we define 4(y) € Vg similarly as in (3.1).

Proposition 3.10 ¢4 € C(Kpq, Va(Q2)) and
Ja Waly)(@) = a7 | SK ()72 1) +0(1) |

as d — 0 uniformly for y € Kaq.
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Proof. We need some modifications to the proof of Proposition 3.1. Note that
y € 9N implies ¥ (y) € H () instead of belonging to Hi(Q) as in Proposition
3.1; and that, for any fixed R > 0, ﬁ Q= {y})n{h:|h| < R} - BE(0) in
measures as d — 0 uniformly for y € 9. Then, similar argument used in
proving Proposition 3.1 can show that

Jaay) = (K(y) 77 (1+0(1) (pz%fdm /R (Ve +w?)dz + o<1>)
12 () T I) + o))
where RY = {z e RN |z = (2',22,...,2"), 2V > 0}. O

__2
Proposition 3.11 (a) limy_,od="/?¢cq = 1K, " ?I(w), where cq is defined in
(b) Let d,, — 0 and u,, € U,, be such that
-2 1 2
lim 22 [ (Vun|? + u2) dz = Ky 7 I(w) = C.

n—oo  2p Q,

Then, there exists y, € RN such that for any e > 0,3R > 0 with

lim [[Vun|? +ul] dz > C — e, (3.14)

n— oo BR(yn)

and such that for any § > 0 small there exists Cs > 0 with

lim sup dist <ym \/%(Na(Kag))> < Cs.

n—0o0

Proof. The same argument as in the proof of Proposition 3.7 gives the com-
pactness of the sequence u,,, i.e., there exists y, € €2, such that for any € > 0,
there exists R > 0, and

lim [[Vun* +ul] de > C —e.

"% J Br(yn)NQy

This proves (3.14

anNr (| — yn|)un,

~—

. Now, if lim, 0 dist(yn, \/%(89)) = 00, then let wy,(z) =

—

x), where a,, is to be chosen such that wy,(z) € U,. Then

_ 2
K, ??I(w)= lim Iy, (un) = lim Iy, (wy).

n—oo n—oo

N =

A calculation similar to (3.12) yields

_ 2
Iy, (wp) > Ky *7% - I(w).
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Therefore,
1 2 2
KT I) 2 KT W)

which contradicts K; < 2PT_2K2. Thus, we have lim,, o, dist(

finite so we may assume y,, € \/Ld—n(f)ﬂ). Now if

Yns = (02))is

. . 1
lim. dist(yy,, \/—d_n(Na(KaQ)) =0

for some 0 > 0, then there is a > 0 such that for a fixed R > 0, Bgr(yn)
belongs to the region where K(v/d,z) > K5 — a, for n large. Then, following
the arguments used in proving Proposition 3.2 we get

1 -2 L 1 —2
LR T IW) = Jim T, (1) > 22 — ) 72 T(w),

a contradiction. Thus, (3.11) is proved. &

Proposition 3.12 For r > 0 fized, there exist 1 > 0 and d1 > 0 such that for
any 0 <d<d; and 0 < € < €1 we have

Bu) € Np(Koq) Yu e Joted™?,

The proof is similar to the one of Proposition 3.3 and therefore omitted.

3.D Neumann case with K; = Q%Kg

We assume that H = H'() and

p=2
I;le%(K(x) =2 II(})%XK(LIJ).

Then for y € Kgq U Kq we may still define ¢4(y) € Vg similarly as in section
3.A.

Proposition 3.13 ¢4 € C(Kpq U Kq, Va(Q)) with

(i) Jq (Ya(y)(z)) = dN/? [K;”EQI(LU) + 0(1)] , as d = 0 uniformly for y € Kq,
or

(i1) Jq (Ya(y)(z)) = an/2 [%KQMI(CU) —l—o(l)} , as d — 0 uniformly for y €
Koo,

Proof. First, note that Ksq and Kq are both closed and Kygo N Kq = 0.
Therefore, Ko and Kq can be completely separated by two distinct open sets.
If y € Kgg U Kgq, then either y € Ky or y € Kq. Choose r > 0 such that
2r < dist(Kpq, Kq) and define n,.(-) as in (3.1) with y € Kpq U Kq fixed. If
y € Kq we can repeat the proof of Proposition 3.A.1, and for y € Ky the proof
is identical with that of Proposition 3.10. &
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2

Proposition 3.14 (a) limy_,0d~"/%c; = LK, "> I(w), where cq is defined in

(b) Let d,, — 0 and u,, € U,, be such that

. p—2 2 2 —323 1 -2
lim —— (IVun> +up) do = K, P I(w) = §K2 P J(w) := D.

n—00 D Q,

Then, there exists y, € RN such that for any e > 0,3R > 0 with

lim [[Vun|? + ul] dz > D —,

"0 J Br(yn )N

and such that for any § > 0 small there exists Cs > 0 where either

1
li dist ( yn, —— (N5 (K. < Cs, 3.15
1Tan_>solip 1S <y m( 6( Q))) 1) ( )
or 1
li dist { yn, —==(Ns (K < Cs. 3.16
lrlgsolip is <y m( 6( 69))) g ( )

Proof. (a) This is [18][Prop. 3.2, part (1)] which is true for K1 = 2" K. (b)
The same arguments as in propositions 3.B.2 and 3.C.2 give the compactness of
the sequence u,, i.e. there exists y, € 2, such that for any ¢ > 0, 3R > 0 with

lim —/ [[Vu,|? +ul] dz > D —e.
BR(yn)ﬁQn
If (3.15)-(3.16) were not true, that is, both

1
lim sup dist <yn, \/T(Né(KQ))> = 00,

n—oo
and

1
lim sup dist <yn, \/T(N(;(Kag))) = 00,

n—oo

then following the arguments of Propositions 3.7 and 3.11, we get either

2
K, 77 I(w) = lm I, (up) = lim Iy, (w,) > (K1 —a) 72 1(w),

n—oo n—oo
or T ' ) .,
K T I(w) = lim Iy, (un) > 5(Ks — a) TR (w),
and both lead to a contradiction. &

Proposition 3.15 For r > 0 fized, there exist e > 0 and di; > 0 such that for
any 0 < d < dy and 0 < € < €1 we have

Blu) € Np(Kq U Kapa) Vue Jgted™”,
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Proof. Suppose the conclusion is not true, then there would exist d, — 0,
en, — 0 and u, € V,, such that Jy_ (un) < cq, + endﬁym,cn = B(un) € Ny (Kq U
Kpq) or equivalently ¢, = B(un) € N.(Kq) and ¢, = B(un) € N (Kaq).
Then repeating the argument used in Proposition 3.A.3 with the aid of Propo-
sition 3.14, we will have a contradiction. &

4 Proof of theorems

The proofs of these results are quite similar in spirit, and we shall give details for
Theorem 1.1 and the sketch for the other results. The basic idea for the existence
of multiplicity results has been used in [1, 2, 3, 21, 22|, and the basic idea for
proving the shape of solutions has been used in [18, 14, 15, 16, 19, 20, 21, 22].

The proof of Theorem 1.1 is carried out in 3 steps. The first step is to obtain
the estimate

b (JST) > 2 cat (K
Jfﬂw( g = N,f"&ﬂ)( )

for d small and for some €4 > 0 depending on d. Once we have (4), we may use
standard variational techniques on the level set J;dJre”’ and obtain the existence
of at least 2caty, (k) (Kq) critical points of J; on J5F. Finally, an energy
estimate shows that none of these solutions changes sign, and consequently, we
find at least caty, (k,,)(Kq) positive solutions of (1.1).

Lemma 4.1 Let e; > 0 be given as in Proposition 3.5. For any ¢ € (0,¢€1),
there exists de > 0 such that

t (Jéte) > 9 cat (K
J?}“d( 2 Nrc(z}(n)( o)

for eq = dN/?e, 0 < d < d..

Proof. By Proposition 3.3, for some r fixed, there exist ¢ > 0 and d; > 0
such that for any 0 < d < d; and 0 < € < ¢; we have
B: J5T o N.(Kq),

where e; = edN/2. By Proposition 3.1, for each 0 < € < €; there exists d. > 0
such that for 0 < d < d,

Ya: Ko— J9n{ueVyu>0 ae. inQ}

is well defined. Both 4 and 8 are well-defined and continuous maps. By the
construction of ¢g4, for any y € Kq,

Bova(y) € N.(Kq).

Set Ay = Jt N {u € Vy(Q) : u > Oae. in N} and assume cat 4+ AT = k.
Then, there exist k closed and contractible subsets of A, say, A1, Ao, ..., A,
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such that Ay C Ui, A Let ¥; = ¢;'(4) C Ko, i = 1,2,...,k. Then
Ule Y; = Kgq, and therefore

k
(ﬁﬁ(KQ)(Kﬂ) < ; %?(KQ)(E)'

We shall show that if Y; # 0, then Y; is contractible in N,.(Kq) and caty, (k) (Y;) =
1. Since A; is contractible in A, there exists H; € C([0,1] x A;, A1) such that

H;(0,a) = a Vaé€ A;
Hi(l,a) = a; €Ay Va€A;.

Define a map M : [0,2] x Y; — N, (Kq) by

M(t y) _ y—t(y—ﬂOH,L(O,)O’(ﬂd(y)) for 0 <t < 17yEY:i7
’ BoH;(t—1,-)oa(y) for1<t<2,yev,.

Then, we verify that M(0,y) =y for all y € ¥; and M(2,y) = B(a;) € N,(Kq)
for all y € Y;. By (4), M is well defined and consequently Y; is contractible
in N.(Kq). So by (4), caty, (kq)(Kq) < k. Using —¢4 and the same argument
one can show that
>
Nrc(a};cn)(KQ) - %ait(A—)

where A_ = J9T N {u € V4(Q) : u < 0 ae. in Q}. Since A and A_ are
disjoint in J5**°, we get

t(Joite) > t (AL UA_
LU 2 e (AvUA)

= gﬁt(&) +cat(A-)

> 2 cat (Kq).
N, (Ko)

Lemma 4.2 Let u be a critical point of Jq with
Jd(u) < 2¢q. (41)

Then u does not change sign.

Proof. If the conclusion was not true, we should have u = uy + u_ with
ut #Z 0 and u— # 0. By the definition of V; and ¢4, let u = uy, then uy € Vy.
Similarly, u_ € V. It follows that

2
ca <~ [ (dVusl +u2) do < Ja(u).
p—2 Qq
In addition,

/ (d|Vug|® +u3) dz = K(z)lug|Pdx.
Qd Qcl
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But,
K(z)lus|Pdx + K(z)lu_|Pdx = K(x)ug|Pde.
Qq Qq Qq
It follows that

/ (d|Vui]® + u?) dz + /

Qq Qq

(dVu_|* +u?) do = / (d|Vul® + v?) do
Qaq
ie.
Ja(u) = Ja(uy) + Ja(u-)

for u,uy and u_ € Vy. Therefore, we reach a contradiction from

2¢cq < Jd(U+) + Jd(u_) = Jd(u) < 2c¢q.

_ 2
Proof of Theorem 1.1 By Proposition 3.2, ¢g = dV/?(K, "> I(w) + o(1)).
For €; > 0 given in Proposition 3.3, we choose 0 < ¢y < €;. Then there exists
do > 0 such that for all d € (0,dp)

cqd + dN/2 - €g < 2¢q.
For this €y, by Lemma 4.1, there exists df, > 0 such that

t (JST) > 2 cat (K
Jfﬁed( g = N,f"&ﬂ)( )

Vd € (0,d}) with eg = dV/? - €.

Applying the minimax method ([17]) here we get at least 2 caty, (k) (Kq)
critical points of Jy on Jg”ed. By Lemma 4.2, none of these critical points
changes sign, and therefore there exist at least caty, (x,,)(Kq) positive critical

points and hence caty, (x,,)(Kq) solutions of (1.1) with Dirichlet boundary con-
dition. o

To prove the single peakedness of these solutions, we shall prove the following
lemma which states that all low energy solutions are single-peaked solutions.

Lemma 4.3 There exist dg > 0 and €y > 0 such that any solution vq of (1.1),
t_uz'th d < dy and Ja(vg) < ca+ dN/2¢y, has only one local mazimum point over
Q (denoted by Py) which satisfies

lim diSt(Pd, Kq)=0.
d—0

Proof. By an indirect argument, we only need to consider sequences d,, — 0,
€, — 0 and a sequence of solutions vy, which satisfies Jy, (va,) < ca, + db Pe,.

It suffices to consider u,(x) = vg, (v/dnx) and to show that u, has only one

local maximum point over {2,, at some z,, satisfying

lim dist(z,,,

1
—Kqg) <C
n—oo \/ﬁ Q) -



EJDE-1999/28 Ning Qiao & Zhi-Qiang Wang 23

for some constant C. )

By assumption and Proposition 3.2(1) we have Iy, (u,) — K; * > I(w).

By Proposition 3.2 again there exists y,, € €, such that for any € > 0 there
is R > 0 with

-2
lim 22 [[Vu,|? +ul] de > A — e,
n—oo  2p Br(yn)

and for any d > 0 small there exists Cs > 0 such that
lim dist 1 Ns(Kq)) < C
Jim dist(yn, \/—d_n( 5(Ka)) < Cs.

Taking €, — 0 we have R,, — oo such that (4) holds with e and R replaced by
€n and R,,. Therefore, we have

min K lim |tin,, |Pdz < lim K(v/d,z)|un,,

7% JQN\B Ry (Ynm) 7% JN\BRy (Y )

P=0.

It follows that
Pdr =0,

lim |tn,,
m—eo Qn\BRm (ynm)

since u,, satisfies (I)q4, and thus is in the manifold U,.

1
Let x,, be a local maximum point of u,. Then u,(z,) > K; *> > 0 by
the maximum principle. Based on the ideas in [14][Lemma 4.1], by Harnack’s
inequality, there exists a positive constant C, independent of d,, such that for
any z € () one has

sup va, () < C, in v, ().
B /g (Pa,)NQ B jan(Pa, )08

Therefore, there is Ao > 0 such that vg, (z) > Ao for x € B /z-(Pa,) N2, where
P, is the maximum point of vy, . Now, using this and (4), (4) we conclude that
there is a Rp > 0 such that u,,, must achieve any maximum value in Bg, (yn,, )-
This implies that (4) must hold, because if not, let R,,, — oo, then u,,, achieves

maximum value at x,, = % in Q,\Br,, (yn,,) and thus u, (z) > —2e_

nm

for all z € Bl(%) A Q.. This contradicts (4).

Assume that v, has two local maximum points P} and P? for the sequence
d, — 0. Passing to a subsequence if necessary, we first claim that there is a
constant C' independent of n such that

lim d;, * dist(P}, P2) < C.
n—0

If not, we have
1
dn? dist(P},P?) - 00 as d, —0,
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or equivalently
dist(zl,22) - o0 as d, — 0,

n»'n

where z}, and 22 are two local maximum points of u,, for the sequence d,, — 0.
Let r,, = 1 dist(z},22). Then, using r, — co and Proposition 3.2(b) we have

n’ n
—523 p—2 2 2
Ky " (W) = la, (un) = —— (IVun|* +u2) d
2p Ja,
-2
> P—= (IVun|* +u2) dz +
2p B, ()
p—2 2 2
R —_— Vun|* 4+ u?) dx
20 Jp,,@2) (¥l )

2
> 2K, "?I(w) —e.

This is a contradiction and thus (4) holds. Consider u,(v/d,z + P!) and Q/, =
{z € RN|\/d,z + P} € Q} for i = 1,2. Then using similar arguments to
[18][Prop. 3.1] together with the fact that lim,, o dist(P!, Kq) = 0 we have

. 1
un(Vdpz+ P) — K, P ?w i=1,2

in 012 i (R™). Without loss of generality, we assume that the only critical point
_1

of w is 0 which is non-degenerate. Since K; * *w has only one critical point

at 0 which is non-degenerate, u,, can not have any other critical point around

Bpg(0) for some R > 0. This again contradicts (4). This finishes the proof of

Lemma 4.3. O

With Lemma 4.3, the single peakedness of solutions follows immediately.
Hence we complete the proof of Theorem 1.1.

Proof of Theorem 1.2 The proof of this theorem is nearly identical to the
proof of Theorem 1.1 since the assumption of K; > 2PTJK2 implies that the
maximum of K (z) is achieved in the interior of . O

To prove Theorem 1.3, we first give the following lemma which can be re-
garded as analogous to Lemma 4.1.

Lemma 4.4 Let e; > 0 be given as in Proposition 3.12. For any ¢ € (0,¢€1),
there exists d. > 0 such that

cat (JS4T4) >2 cat (K
T 22 (o)

for eq = dN%e, 0 < d < d,.

Proof. The proof is almost identical with that of Lemma 4.1 by replacing
N, (Kgq) with N,(Kpq) and using Propositions 3.12 and 3.11.
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Proof of Theorem 1.3 The proof of this theorem is similar to the proof of
Theorem 1.1, so we do only a sketch. By Proposition 3.11(a) we have

- 1 —3%
ili%d N/2cd:§K2 21 (w)

as d — 0. For ¢; given in Proposition 3.12, we choose 0 < ¢y < €; with the
2

property that ¢y < %d’%K;ﬁI(w). Then for this ey > 0, by Lemma 4.2, there
is d¢, > 0 such that
cat (J9T¢) >2 cat (K, vd € (0,d,
J;ﬁed( "z N,,.(Kag)( o) (0, do)
with €4 = d¥ €o- Then, the classical minimax method together with Lemmas 4.4
and 4.2 we can deduce that there exist at least caty, (k,q)(Kaq) positive solu-
tions for (1.1) with Neumann boundary condition.

To prove single peakedness of these solutions, we consider un(z) = va, (Vdn).
We need to show that u,, has only one local maximum point over €2,, at some
x,, satisfying

1
I .
Jim. dist(z,, NG
for some finite constant C'. But the same argument used in proving Lemma 4.4
can be applied here to conclude that

Kaq) <C

lim diSt(Pd,KaQ) =0..
d—0

The above result also implies that, passing to subsequence if necessary, for
dn, — 0
1
dy, ? dist(Pd KaQ) <C

for some constant C' independent of d,,. Using this and repeating the argument
used in [14][Theorem 1.3] and [18][Thorem 2.1], we get that any local maximum
point Py, must be on the boundary of 2, provided d,, is small enough.

Next, assume v, has two local maximum points P} and P2. Similar to what

)

we did to prove Theorem 1.1, we first rule out the case dn /2 dist(P}, P2) — o0
as d,, — 0 by concentration-compactness argument. Using the local convergence
of the rescaled solutions u,(v/d,z + P!), i = 1,2, and a property of the ground
state solution, we conclude that P! = P2, &

Before proving Theorem 1.4, we give the following lemma which can be
proved in a way similar to Lemma 4.1 by making use of Propositions 3.15 and
3.14.

Lemma 4.5 Let e; > 0 be given as in Proposition 3.15. For any € € (0,€1),
there exists de > 0 such that

cat (JSTe) > 2 cat KoUK,
J;d+€d( d ) - NT(KQUKag)( @ aQ)

for eq = dN2e, 0 < d < d..
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Proof of Theorem 1.4 By Proposition 3.13

1 -2 __2_
lim dNV/2¢q = 2K, "2 I(w) = K, " I(w).
d—0 2

For €¢; > 0 given in Proposition 3.15, we choose 0 < ¢y < €;. Then, there exists
dp > 0 such that for all d € (0,dp)

cq + dN/2 - €g < 2¢q.
For this €y, by Lemma 4.5, there exists dj > 0 such that

t (JéTe) > 9 t KoUK,
Jgdied( d ) - N,,.(K(;zaUKan)( @ 69)

d

Vd € (0,d})) with e = dV/? - ¢g. Then a minimax method gives that there
exist at least 2caty, (kouK,qo) (Ko U Kaq) critical points of Jg in Jg”ed for
d € (0,dy). Lemma 4.2 plus the maximum principle imply that there ex-
ist caty, (koUK,e) (Ko U Kaq) positive critical points. On the other hand,
because Kq N Kyq = 0 and they are both closed, let r < %diSt(KQ,K(’)Q).
Then, CatNT(KﬂuKan)(KQ U Kpq) = CatNT(KQ)(KQ) + CatNT(KBQ)(KaQ), which
can be easily proved by the definition of category. Hence, there exist at least
caty, (ko) (Ka)+caty, (k) (Kaq) positive critical points and thus caty, (k) (Ka)+
cat N, (K,q) (Kaq) solutions of (1.1) with Neumann condition under the condition
Ky =27 Ks.

The single peakedness of these solutions can be obtained by combining the

corresponding parts of the proofs in Theorems 1.1 and 1.3. Therefore, we omit
it here. ¢
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