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ABSTRACT 

Analogical reasoning has played a significant role in the development of modern 

mathematical concepts. Although some perspectives in mathematics education have 

argued against the use of analogies and analogical reasoning in instructional contexts, 

some attempts have been made to leverage the pedagogical power of analogies. I assert 

that with a greater understanding of how students develop analogies and reason by 

analogy, analogies can indeed be used productively for the teaching and learning of 

mathematics. Using abstract algebra as the primary context, I propose three papers: (1) a 

theoretical paper orienting analogical reasoning as a way of thinking in mathematics (and 

thus learnable by students), (2) an empirical paper contributing the Analogical Reasoning 

in Mathematics (ARM) framework for interpreting students’ activity during analogical 

reasoning and (3) a practitioner paper detailing a full lesson incorporating analogical 

reasoning as a tool for exploratory structure creation in abstract algebra.  

Paper #1 identifies analogical reasoning as a way of thinking in the context of 

advanced mathematics. There has been critique of the use of analogies for the purpose of 

students learning new content because students may fail to appropriately recognize the 

analogical connections developed by instructors. I counter that students can productively 

reason by analogy to understand new mathematics when provided with settings to 

develop this way of thinking.  In this paper, I use examples from the work of 

mathematicians to argue for the important role of analogy for the purpose of 

mathematical discovery. I then provide an illustration of an undergraduate student 
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engaged in similar productive analogical reasoning as they develop analogs between 

structures in group and ring theory. Through this process, the student showed increasing 

awareness of how and why they were engaging with such reasoning. This observation 

evidences the potential for students to reason by analogy for mathematical discovery. 

Paper #2 establishes the Analogical Reasoning in Mathematics (ARM) framework 

for describing students’ analogical activity in mathematics contexts. I first outline a 

definition of analogy and contrast it with the concept of metaphor. I then introduce ARM, 

which categorizes analogical reasoning activity that is unique to the context of doing 

mathematic and explicates features of analogical reasoning that are largely implicit in 

existing models. Constructed from an analysis of interviews with four students engaged 

with analogical tasks in abstract algebra using basic qualitative methods related to 

grounded theory, ARM includes three dimensions of analogical activity: mapping/non-

mapping across domains (MAD), attending to similarity and difference (SAD), and 

foregrounding a domain (FAD). Built upon these dimensions, analogical activities are 

identified and explicated for the purpose of analyzing student analogical reasoning. I 

provide examples of several of these activities in the context of abstract algebra. 

Finally, Paper #3 proposes a novel lesson for introducing structures in ring theory 

by reasoning analogically about structures already known in group theory. In this way, 

students come to creatively establish new structures that they may take ownership of 

while providing opportunities for rich discussion about the purpose of these structures. 

The lesson consists of four key components: (a) introducing the definition of ring, (b) 



 

xiv 

introducing the idea of analogy and analogical reasoning between groups and rings, (c) 

developing structures (i.e., subrings, ring homomorphisms, and quotient rings) through 

analogical reasoning with known structures, and (d) developing theorems/proofs through 

analogical reasoning. Throughout this paper, I provide thoughts and insights from 

previous implementations and conclude by reflecting on what has (and has not) worked 

well in my experience with implementing these tasks. 

Taken together, these papers offer insight into understanding how students reason 

by analogy and suggests implications for productively incorporating analogical reasoning 

into instruction. Directions for future research involving analogical reasoning in 

mathematics are outlined based on these contributions. 
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I. INTRODUCTION 

Throughout history, analogical reasoning has played a significant role in the 

discovery of scientific and mathematical concepts. Analogy has been recognized as 

playing an equally important role in the way we act and behave in everyday life and has 

even been shown to be present in children’s development of mathematical thinking 

(English, 2004). A powerful example of analogy in history can be found within 

Descartes’ recognition of similarities between algebraic and geometric concepts and the 

attempt to unify arithmetic, algebra, and geometry with a theory of proportions. On this 

topic, Crippa (2017) states:  

Euclid’s theory of proportions is a general theory thanks to a logic of analogy, 
which allows one to circumvent the prohibition of transferring proofs from one 
kind to the other... In other words, in virtue of analogy the proof that certain 
properties hold for a certain subject matter, i.e. geometry, can extend its validity 
and hold also within a different subject matter, for instance arithmetic. (p. 1244-
1245) 
  

The analogies between algebra and geometry allowed for a translation between problems 

in algebra and problems in geometry in such a way that the insights gained from one 

context could be used to extend insights into the other. Furthermore, the union of algebra 

and geometry laid the foundation for further studies in mathematics, most notably the 

field of algebraic geometry in modern algebra (Kendig, 1983). 

From examples such as these, it is evident that the creation of analogies can be 

beneficial in establishing new ways of thinking and reasoning in mathematics. However, 

it has been found that instructors may produce most analogies within instructional 

contexts, and it is unclear to what extent students are understanding the analogies for 

themselves (Richland, Holyoak, & Stigler, 2004). As a result, students may be missing 

opportunities to productively reason by analogy in mathematics classrooms. 
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Polya (1954) documented the importance of analogy in mathematics in volume 1 

of his book Induction and Analogy in Mathematics. He proposed a framework of 

mathematical reasoning consisting of generalizing, specializing, and analogy. Polya 

argued that these three forms of inductive reasoning often co-occur when approaching 

problems in mathematics. In the mathematics education literature, generalizing has been 

acknowledged as being critical to engaging in mathematical reasoning (e.g. Kaput, 1999; 

Mason, 1996; Ellis, 2007)). Although analogy has been widely identified as crucial to 

learning in other content areas such as general science education (e.g. Hesse, 2000) and 

computer science (e.g. Gentner, 1983), analogy and analogical reasoning have not 

received the same level of attention in the mathematics education literature (English & 

Sharry, 1996). In order to provide a more complete picture of how students across the K-

20 spectrum might reason mathematically, it is necessary to characterize students’ 

mathematical activity as they engage in analogical reasoning as well as understand how 

to promote students to reason by analogy. 

Because analogies are commonly leveraged in undergraduate abstract algebra, the 

subject is an excellent one for investigating how students reason by analogy in 

mathematics. The similarity between the structures of the mathematical objects in group 

theory and ring theory is no accident; historically, there was purposeful intent in unifying 

the structures between group theory and ring theory (Hausberger, 2018). As a result, 

abstract algebra provides a rich environment for students to establish clear connections 

across different mathematical domains and thus provides ample opportunity for 

accessible reasoning by analogy. 

Furthermore, abstract algebra has been characterized as being an enormously 



 

3 

difficult undertaking for undergraduate mathematics students (Dubinsky, Dautermann, 

Leron & Zazkis, 1994). Given that abstract algebra is a foundational course for future 

mathematics teachers as well as future mathematicians, the persistently high difficulty in 

teaching abstract algebra remains to be a great concern. Researching how students reason 

by analogy in abstract algebra also opens up possibilities for investigating students’ 

thinking about topics in ring theory. In contrast to student thinking about groups and 

associated content in group theory, there is little research on student thinking in ring 

theory. The majority of existing research on student thinking in ring theory currently 

focuses on how students might reinvent the ring and come to understand basic aspects of 

rings. For example, Simpson and Stehlíková (2006) attended to student development of 

structural understanding by exploring how one student came to apprehend the structure of 

a commutative ring, and Cook (2012) has explored the ways in which students might 

reinvent the concepts of ring, integral domain, and field. However, there is a lack of 

research on students’ understanding of topics beyond these basic elements of ring theory. 

Given that future teachers and mathematicians alike are expected to take courses in 

abstract algebra, there is a need to contribute to the literature in mathematics education on 

the topic of ring theory so that we may teach the subject more efficiently and effectively. 

I hypothesize that by investigating how students reason about topics in ring theory by 

analogy with structures in group theory, several results pertaining to students’ 

understanding of structures in ring theory will be in reach soon thereafter, and informed 

efforts to develop curriculum for teaching ring theory leveraging analogy and analogical 

reasoning can begin. 

This dissertation takes as its premise that analogical reasoning can play a 
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significant role in assisting students to learn about topics in ring theory by analogy with 

topics in group theory by providing students an opportunity to develop structures in ring 

theory through inventive reasoning by analogy in a manner similar to that of 

mathematicians doing research (e.g., Ouvrier-Buffet, 2015). The following questions 

guided the research presented in this dissertation: 

RQ1: How do students reason by analogy about rings, subrings, ring 

homomorphisms, and quotient rings in abstract algebra? 

RQ2: How might students come to productively reason by analogy in abstract 

algebra? 

RQ3: How might analogy and analogical reasoning be effectively incorporated 

into abstract algebra curriculum focused on introducing ring theory after group 

theory? 

In Chapter II, I review literature pertaining to analogy and analogical reasoning within 

and without mathematics education.  In Chapter III, I provide an overview of the methods 

used to answer the questions posed above. I then propose three papers which make 

contributions to research on understanding how students reason by analogy in 

mathematics and make suggestions for productively incorporating analogical reasoning 

into instruction in mathematics classrooms. Specifically, Chapter IV proposes a 

theoretical paper orienting analogical reasoning as a way of thinking in mathematics and 

thus argues that reasoning by analogy is learnable by students. Chapter V proposes an 

empirical paper contributing the Analogical Reasoning in Mathematics (ARM) 

framework for interpreting students’ activity during analogical reasoning. Chapter VI 

proposes a practitioner paper detailing a full lesson incorporating analogical reasoning as 
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a tool for exploratory structure creation in abstract algebra. Finally, Chapter VII 

summarizes the contributions made by these papers and proposes several directions for 

future research
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II. REVIEW OF LITERATURE 

 I begin this chapter by describing several conceptualizations of analogy, giving 

the most attention to the conceptualizations of analogy that use some variation of 

mapping theory. In particular, the most influential and widely recognized of these 

theories, Structure-Mapping Theory (Gentner, 1983), is introduced here. I then describe 

the ways in which analogy has been thought of as method of formulating inferences and 

creating new knowledge in mathematics. I give special attention to research on the 

generation of mathematical structure through reasoning by analogy, a subsection of 

research on analogy in mathematics education that has not been strongly developed. 

Conceptualizations of Analogy 

 The concept of analogy has been conceived of in various ways within the 

literature. In this section, I describe historical and modern conceptualizations of analogy 

in the literature and the ways in which analogy has been modeled and operationalized. I 

begin with a description of several definitions of analogy before narrowing the scope to 

modern theories of studying analogy through mappings and constraint satisfaction. I then 

describe the literature on analogy within mathematics education.  

Defining Analogy  

Several definitions and representations of analogy have been proposed in an 

attempt to capture the intricacies of what is meant by analogy.  Before reviewing the 

literature on the more complex modern conceptualizations of analogy, it is helpful to look 

back on the historical uses of analogy in order to gain some intuition about the general 

definitions and uses of analogy.    
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A Historical Account of Analogy. Earlier conceptualizations of analogy fall 

under the umbrella of classical analogy theory, initially put forth by Aristotle, Thomas 

Aquinas, and Cardinal Cajetan (Haaparanta, 1992). Haaparanta distinguished between 

three ways of discussing classical analogy: the analogy of things (analogia entis), the 

analogy of terms (analogia nominum), and the analogical argument (analogia rationis).  

Classical analogy theory primarily relates to the analogy of things and the analogy 

of terms.  The analogy of things refers to those analogies that are created by noting 

similarities between two objects, events, or systems.  This type of analogy would include 

statements such as “the car is as fast as a cheetah”, and “an atom is like our solar system.” 

Polya (1954) defined analogy using a similar language of objects, arguing that analogy is 

“similarity on a more definite and more conceptual level… Similar objects agree with 

each other in some aspect.” (p. 13) While the analogy of things and Polya’s definition of 

analogy both rely on comparing two or more objects, Polya’s definition explicitly points 

to similarities that are more conceptual in nature.  

The analogy of terms refers to those analogies that do not explicitly draw 

comparisons between two objects, events, or systems, but instead suggest comparisons 

between meanings of terms that are similar in given contexts, but not necessarily the 

same. For example, the meaning of the word save is similar in the contexts of saving time 

and saving money even though the word is not being used in exactly the same way in 

each context. The difference between the analogy of things and the analogy of terms is 

subtle at first glance: whereas the analogy of things refers explicitly to analogies that 

make comparisons between characteristics or relations of two or more things, the analogy 

of terms is comparing the meaning of a single term as it might be used in various 
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contexts. It is important to note that there are implicit systems suggested by the analogy 

of terms, although the systems are never explicitly compared as being similar.   

Table 1. Historic Conceptualizations of Analogy 
 Structures under 

Consideration 
Purpose of Category Example 

Analogy of Things 
Objects, events, or 
systems 

Note similarities 
between objects, events, 
or systems. 

“An atom is like our solar 
system.” 

Analogy of Terms 

Linguistic or 
conversational analogies. 
Meaning of terms is the 
focus. 

Describe analogies 
between meanings of 
terms in different 
contexts.  

The analogy between the 
word save in the phrases 
save money and save 
time. 

Analogical 
Argument 

Arguments that utilize 
analogical reasoning. 

Analogy as inference. 
Used to create 
knowledge. 

Describing heat transfer 
from a warm house in 
winter by arguing that 
heat flows like water. 

Finally, the category of analogical argument focuses on the actual process of 

reasoning by analogy rather than characterizing a type of analogy. Analogical arguments 

often involve conjecturing about similarities between two structures where there is 

information that is known about a given structure and information that is wished to be 

known about another structure. Gentner (1983) provides an example of an analogical 

argument based on the analogy heat is like water in the context of explaining heat 

transfer from a warm house in cold weather. An analogy is then introduced wherein a 

house and its roof is like a container with a lid. The fact that puncturing the lid of the 

container can cause water to leak out is then used to further the analogy and establish a 

new conjecture:  heat may “leak” from a house if there is a “puncture” in the roof.  

A summary of the differences among the categories of classical analogies can be 

found in Table 1. In this study, I primarily seek to study the analogy of things and 

analogical arguments in the context of abstract algebra. However, I make use of modern 

theories to operationalize analogy in this study. I discuss some aspects of modern 

conceptualizations of analogy in the next section.  
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Modern Conceptualizations of Analogy. The brief historical account of analogy 

makes it clear that observing similarities between unlike things is a generic way to view 

what is meant by analogy. Moving beyond this generic perspective, modern 

conceptualizations of analogy have made large strides in creating more precise notions of 

the meaning of analogy while also expanding the contexts in which they may apply. In 

the midst of the cognitive revolution, there was a surge in representing analogies as 

models of mental constructs and mappings between those constructs (e.g. Gentner, 1983; 

Holyoak & Thagard, 1989). I discuss this perspective on analogy situated within 

cognitive science in this section. 

I also briefly note here that a popular way of describing analogies has been 

through the theoretical lens of cognitive transfer. According to Day and Goldstone (2012) 

a characteristic trait of this traditional perspective on transfer is that knowledge is 

considered to be “represented in terms of systems of discrete symbols, each of which 

corresponds to a meaningful concept,” (p. 154) and that transfer is viewed as “the 

recruitment of previously known, structured symbolic representations in the service of 

understanding and making inferences about new, structurally similar cases.” (p. 154) 

However, I do not focus this section on transfer and instead focus primarily on the theory 

of mapping as a way of conceptualizing analogy. This choice is made from a desire to 

describe analogy and analogical reasoning as being their own constructs rather than 

situating them within broader theories of transfer. 

Aspects of Mapping Theories. Modern conceptualizations of analogy have 

largely focused on analogical mapping in the context of problem solving (Carbonell, 

1983; Greer & Harel, 1998), representations (Reed, 2012), explanation (Gentner, 1983; 



 

10 

Holyoak, Gentner, & Kokinov, 2001), and theory formation in science (Hesse, 2000). In 

an effort to construct a model of the relational nature of analogy, several theories of 

analogy have adopted a representation of analogy through some model incorporating 

mappings. In general, these models include a form of matching between one structure to 

another.  

In her seminal paper on analogical reasoning, Gentner (1983) introduced one of 

the most prominent theories of analogy to incorporate mapping, the Structure-Mapping 

Theory (SMT). Gentner asserts that a theory of analogy must describe how the meaning 

of an analogy is derived from the meaning of its parts. Within the SMT framework, 

analogies are created by comparing across structures that are dissimilar in some respect. 

Holyoak and Thagard (1989) also make use of mapping to represent analogies and 

analogical arguments in their contribution of a theoretical framework for analogical 

mapping based on constraints. A commonality among these approaches using mappings 

is the recognition of a source and a target when describing the structures to be compared. 

During an episode of analogical reasoning, the source refers to the structure from which 

an analogy originates, while the target refers to the structure that is being mapped onto. 

The language of domains has been widely adopted to refer to structures under 

consideration. According to Gentner (1983), domains are psychologically viewed as 

systems of objects, object-attributes and relations between objects, all of which together 

constitute a structure in the mind. Domains consist of not only the objects under 

consideration when forming an analogy, but also the underlying relational properties that 

the object may possess. Domains can be representative of various levels of structure, and 

domains can be imbedded within other domains. For example, one can consider the 
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domain of objects such as groups, but one can also consider the domain of group theory 

as a whole. Extending further, one can consider the domain of abstract algebra, the 

domain of advanced mathematics, the domain of mathematics, and so on.  

Table 2. Summary of Themes in Modern Analogy Theories 
 Description Purpose Example 

Domains 

Refers to the 
objects/structures under 
consideration.  
 

Constitutes the system 
of nodes, attributes, and 
relations to be mapped.  

The domain of ring 
theory, consisting of 
objects such as rings, 
subrings, ring 
isomorphisms, etc. 

Mappings 

The formation or 
recognition of similarities 
between domains.  

The underlying 
mechanism through 
which analogies are 
created. 

Mapping the property of 
subgroups being a set to 
the property of subrings 
being a set. 

Constraints 

Underlying restrictions 
that dictate or influence 
the creation of analogies. 

Studied to determine 
the reasons for the 
creation of analogies. 

An individual proposes 
the existence of ring 
homomorphisms because 
of the important role that 
group homomorphisms 
play in group theory. 

In contrast to the work of Gentner, Holyoak and Thagard (1989) introduced a 

theory of analogical reasoning based on the idea that there are certain constraints that 

individuals adhere to when forming analogies and creating mappings between domains. 

Rather than create analogies that are dependent on structure-mapping as proposed by 

Gentner, Holyoak and Thagard argued that analogy creation is goal-driven. This theory is 

known as multiconstraint theory. A constraint is some criterion that individuals 

subconsciously attempt to meet when engaging in analogical reasoning. There are three 

broad classes of constraints when reasoning analogically: similarity, structural 

consistency, and pragmatic centrality. When forming an analogy, people are thought to 

only generate analogies when there is recognized similarity (similarity), and a need for 

the generation of such an analogy (pragmatic centrality). During the formation of an 

analogy, there it is argued that there is a tendency to construct, as best as possible, a 

structural isomorphism between the two domains (structural consistency). A summary of 
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the themes found in modern theories of analogy can be found in Table 2. 

As I will discuss in Paper #2, I make heavy use of the language of domains and 

mappings in operationalizing analogy. However, I do not make assumptions that students 

adhere to any constraints when formulating analogies to avoid biasing my interpretations 

of an analogy.  

Processes of Reasoning Analogically. How analogies are initially formed is 

described as analogical access (Hummel & Holyoak, 1997). In general, similarity of 

concepts at any level of abstraction is thought to contribute to analogical thinking, 

particularly during initial access. However, it has been shown individuals may not 

necessarily attend to the analogous features of two situations unless explicitly told to 

search for an analogy. This was famously exhibited within a study by Gick and Holyoak 

(1980) in which participants were asked to generate solutions to a famous medical 

problem involving how to distribute focused radiation to destroy cancer cells after having 

been given a solution to a military problem involving how to appropriately distribute 

troops to take siege of a fort. Gick and Holyoak found that while there was a clear 

analogy between the two problems (from the expert’s perspective), the participants of the 

study did not generate analogies between the two problems spontaneously.  

The example described by Gick and Holyoak points to the potential for 

differences in the ways that novices and experts might reason by analogy. Attempts to 

describe a generic process of analogical reasoning have been made in the modern 

conceptualizations of analogy through mapping. Here I present two conceptions of the 

steps involved in the process of analogical reasoning. 

Keane, Ledgeway, and Duff (1994) identified five stages involved with analogical 
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reasoning: representation, retrieval, mapping, adaptation, and induction. Similarly, in the 

language of mapping theory, Holyoak and Thagard (1989) characterized four steps 

involved with analogical reasoning: selecting an appropriate source, generating a 

mapping between the source and target, generating analogical inferences, and subsequent 

learning and understanding of the target. Keane et al.’s conception of representation and 

retrieval maps onto the first of Holyoak and Thagard’s four steps. In particular, 

representation refers to the reorganization of information about a domain in such a way 

that an individual can make sense of the domain, while retrieval refers to the act of 

searching for and retrieving information about an appropriate source domain from which 

the analogy to the target domain can be established. Mapping, being the ubiquitous step 

in modern theories of analogy, is found in both of Keane et al.’s and Holyoak and 

Thagard’s framework. Adaptation relates to the step of generating analogical inferences. 

These steps refer to the necessity of conjecture and refinement during the process of 

analogical reasoning, as it is not always possible for analogies to be immediately 

recognizable. Finally, the inductive stage maps onto the final step of developing an 

understanding of the target, in which new knowledge about the target domain based on 

the source domain is created.  

While the processes of reasoning by analogy described above are reasonable 

summaries of a generic process, they may not fully capture the range of analogical 

activities exhibited by students in mathematics. For example, both processes refer to 

some variety of adaptation appearing during analogical reasoning. However, as I will 

discuss throughout the proposed papers, students may not choose to adapt at all. In 

addition, these processes do not expound upon how each stage of the process is 
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performed. I attend to this point in Paper #2. In the next section, I discuss research on 

analogy specific to mathematics education. 

Analogy in Mathematics Education 

The literature in mathematics education pertaining to analogy has been largely 

dominated by investigating how children reason by analogy (Alexander, White, & 

Daugherty, 1997; English, 2004; Goswami, 2013). In this section, I present the current 

state of literature on analogy in mathematics education. I divide this section based on 

three prominent ways of reasoning by analogy identified by English (2004): problem 

analogy, pedagogical analogy and classical analogy.  

Problem Analogies  

One approach to the study of analogy in mathematics education has been through 

the investigation of students’ analogical reasoning between similar problem types. 

Carbonell (1983) defines problem solving by analogy as follows:  

Analogical problem solving consists of transferring knowledge from past 
problem-solving episodes to new problems that share significant aspects with 
corresponding past experience -- and using the transferred knowledge to construct 
solutions to the new problems. (p. 3) 
 

In general, problem analogies are exclusively concerned with the creation of 

isomorphisms between problem types (Greer & Harel, 1998). Reed (2012) expanded on 

the notion of mapping across problem types by introducing a taxonomy of types of 

mapping and structures to map between. This taxonomy acknowledged the existence of 

one-to-many and partial mappings in addition to isomorphic mappings, and 

acknowledged the existence of mapping between situations, representations, solutions, 

and sociocultural contexts. English (1998) investigated the ways in which children would 

reason analogically between problems with similar structures, one of which was less 
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complex than the other. She found that the children in the study required assistance in 

applying analogical reasoning to problems that were more complex in nature, although 

they were able to exhibit analogical reasoning in everyday contexts.  

Problem analogies have been implicitly studied in the literature involving the 

generation of connections between similar problems. For example, Lockwood (2011) 

investigated ways in which post-secondary students generated connections while solving 

counting problems. She presented a case study in which she examined student-generated 

connections among counting problems and addressed possible implications of such 

connections for students and for researchers. In this way, problem analogies have been 

considered as a useful tool for investigating the ways that students call upon previous 

knowledge when encountering new problems or situations. 

Pedagogical Analogies  

The second type of analogy that has received attention in the literature are 

pedagogical analogies. Pedagogical analogies are those that appear in the context of 

instruction as an aid in explaining a particular concept. The usual goal of the analogy 

creation is to extend knowledge of a domain that is easily accessible (relative to the 

learner) to a domain that is not understood as well, namely to reduce the abstraction of a 

concept by creating an analogy to a more concrete setting. Several examples of 

pedagogical analogy exist in the realm of science education as a result (Amin, 2015; 

Close & Scherr, 2015; Jeppsson, Haglund, & Amin, 2015; Niebert & Gropengiesser, 

2015). 

Pedagogical analogies move away from examining specific problems or problem 

types and look toward the potential for benefiting instructional contexts, usually to aid in 
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explaining a particular concept. Richland et al. (2004) analyzed data from 8th grade 

classrooms drawn from the Third International Mathematics and Science Study (Stigler, 

Gonzales, & Kawanaka, 1999) and found that teachers developed the majority of 

analogies within those classes. Pedagogical analogies can be found in a variety of 

contexts. For example, Dawkins and Roh (2016) outline three analogies used by an 

instructor to assist students with understanding concepts in real analysis, such as 

uniqueness being similar to finding a white tiger in a forest. Peled (2007) discusses tasks 

designed to elicit analogical thinking for undergraduate pre-service teachers in order to 

assist them with understanding cognitive processes involved with learning mathematics. 

These examples are claimed to be effective tools for teaching in their respective contexts. 

However, there are mixed reports on the effectiveness of pedagogical analogies in the 

classroom. Specifically, a potential danger of pedagogical analogies is that students may 

not be able to fully understand the analogy generated by the teacher because the student 

is not the one creating the analogy (Cobb, Yackel & Wood 1992). The teacher, with their 

greater grasp of the content knowledge, may be able to appreciate the analogy they 

generate, but the message may not be appropariately conveyed to students. For example, 

Greer and Harel (1998) found that students did not always understand the common 

analogy between physical manipulatives and abstract arithmetic. Although Thompson 

(1994) argued that the concretization of mathematical concepts (such as physical 

manipulatives for arithmetic) can be an effective aid in teaching, he noted that it should 

only be done after carefully considering what it is that students are meant to gain from it 

and utilizing the concrete representations in a well thought out manner. Thus, it may be 

that the negative reports on the use of pedagogical analogies is tied to a lack of 
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understanding of how to leverage them appropriately. 

Classical Analogies  

Classical analogies in mathematics education typically take on a form of 

reasoning as one would reason with proportions. That is, the analogies have the form 

A:B::C:D, read as “A is to B as C is to D”. An example in advanced mathematics is 

created by allowing A and C to be normal subgroups and ideals respectively and allowing 

B and D to be kernels of group homomorphisms and kernels of ring homomorphisms 

respectively. A common classical analogy problem is to provide a partial analogy and ask 

for the completion of the analogy by determining the missing piece (Piaget & Cook, 

1952).  

Table 3. Types of Analogy in Mathematics Education 
 Description Example 

Problem Analogy 

Analogies 
formed between 
similar problem 
types. 

Comparing the following problems: 
(a) Jim has 14 goldfish. Peter has 6 more goldfish than 
Jim. How many goldfish does Peter have? (English, 1998) 
(b) The Year 4 and 5 classes at Mayfield School had a 
street stall. The Year 5 class raised $652. The Year 4 class 
raised $155 more than the Year 5 class. How much money 
did the Year 4 class raise? (English, 1998) 

Pedagogical Analogy 

Analogies 
leveraged during 
instruction to aid 
in understanding. 

Leveraging similarities between groups and rings when 
introducing the definition of rings during lecture.  

Classical Analogy 

Analogies of the 
classic form “A 
is to B as C is to 
D” 

“Consider a tetrahedron is similar to a triangle. Conjecture 
a property of a tetrahedron analogous to the property of a 
triangle you already know. Explain your answer.” (Lee & 
Sriraman, 2011, p. 126) 

 Lee and Sriraman (2011) argued that classical analogies were too restrictive due 

to the nature of the sources and targets already being predetermined by an observer and 

proposed an expanded version of classical analogy called Open Classical Analogy 

(OCA). Within the OCA, analogies are not considered to be predetermined by an 

observer but are rather left open to the student for generating conjectures. The use of 

analogies in generating conjectures is discussed further in the following section. Unlike 
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problem and pedagogical analogies, classical analogies have not received as much 

attention in the literature in mathematics education. A summary of the different 

classifications of analogy in mathematics education can be found in Table 3.  

Analogy as a Heuristic for Mathematical Discovery 

Analogical reasoning is recognized by psychologists and mathematics educators 

alike as a process that allows for the generation of conjectures and hypotheses about 

concepts or ideas that are initially unfamiliar. Spearman (1923) once argued that all 

intellectual acts involve some form of analogical reasoning. Although this extreme 

perspective has not become mainstream, analogy has long been regarded as an important 

tool in the process of discovering new mathematical concepts and ideas. Polya (1954) 

points out that analogy plays a role in all discoveries and that, in some cases, analogy 

plays such a significant role that it can be viewed as the originator of the discovery. 

According to Holyoak and Hummel (2001):  

Analogy provides an important example of what appears to be highly general 
cognitive mechanism that takes specific inputs from essentially any domain that 
can be represented in explicit prepositional form, and operates on them to produce 
inferences specific to the target domain. (p. 162) 

 
Cañadas, Deulofeu, Figueiras, Reid, and Yevdokimov (2007) argued that analogies 

played a central role on the development of conjecture in mathematics in the context of 

problem solving. These descriptions of analogy elucidate one perspective on the power 

that analogical reasoning can have in the formation of new inferences.  

Individuals can spontaneously generate analogies that may instantly make 

intuitive sense (Kapon & diSessa, 2012). Other times, an analogy may be formed as the 

result of a long process of reasoning in which the analogy is purposefully constructed. 

The process through which analogy is purposefully considered for the formation of 
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inferences about some domain of interest has been termed Design-by-Analogy (DBA) 

(Singh & Casakin, 2018). In this section, I elaborate on the existing literature in which 

analogy is considered as the motivator for the creation of a new mathematical structure. 

Analogy for the Invention of New Concepts in Math Education 

Although discovery by analogy has been identified as an important tool for 

discovering mathematics, there is very little research on the role that analogical reasoning 

can play in the invention of new concepts. Even in the context of DBA, it is typically 

assumed that the target domain is known to the learner and the goal is to reveal further 

information about the target domain based on what is already known about the domain. 

So far, the described literature has primarily focused on the generation of analogies in 

two situations: those in which the analogy is formed between an abstract concept and a 

concrete concept, and those in which the analogy is formed between two domains that 

already existed within the mind of the learner. The aim of this section is to briefly 

summarize the literature that deviates from these constraints.  

Pure Carryover. Although outside of the mathematics education literature, the 

process of creating analogies between a known source domain and an unknown target 

domain has been considered within the SMT framework as pure carryover (Gentner, 

1983). Pure carryover occurs when information from a source domain is extracted and 

transplanted into a target domain, usually with no consideration of whether it makes 

sense to do so. In the language of mapping, pure carryover occurs when knowledge in the 

source domain is mapped to the unknown or poorly understood target domain. Research 

on pure carryover itself is scarce and is usually seen in instances of students failing to 

produce analogies in “correct” ways (often seen in research adopting an expert-novice 
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paradigm). This was typically seen when students failed to adapt relations in the source 

domain to relations in the target once the mapping was made (Novick & Holyoak, 1991). 

For example, a student may establish a subring test to be the exact same as the subgroup 

test, making no modifications to account for the new setting of ring theory. 

Conjecturing by Analogy. While pure carryover is concerned with establishing 

inferences in a given target by means of directly leveraging knowledge of the source, 

conjecturing by analogy opens the possibility for a student to select the target themselves. 

In their paper, Lee and Sriraman (2011) acknowledge analogies for purposes of invention 

and attempt to reformulate classical analogy in such a way as to capture those instances 

of analogical reasoning that can result in conjecturing about new mathematical objects. 

This reconceptualization of classical analogy is referred to as Open Classical Analogy 

(OCA). In the classical analogy framework, analogies are described as making 

connections between object X with property A and object Y with property B. However, 

as Lee and Sriraman point out, the property A and the object Y are each known to the 

individual from the beginning, leaving no possibility for situations where the target object 

may be unknown to the learner from the outset.  

To explore the notion of OCA, Lee and Sriraman conducted a 3-hour lesson in 

which 8th grade students were asked to engage with OCA problem types in the context of 

geometry. Of the students in the class, 3 of them participated in 1-hour clinical interviews 

before and after the lesson. An example of the kind of question asked was as follows: 

“Three median lines of a triangle meet in a single point. Select other lines and conjecture 

a property that is analogous to the given property. Explain your answer.” (Lee & 

Sriraman, 2011, p.126). Analysis of the 3 students’ activity revealed that students 
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attended to surface similarities when searching for a target domain while attention to 

relational similarities led to conjecturing about the target domain. 

Creating Structure by Analogy. Finally, Stehlíková and Jirotková (2002) and 

Hejný (2002) recognized the possibility of constructing mathematical structures through 

analogical reasoning, with Hejný describing it as “transmission of an already known 

structure to a new context.” (p. 23) In their work, structure creation is theoretically 

described with a model of Internal Mathematical Structure (IMS), a representation of 

mathematical structures that are within an individual’s mind. In particular, Hejny (2003) 

asserts that knowledge is gained by connecting experiences that are disconnected until a 

new experience causes a sudden recognition of connections between the new and 

previous experiences. The connections formed between all of these experiences result in 

an intricate network of knowledge about a structure. Hejný claims that the IMS is the key 

to organizing these networks and binding them together. 

Table 4. Summary of Research on Analogy as a Tool for Invention 
 Description Example 

Pure Carryover 

The process of carrying 
over knowledge to a 
target that is virtually 
unknown by the student. 

Carrying over the idea of group homomorphism to 
rings to create ring homomorphisms.  

Conjecturing by 
Analogy 

Analogies in which the 
target domain is open to 
choice by the student. 

“Three median lines of a triangle meet in a single 
point. Select other lines and 
conjecture a property that is analogous to the given 
property. Explain your answer.” (Lee & Sriraman, 
2011, p.126) 

Creating Structure 
by Analogy 

Building a structure by 
comparing two structures 
by analogy. 

Conjecturing about properties of the structure of 
quotient rings using knowledge of quotient groups. 

The theory of IMSs has produced some empirical results about analogical 

structure creation. Stehlíková and Jirotková (2002) investigated the processes of building 

IMSs in the specific context of reasoning analogically between two arithmetic structures. 

They claimed that “when building a new structure as an analogy to an existing structure, 
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the new structure is usually richer in concepts and ideas and enriches the original 

structure.” (p. 105) Stehlíková and Jirotková described five phenomena that they claimed 

were specific to the building of a structure as an analogy: regularities, anomalies, 

broadening intuition, obstacles, and the development of new strategies.  

Although analogy was not an explicit motivator for the study, Hausberger (2017) 

presented a classroom experiment in which knowledge of group homomorphisms was 

leveraged for teaching ring homomorphisms. This study was an attempt to reveal how 

students might better understand one structure on the basis of another. Thus, this study is 

implicitly related to processes of creating or understanding structure through analogical 

reasoning. However, because the students possessed some knowledge of ring 

homomorphisms beforehand, the structures were not created on the basis of group 

homomorphisms. According to Kvasz (2005), whether it is possible for an individual to 

spontaneously construct one structure on the basis of another remains an open question 

for experimental research. A table summarizing the review of research on how analogy 

has been used to consider the invention of new concepts can be found in Table 4. 

There has been some pushback against using analogy as a heuristic for discovery 

in mathematics education. Cobb, Yackel, and Wood (1992) argued that a mapping 

between two domains can be easily explained by an instructor because they have already 

developed a rather sophisticated understanding of the concepts involved. Thus, students 

who have not developed a sophisticated understanding may not find mappings very 

useful, meaning that the use of analogies may be difficult for students to incorporate 

when learning new concepts. Greer and Harel (1998) acknowledged that an important 

implication of this argument is that analogy should only be used in order to reinforce 
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existing conceptions rather than attempt to build new ones. However, it should be noted 

that there is very little research on the role that analogy can play in the formation of new 

mathematical concepts. Although the five phenomena described by Stehlíková and 

Jirotková (2002) is a foundation for describing how students might approach the 

invention of a new mathematical structure through analogy, there is still much to be 

discovered on how students engage in these activities and the nature of other types of 

phenomena that could exist. In particular, the analogical activity specific to students’ 

analogical reasoning has not been well developed. For example, in what ways do students 

leverage regularities and anomalies when generating structures? I attend to questions 

such as these within Paper #1 and Paper #2. 
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III. OVERVIEW OF METHODS 
 
 This interpretive study incorporated qualitative methods of research related to 

grounded theory (Corbin & Strauss, 2014). In this section, I provide an overview of the 

methods used to answer the guiding questions posed at the beginning. I first describe a 

pilot study that investigated the ways in which students generated connections between 

topics in group theory and ring theory and explain how the current study was informed by 

the pilot. I then describe the recruitment of participants, design of tasks, and analysis of 

data for the current study. 

Brief Overview of the Pilot Study 

  In the summer of 2018, I initiated a pilot study with the intention of exploring 

how students generated connections between several structures in group theory and ring 

theory. At the outset of the pilot, observation of the phenomenon of analogical reasoning 

was yet to be made an explicit goal of the study. Instead, the goal of this pilot study was 

to: (1) test the viability of the hypothesis that connections between such structures were 

indeed accessible to students, and that knowledge of group theory could provide a 

suitable foundation for beginning the study of ring theory; and (2) test out tasks designed 

for the purpose of eliciting connections between structures in group theory and ring 

theory. Two students were recruited for the pilot: an undergraduate majoring in 

mathematics, and a graduate student pursuing a PhD in mathematics education.  

The first student was administered a set of tasks over the course of five interviews 

with three different goals: (a) an interview designed to assess content knowledge of group 

theory, (b) an interview introducing the definition of ring, and (c) three interviews 

focused on conjecturing definitions for structures in ring theory. The general structure of 
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this interview process was extended into the interviews with the second pilot student, and 

the interviews collected for the dissertation as a whole. 

Informed by the pilot interview process, modifications were made to these 

original pilot tasks and new tasks were introduced to focus on analogical reasoning. First, 

the analogizing task (described below) was created and was designed to allow for 

students to have flexibility in naming the structure. In contrast, the original tasks 

provided names to the students (e.g., subring) when asking students to define the 

structure. Second, the pilot process revealed that students might need time to engage with 

the new concepts in ring theory in order to more effectively engage with the construction 

of new structures. Thus, each interview related to structures in ring theory contained tasks 

that were meant to give the student an opportunity to work with the new structure (such 

as checking properties of ring) without necessarily having to reason by analogy. In the 

following sections, I describe the final task design used for data collection. 

Participants and Setting 

In order investigate students’ analogical reasoning in mathematics, I acquired 

rosters from recently-taught introductory undergraduate abstract algebra courses at a 

large public 4-year university and emailed an invitation to students within the rosters. 

From a pool of approximately 40 students total, four students accepted the invitation to 

be interviewed. Three of the recruited students were undergraduate mathematics majors 

(1 woman and 2 men), while one was a male graduate student in mathematics education. 

The graduate student had taken the undergraduate abstract algebra course as a leveling 

course since he had not needed any abstract algebra for his particular undergraduate 
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degree in applied mathematics. With each participant, I conducted five 60-90-minute-

long semi-structured interviews designed to elicit analogical reasoning.  

The first three students were interviewed in person and tasks were administered 

on paper. One camera was positioned to record the students’ writing and a lapel 

microphone was provided to record audio synchronously with the video recording. Due 

to complications with COVID-19, the fourth student was interviewed using a video-

conferencing tool for all five interviews. For this student, tasks and questions were 

administered both verbally and through a chat interface within the tool, while the student 

wrote and recorded their work with the use of an electronic tablet and writing instrument. 

The tablet screen was shared through the tool and was visible to myself during the whole 

interview. A real-time recording of the work was collected from the student’s tablet, 

while synchronous audio was recorded from the video-conference tool. 

Interview Tasks 

 The context of abstract algebra was chosen because of the existence of several 

naturally occurring structural similarities between group theory and ring theory: 

subgroups are similar to subrings, group homomorphisms are similar to ring 

homomorphisms, and normal subgroups are similar to ideals. In this section, I outline the 

design of the tasks and the interviews utilized in this study. 

Assessment of Knowledge of Group Theory  

The initial interview helped to assess the participant’s content knowledge of 

abstract algebra before beginning to explore topics in ring theory. The purpose of this 

initial interview was to determine what students recalled about groups, subgroups, group 

homomorphisms, and quotient groups, but also to ascertain what students knew about 
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ring theory, if anything, before further interviews were conducted. The students were 

found to have varying degrees of knowledge of rings from their previous classes, but 

none of the students had any significant knowledge of topics beyond basic structures of 

ring, integral domain, and field. After the final interview, one student revealed that they 

had indeed seen the definition of ideal in their previous course. However, they did not 

recall any information about the definition of ideal, and did not make any use of it during 

the interview process.  

Tasks in this initial interview consisted of asking students to provide definitions 

of various structures in group theory: group, subgroup, group homomorphism, quotient 

group, and normal subgroup. In addition, along with each definition were prompts to 

provide an example of each structure and check given examples. An example of the 

interview protocol for this initial interview can be found in Appendix A. 

Introducing the Definition of Ring 

The second interview provided participants with the definition of ring and various 

tasks designed to acclimate the student to working with rings. These tasks focused 

primarily on getting student acquainted with basic properties of rings to prepare them for 

establishing new structures by analogy in the later interviews.  

First, the participant was provided with a definition of ring and asked to talk-

aloud as they studied the definition. During this portion, it was common for the 

participant to immediately begin making comparisons between the structure of group and 

ring. Next, the participant was asked to elaborate on similarities and differences they 

noted during the talk-aloud exploration of the definition, as well as if there were any 

other similarities or differences worth mentioning. The remainder of the ring interview 
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consisted of example generation, example checking, as well as exposure to brief 

proofs/computations involving the new setting of ring theory. An example of the 

interview protocol for the ring interview can be found in Appendix B. 

Constructing Mathematical Structures by Analogy 

The three subsequent interviews constituted the heart of the data collection related 

to analogical reasoning: each interview focused on reconstructing one of subrings, ring 

homomorphisms, or quotient rings by analogy with a structure in group theory. The focal 

task of each of these interviews was the analogizing task. These are tasks of the form: 

Make a conjecture for the definition of a structure in ring theory analogous to X in group 

theory. In this research, X was taken to be one of subgroup, homomorphism, or quotient 

group. Further tasks were constructed around three basic types: (1) elicitation of 

comparisons between structures when spontaneous comparisons tapered off (i.e., “In 

what other ways are the structures of group and ring the same?), (2) example generation 

and checking (i.e., “give an example of a subring.”), and (3) proof-writing (i.e., “Is the 

homomorphic image of a commutative ring commutative? Does this statement compare 

to any theorem/proof you know from group theory?”).  

As the interviews progressed, I allowed the students to refer back to their work 

from previous rounds of interviews. This not only gave the students an opportunity to 

recall information if they were stuck, but also allowed me the opportunity to see exactly 

what information they wanted to refer back to while they reasoned by analogy. An 
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example of the interview protocol for the interviews surrounding the construction of a 

structure by analogy can be seen in Appendix C. 

Data Analysis 

In order to analyze the data, I made use of techniques outlined by Corbin and 

Strauss (2014) and the constant comparative method. First, immediate reflections were 

written after each interview was completed. This process of reflecting allowed me to 

record my thoughts about what I witnessed during the interview. After an interview was 

completed, the audio was sent for transcription. Beginning in order of collection with the 

five interviews from each of the first and second student, initial coding consisted of 

searching for evidence of analogical activity as defined by the Structure-Mapping Theory 

(SMT) framework. That is, I searched for any evidence that the student was making 

comparisons and mapping across domains. This coding produced a rough categorization 

of dimensions of analogical activity that expanded beyond the basic tenets of mapping 

and similarity: (1) mapping and non-mapping activity, (2) attending to similarity and 

differences between domains, and (3) foregrounding a domain. These are discussed in 

detail in Paper #2.  

Unit of Analysis: Instances 

The unit of analysis was an instance of analogizing. Instances comprised a 

student’s analogy over the course of an interview with the analogous object under 

consideration depending upon the interview. While smaller analogies may be contained 

within a single instance (i.e., observing a similarity between binary operations in groups 

and rings), the analogies investigated in this study were the ring theory analogues to 

groups, subgroups, group homomorphisms, and quotient groups. Instances were typically 
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1-3 sentences in length and were identified by two criteria: presence of analogical 

reasoning and shifts in mathematical focus. Presence of analogical reasoning was 

determined by the students’ language contextualized within the broader transcript 

indicating that a comparison was presently being made, indicating that a comparison was 

going to be made, or indicating a discussion of a newly formed structure just after 

completing a comparison. Here, comparisons were identified by the student making 

connections between content in the source and target domain. Shifts in mathematical 

focus were determined by the mathematical content being attended to. For example, 

consider the following excerpt: 

So, now we’re going to call this normal subring. We give this one a name. First 
condition is that S is a subring of R. Second condition, I don’t know. Maybe we say 
rSr-1 is in S, just to copy it. 
 

This brief excerpt was subdivided into three instances: 
 
• “So, now we're going to call this normal subring. We give this one a name.”  

 
• “First condition is that S is a subring of R.”  

 
• “Second condition, I don't know. Maybe we say rSr-1 is in S, just to copy it.”  

 
Within all three instances, evidence of analogical reasoning was determined by language 

such as “we give this one a name”, “conditions”, and “just to copy it.” In the first 

instance, the student is attending to naming conventions as the mathematical content. In 

the second and third instance, the student is attending to definitional properties of normal 

subrings. I discuss the list of mathematical content codes identified in my analysis in 

Paper #2.  

I identified instances across all transcripts. To each instance, I initially assigned 

codes of whether there was mapping or non-mapping activity, whether the source or 



 

31 

target was being foregrounded, and whether the focus of attention was on similarity or 

difference. As more data was collected, I engaged in multiple rounds of axial coding and 

over time the coding shifted away from assigning the broader codes to assigning codes 

explicating specific analogical activity. The final round of coding included assigning 

codes to identify the analogical activity involved, and the mathematical content under 

consideration. For example, consider the instances from above: 

• “So, now we're going to call this normal subring. We give this one a name.”  
 

• “First condition is that S is a subring of R.”  
 

• “Second condition, I don't know. Maybe we say rSr-1 is in S, just to copy it.”  
 

Rather than assign the group of codes of (a) mapping, (b) attending to similarity, and (c) 

foregrounding source domain to each of these instances, I assigned codes that described 

the students’ analogical activity. In this case, all instances were examples of exporting. 

The codes assigned to the instances above were exporting naming convention from the 

source of normal subgroups to the target of normal subrings for the first instance and 

exporting definitional property from the source of normal subgroups to the target of 

normal subrings for the second and third instance. In order to make this decision, I 

attended to both the language within the segments, as well as the physical work of the 

students as they made their connections. In particular, for this trio of instances, the 

student had their definition of normal subgroup at their side and was glancing at this 

definition while generating their definition of normal subring. In addition, I noted the 

students’ use of language such as “just to copy it”, as this signified that he was making 

decisions based solely on his older definition without thinking about what might change. 

Along with the shift to assigning the activity code of exporting, the previous 
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codes of mapping, attending to similarity, and foregrounding the source became known 

as the dimensions of the activity of exporting. I explicate further analogical activities 

identified through my analysis in Paper #2 and share their dimensions.  

Microanalysis  

As a part of ongoing analysis, I routinely engaged with three general techniques: 

microanalysis, diagramming, and memoing (Corbin & Strauss, 2014).  

Microanalysis involves close examination of one (or several) segment(s) of data 

with the goal of deeply understanding the phenomenon found within. I intermittently 

performed microanalysis on segments when the nature of the analogical activity was 

especially unclear. Several novel interpretations of students’ analogical activity were 

produced from these analyses.  

To explicate the process of microanalysis, I briefly present an example here of 

what microanalysis typically entailed in this study. Consider the following excerpt of a 

transcript with a student, Trixie (a pseudonym). This excerpt was chosen for 

microanalysis in the study due to a lack of clarity of whether or not analogical reasoning 

was occurring: 

Trixie: Yeah, there's not a ring. Zero, one, negative one. That's 'cause it doesn't 
have closedness. So I guess really I'm showing a group, and then applying 
an extra property on it. Or an extra… 

Interviewer: Is that always the case? 
Trixie: Well, yeah. 'Cause you gotta check that R plus is a group on its own, 

right? 'Cause it has all the ... Like I said earlier, it has all the properties it 
needs, plus extras. Then you gotta check it on R star. And it could, just 
minus the inverses. And then plus the extra fun properties of associativity. 

Interviewer: Okay. This is making sense to me how you write it here. Are you thinking 
of this as a group too? 

Trixie:  It's kind of like it wants to be a group. 
Interviewer: It wants to be a group? 
Trixie:  But it isn't. I know I'm writing its notation like a group. 
Interviewer: It's fine. Yeah. 
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Trixie:  This isn't a group. 
 

In this segment, microanalysis initially involved a close inspection of the 

meanings of phrases such as: “I guess really I’m showing a group”, “It’s kind of like it 

wants to be a group”, and “This isn’t a group.” This analysis revealed that a student may 

view an analogically created structure as being part of the old structure, but still maintain 

separation from the old structure. Further analysis involved detailing how Trixie was 

leveraging the older structure to create the newer one: she was “applying an extra 

property on it” and noting that “R plus is a group on its own.” From this microanalysis, 

two concepts emerged: (1) the hypothesis that analogical activity could be present even 

when a clear analogy is not explicated, and (2) a precursor to the analogical activity of 

extending.  

Diagramming  

In addition, diagramming was incorporated to aid in making sense of how the 

concepts arising from the coding fit together in new (or otherwise difficult to detect) 

ways. Specifically, diagrams consisted of: (a) constructing visual drawings and 

representations of my participants’ analogical activity, making heavy use of the naturally 

visual nature of mapping between domains; or (b) creating tables/diagrams that 

connected and categorized codes with one another. Appendix D displays an example of 

one such diagram along with a description of categories within the diagram. This 

example in the appendix is an early example of the coding categories I used in the initial 

coding process. 
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Memos  

Finally, I regularly wrote memos that explicated my thinking about concepts and 

generating new hypotheses. These memos were written either with specific thoughts in 

mind that required critical thinking and elaboration to make sense of, or written in a 

stream of consciousness when only vague thoughts were present. Memos varied in length 

from a paragraph, to several page long writing sessions. Memo writing was always 

performed after a round of microanalysis in order to collect and organize my thoughts, 

but was also performed whenever any idea I considered relevant would arise. Each memo 

was dated at the time of writing and served as a record of my thinking over time so that 

old observations could be rediscovered and potentially reintegrated into new coding 

schemes when appropriate. Oftentimes, the contents of these memos included ideas that 

were not immediately available for investigation or researchable, or were theoretical in 

nature. As such, the memos also serve as a record of my thinking of potential ideas and 

research avenues to pursue in more depth in the future. The following is a full example of 

one such memo in which the concept of a naming convention was being explicated: 

Naming Conventions: The naming of an analogous structure appears to have 

some implications in the process of reasoning by analogy. First, the name can 

help draw immediate connections between structures. For example, Student A 

was able to immediately generate a new structure based on subgroup after having 

been given the name “subring” to work with. Beforehand, she was generating a 

structure that was a subgroup adorned with properties to make it a ring (without 

necessarily calling it a subring.) Student B would clearly make his own 

connections which was visible by his immediate naming of a structure based off 
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the source structure. In the context of abstract algebra, this naming convention 

idea is a bit “boring” because the true naming really is as simple as sub-

(group/ring) or (group/ring) homomorphism, etc. However, I think this naming 

convention idea could be generalized to other cases where the naming is not set in 

stone beforehand. For example, a child reasoning by analogy between integers 

and blocks (let’s say blue and red blocks) might begin to call the red blocks: 

negative blocks. I believe this reveals aspects of the child’s reasoning between 

these domains.” 

An example of a more elaborate memo can be found in Appendix E. The results 

microanalysis, diagramming, and memoing were regularly shared with colleagues 

through conversation and presentation to assist in ensuring the viability of my 

interpretations. This process of collecting and analyzing data continued until no new 

examples of analogical activity were found within new rounds of collected interview 

student with the last student, and the new data only provided further evidence of 

previously identified activities. At this point, saturation was achieved. The coding 

categories produced a classification of dimensions of analogical activities, mathematical 

content codes, and several analogical activities. I describe the coding categories and 

analogical activities in Paper #2. 
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IV. PAPER #1: ANALOGICAL REASONING AS A WAY OF THINKING IN 

ADVANCED MATHEMATICS 

Abstract 

Analogies and analogical reasoning have played significant roles in the 

development of modern mathematics. However, there has been critique of the use of 

analogies for the purpose of students learning new content because students may fail to 

appropriately recognize the analogical connections developed by instructors.  I counter 

that students can productively reason by analogy to understand new mathematics when 

provided with settings to develop this way of thinking. In this paper, I use examples from 

the work of mathematicians’ to argue for the important role of analogy for the purpose of 

mathematical discovery. I then provide an illustration of an undergraduate student 

engaged in similar productive analogical reasoning as they develop analogs between 

structures in group and ring theory. Through this process, the student showed increasing 

awareness of how and why they were engaging with such reasoning. This observation 

evidences the potential for students to reason by analogy for mathematical discovery. 

Further, the documented activity provides a blueprint for how analogies can be 

engendered and how analogical reasoning for discovery can be developed amongst 

students.  

Introduction 

The following excerpt displays an undergraduate student, Nathan, working toward 

developing the structure of factor rings in abstract algebra:  

So, what a factor group is, is this group where you get two different groups, and 
there's this… It's a set of these members where they undergo this operation. That's 
the condition for them. So, I think for… I don't know what we call it, haven't 
given it a name yet. I'm going to give it a name. Maybe we'll just call them factor 
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rings. Oops. Factor rings. I was thinking just to copy it, but it's missing an 
operation. And last time I did that, I did need both operations because otherwise, 
what's the difference? So, I say, well, maybe this factor ring is going to be the set 
of all the [cosets] under both operations. 

How did Nathan come to this point in constructing the structure of factor ring? What 

precisely is Nathan doing, and what are his goals in establishing the structure? As I will 

discuss in this paper, Nathan is reasoning by analogy and had developed analogical 

reasoning as a way of thinking. 

Similarity lies at the heart of analogical reasoning. There are multiple ways in 

which two mathematical entities can be construed as similar or different (Melhuish & 

Czocher, 2020). For example, metaphor is a kind of similarity that is often leveraged for 

understanding mathematical concepts with less abstraction (e.g., the collapsing metaphor 

for limits in calculus identified by Oehrtman [2009]). Pimm (1981) explicated one class 

of metaphor that was based in analogy: structural metaphors. In contrast, analogies may 

represent a broader kind of similarity. Consider the following quote by Polya:  

The essential difference between analogy and other kinds of similarity lies, it 
seems to me, in the intentions of the thinker. Similar objects agree with each other 
in some aspect. If you intend to reduce the aspect in which they agree to definite 
concepts, you regard those similar objects as analogous. (1954, p. 13) 
 

Thus, analogies are formed when similarities are observed between two objects and are 

discriminately established relative to what is important to the thinker. When solving 

problems in mathematics, Polya argues that analogies can play a vital role in developing 

new and creative solutions. Such claims echo the work of modern mathematicians, where 

analogical reasoning can be a valuable tool for developing new mathematics (e.g., 

Ouvrier-Buffet, 2015). In addition, both mathematical and non-mathematical analogies 

have been found to be used in curriculum (e.g., Harel, 1987). For example, in abstract 

algebra, textbook authors often present topics in ring theory as analogous to those in 
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group theory (e.g., Gallian, 2013). 

While analogy has been documented to play a role in pedagogy, researchers have 

cast doubt on whether analogies can support student development of new concepts. Cobb, 

Yackel, and Wood (1992) argued that attempting to engender a mapping between two 

domains in students’ reasoning may be inadequate for designing effective lessons 

because teachers have the advantage of already possessing a deep understanding of the 

content prior to creating the mapping. Naturally, students cannot be expected to 

understand deep similarities between two domains when investigating content for the first 

time and are perhaps less likely to understand or appreciate the effectiveness of an 

instructive analogy designed by the teacher. Building off the argument of Cobb et al., 

Greer and Harel (1998) suggest that analogies are best used for reinforcing pre-existing 

conceptions rather than constructing new ones.  

These positions suggest a divide between the productive use of analogies for the 

purpose of doing mathematical research and analogies for the purpose of teaching and 

learning mathematics. On the one hand, analogy is a tool for creation and discovery of 

new mathematics. On the other hand, analogy is considered inadequate for establishing 

new content and only thought of as useful for reinforcement. In this paper, I seek to 

bridge the divide by proposing that the pedagogical use of analogies can be implemented 

productively for the purpose of constructing new knowledge given an appropriate set of 

circumstances. For instance, it is interesting to consider the accessibility of analogs in 

such a way that the analogy is not entirely predetermined by the instructor from the outset 

of the lesson. If students are given the opportunity to develop their own skill in reasoning 

by analogy, then they may be able to construct new knowledge. I contend that analogical 
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reasoning for mathematical discovery can be a way of thinking (Harel, 2008a), and this 

way of thinking can be fostered within student’s reasoning. 

I use the context of abstract algebra to explore this conjecture. I consider the 

questions: is it feasible that a student who possesses basic knowledge of only group 

theory may leverage pertinent aspects of that knowledge when coming to learn about 

rings? How might students come to recognize analogies such as those between group 

theory and ring theory on their own? Finally, how might students learn to productively 

engage with analogical reasoning to assist with the construction of new concepts in ring 

theory? In the sections that follow, I describe the conceptualization of analogy used in 

this paper. I then share examples of analogy and analogical reasoning being used for the 

purpose of mathematical discovery. Finally, I offer evidence of a student developing 

analogy for discovery as a way of thinking during their inquiry into the connections 

between group and ring theory. Although there are likely several strategies that students 

may develop when given the opportunity to purposefully reason by analogy, I focus on 

one strategy that I observed to naturally and spontaneously occur within my students’ 

reasoning. In particular, I explore the subtle ways in which one student’s reasoning 

evolved as they became more aware of their process of analogical reasoning.  

Conceptualizing Analogy 

In order to situate a discussion of analogy and analogical reasoning in the context 

of mathematics, I briefly introduce the overall conceptualization of analogy used in this 

paper. Reasoning by analogy is a mental process that involves the comparison of two 

cognitive domains. Researchers tend to operationalize individuals’ analogies via a 

process of organizational matching between one structure and another (e.g., Gentner, 
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1983). A commonality among modern approaches to describing analogies and analogical 

reasoning is to consider mappings between a source and a target domains. During an 

episode of analogical reasoning, the source refers to the structure from which an analogy 

originates while the target refers to the structure that is being mapped onto. One domain 

is typically already known to the individual while the other is a lesser-known domain that 

is under investigation.  For example, the situation of electricity flowing in a circuit is 

commonly compared analogically to the situation of water flowing through a river. The 

power of the analogy, however, does not necessarily lie in any surface level comparisons 

between the two. Instead, the pertinent similarities are underlying relations identified 

between the two domains. In this way, analogies may be leveraged to make comparisons 

between two structures in order to reveal new information about one or the other.  

The language of domains has been widely adopted to refer to the origin of 

structures under consideration. I use this language throughout this paper to explicitly 

identify which domains are being compared in the context of reasoning by analogy about 

mathematical structures. Domains can be representative of various levels of structure and 

can be imbedded within other domains. For example, one can consider the domain of 

structures such as groups, but one can also describe the domain of group theory as a 

whole. Extending further, one can consider the domain of abstract algebra, the domain of 

advanced mathematics, or the domain of mathematics. 

Analogy for the Purpose of Mathematical Discovery 

Analogies and analogical reasoning have been prominent in the development of 

modern mathematics. In particular, analogies have played a significant role in the 

discovery of new mathematics. Recognizing the importance of analogy in mathematical 
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reasoning, Polya (1954) named reasoning by analogy along with generalizing and 

specializing as key ways of thinking. Polya claimed that these three forms of reasoning 

often co-occur when approaching problems in mathematics and are each ubiquitous to the 

development of mathematical thinking and reasoning. With respect to analogy, the key 

suggestion provided by Polya was to consistently make connections and comparisons of 

new problems back to those problems that were previously solved. With Polya’s 

observation of the importance of analogizing in mathematics in mind, I share three cases 

to illustrate the important role of analogy in mathematical discovery. 

Constructing New Information  

History was made when Descartes established a formal connection between 

concepts in algebra and geometry with the creation of analytic geometry. Discussed in 

Descartes’ treatise, La Géométrie (1637), this revelation changed the way that 

mathematicians viewed both of algebra and geometry and ushered in a new paradigm for 

discovering relatively simple solutions to previously difficult and seemingly impossible 

problems. One underlying role in Descartes’ development of this connection was 

reasoning by analogy (Crippa, 2017), specifically the act of recognizing and constructing 

parallels between the domains of algebra and geometry. Descartes created what was 

essentially a codex for translating between arithmetic and geometric relations. One of the 

most influential discoveries made by constructing this analogical relation between 

algebra and geometry was the Cartesian plane. The recognition of the deep analogies 

between algebra and geometry proved to be useful for establishing new mathematical 

information. For example, Lützen (2010) noted that, among several other 

accomplishments, Descartes “translated the problem of solution of a quadratic equation 
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into a construction using ruler and compass, and claimed that conversely no other 

equation could be solved by these means” (p. 27). 

Developing New Techniques  

To illustrate the key role of analogy in the process of inductive mathematical 

reasoning, Polya (1954) shared an example from Euler’s work on finding the sum of 

reciprocals of squares: 

1 + ¼ + 1/9 + 1/16 + 1/25 + … 

The core of Euler’s analogy was to adapt methods verified for the source domain of finite 

cases of algebraic equations to a target domain of a case that was infinite. Euler took 

advantage of the fact that an nth degree equation with n roots could be decomposed into a 

product of linear factors and proceeded to decomposed an “infinite degree” equation with 

“infinite roots” into a product of infinite linear factors. By mapping a known strategy 

from a finite domain to an infinite one, Euler uncovered a new method for finding the 

value of certain infinite sums. Although it was quickly pointed out by Euler’s 

contemporaries that the analogically conceived conjecture could not immediately be seen 

to be true, it did produce the successful and now famous result: the sum of the reciprocals 

of squares is 𝜋!/6. 

Analogy in the Defining Process of Modern Mathematics Research 

Finally, I exemplify the use of analogy in formulating new mathematical concepts 

and definitions through the adaptation of previously known definitions. Ouvrier-Buffet 

(2015) investigated the ways in which mathematicians define mathematical objects and 

developed a model of mathematicians’ process for generating definitions. Ouvrier-Buffet 

found that analogies play a role at various stages of the defining model: during initial 
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exploration when generating a definition, and throughout defining. No matter the stage at 

which analogies are being used, the purpose remains consistent: new concepts and 

theories pertaining to the novel definition are generated through comparison to existing 

concepts and theories.  

Using components of Ouvrier-Buffet’s defining model Martín-Molina, González-

Regaña & Gavilán-Izquierdo (2018) shared an example of a research mathematician 

describing her work in generating a definition by establishing an appropriately 

generalized version of an existing definition. In particular, the mathematician in their 

study uses analogies to compare between the source domain of already known 

definitions, and the target domain of generalized versions of the source definitions. 

Martin-Molina et al. elaborate on this matter, stating: 

Alice noticed the great similarities between the introduction of ‘generalized 
complex space forms’ and ‘generalized Sasakian space forms’. She described how 
similarly the new definitions appeared, how they were checked to be valid and 
how new examples of the newly defined manifolds were found. (p. 1077) 
 

Analogical reasoning was purposefully invoked by these mathematicians, specifically in 

the way that the research mathematician knowingly creates a new domain to which 

similarities and differences can be observed. A summary of the relevant aspects of 

analogy for the purpose of mathematical discovery across each of these three cases can be 

found in Table 5.  
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Table 5. Analogy for Mathematical Discovery 
 Description Significance 

Descartes’ Use 
of Analogy 

Formalization of the connection between 
algebraic and geometric concepts with the 
help of analogy. 

Several new mathematical problems 
became accessible in the years that 
followed. 

Euler’s Use of 
Analogy 

Introduction of a technique to find the 
sum of the reciprocals of squares by 
analogizing with finite degree equations. 

Euler produced a now famous 
mathematical result and a new 
technique for solving similar types of 
problems. 

Analogy in 
Modern 
Research 

Creation of new definitions via analogy 
with previous definitions. 

Analogical reasoning is seen to be 
closely related to the establishment of 
new mathematical content. 

 
Examining a Student’s Analogical Reasoning in Abstract Algebra 

Given the role of analogy in mathematics history and modern mathematicians’ 

work, it is reasonable to suggest that students could leverage similar strategies while 

learning new mathematical content. I situate this work in the context of ring theory 

because there are several natural analogies between the structures in group theory and 

ring theory. To name a few, groups are analogous to rings, subgroups are analogous to 

subrings, and normal subgroups are analogous to ideals. Because of these naturally 

occurring analogs, the context of abstract algebra is an accessible one for investigating 

how students might productively reason by analogy.  

In this section, I present an example of an undergraduate student, Nathan (a 

pseudonym), engaging with analogical reasoning in this context. My main objective in 

presenting these examples is to illustrate my earlier claim: students can develop new 

mathematics through analogy. More substantially, this case illustrates analogical 

reasoning becoming a way of thinking as the student leveraged their previous analogical 

reasoning as they progressed through the tasks. 

In order to situate the examples that follow, I briefly describe here the focal task 

for the interviews that I call the analogizing task. This task involved a providing a 
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statement of the form: Make a conjecture for a structure in ring theory analogous to 

_______ in group theory. The goal of this task was to provide students an opportunity to 

reason by analogy between structures in groups and potential ring structures. The task 

sought to allow students to purposefully reason by analogy while maintaining enough 

freedom for students to generate their own mathematics and generate spontaneous 

analogies as they thought about what the analogous ring structure would be. In the 

following sections, I display examples of Nathan reasoning by analogy and for each, I (1) 

describe Nathan’s activity with respect to the algebra, (2) describe the analogical activity 

present in his reasoning, and (3) situate his analogical reasoning within known 

phenomenon found within research on analogy and analogical reasoning.  

The Creation of an Analogy  

What are the first aspects that come to mind when beginning to compare two 

domains? It is natural that one would begin with what is available on the surface rather 

than immediately formulating deep rooted connections. From there, additional 

connections can be made. In this section, I briefly describe some aspects of Nathan’s 

process in generating an initial analogy between subrings and subgroups. 

Analogical Access: A Name. In the following excerpt, Nathan is presented the 

first analogizing task: 

Interviewer: Okay. First question here is that I want you to make a conjecture for a 

structure in ring theory that is analogous to subgroups in group theory. 

Nathan: So I'm just making it up? Like a subring? I guess we'll call it that. 

Nathan has begun the construction of what he has termed a “subring”. Nathan begins 

with a simple naming of the new structure under consideration. Reasoning by analogy is 
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visible in his chosen name for the new structure wherein Nathan has conformed to the 

naming convention established by subgroups. While it may appear obvious or 

uninteresting to establish this name on the surface, the naming convention provides 

potential foreshadowing into what Nathan believes will characterize a structure in ring 

theory analogous to that of subgroups. His decision to name the new structure a “subring” 

indicates the first sign of a connection to the structure of subgroups in group theory.  

The establishment of the new structure as being a “subring” is a marker for 

Nathan’s entry point into his reasoning about what a structure in ring theory analogous to 

subgroups should be. A common term for this initial step in the process of reasoning by 

analogy is analogical access (e.g., Hummel & Holyoak, 1997). In Nathan’s case, he was 

skeptical about what it was he was trying to accomplish (i.e., “I’m just making this up?”). 

However, by using the name of the structure as a point of access, Nathan was able to 

generate a definition for his new structure as discussed in the next section.  

Equipping the Analog with Properties. After establishing the name of the 

structure, Nathan provided a description of the newly conceived structure as it would be 

in the context of ring theory. In the following example, Nathan is summarizing his 

process for generating properties of the structure he had created: 

I just compared it to subgroup. We know that subgroup has a closure under its 
binary operation and it contains the inverse. So I said maybe it has closure under 
just one of them, one of the binary operations and then maybe the inverse is under 
the other operation. And then I said, well since ring had more properties than the 
group, then maybe a subring has more properties than the subgroup. Then I just 
added a unity or what do you call it, identity, under one of the operations. Because 
it's a subring, maybe it doesn't exhibit all the properties, just like subgroup 
doesn't. So, I said maybe it just has one of them. 
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Figure 1: Nathan’s Reasoning Between Subgroups and “Subrings” 

Nathan’s focus on describing the structure of subring was to make a direct comparison to 

the structure of subgroup and decide what aspects of the two would remain the same. 

Nathan’s goal in this excerpt was to generate properties that could then be used to define 

a subring. From this excerpt, I infer that Nathan was indeed making explicit connections 

to his domain knowledge of subgroups to assist in formulating a description of the 

structure in the domain of rings. In particular, Nathan heavily emphasizes the properties 

of subgroups that he was aware of and mapped them over to the context of subring with 

the assumption that it would possess similar properties. The initial written process of 

Nathan’s reasoning between the structures of subgroups and subrings, in which he 

considered the properties needed for each structure, can be seen in Figure 5. 

Nathan’s analogical reasoning in this example relied heavily on assuming that 

certain properties of the subring structure would in fact remain consistent with what he 

knew about subgroups. For example, Nathan was initially considering the need for 

subrings to require a multiplicative inverse for all elements, despite the fact that 

multiplicative inverses are not guaranteed in rings.  This analogical process is known as 

carry over (Gentner, 1983), wherein an individual maps aspects of the source domain 

over to the target domain without giving much justification for why the aspect should be 

mapped (other than that it is consistent with what they knew to be true about the source.) 
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In particular, Nathan does not appear to give much attention to his process of mapping 

aside from believing that certain necessary properties, decided as such because of what he 

knows to be true about subgroups, are requirements for the new structure of subring. In 

Nathan’s case, the initial unnecessary properties carried over for the definition of subring 

were often resolved through deeper inquiry into the structure. Furthermore, as the 

interviewer, I asked probing questions to assist Nathan in refining his selection of 

properties to map, especially by attending to differences between the structures of group 

and ring in order to facilitate changes in the structure of subring as compared to 

subgroup. 

The Evolution of Nathan’s Analogical Reasoning  

After creating the subring structure by analogy with subgroups, Nathan engaged 

with two more analogizing tasks (beginning with group homomorphisms and factor 

groups) in subsequent interviews.  These tasks revealed progressive differences in how 

Nathan approached reasoning by analogy stemming from his previous experience with 

reasoning by analogy between subgroups and subrings.   

A More Pointed Inquiry. When presented with the analogizing task for 

subgroups, Nathan initially responded with hesitance on how to proceed. After initial 

exposure to the analogizing task, however, Nathan was more purposeful in initiating the 

construction of structures by analogy in the interviews that followed. In the following 

excerpt, Nathan has recalled what he knows about group homomorphisms and is now 

beginning to reason about a structure he has termed a “ring homomorphism”. Within the 

first analogizing task concerning subgroups, Nathan focused more narrowly on recreating 

properties of subgroups that would be similar for his newly created structure of subrings. 



 

49 

However, during the construction of ring homomorphisms, Nathan paused to consider the 

fact that subrings were different from subgroups and that differences were to be expected. 

So, now let's talk about ring homomorphism. Homomorphism. I don't know, I feel 
like it would be the same thing. There exists, let's just say psi or something from 
one ring to another ring such that psi is one-to-one. Or, I don't know what you 
say, onto…The same thing kind of goes here. So, I don't know, I feel like it ... 
I don't know, I hate saying it's the same thing, because last time subring was 
different because the ring is different.  
 

Nathan expressed concern with describing the newly conceived structure as “the same 

thing” as a group homomorphism. By invoking his experience with the first analogizing 

task, in which he found subrings to be different from subgroups because of the fact that 

rings are inherently different from groups, Nathan shifted his attention away from simply 

carrying over aspects from the source into the target. Nathan was more aware of 

differences when constructing an analog to group homomorphisms. As such, Nathan 

asserted a distinction from his thinking about group homomorphisms. Nathan’s 

awareness and anticipations od differences is also evident within the analogizing task for 

factor groups.  

Factor rings. I was thinking just to copy it, but it's missing an operation. And last 
time I did that, I did need both operations because otherwise what's the 
difference? So… maybe this factor ring is going to be the set of all the Sa [cosets] 
under both operations. 

 
In this example, Nathan briefly alluded to there being a purpose for considering more 

than just similarities when formulating his analogy when he asked rhetorically 

“otherwise, what’s the difference?” Initially, Nathan considered only the need for one 

operation as is the case for a factor group. However, his observation based on his 

previous analogical reasoning results in a new hypothesis in which he considers a factor 

ring as being a set of cosets with both of the operations required to form a ring.   
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Abstracting Conditions. In the following excerpt, Nathan has been given the 

analogizing task for factor (quotient) groups. His first instinct was to consider his 

strategies for reasoning by analogy in the context of subrings and ring homomorphisms. 

In the following excerpt, Nathan is reasoning about what constitutes a factor ring by 

analogy with factor groups while leveraging his previous reasoning about the analogizing 

task for group homomorphisms: 

Oh, it's the fact that these [conditions] have to be true. That's what I was thinking. 
I was thinking there was multiple phis, but it's multiple conditions that have to be 
true. So, here, I don't know, it doesn't feel like we have conditions. I understand 
that this is a condition. G over H is a set of cosets under this operation. So, R over 
S, I'm guessing is going to be cosets. It's just confusing now. I want to just copy it, 
but what's the operation between here, and why is it only one operation?  
 

Providing further evidence of an increasing awareness of how he wished to approach the 

process of analogical reasoning, Nathan developed a notion of “conditions” to which he 

wanted to attend to. These conditions were representative of specific properties of a given 

structure that could be abstracted between the source and target structures, such as a 

group homomorphism requiring the homomorphism property: 

j(a *1 b) = j(a) *2 j(b) 

In particular, Nathan was purposefully attending to his reasoning by analogy to ensure 

that what resulted was more than just a comparison of surface level features. Maintaining 

consistency with his recognition that merely copying the structure directly from group 

theory was insufficient, Nathan identified aspects of group homomorphism that could be 

appropriately abstracted and translated to the context of ring homomorphisms. In the 

excerpt provided above, Nathan was beginning to recognize that the same could be true 

for the analogizing task for factor groups as well identified the notion of a factor ring as 

being a set of cosets as being one such condition to attend to. As discussed in the 
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previous excerpt, Nathan would eventually hypothesize that the factor ring structure 

would be defined with two operations to form a ring, whereas he initially was considering 

the need for only one operation as was the case for factor groups. 

Discussion 

By investigating Nathan’s activity while reasoning by analogy, we can see that it 

is indeed possible for students to engage in productive reasoning by analogy when 

learning about new mathematics. Analogical reasoning is a way of thinking that students 

can develop while investigating structures in abstract algebra. Specifically, Nathan 

spontaneously began to invoke his previous analogical reasoning strategies as he 

progressed through the interviews. The increasing awareness of his reasoning by analogy 

suggests that the process of analogizing is learnable and can be used to assist students to 

independently reason by analogy. Although Cobb et al. (1992) made an argument against 

the pedagogical use of analogies that are designed by the teacher beforehand, I argue that 

analogies may be pedagogically effective when students themselves are allowed the 

opportunity to produce the analogies in the moment and, perhaps more importantly, 

engage in analogical reasoning that is meaningful to them. In this way, the promotion of 

analogical reasoning in students’ mathematical thinking can provide an effective way of 

leveraging previous knowledge to both initiate and extend inquiry into new topics. Much 

like the use of analogy as wielded by research mathematicians discussed by Ouvrier-

Buffet (2015), Nathan began to utilize analogy in a purposeful and productive manner. 

For example, Nathan searched for underlying properties in order to advance his 

understanding of the newly created structure. This process of searching for conditions 

suggests that Nathan’s analogical reasoning had progressed from attempting to simply 
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carry over properties from the source domain into the target to identifying which aspects 

of the domains were meaningful enough to be mapped. 

The focus of this paper has been on analogical reasoning in the context of 

advanced mathematics, specifically abstract algebra. While there is significant literature 

to be found detailing the process of analogical reasoning observed in children (e.g., 

Goswami, 2001), the focus is rarely on analogical reasoning for the purpose of discovery. 

I conclude this paper by arguing that productive and complex forms of analogical 

reasoning, such as those exhibited by mathematicians, can be found outside of advanced 

mathematics as well. Consider the following statement in which a young child, Lynn, is 

solving the problem “-8 – 3 = �” (Bishop, Lamb, Phillip, Whitacre, Schappelle & Lewis, 

2014). 

I’ll just start counting by, start counting down at 8 because it’s negative. Eight, 7 
(holds up one finger), 6 (holds up two fingers), 5 (holds up three fingers). 
Negative 5. (Pause.) Wait, I think it’s switched. I don’t know. At first I was 
thinking since it was a minus [the subtraction symbol in -8 – 3] so it would have 
to be a minus. But now I’m thinking since this one was a plus (she points to the 
previous problem -3 + 6 = �) and I had to do minusing, that this one [-8 – 3 = �] 
is plus on the negative numbers. (Lynn correctly counted up 6 units from -3 for 
the previous problem but because the absolute values of the numbers decreased, 
she said it was “like minusing” to her.) I want to change my answer and count up 
now. Eight, 9 (holds up one finger), 10 (holds up two fingers), 11 (holds up three 
fingers). Negative 11. 
 

In this example, the child is mapping between the source domain of positive integers and 

the target domain of negative integers. Not only does Lynn reason about negative integers 

by analogy with positive integers, but she also reasons by analogy about the operations of 

addition and “minusing.” In particular, Lynn’s reasoning echoes the use of analogy 

employed by Euler when making a conjecture across domains to make a discovery: Lynn 

makes a conjecture about how to handle the case of subtraction from a negative number 
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by analogy with a previous case of addition to a negative number. Further inquiry into the 

process of analogical reasoning, as well as careful development of tasks that promote 

explicit analogical reasoning, such as variants of the analogizing task presented in this 

paper, could help to explicate what student analogical reasoning looks like across several 

content domains and grade bands in mathematics. By attending to the development of 

such tasks and promoting analogical reasoning as a way of thinking in mathematics, we 

can better equip students with reasoning skills in mathematics that prepare them to 

autonomously generate rich connections by analogy across a variety of content domains.
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V. PAPER #2: THE ANALOGICAL REASONING IN MATHEMATICS 

FRAMEWORK 

Abstract 

This paper establishes the Analogical Reasoning in Mathematics (ARM) 

framework for describing students’ analogical activity in mathematics contexts. I first 

outline a definition of analogy and contrast it with the concept of metaphor. I then 

introduce ARM, which categorizes analogical reasoning activity that is unique to the 

context of doing mathematic and explicates features of analogical reasoning that are 

largely implicit in existing models. Constructed from an analysis of interviews with four 

students engaged with analogical tasks in abstract algebra, ARM identifies three 

dimensions of analogical activity: mapping/non-mapping across domains (MAD), 

attending to similarity and difference (SAD), and foregrounding a domain (FAD). Built 

upon these dimensions, analogical activities are identified and explicated for the purpose 

of analyzing student analogical reasoning. I provide examples of several of these 

activities in the context of abstract algebra.  

Introduction 

Reasoning by analogy offers students a way to develop creative insight into new 

problems and situations by leveraging their knowledge about previously known 

information. Analogical reasoning has even been conjectured to be the basis for all 

reasoning (Spearman, 1923). While this claim perhaps overgeneralizes the power of 

analogies, reasoning by analogy is indeed recognized as a valuable tool for the teaching 

and learning of mathematics (English, 2004), has ties to mathematical processes such as 

abstraction (English & Sharry, 1996), and inspires mathematics research ventures 
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(Ouvrier-Buffet, 2015). Several existing models of analogical reasoning are available 

(e.g., Gentner, 1983; Gelernter, 1985; Holyoak & Thagard, 1989), and these models 

provide useful ways to operationalize analogical reasoning in a variety of content areas. 

However, a description of how students reason by analogy in the context of mathematics 

has not been explicated in detail. In particular, existing models often do not explicitly 

account for the ways that students may reason by analogy that are unique to mathematics. 

Furthermore, existing models are often concerned with describing perfect representations 

of analogy generation and analogical reasoning; this need not be the case in exploratory 

or instructional contexts. Because of the importance of analogy for mathematical thinking 

and reasoning (Polya, 1954), there is a need to describe how students themselves reason 

by analogy. By doing so, we can begin to better understand how to promote productive 

analogical reasoning in mathematics classrooms. 

While research in mathematics education has leveraged analogy as a tool for 

investigating student mathematical thinking, analogy is often conflated with a related 

concept: metaphor. The lack of a rigorous distinction between analogy and metaphor 

obfuscates the utility of each construct for research on student thinking and learning in 

mathematics. Although some scholars have contributed to the discourse establishing 

differences between the analogy and metaphor (e.g., Pimm, 1981), and there is theoretical 

literature outside of mathematics education that ponders the ways in which analogy and 

metaphor are the same and different (e.g., Bailer-Jones, 2002), a formal distinction 

between analogy and metaphor is not clear within mathematics education. Thus, in order 

to assist in describing students’ processes of analogical reasoning, there is a need to 

clarify key differences between analogy and metaphor. 
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The goal of this paper is to establish a framework for interpreting how students 

reason by analogy in mathematics. I propose a theoretical framing for operationalizing 

and interpreting students’ analogical reasoning, and argue for the differences between 

analogy and metaphor with this framing in mind. I then introduce the Analogical 

Reasoning in Mathematics (ARM) framework constructed from an analysis of students’ 

reasoning by analogy in the context of abstract algebra, a content area rich in a variety of 

accessible analogies to be created and studied. Informed by literature within and without 

mathematics education, this framework establishes a tool for interpreting students’ 

reasoning by analogy in mathematics. The following question guided this qualitative 

research: 

RQ1. What is the nature of students’ analogical reasoning as they create analogies 

between known mathematical objects and new mathematical objects in a different 

context? 

RQ2. What are students’ analogical activities as they reason by analogy about objects 

between two mathematics contexts? 

The specific context of this study is research on students’ analogical reasoning in 

abstract algebra. I chose this context in part due to the existence of several natural 

similarities between the topics of group theory and ring theory: several structures 

associated with rings can be thought of as direct analogues to structures associated with 

groups. As such, I seek to answer the following sub questions specific to the context of 

abstract algebra in order to gain insight into analogical reasoning more generally: 
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SQ1. What is the nature of students’ analogical reasoning as they create analogies 

between groups and rings, subgroups and subrings, group homomorphisms and ring 

homomorphisms, and quotient groups and quotient rings? 

SQ2. What are students’ analogical activities as they reason by analogy about groups and 

rings, subgroups and subrings, group homomorphisms and ring homomorphisms, and 

quotient groups and quotient rings? 

Theoretical Framing 

In this section, I describe my stance toward interpreting students’ mathematical 

activity with respect to their reasoning by analogy and the underlying foundations of the 

Analogical Reasoning in Mathematics (ARM) framework. 

The Actor-Oriented Perspective  

I adopt the Actor-Oriented (AO) perspective (Lobato, 2012) to foreground 

students’ own thinking and activity. Much of the literature on analogy has examined 

participants’ processes of analogical reasoning based on whether they were able to 

recreate predetermined analogies (e.g. Gick & Holyoak, 1980). Because observers tend to 

be well-versed in the contexts which they are studying, observers may bring along with 

them a bias concerning the analogies expected to be generated by the participant. This is 

especially pertinent to structural analogies in abstract algebra, where several potential 

analogies are indeed predetermined to adhere to convention. It is often the case that if a 

participant does not generate the analogies expected by the expert, then the participant is 

thought to have failed in creating any analogy at all. The AO perspective mitigates this 

bias by ensuring that student activity is examined from the perspective of the individual. 

The AO perspective situates the role of the researcher as an interpreter of students’ 
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activity while backgrounding expectations for what is thought to be correct. The activities 

enacted by the students while engaging with analogical reasoning are, within reason, 

interpreted from the perspective of the student. In this way, there are no “incorrect” 

activities or connections that may be generated by a participant while reasoning by 

analogy. This orientation is key to developing a framework for how students reason by 

analogy in mathematics rather than modeling a perfect representation of analogy and 

analogical reasoning. 

Theoretical Foundations  

In order to operationalize analogy, I adopt Structure-Mapping Theory (SMT) 

(Gentner, 1983). Structure-Mapping Theory proposes a model for describing analogies 

and the process of reasoning by analogy through mental mappings across domains. ARM 

makes use of the following three features of SMT: 

• Analogies compare between a source and target domain. 

• Analogies consist of mappings between the source and target. 

• Mappings consist of linking content between the source and target. 

Not unlike the notion of concept image (Tall & Vinner, 1981), a domain is a collection of 

knowledge that one possesses about a given topic or idea. Domains may vary in size and 

scope depending on the context in which one is reasoning by analogy. For instance, one 

may hold the singular concept of a group (in group theory) as constituting a domain, or 

one may take as a domain the entirety of group theory, including anything relevant to 

groups within the domain (even concepts that they have only just discovered or are not 

well understood can reside within the domain.) To operationalize the act of creating an 

analogy, Structure-Mapping Theory introduced a formal description of the activity of 
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mapping. During the process of reasoning by analogy, an individual generates 

connections by mapping between one domain typically already known (the source 

domain) and another domain that is being investigated (the target domain.) When 

mapping between domains, students map some form of content between the domains. 

The contents of domains within the SMT are described as objects, attributes, and 

relations. However, as I will describe later, I do not use the content outlined by Gentner 

in this study and instead describe content that is specific to the practice of mathematics. 

Analogy in Mathematics Education 

While Structure-Mapping Theory introduced several key characteristics for 

identifying and describing analogies, there is further need to distinguish between closely 

related types of similarity: metaphor and analogy. In this section, I further expand on the 

assumptions I make about analogy by contrasting with metaphor. I then discuss literature 

pertaining to analogy in mathematics education. 

Differentiating Analogy and Metaphor 

Whether a comparison is an analogy or a metaphor is not dependent upon the 

structure or the content of the comparison. Instead, I argue that it is dependent upon the 

individual’s orientation toward the comparison. In this section, I make three claims: (1) a 

conscious separation of domains is vital to analogy; (2) analogies often involve 

bidirectional mappings whereas metaphors typically do not; and (3) analogies can involve 

comparisons between vaguely understood domains. 

Analogies Separate Domains. To reason metaphorically is to assert that one 

entity is another in some sense. Of course, it is rarely the case that a metaphor establishes 

two domains as being entirely equivalent. Instead, an assertion of similarity is made 
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within some bounds of the domains; the bound of one domain is the bound of the 

compared domain. For instance, the basic metaphor for infinity is a conceptually finite 

process that “goes on and on” (Lakoff & Nunez, 2000), and function is traveling 

(Zandieh et al., 2017). Analogies do not make such extreme assertions of similarity and 

instead, analogically compared domains remain separate.  

Let us now clarify this distinction between metaphor and analogy with an 

example that is common in topology: representations of abstract topological spaces 

drawn on a chalkboard. Because the space is represented on a flat surface, it is never truly 

representative of any space that is say, nonmetrizable. However, nonmetrizable spaces 

are often represented as pictures drawn on a flat surface. Metaphorical reasoning between 

the two constructs occurs in one of two ways: either (a) it is understood what the bounds 

of the metaphor are (that the chalkboard more accurately represents a subspace of R2, for 

example) and thus one can freely reason about the space while being wary of its 

limitations, or (b) the perceived bounds of the metaphor extend beyond what is intended, 

and key differences remain unnoticed. In the latter case, a student might implicitly 

believe that all topological spaces behave like subspaces of R2. Thus, metaphors may 

unintentionally pose threats to mathematical understanding (see Pimm, 1981; 1988). 

On the other hand, to reason analogically between the representation on the board 

and the abstract notion of a topological space is to maintain awareness that there is a 

separation between them. The drawing on the board is never meant to represent an 

abstract space in its entirety. To be clear, an individual may not be fully aware of all the 

differences that are key to distinguishing the two in the intended way, nor is the 

individual required to fully explicate every difference between the two. Instead, 
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awareness of the fact that the constructs are different is what is key to thinking 

analogically.  

Analogies are Bidirectional. The direction of mapping is a key defining feature 

of analogy. Consider the difference in meanings between the following metaphors: “some 

surgeons are butchers”, and “some butchers are surgeons” (Ortony, 1979). The first 

statement has a markedly different meaning than the second. The asymmetry of 

metaphors is found in the mathematics education literature, such as the metaphor cluster 

documented by Olsen and colleagues (2020): doing mathematics is a journey. The 

language surrounding this metaphor often involves references to learning mathematics as 

consisting of a series of landmarks or covering a certain amount of “ground.” What does 

the symmetric statement entail? Reversing the direction establishes the following: a 

journey is doing mathematics. Not only is the original meaning changed, but an unusual 

metaphor is produced: doing mathematics would be an esoteric way of understanding a 

journey.  

In contrast, when an individual reasons by analogy, the comparison can typically 

be made in both directions: understanding of either domain can assist in making 

inferences in the other. Refer back to the example of the abstract topological space 

represented on a flat surface. When reasoning by analogy between the two domains, no 

extreme assertion of similarity is necessarily made (i.e., the domains are separated.) 

Instead, some effort is made to compare and contrast the two domains. For instance, one 

may reason analogically about the definition of limit of a sequence in the usual topology 

on R2, versus the definition of limit of a sequence in a general topological space being 

represented on the flat surface. If a sequence converges in R2 (with the usual topology), 



 

62 

then the limit is unique. This need not be true in general: there are infinitely many points 

to which the sequence {1/n} converges within T, the finite complement topology on R. A 

comparison can be achieved in either direction. It is just as viable to state that “limits in 

R2 are like/unlike limits in T” as it is to state that “limits in T are like/unlike limits in R2.” 

Analogies Can be Vague or Imprecise. Metaphors are often interpreted as 

comparisons between the known and the unknown. Consider Zandieh et al.’s (2017) 

notion of traveling as a metaphor for function: students are perceived as having an 

understanding of the concept of “traveling” which they then use to gain an intuitive 

understanding of the abstract notion of “function”. Analogies are sometimes thought to 

only allow for comparisons between two already known domains. However, this does not 

allow for vague or imprecise analogies, which exist in the literature. A prominent 

example outside of mathematics education is known as pure carryover (Gentner, 1983) 

which involves mapping known content into a completely foreign domain. Within 

mathematics education literature, analogy has been leveraged for the purpose of creation 

or invention (e.g., Lee & Sriraman, 2011; Stehlíková and Jirotková, 2002), and 

mathematicians establish new lines of research into unknown topics by analogy (Ouvrier-

Buffet, 2015). Thus, it is indeed possible to generate analogies in which one domain 

remains vague and imprecise. I present further evidence for this claim within the results 

of this paper: students will be shown to construct unknown (to them) objects in ring 

theory by analogy with known structures in group theory.  

Mathematics Education Literature Pertaining to Analogy 

Having argued a distinction between analogy and metaphor, I now discuss 

existing literature related to analogy in mathematics education. I incorporate three 
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categories introduced by English (2004) to organize this section: problem analogy, 

pedagogical analogy, and classical analogy.  

There has been great interest in investigating how people leverage their 

knowledge of a solution to one problem to determine a solution to another; these are 

known as problem analogies (Carbonell, 1983). In general, research on problem analogies 

is concerned with the creation of isomorphisms between problem types (e.g., Greer & 

Harel, 1998). English (1998) investigated the ways in which children would reason 

analogically between problems with similar structures, one of which was less complex 

than the other. She found that the children in the study required assistance in applying 

analogical reasoning to problems that were more complex in nature, although they were 

able to exhibit analogical reasoning in everyday contexts. Some literature has actively 

looked beyond the basic notion of structural isomorphism. Reed (2012) introduced a 

taxonomy of types of mapping and structures to map between. This taxonomy 

acknowledged the existence of one-to-many and partial mappings in addition to 

isomorphic mappings. 

Pedagogical analogies move away from examining specific problems or problem 

types and look toward the potential for benefiting instructional contexts, usually to assist 

with explaining a particular concept.  While pedagogical analogies may be leveraged by 

either students or the instructor, some evidence suggests that students are not typically the 

creator of such analogies (Richland et al., 2004). A common goal of pedagogical 

analogies is to help reduce the abstraction of a concept. For example, Dawkins and Roh 

(2016) outline three analogies used by an instructor to assist students with understanding 

concepts in real analysis, such as uniqueness being similar to finding a white tiger in a 
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forest. Peled (2007) discusses tasks designed to elicit analogical thinking for 

undergraduate pre-service teachers in order to assist them with understanding cognitive 

processes involved with learning mathematics. However, there are mixed reports on the 

effectiveness of pedagogical analogies in the classroom. One potential danger is that 

students may not fully understand the intended analogy (Cobb, Yackel & Wood 1992). 

For instance, Greer and Harel (1998) found that students may not grasp the analogy 

between physical manipulatives and abstract arithmetic.  

Finally, classical analogies take on a simple form of proportional reasoning (e.g. 

Modestou & Gagatsis, 2010). For example, comparing normal subgroups and ideals 

respectively with kernels of group homomorphisms and kernels of ring homomorphisms 

respectively produces a classical analogy. Unlike problem analogies, classical analogies 

in educational contexts typically provide a partial analogy to a student (such as removing 

D from the analogy above) and then the students are asked to complete the analogy 

(Piaget & Cook, 1952). Lee and Sriraman (2011) argued that classical analogies were too 

restrictive due to their predetermined nature. They proposed an expanded version of 

classical analogy called Open Classical Analogy (OCA), within which analogies are left 

open to the student for generating conjectures. The introduction of the OCA provides 

insight into designing tasks that may elicit productive student analogical reasoning and 

was a partial inspiration for the design of the analogizing task described in the next 

section. Lee and Sriraman investigated the notion of OCA in the context of an 8th grade 

geometry classroom wherein students made conjectures about geometrical properties. In 

this paper, I will expand on the types of activities to which OCA problems can be used: 
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making conjectures to construct and define new structures by analogy in advanced 

mathematics. 

Research Methods 

To investigate students’ analogical activity in mathematics, I chose the context of 

abstract algebra because of the existence of several naturally occurring structural 

similarities between group theory and ring theory. The well-behaved mapping between 

these structures is intentional: algebraic structures were synthesized in the early 20th 

century to unify mathematics research of the era (Hausberger, 2018). In this section, I 

outline the research methods implemented to access students’ analogical reasoning in 

abstract algebra and the process for developing the ARM framework. 

Participants and Setting  

I acquired rosters from recently taught introductory undergraduate abstract 

algebra courses at a large public research university and emailed an invitation to all 

students on the rosters. From a pool of approximately 40 students total, four students 

accepted the invitation to be interviewed. Three of the recruited students were 

undergraduates in mathematics, while one was a graduate in mathematics education. 

With each participant, I conducted five 60-90-minute-long semi-structured interviews 

designed to elicit analogical reasoning.  

The first three students were interviewed in person and tasks were administered 

on paper. One camera was positioned to record the students’ writing and a lapel 

microphone recorded audio synchronously with the video recording. Due to 

complications with COVID-19, the fourth student was interviewed using a video-

conferencing tool for all five interviews. For this student, tasks and questions were 
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administered both verbally and through a chat interface within the tool, while the student 

wrote and recorded their work with the use of an electronic tablet and writing instrument. 

The tablet screen was visible to myself during the whole interview and a real-time 

recording of the tablet screen and synchronous audio was made available from the video-

conference tool. 

Interview Tasks  

The initial interview was meant to assess the participant’s content knowledge of 

abstract algebra before beginning to explore rings. The purpose of this initial interview 

was to determine what students recalled about group theory as well as ascertain what 

students knew about ring theory, if anything, before further interviews were conducted. 

The second interview provided participants with the definition of ring and various tasks 

designed to acclimate the student to working with rings. This interview focused primarily 

on getting student acquainted with basic properties of rings, but included opportunities 

for the students to compare rings to groups analogically. 

The three subsequent interviews constituted the heart of the data collection: each 

interview focused on reconstructing one of subrings, ring homomorphisms, or quotient 

rings by analogy with a structure in group theory. The focal task of each of these 

interviews was the analogizing task. These are tasks of the form: Make a conjecture for 

the definition of a structure in ring theory analogous to X in group theory. In this 

research, X was taken to be one of subgroup, homomorphism, or quotient group. Further 

tasks were constructed around three basic types: (1) elicitation of comparisons between 

structures when spontaneous comparisons tapered off (i.e., “In what other ways are the 

structures of group and ring the same?), (2) example generation and checking (i.e., “give 
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an example of a subring.”), and (3) proof-writing (i.e., “Is the homomorphic image of a 

commutative ring commutative?) As the interviews progressed, I allowed students to 

refer back to their work from previous interviews. This not only gave the students an 

opportunity to recall information if they were stuck, but also allowed me to see exactly 

what information they wanted to refer back to while they reasoned by analogy. 

Data Analysis  

I used techniques outlined by Corbin and Strauss (2014) and the constant 

comparative method to analyze the data. First, immediate reflections were written after 

each interview was completed and the audio was transcribed. The process of analyzing 

data occurred in two main parts: (1) establishment of an initial coding scheme based 

largely on the known concepts of mapping activity and attention to similarity, and (2) 

refinement of the initial coding scheme to begin capturing unique aspects of analogical 

activity not yet made explicit.  

 
Figure 2: Primary Dimensions of Analogical Reasoning 
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Table 6. Dimensions of Analogical Activity 
Name Description Significance 

Mapping Across 
Domains (MAD) 

Includes the ubiquitous component 
of mapping across domains (inter-
domain activity) as well as activity 
where mapping does not occur 
(intra-domain activity). 

The introduction of the negative case of 
inter-domain activity, intra-domain 
activity, allows for the observation of 
activity that assists with analogical 
reasoning, but is not necessarily tied to 
analogical reasoning.  

Similarity and 
Difference (SAD) 

While reasoning by analogy, 
attention can be given to what is 
either the same or different across 
domains. Attention may also be 
given to neither. 

Explicating attention to differences 
allows for a broader classification of 
types of analogical activity beyond what 
attention to similarity allows for. 

Foregrounding a 
Domain (FAD) 

Placing emphasis on a domain 
during analogical reasoning. 
Typical candidates include the 
source or target domain, although 
both domains, and even a third 
domain, may be foregrounded. 

Foregrounding provides insight into what 
the focus of analogical reasoning at a 
given point in the process of reasoning by 
analogy. 

Beginning in order of collection with the five interviews from each student, initial 

coding consisted of searching for evidence of analogical activity as defined by the 

Structure-Mapping Theory framework. That is, I searched for any evidence that the 

student was making comparisons and mapping across domains. This initial coding 

produced a categorization of dimensions of analogical activity that expanded beyond the 

basic tenets of mapping and similarity: (1) mapping and non-mapping activity, (2) 

attending to similarity and differences between domains, and (3) foregrounding a domain. 

Figure 2 displays a visual of this categorization, and a description of these dimensions 

can be found in Table 6. The unit of analysis was an instance of analogizing and evolved 

as I continued the coding process. Instances were identified by two criteria: presence of 

analogical reasoning and shifts in mathematical focus. Presence of analogical reasoning 

was determined by the students’ language contextualized within the broader transcript 

indicating that a comparison was presently being made, indicating that a comparison was 

going to be made, or indicating a discussion of a newly formed structure just after 

completing a comparison. Shifts in mathematical focus were determined by the 
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mathematical content being attended to. For example, consider the following excerpt: 

So, now we’re going to call this normal subring. We give this one a name. First 
condition is that S is a subring of R. Second condition, I don’t know. Maybe we say 
rSr-1 is in S, just to copy it. 
 

This brief excerpt was subdivided into three instances: 
 
• “So, now we're going to call this normal subring. We give this one a name.”  

 
• “First condition is that S is a subring of R.”  

 
• “Second condition, I don't know. Maybe we say rSr-1 is in S, just to copy it.”  

 
Within all three instances, evidence of analogical reasoning was determined by 

language such as “we give this one a name”, “conditions”, and “just to copy it.” In the 

first instance, the student is attending to naming conventions as the mathematical content. 

In the second and third instance, the student is attending to definitional properties of 

normal subrings. I further discuss the different types of mathematical content below. 

To each instance, I assigned a code of whether there was mapping or non-

mapping activity, whether the source or target was being foregrounded, and whether the 

focus of attention was on similarity or difference. I initially coded for the type of content 

being attended to beginning with the content outlined by the SMT: object, attribute, or 

relation. However, these codes were often unsatisfying for describing the students’ focus. 

As such, a categorization of types of content was developed alongside the types of 

analogical activity.  

As more data was collected, I engaged in multiple rounds of axial coding that 

related the dimensions together to form types of analogical activities and over time the 

coding shifted away from assigning the broader codes to assigning codes explicating 

specific analogical activity. For example, rather than assign the codes of (a) mapping, (b) 
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attending to similarity, and (c) foregrounding source domain to an instance, I assigned a 

code that integrated these three to describe the students’ analogical activity, such as 

exporting. Mapping, attending to similarity, and foregrounding the source became known 

as the dimensions of the activity of exporting. I present examples of analogical activities 

and their dimensions in the results. The categorization of content types can be found in 

Table 7. 

Table 7. Types of Content 
Name  Attends to: Example 

Structural Property A specific property of a structure Recognizing that groups and rings both 
require closure. 

Definition or 
Definitional 

Property 

A mathematical definition, either 
taken as a whole or just one part. 

Looking back at the definition of ring 
when developing subrings. 

Naming Convention 
The name of a structure or property 
in the source or target. 

Defining a structure in ring theory 
analogous to normal subgroups in group 
theory as “normal subrings.” 

Relation 
A connection within a domain 
between two or more other forms of 
content. 

Recognizing that subrings are a subset of 
rings (whether or not the same relation is 
explicated for groups and subgroups.) 

Example 
An example, usually of a 
mathematical structure 

Calling on the example of integers from 
groups to initiate exploration of an 
example in rings. 

Process An algorithm or set of step-by-step 
rules. 

The subgroup lemma viewed as a process 
of checking for closure and inverses. 

Theorem Statements of theorems, lemmas, 
etc. 

The subgroup lemma viewed as a 
theorem. 

Proof 
A mathematical proof, either taken 
as a whole or just one part. 

Recalling the proof of the subgroup 
lemma to assist with conjecturing the 
subring lemma. 

As a part of ongoing analysis, I routinely leveraged three techniques: 

microanalysis, diagramming, and memoing (Corbin & Strauss, 2014). Microanalysis 

involves close examination of portions of data with the goal of deeply understanding 

phenomenon contained within. I intermittently performed microanalysis on segments 

where the nature of the analogical activity was especially unclear. Several novel 

interpretations of analogical activity were produced from these analyses. In addition, 

diagramming was incorporated to make sense of how concepts arising from the coding fit 
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together in new (or otherwise difficult to detect) ways. Diagrams consisted of: (a) 

constructing visual representations of my participants’ analogical activity, making heavy 

use of the naturally visual nature of mapping between domains, or (b) creating tables that 

connected and categorized codes with one another. Finally, I regularly wrote memos that 

explicated my thinking about concepts and generating new hypotheses. These memos 

acted as a record of my thinking over time and allowed older thoughts and observations 

to be rediscovered and reintegrated when appropriate. The results of microanalysis, 

diagramming, and memoing were regularly shared with colleagues through conversation 

and presentation to assist in ensuring the viability of my interpretations.  

The process of collecting and analyzing data continued until saturation was 

achieved: the final round of interviews did not produce any novel analogical activities 

and only corroborated the existing activities. The end result of this process was the ARM 

framework: a classification of dimensions of analogical activities and mathematical 

content, and several identified analogical activities described with the help of the 

dimensions. I present the analogical activities in the next section. 

 
Figure 3: An Overarching Process of Analogical Reasoning 
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Analogy 
Generation

Establishing 
New Content
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Table 8. Overview of Analogical Activities 
 Name Description Dimensions 

A
cc

es
s 

Recalling 

Recalling or remembering content about 
one domain, usually the source. 

• Intra-domain 
• Neither 

similarity/difference 
• Foregrounding source 

Distinguishing 
Identifying differences between the source 
and target domain. 

• Inter-domain 
• Difference 
• Foregrounding source 

Associating 
Identifying similarities between the source 
and target domain.  

• Inter-domain 
• Similarity 
• Foregrounding source 

G
en

er
at

io
n  

Exporting 

Mapping exact content from the source to 
the target; often associated with assuming 
that domains are completely similar with 
respect to some content.  

• Inter-domain 
• Similarity 
• Foregrounding source 

Importing 

Purposefully selecting content from the 
source to map to the target domain; 
associated with discriminately forming 
similarities rather than assuming content is 
similar. 

• Inter-domain 
• Similarity 
• Foregrounding target 

Extending 
Viewing one structure as being grounded 
within another and establishing the new 
structure by “decorating” the old. 

• Intra-domain 
• Similarity 
• Foregrounding source 

Es
ta

bl
ish

m
en

t  Adapting 
Making changes to content to account for 
differences found between domains. 

• Inter-domain 
• Difference 
• Foregrounding source 

Elaborating 

Expanding on what is known about a 
domain, usually the target. 

• Intra-domain 
• Neither similarity or 

difference 
• Foregrounding target. 

Findings 

In this section, I present the results of my inquiry into how students reason by 

analogy in mathematics. I use ARM to characterize several analogical activities that 

contribute to the process of analogical reasoning. The goal of this section is to elucidate 

the power of ARM for describing analogical activities that were previously implicit or 

absent in the literature by situating activities within a process for analogical reasoning: 

access, generation, and establishing new content (see Figure 3). Table 8 provides a brief 

overview of the activities characterized and described in this section. I note here that the 

described process is not intended to capture every case of analogical reasoning and is not 
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meant to be interpreted as a list of steps that must occur. Rather, it is an exemplar of a 

common process that students may partake in while reasoning by analogy. 

Access: Organizing Content  

Rather than spontaneously begin formulating analogies, there is typically a point 

of entry from which analogical reasoning begins. This phenomenon is known as 

analogical access (Hummel & Holyoak, 1997). In this section, I characterize three 

activities associated with analogical access: recalling, associating and distinguishing 

activity. 

Recalling Source Content. By expanding the component of mapping across to 

domains to include intra-domain activity, a greater range of mathematical activities 

during analogical reasoning become observable. One such activity is that of recalling 

source content. Consider the following example of a student recalling attributes after 

being asked to make a conjecture for a structure in ring theory analogous to group 

homomorphisms: 

So, let me just try to recall that… So, group homomorphism. So, there exists a phi 
that maps from A to B. So, A ... or, I guess maybe it'd be easier to say phi maps 
from (A,*) to (B,*). So, phi of a equals some b. 
 

In this case, the student is foregrounding the source and is neither attending to similarity 

or difference. Although the student is not explicitly engaging in reasoning by analogy in 

this example, the student is recalling content about the source domain with the intent of 

using the information for the purpose of analogical reasoning. 

 Associating and Distinguishing Content. While recalling focuses on just one 

domain, associating and distinguishing domains are other potential form of access that 

compare across domains. Associating occurs when a student observes a similarity 
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between two domains. In contrast, distinguishing occurs when a student recognizes an 

anomaly between the source and target domain. Consider the following example in which 

a student is making observations about the definition of ring: 

So it has ... what I noticed immediately is that, it has two binary operations 
addition and multiplication. Whereas with group theory we're only dealing with 
one binary operation at a time. 

 
In this example the student is distinguishing structural properties, specifically the 

property of rings having two binary operations as opposed to the one operation defined 

on groups. As I will illustrate in the next section, this example of distinguishing activity 

later contributed to this student’s analogical construction of other structures in ring 

theory.  

Generating Analogies  

Once there is access, an informed creation of analogies can begin. In this section, 

I illustrate three types of activities that are tied to the generation of analogies: exporting, 

importing, and extending activity. Taken together, these represent a range of analogical 

activity describing how students generate analogies. The first two activities, exporting 

and importing, are representative of the well-known form of analogy generation by 

mapping similarity from the source to the target. However, the dimension of 

foregrounding a domain reveals a distinction based on what domain is emphasized.   
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Figure 4: Student Exporting Properties from Source to Target 

Export/Import Activity. Here, I share two activities that agree along the 

dimensions of similarity and inter-domain activity but differ for which domain is 

foregrounded: exporting and importing activity. Exporting across domains occurs when a 

student projects content of the source domain over to the target domain. In contrast, 

importing occurs when a student selectively pulls content over from the source domain 

into the target domain. Consider the following example of a student recalling definitional 

properties in the source, followed by exporting a definition and naming convention from 

the source domain of groups to the target domain of rings:  

So, normal subgroup… First condition is that H is a subgroup of G, and the 
second condition is that gHg-1 is a part of H, and then you can say, therefore, H is 
normal to G. So, now we're going to call this normal subring. We give this one a 
name. First condition is that S is a subring of R. Second condition, I don't know. 
Maybe we say rSr-1 is in S, just to copy it.  

 
A visual of this student’s work is seen in Figure 4 above. In this example, the student is 

constructing a definition for what they call “normal subrings” by copying over known 

aspects of normal subgroups into the context of ring theory. To contrast with the activity 

of exporting, consider the following example in which a student is making a conjecture 

about what comes next in the study of ring theory after having developed the concept of 
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subring: 

Like Abelian rings, or like... giving them that type of thing where you give them 
special names… Special types of rings, "This is the golden ring." So these, you 
gave me these properties on the last page. But I'm sure if you have all these 
properties, it's probably a special type of ring. 

 
In this example, the student is importing the notion of structural properties associated 

with “special” groups, such as Abelian groups, from the source domain into the target 

domain. The emphasis is on the target, and thus the student does not immediately assume 

that the naming convention of Abelian carries over to rings. Rather, this student has 

discriminately chosen which aspect of group theory to map into the target while also 

maintaining a level of vagueness as to what the properties may even be (i.e., 

commutativity itself is not what is mapped, only that a “special” property might exist.) 

Extending Activity. It is not always the case that a mapping must occur to 

generate analogies. For example, there may be cases where one domain is temporarily 

viewed as being grounded within another. I refer to this activity as extending. In other 

words, one domain is taken as a foundation and “decorated” with properties in order to 

recognize or produce the new domain. In the following example, a student is establishing 

a structure in ring theory analogous to subgroups in group theory: 

I'm trying to see how I can say that if something is a sub-group, and there's going 
to be some qualifying sentence that relates to how it could be a ring. So, like with 
sub-group and with something else, which is what I'm trying to figure out, then it 
will be a ring. 

 
Unlike recalling activity, more than one domain is recognized in this example of intra-

domain activity. However, because the source domain is being extended to form the 

target, no explicit mapping across domains is achieved, although extending may work in 

conjunction with a previous mapping. Consider the following example of extending 
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activity in the next quote in which a student is justifying why the additive identity of a 

ring is unique following an exportation of a structural property: 

Because the additive identity of a group is unique. And I just kind of extended it, 
because the R plus together forms our group. So, if the addition somehow didn't 
have a unique identity, then what I stripped out the multiplication and just looked 
at R plus that would also not have a unique identity, but that contradicts what I 
know about groups. 

 
In this example, the student is arguing that the additive identity of a ring is unique 

because it is unique for groups as well. This argument constitutes an exportation of a 

structural property. The student then justifies his argument by suggesting that, if one 

considers only the additive operation on the set R, then you are left with a group. As 

such, removal of the uniqueness of the additive identity would create a contradiction if 

one thought of the structure as a group. The examination of the structure as being a group 

constitutes another example of extending activity. 

Establishing New Content  

During or after the formation of analogies, students may establish new content in 

the target. In this section, I describe two activities: adapting and elaborating activity. 

Each of these activities contributes to the formation of new content in the target and 

signifies a release from potential constraints that may exist when reasoning by analogy 

(such as that exhibited with exporting activity.) 
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Figure 5: Student Adapting a Structure to the Target 

Adapting Activity. As previously noted, attention to differences often impacted 

reasoning by analogy at a later time. One example of this was through adapting. Adapting 

occurs when a student modifies the target to accommodate a distinction between the 

source and target. In contrast to extending activity, which can also involve modifications 

to the target, adapting is focused on reconciling an observed difference. In the previous 

example of distinguishing, the student noted the existence of two binary operations for 

rings as opposed to one for groups. With this in mind, consider the following statement 

from the student as they conjectured about the definition of ring homomorphism: 

What would be one for.... We have two [operations] here. Start with phi going 
from G to H. There's two operations here so I'm like, I don't exactly know if it 
should just be one of them, or both of them, or how I would do that here. Could I 
do like three elements, like a, b, and c, and then have like the addition and 
multiplication? 
 

A visual of this student’s work is seen in Figure 5 above. In this instance, the student is 

keying in on the difference she identified between the domains two interviews prior, and 

adapts the homomorphism property she learned in group theory to the context of rings. 

Elaborating Activity. The final analogical activity I share is not explicitly 

analogical reasoning. In the case of adapting activity, students are still acknowledging a 

difference between the source and target when establishing new content about the target. 
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However, students may disengage from the source when establishing new content, 

signifying a transition to reasoning about the target that is independent of the source. I 

refer to this activity as elaboration of the target. Consider the following example in which 

a student is thinking of how to prove whether a homomorphic image of a commutative 

ring is commutative: 

Yes, [it is commutative]. Just because you can ... You can move it around before 
you take phi of it. Right? Yeah. How do I show commutativity in rings? Is it just 
you've got to ... I'm assuming you can combine the left- and right-hand 
distribution laws to get there. 
 

Rather than recall or adapt previous knowledge about groups to approach the task, the 

student is thinking solely about what he knows about the target alone. In particular, he is 

wondering about how the distributive properties could be used to show commutativity in 

the image. 

Discussion 

In this paper, I illustrated an analytic framing for exploring students’ analogical 

reasoning activity in mathematics. I established an argument that clarifies analogy and 

metaphor, and in doing so, offered a more precise distinction between them. Having 

established a more robust definition of analogy, I outlined the Analogical Reasoning in 

Mathematics framework: a collection of analogical activities and their underlying 

dimensions that allow for a more precise description of students’ analogical reasoning in 

mathematics.  

This research is intended to complement work prior work related to both of 

analogy and metaphor in mathematics education. In particular, this paper introduced a 

framework for interpreting analogical reasoning that makes explicit features of analogical 

reasoning that were either previously unidentified or remained implicit: non-mapping 
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activity, attention to difference, and foregrounding activity. In particular, foregrounding 

is a novel dimension introduced in this framework. By attending to the foregrounding of 

domains, the distinction of certain activities was made possible. The most prominent 

example of this distinction lies between the export and import activities: each activity 

focuses on mapping activity and similarity, but the foregrounded domain differs between 

them. As a result, how students make use of similar content between domains can be 

parsed in a way that was not previously available in other frameworks for analogical 

reasoning.  

The results of this study suggest that students can indeed construct mathematical 

structures on the basis of analogy with others. In particular, the analogical activities 

described in this paper assisted the students in this study in accomplishing the task of 

conjecturing and then constructing structures in ring theory by analogy with what they 

knew from group theory. Taken individually, the analogical activities allow for the 

dissection of analogical reasoning at various stages in a process of reasoning by analogy 

such as access, generation, and establishment of new content. However, this process need 

not be the only way to reason by analogy. For instance, while one student leveraged 

extending activity after analogical access (as described in the second extending example 

in the previous section) to assist with generating an analogy, another student had 

leveraged extending activity to establish analogical access. Therefore, dissection of 

analogical reasoning with ARM followed by reintegration of the activities suggests 

possibilities for identifying and describing other processes of reasoning by analogy that 

are perhaps invisible without the close examination made available by ARM.  

As I noted in the review of the literature, evidence suggests that teachers 
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formulate the majority of analogies in mathematics classroom (Richland et al., 2004). 

Furthermore, some scholars have expressed skepticism about the productivity of 

pedagogical analogies for learning new mathematics (Cobb et al., 1992). Of particular 

note in this research is that the tasks used in the interviews show promise as tools for 

promoting student-generated analogies: the students successfully engaged in analogically 

reconstructing structures as they were asked to do. As such, another contribution of this 

paper is the analogizing task itself. Much of the previous research on analogy in 

mathematics education involved closed forms of analogical reasoning with predetermined 

answers. In contrast, this research has focused on inventive, student-driven analogy, 

similar to the notion of open-classical analogy (OCA) (Lee & Sriraman, 2011). The 

present research expanded on the scope of mathematical activity that can be expected by 

implementing an OCA problem: students engaged in the act of defining mathematical 

structures that were made accessible to them through analogical reasoning.  

Using ARM to Interpret Student Analogical Reasoning: An Example 

 Having displayed the analogical activities associated with ARM, I now turn 

briefly to detailing how the ARM framework can be used to explore and interpret 

students’ analogical reasoning in mathematics. To accomplish this, I share and contrast 

two excerpts of students’ initial constructions of objects in ring theory analogous to 

subgroups in group theory. By sharing these excerpts and using ARM to analyze them, I 

illustrate that students may productively reason by analogy in a variety of ways. I refer to 

different approaches to analogizing as pathways of analogical reasoning (Hicks, 2020b). 

In these excerpts, instances are denoted by [ ]. Consider the first case by Student A:  

(1)[All right, so, we don't ever deal with both, like more than one operation 
interacting for groups of ...] (2)[We also don't have an inverse for multiplication, 
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which you need an inverse for a group, therefore you need an inverse for the sub-
group.] (3)[So, I think that if we have a subgroup, then we have all of these 
<points to group definition on the desk>. We have the identity, the inverse. We 
have associativity and closure,] (4)[but what we don't have is commutativity, 
necessarily, or this use of multiple properties at once.] (5)[So, we could say that if 
we have a subgroup, then if this subgroup is also ... so this was just kind of me 
brainstorming up here, but if a subgroup H is commutative and distributes ... 
Right hand side and left hand side, then H is a ring ...] 
 

In this case, Student A begins by making several observations differences between 

groups and rings. Within the first two instances, this student distinguishes between 

structural properties in groups and rings. In the third instance, the student recalls what 

she knows about subgroups: they possess all the properties of a group, and then continues 

distinguishing in the fourth instance. In the fifth instance, Student A establishes a 

definition for her new object analogous to subgroups. In particular, Student A is 

extending the mathematical structure of subgroup by adding on the missing properties of 

ring she identified in the previous instances, thereby forming a ring using subgroup as a 

base. 

 In contrast, let us now turn attention to a description of a similar initial creation by 

Student B: 

(1)[So I just compared it to subgroup.] (2)[So we know that subgroup has a 
closure under its binary operation and it contains the inverse.] (3)[So I said maybe 
it has closure under just one of them, one of the binary operations and then maybe 
the inverse is under the other operation.] (4)[And then I said, well since ring had 
more properties than the group, then maybe a subring has more properties than the 
subgroup. So then I just added a unity or what do you call it, identity, under one 
of the operations.] (5)[Because it's a subring, maybe it doesn't exhibit all the 
properties, just like subgroup doesn't. So I said maybe it just has one of them.] 

 
In this excerpt, Student B begins in the first instance by explicitly associating subgroups 

to the new analogous object in ring theory. In the second instance, Student B recalls 

properties about the subgroup structure, and then simultaneously exports and adapts 
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properties in instance 3. In particular, he exports the specific properties of closure and 

inverse from the source domain of subgroups, but then makes a small modification about 

where those properties are needed for the subring structure (closure for just one 

operation, and inverses for the other.) In instance 4, Student B adapts again to form a 

new structural property: an identity is needed for one of the operations in the subring 

because rings have more properties than groups. Finally, Student B exports his definition 

of subgroup (which relies on the subgroup lemma) to argue that subrings also don’t 

require all properties.  

 From this brief analysis of these two excerpts, we are able to describe how these 

students were thinking about the objects in ring theory analogous to subgroups in group 

theory as well as their pathways for initiating the construction of the analogous object. In 

particular, this analysis has revealed two types of pathways that students might take to 

begin constructing a ring theory analogue to subgroups in group theory. First, Student 

A’s construction was centered around an eventual extension of the subgroup structure to 

form a ring. In other words, Student A’s activity relied on thinking about what properties 

of rings were missing from her definition of subgroup, and then added properties to the 

subgroup structure based on her analysis of what was different. It is unclear if she ever 

fully recognized “subrings” as a structure on their own during the excerpt; instead, the 

structure a subgroup that was being transformed into a ring and the name of “subring” did 

not make an appearance. In contrast, Student B readily developed the notion of “subring” 

and proceeded to construct the structure by comparing directly to subgroups, namely by 

exporting exact content and including minor adaptations to properties of subgroup in the 

context of subrings. For Student B, the notion that rings may be groups never made an 
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appearance; the structures were always completely separated from the beginning.   

 Previous models of analogical reasoning focus holistically upon the mapping 

process to describe the formation of analogies, but do not describe the individual 

activities that bring about the mappings. By using ARM to analyze and contrast the 

excerpts above, we are able to parse analogical reasoning in such a way that two cases of 

analogical reasoning that appear similar in terms of the content being mapped, but are 

actually quite different when investigating the activities involved. In particular, both 

students were focused on the notion of subgroup during their analogical reasoning, and 

the mathematical content of the two excerpts is concerned with the various properties of 

subgroups. However, an analysis of the analogical activities contained within the two 

excerpts allows for insight into how the students understood their analogical creations: 

Student A’s conception of an analogue for subgroups heavily leveraged the fact that rings 

can be obtained by adorning groups with further properties; Student B’s conception of an 

analogue for subgroups was to generate a notion of subring and export his knowledge of 

subgroups into the ring context.  

Directions for Future Research  

The results in this paper have only analyzed students’ analogical reasoning in an 

interview setting. Thus, there is much to be learned about how students might 

productively leverage analogical reasoning over an extended period of time so that 

analogical reasoning may be integrated within a structured curriculum. A unique 

characteristic of the present research was attention to how students might come to 

construct mathematical structures by analogy with known structures in abstract algebra. 

Naturally, this process was similar to that of guided reinvention (Gravemeijer & 
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Doorman, 1999). The task design implemented for data collection in this research 

suggests the potential for a new heuristic: analogical reinvention. While inroads have 

been made into the guided reinvention of ring, integral domain, and field (Cook, 2014; 

2017), there has yet to be an established curriculum developing further structures, such as 

ideals, as for structures in group theory (e.g., Larsen, 2013). Previous inquiries into the 

matter have proven difficult, likely due to the unintuitive foundations of the structure. 

One approach to achieving reinvention of ideal could be to design a curriculum 

leveraging analogical reinvention with a known structure: normal subgroups. In 

particular, the structure of ideal arose naturally during my participants’ development of 

the quotient ring structure by analogy with quotient groups: they referred to the structure 

as a “normal subring.” Further research can explicate what such a reinvention process 

would entail by exploring the usefulness of analogical reinvention in various contexts and 

generating models of the analogical reinvention process. 

Limitations 

This paper presented a qualitative analysis of the analogical reasoning of four 

students. As such, no claims of generalizability are made. It is possible that idiosyncratic 

forms of analogical reasoning may have been present within the participants in part due 

to their previous exposures to topics in abstract algebra. Thus, I note that variability was 

present among the participants’ previous learning and exposure to abstract algebra. Of the 

interviewed students, one claimed to have never seen any topics in ring theory, two had 

seen only the definition of ring, and one had seen the definition of ring, integral domain, 

and field before. In addition, three of the students had studied group theory in a 

traditional lecture-based course, while one had studied groups in an inquiry-oriented 
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course. 

I also acknowledge that the analogical reasoning elicited from students may be 

context dependent. Although abstract algebra proved to be fertile ground for eliciting 

analogical reasoning, the analogies between structures in group theory and ring theory 

may not have captured the full range of dimensions within other cases of analogical 

reasoning. The existence of several surface similarities between the structures in group 

theory and ring theory may have hindered the diversity of the participants’ analogical 

reasoning. However, robust examples of analogical reasoning were indeed elicited by the 

participants and no participant focused solely on surface level features.  The novel setting 

of defining mathematical structures by analogy may have strengthened the diversity of 

their analogical reasoning beyond attending to surface features.  

Finally, I was the sole researcher making decisions about interpreting my 

participants’ analogical activity. As such, bias may be present in the ARM framework in 

terms of the selected dimensions, activities, and mathematical content. Steps were taken 

to curb this bias by sharing my interpretations with colleagues at various stages in the 

data analysis. In addition, I recognize that bias may have been introduced into the 

interpretation of my participants’ analogical activity by my own personal background 

with abstract algebra; it is possible my interpretations of students’ activity was influenced 

by what I perceived as being either typical or nonstandard. As such, other activities or 

dimensions of analogical may have become available had I investigated analogical 

reasoning in a different context. In order to expand on the contexts in which ARM can be 

applied, future research can explore the nature of students’ analogical reasoning in other 

content areas. 
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VI. PAPER #3: EXPLORATORY STRUCTURE CREATION THROUGH 

REASONING BY ANALOGY IN ABSTRACT ALGEBRA 

Abstract 

Analogy has played an important role in developing modern mathematics and 

continues to play a role in modern mathematics research. Although analogy does make 

casual appearances in several mathematics textbooks, it is unclear to what extent students 

are granted opportunities to reason by analogy in productive ways in their undergraduate 

courses. This paper proposes a novel lesson for introducing structures in ring theory by 

reasoning analogically about structures already known in group theory. In this way, 

students come to creatively establish new structures that they may take ownership of 

while providing opportunities for rich discussion about the purpose of these structures. 

The lesson consists of four key components: (a) introducing the definition of ring, (b) 

introducing the idea of analogy and analogical reasoning between groups and rings, (c) 

developing structures (i.e., subrings, ring homomorphisms, and quotient rings) through 

analogical reasoning with known structures, and (d) developing theorems/proofs through 

analogical reasoning. Throughout, I provide thoughts and insights from previous 

implementations and conclude by reflecting on what has (and has not) worked well in my 

experience with implementing these tasks. 

Introduction 

Analogies have played a significant role in the development of several 

mathematical concepts. (Polya, 1954). Reasoning by analogy is also a tool that is 

purposefully leveraged by mathematicians when creating and conjecturing new structures 

and results in modern mathematics research (Ouvrier-Buffet, 2015). Recently, I have 
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been investigating the ways in which students reason by analogy in the context of abstract 

algebra (Hicks, 2020a; 2020b). Specifically, I have been exploring the ways in which 

students reason analogically between groups and rings, subgroups and subrings, group 

and ring homomorphisms, and finally, quotient groups and quotient rings. As is evident 

in several abstract algebra textbooks, these analogies are frequently observed when 

introducing these topics in ring theory after exposing students to the analogous topics in 

group theory. Consider the following quote from Gilbert and Gilbert (2015): 

In this chapter, we develop some theory of rings that parallels the theory of 
groups presented in Chapters 3 and 4. We shall see that the concept of an ideal in 
a ring is analogous to that of a normal subgroup in a group. 
 

However, it is unclear what students take away from casually observing these analogies. 

While they may appear simple on the surface, what do students understand about the 

analogy when it is merely provided to them by the instructor? Perhaps more importantly, 

simply providing students with these analogies eliminates the opportunity for students to 

reason by analogy themselves. This raises a pertinent question: How might undergraduate 

students productively reason by analogy in abstract algebra?   

In this article, I describe a lesson focused on productive student analogical 

reasoning and share examples from implementing tasks focused on developing structures 

in ring theory through reasoning by analogy about structures in group theory. By having 

students develop ring theoretic structures through analogy, they are able to take 

ownership of the newly formulated structures in ring theory rather than being given the 

connections by the instructor. In addition, this lesson acts as a solid review of the details 

of group theoretic structures that students may need a refresher of or may have forgotten 

over a period of time. In the following sections, I share the details of the tasks and the 
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lesson plan, describe the implementation of the lesson (including thoughts and insights 

from both the implementation of a version of this lesson in a classroom, as well as my 

observations from engaging students in one-on-one interviews), and conclude with a 

reflection on implementing the tasks in these settings. 

The Analogizing Task 

The focal task provided to students is deemed the analogizing task. These are 

tasks of the form: Make a conjecture for the name and definition of a structure in ring 

theory that is analogous to X in group theory. In the context of this paper, X is to be one 

of: subgroups, homomorphisms, and quotient groups. The focus of the lesson revolves 

around the analogizing task and explorations of the structures developed from the task. 

This task was created for two reasons: (1) it encourages students to reason by analogy in 

such a way that they could reasonably innovate and generate their independent thoughts 

about the new structures, and (2) the task is bounded enough as to be productive for the 

overall goal of introducing topics in ring theory.   

The analogizing task sets the stage for students to engage with the creation of 

mathematical structures in ring theory by analogy with structures that they know from 

group theory. In my personal experience, I have found that this task provides students 

with a creative outlet unavailable to them when instructors assume that the analogies 

between these structures are obvious. In addition, the conjectured names and definitions 

developed by students provides an opportunity for rich discussion of the purpose of these 

structures while establishing new information about rings as well as reviewing old 

information about groups.  
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Outline of the Lesson 

The following is an outline for structuring the lesson in one 80-minute session and 

will be used to describe the lesson in this paper. Further options for implementation can 

be found in the Appendix: an extended iteration that covers two days, and a “bitesize” 

iteration that spreads the activity over several days. However, all implementations cover 

the full range of analogical reasoning activity: (1) Developing a structure by analogy, (2) 

comparing newly created structures to previous structures, and (3) conjecturing and 

proving theorem statements by analogy. 

1. Students familiarize themselves with the definition of Ring (15 min) 

 (a) Introduce the definition of ring. 

 (b) Ask students to identify similarities/differences between groups and rings. 

(c) Ask students to determine examples of rings using what they know about 

groups. 

 (d) Introduce further examples of rings as appropriate. 

2. Establishing Rationale for Analogy and Analogical Reasoning (5min) 

 (a) Briefly review structures in group theory 

(b) Leverage student’s observations of similarity/differences from before to argue 

that these observations can be extended to other structures. 

(c) If desired, draw diagram developing a mapping between group/ring structures. 

3. Students do Analogizing Task for Subgroups in small groups (20 min) 

(a) Students generate a name and definition. 

(b) If time permits, ask students to generate a test analogous to the subgroup test. 

4. Discuss Subring as Class (10 min) 
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(a) Establish subring name and definition. 

(b) Ask students to identify similarities and differences between subgroups and 

subrings. 

(c) If time permits, discuss subring test. 

5. Students do Analogizing Task for Group Homomorphisms in small groups (15 min) 

(a) Students generate a name and definition for analogous structure. 

6. Discuss Ring Homomorphism as Class (10 min) 

(a) Establish ring homomorphism name and definition. 

(b) Ask students to identify similarities and differences between group and ring 

homomorphisms 

7. Wrap up and next steps (5 min) 

Although the structure of this lesson plan was developed with group and ring 

theory topics in mind, I note that the structure and time of the lesson plan may be 

appropriately adapted to other mathematical settings in which analogies may play a role 

(with varying degrees of time, difficulty and complexity for the expected analogy 

students are to generate depending on their maturity). For, an instructor in an introductory 

analysis course might encourage students to independently generate analogous definitions 

and theorems for monotonically decreasing sequences to monotonically increasing 

sequences, or generate an analogous definition for an open ball in Rn by analogy with an 

open ball in R. 

Goal of the Lesson 

The overarching goal of this lesson plan is to provide students with an opportunity to 

develop structures in ring theory. Rather than replace a full unit on each of subrings, ring 
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homomorphisms, and quotient rings, this lesson is meant to orient students toward 

recognizing that many of the concepts in ring theory can be thought of as analogous with 

concepts in group theory. In particular, this lesson is intended as a way to launch a unit 

on rings while allowing students ample opportunity to generate connections, structures, 

and theorems that they may take ownership of. As such, I suggest that this lesson is best 

used in the following ways: 

• Launching a course/unit on ring theory in which students have already learned 

basic group theory. 

• Wrapping up a course on group theory in which a quick detour into rings is done 

at the end. 

In either case, the lesson can serve double duty in introducing new concepts to students 

while also allowing for a broad review of some topics in group theory. In addition, this 

lesson provides an opportunity for students to become familiar with the act of reasoning 

by analogy in mathematics, a skill that can be useful to them in other mathematical 

contexts and research. 

Implementing the Lesson 

This lesson plan was developed for an introductory undergraduate abstract algebra 

class intended for mathematics majors at a large university in the Southwestern United 

States. It was planned to be implemented at the beginning of a unit on ring theory after 

having been through a unit on the basics of group theory. However, this lesson plan can 

be suitably adapted for any level of abstract algebra in which the instructor wishes for 

their students to engage with constructing mathematical structures through conjecturing, 

defining, and analogizing activity rather than introducing definitions through more 
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traditional means. 

Familiarizing Students with the Definition of Ring 

The first part of this lesson involves introducing students to the definition of ring. 

Depending on the wishes of the course instructor, the definition may either be introduced 

with or without unity with little variation in the rest of the lesson. This part of the lesson 

launches the unit on ring theory and assists students in getting to know the basics of the 

new mathematics they will be investigating. Students are provided with a sheet consisting 

of the definition of ring and then asked to analyze the definition in small groups and 

make comments on what stands out to them. During this activity, students are expected to 

independently begin formulating connections between the structure of group and ring, 

such as noticing what is the same (e.g., identity elements exist) and what is different (e.g., 

one operation defined on a set vs. two operations.) The recognition of similarities and 

differences can be leveraged as a tool for comparing other structures later on in the 

lesson. 

After students have had time to analyze the definition, discuss understandings and 

noticings of the definition as a class. One key point of discussion that can be had here is 

how the structure of ring relates to the structure of a group. I have seen students take one 

of several stances on this:  

• Rings are groups that are “decorated” with properties and are viewed as 

extensions of groups (i.e., all rings are constructed from a group and are thus 

groups themselves.) 
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• Rings and groups are distinct structures, but group makes up part of the definition 

of ring (i.e., recognizing the set with the additive operation forms an abelian 

group, but the ring itself is not seen as a group.)  

• Rings and groups may have similarities, but are distinct standalone structures (i.e., 

groups are never rings, rings are never groups.)  

During this time, you may also ask students to try generating examples of rings and 

provide them with examples of rings as you see fit. The generation of examples is another 

period where you can expect students to leverage their knowledge of groups to establish 

an initial pool of examples. 

Introducing Analogical Reasoning 

Before jumping into the analogizing tasks, a brief introduction to the idea of 

analogy and analogical reasoning is in order. The goal of this introduction is to situate the 

students’ goal in the rest of the lesson and contextualize their analogical activity as 

helping to develop new structures in ring theory. More importantly, this introduction can 

help to clarify what is meant by analogy in the tasks that follow. First, discuss as a class 

what structures you have studied in group theory before having begun the study of rings. 

This typically involves at minimum structures such as subgroups, group homomorphisms, 

and quotient groups. During the first part of this lesson, students will likely have drawn 

several connections between the structure of group and ring themselves. Leverage these 

observations as a way to extend the possibility of the existence of analogous for rings as 

well. For example, you may ask the students to conjecture what other concepts might be 

similar and different between all of group theory and ring theory aside from just 

similarities and differences of groups and rings themselves.  
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Implementing the Analogizing Task 

Following the introduction of the definition of ring and the idea of analogy, the 

analogizing task can be provided to students to work on in small groups. For this 

explanation, I will discuss the implementation of the analogizing task for subgroups, 

although this explanation can be appropriately adapted to the other structures listed in this 

lesson as well (i.e., group homomorphisms, and quotient groups).  

Launching the Analogizing Task. After students are placed into their groups, 

provide them with the analogizing task for subgroups as follows: Make a conjecture for 

the name and definition of a structure in ring theory that is analogous to subgroups in 

group theory. 

Students may sometimes express confusion over the meaning of analogy or 

analogous structure when they are doing this task for the first time. In these cases, you 

may wish to make use of a diagram that further clarifies the intent of the task. For 

example, to launch the exploration of a structure in ring theory analogous to subgroups in 

group theory, drawing a diagram as in Figure 6 can be a helpful to clarify the task for 

students: 

 

Figure 6: Subgroup Analogy Diagram 
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Naming the Structure. In my experience, virtually all students quickly establish 

the name of subring for their newly generated structure. Although establishing the name 

of subring may seem trivial on the surface, the naming of the structure possesses high 

importance for the students’ understanding of the structure they are generating. 

Describing the structure as a substructure indicates that they are recognizant of the 

relationship between groups and subgroups and are preparing for mapping the relation of 

a substructure over to the context of rings. 

What to Expect. Once students have had time to establish names and definitions 

in their small groups, you may regroup the students to discuss their findings, conjectures, 

and observations as a class. It is very common for students to generate the definition of 

subring by attending to the subgroup test rather than the structure of subgroup itself. The 

following was an example of what one student stated about their newfound structure: 

So I just compared it to subgroup. So we know that subgroup has a closure under 
its binary operation and it contains the inverse. So I said maybe [the subring] has 
closure under just one of… the binary operations and then maybe the inverse is 
under the other operation. And then I said, well since ring had more properties 
than the group, then maybe a subring has more properties than the subgroup. So 
then I just added an… identity, under one of the operations. Because it's a subring, 
maybe it doesn't exhibit all the properties, just like subgroup doesn't. So I said 
maybe it just has one of them. 

As can be seen in this example, the student was primarily attending to the need for 

closure and inverses to generate a subring. Further evidence of this is seen in their written 

work as they considered how to approach this task (see Figure 7). 
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Figure 7: Comparing Subgroup and Subring 

In addition, due to the simplicity of the structure of subrings, students may also generate 

definitions of subring that simply take their known definition of subgroup and replace all 

instances of “group” with “ring.” In this case, a brief review of the difference between the 

definition of subgroup and the subgroup test can assist in establishing the definition of 

subring as well as a more productive discussion of the subring test later on. Details about 

observations of what students have generated when creating other structures by analogy 

can be found in Paper #3 Appendix B.  

After the class comes to an agreement on the definition of subring, you may ask 

the students to make observations about the similarities and differences between 

subgroup and subring. The goal of this subtask is to keep the students focused on 

questioning the ways in which the developed structure is similar and different from the 

structure they knew before.  

Conjecturing Theorem Statements and Developing Proofs by Analogy 

After students have generated the analogous structure in ring theory, then can 

engage with the new structure in a proof setting. For subrings, we asked students to 

establish a process for determining whether a subset of a ring was a subring by analogy 

with the process for subgroups: the one-step subgroup test. (Examples of theorems 

provided for other structures can be found in Appendix B.) This task is begun by giving 
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students the following prompt: Let G be a group and let H be a nonempty subset of G. If 

for all a and b in H, ab-1 is in H, then H is a subgroup of G. Construct an analogous 

statement of this theorem in the context of ring theory. Afterward, attempt a proof of your 

statement. In addition, you may wish to provide students with a proof of the subgroup 

statement. When approaching this task, students are expected to begin making 

appropriate adaptations to the theorem rather than simply replacing the word “group” 

with “ring.” Figure 8 displays an example of what one participant of mine produced for 

their subring test. 

 

Figure 8: Example of Subring Test Developed by Analogy 

Wrapping Up 

At the end of the lesson, you may want to provide a brief recap of the structures 

that were generated from the analogizing task. If more than one structure was developed, 

you can refer back to the diagram from the beginning of the lesson and describe. An 

interesting subtask to engage with as a whole class is to ask students to make inferences 

of what they think might come next in the study of rings. Doing so can prompt the 

students to think further about what topics in ring theory may be in the future, and quite 

often, students generate inferences that easily set the stage for discussion about other 
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structures or theorems in the future. One student of mine suggested the possibility for 

different “types” of rings: 

There's a lot more stuff going on with rings, like [with groups] we had Sylow 

groups we had permutations, we had dihedrals, alternating, all that kind of stuff. 

You had a lot of different groups. Same thing is going to go for the rings. You're 

going to have different types of rings… I bet there's just a ton of them. 

Depending on the amount of material covered in the lesson, there are various homework 

tasks that can be assigned following this lesson that leverage analogical reasoning. Some 

examples of tasks are:  

• As groups under addition, we know that 2Z and Z are isomorphic.  Are 2Z and Z 

isomorphic as rings under multiplication and addition? Why or why not?  

• For any group homomorphism φ: G à H, φ(eg) = eh. Is there an analogous 

property for ring homomorphisms? 

• Provide students with a complete proof that, if G is a group and H,K are 

subgroups of G, then H intersect K is a subgroup of G. Ask students to conjecture 

an analogous theorem statement for rings, and then ask them how they could 

leverage the proof of the statement in group theory to develop the proof of the 

conjectured statement in ring theory. What aspects of the proof are the same? 

What aspects are different? 

In addition, if it can’t be fit in to class time, students can explore the analogizing task for 

quotient groups at home to begin the process of thinking about what a quotient ring looks 

like and what it is conceptually.  
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Reflections on Implementation and Concluding Thoughts 

I end this paper with a brief discussion of aspects of the lesson I have found to be 

the most motivating as well as comments about the task from my interviewed students. I 

also discuss a task that I tried out in my interview setting, but did not explicitly write into 

the lesson plan because it did not seem to work as intended (although I encourage 

instructors to keep an open mind and try things out for themselves!) 

What Worked Well 

Much like the statements found in several abstract algebra textbooks I have seen, I 

used to believe that analogous structures between group theory and ring theory were 

rather obvious to generate and define. When you already possess a deep knowledge of 

structures such as subgroups, it can be difficult to envision establishing an analogous 

structure in ring theory that is anything but the traditional definition of subring. However, 

my implementation of the analogizing tasks has led to me witnessing a lot of creative 

mathematical thinking about the definitions and purposes of structures in ring theory 

from students. It is clear from my experience with implementing this task that the 

generation of analogous structures is far from a trivial task, and thus there is great 

potential for rich discussion in the classroom. I also believe that this process of 

developing structures by analogy (among others) is an excellent way to engage students 

with more genuine mathematical activity. In particular, I have personally found that 

implementing the analogizing task to be quite powerful in getting students to engage with 

the act of defining as one might expect from the work of a research mathematician. The 

implemented tasks have also been well-received by my participants: One of my 

interviewed participants explained that they greatly enjoyed the tasks and that it 
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motivated them to want to continue the study of ring theory beyond what was introduced 

to them with the tasks. 

What Might be Improved 

While constructing tasks for the student interviews, I explicitly included a section 

wherein students generated examples on their own and then checked examples provided 

to them. The goal of this subtask was to engage the students with the newly formed 

structure in a concrete way. My hope was that it might also elicit more spontaneous 

reasoning by analogy. Although the task was not a failure by any means, it did not appear 

to elicit anything interesting in the way of analogical reasoning. As such, while I think 

that example generation is still an important part of learning and understanding new 

structures and definitions, I don’t currently think that analogical reasoning necessarily 

assisted with the construction of examples in any exciting way within my 

implementation. As such, example generation and checking can be done within this 

lesson plan without the aid of analogical reasoning, or modifications can be tried out 

instructors that can improve this task.  

Lesson Plan Modifications (Paper #3 Appendix A) 

Two-Session Modification 

Understandably, two class sessions may be too much time to devote to keep a 

class on track, especially if the course syllabus demands both group and ring theory in the 

same term or semester. However, devoting two sessions to the analogizing tasks can 

allow for deeper independent exploration of the analogous structures during class time 

and more time for class discussion as a result. The following schedule outlines an 

expanded version of the lesson outlined in the paper. This expanded version places more 
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focus on not just developing structures, but also more opportunity to engage with 

conjecturing theorem statements by analogy, establishing proofs of those statements, and 

tackling the analogizing task for quotient rings (and likely by extension, the structure of 

ideals.) 

Day One. Day one lesson is as follows:  

1a. Students familiarize themselves with the definition of Ring (15 min) 

2a. Students do Analogizing Task for Subgroups in small groups (15 min) 

3a. Students Develop Subring by analogy with subgroups as a class (15 min) 

4a. Students Conjecture Theorem Statement(s) and Proof by Analogy (15 min) 

 (a) Example: Conjecture shortcut test for subrings 

5a. Discuss Conjectured Statement(s) (and Share Proofs) as Class (15 min) 

6a. End of class wrap up (5min) 

Day Two. Day two lesson is as follows: 

1b. Review the Definition of Ring (5 min) 

2b. Students do Analogizing Task for Group Homomorphism in small groups (10min) 

 (a) See Appendix B for information on implementing this task. 

3b. Discuss Ring Homomorphism Name and Definition as Class (10 min) 

4b. Students Conjecture Theorem Statement(s) and Proof by Analogy (15 min) 

5b. Discuss Conjectured Statement(s) (and Share Proofs) as Class (15 min) 

6b. Students do Analogizing Task for Quotient Groups in small groups (20 min) 

 (a) See Appendix B for information on implementing this task. 

7b. End of class wrap up (5 min) 
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“Bitesize” Modification 

Some instructors may not wish to devote an entire day to the analogizing tasks but 

may still wish to use the analogizing task to introduce structures on their own schedule, 

or simply have fuller autonomy in picking and choosing which structures they wish to 

introduce in this way. For example, an instructor may wish to gloss over the definition of 

subring and only conduct this lesson for ring homomorphisms.  

For these instructors, the “bitesize” lesson plan outlines a condensed version of 

the lesson in the paper in which the analogizing task occurs only on the day that the 

structure is intended to be introduced to students and only partially accounts for the full 

day’s activities. This plan outlines a condensed iteration of the lesson for ring 

homomorphisms and accounts for half of an 80-minute session. This outline would be 

intended for use on the class day that homomorphisms are to be introduced in the 

curriculum.  

1. Students do Analogizing Task for Group Homomorphism in small groups (10min) 

 (a) If needed, explain what is meant by analogy. 

 (a) See Appendix B for information on implementing this task. 

2. Discuss Ring Homomorphism Name and Definition as Class (10 min) 

3. Students Conjecture Theorem Statement(s) and Proof by Analogy (15 min)  

4. Discuss Conjectured Statement(s) as Class (5 min) 

Analogies with Other Structures (Paper #3 Appendix B) 

The lesson outlined in this article was confined to only displaying the tasks 

related to generating and exploring the structure of subring. However, the full lesson 

(including homework) incorporates further generation and exploration of two other 
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structures in ring theory: ring homomorphisms and quotient rings. In this appendix, I 

provide some thoughts, insights, and examples of theorems related to analogical 

reasoning surrounding these structures. 

Ring Homomorphisms 

A slight step up in difficulty from the analogizing task for subgroups, the analogizing 

task for group homomorphisms prompts more creative results from students. In 

particular, students are confronted with how to adapt the homomorphism concept to two 

operations rather than just one. Common observations that arise are: 

• Students may question whether the naming convention of “homomorphism” is 

appropriate in the ring context, or if a new name is needed. 

• Students may wish to mix the preservation of operations (e.g., φ(x+y) = 

φ(x)*φ(y)) 

• Students may argue about whether one or both operations requires the 

homomorphism property (e.g., φ(x+y) = φ(x) + φ(y), but not necessarily that 

φ(x*y) = φ(x)*φ(y). 

• Students may assert that two separate functions are required to define the 

analogous structure (e.g., φ(x+y) = φ(x) + φ(y), and ψ(x*y) = ψ(x) * ψ(y)) 

• Students may argue the need for 1-1 and onto. 

These student observations can lend themselves to a review of the purpose of the 

homomorphsim property and homomorphisms for groups and a rich discussion of the 

analogous purpose for ring homomorphisms as functions that relate two rings together. 

Ideally, students can abstract the notion of homomorphism from this discussion as being 

a function that relates two structures. In addition, this activity can lead to a review and 
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discussion of isomorphisms being related to the concept of “sameness” of two groups or 

rings. 

Once the structure of ring homomorphism is established, you may provide the 

students with a theorem from group theory to be translated into a theorem for ring 

homomorphisms. In my implementation, I used the following statement: 

Suppose G and H are groups and φ:GàH is a group homomorphism. Then the image of 

a subgroup of G is a subgroup of H.  

Quotient Rings  

A significant step up in difficulty from subrings is the construction of the quotient 

ring by analogy with quotient groups. Because of the nature of the quotient ring structure, 

it is unlikely that students will develop a complete definition of the structure on their 

own. However, the goal of the activity is only to introduce the concept of quotient rings 

to students and have students recognize the existence of an analogous structure; the 

complete and correct definition can be provided either within this lesson or later on when 

appropriate depending on the wishes of the instructor. Common observations that arise 

during the analogizing task for quotient groups are: 

• Students will wonder about the operation used for generating cosets (i.e., a+H vs. 

a*H). 

• If they haven’t done so by this point, students may begin to recognize that rings 

are also examples of Abelian groups and thus (1) quotient rings are quotient 

groups by default, and (2) every subgroup is a normal subgroup.  
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• Students will conjecture the existence of a “normal subring” by analogy with 

normal subgroups. This is an excellent way to motivate the need for ideals in ring 

theory. 

• When pursuing the “normal subring” concept, students may replace the word 

“group” in the usual definition of normal subgroup with the word “ring”. If this 

occurs, it can provide a review of the purpose of normal subgroups and a rich 

discussion to help motivate the need for the structure of ideals in the future. 

In my implementation of this analogizing task in an interview setting, I allowed my 

student to revisit the definition of a quotient group and revisit the proof that a set of 

cosets G/H is a quotient group if and only if H is a normal subgroup of G. Letting them 

revisit this proof reminds them of the need to establish a well-defined operation on G/H 

to create a group while also reminding them the role normality plays. Rather than 

expecting the student to generate the definition of quotient ring or ideal from scratch, I 

expected my student to develop conceptual connections about the structures that were 

required to make a quotient ring “work”. 
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VII. DISCUSSION 

This dissertation has proposed three papers, each of which makes contributions to 

the research and instructional practice surrounding analogical reasoning in mathematics 

with specific attention to topics in abstract algebra. Together, these papers attend to the 

three research questions proposed in the beginning: 

RQ1: How do students reason by analogy about rings, subrings, ring 

homomorphisms, and quotient rings in abstract algebra? 

RQ2: How might students come to productively reason by analogy in abstract 

algebra? 

RQ3: How might analogy and analogical reasoning be effectively incorporated 

into abstract algebra curriculum focused on introducing ring theory after group 

theory? 

In particular, Paper #1 identified analogical reasoning as a way of thinking in 

mathematics that is learnable by students when given the opportunity to do so. Paper #2 

introduced a framework for describing and interpreting students’ analogical activity while 

doing mathematics. Finally, Paper #3 connected the findings of Paper #1 and Paper #2 to 

practice by outlining a full lesson in abstract algebra that features analogical reasoning as 

a tool for exploratory structure creation. In this final chapter, I connect my work back to 

previous literature and suggest future research possibilities that are made available based 

on my contributions, several of which are the product of writing memos recording my 

thoughts as part of data analysis. 

 

 



 

108 

Connecting to Existing Literature 

The primary contribution of this dissertation is the Analogical Reasoning in 

Mathematics (ARM) framework. The literature in mathematics education pertaining to 

analogical reasoning previously lacked a framework for operationalizing analogy for 

describing and interpreting students’ analogical reasoning; ARM contributes one such 

way of doing so. Furthermore, much of the previous research on analogy in mathematics 

education involved closed forms of analogical reasoning with predetermined answers. In 

contrast, Lee and Sriraman (2011) introduced the notion of open-classical analogy (OCA) 

as a task for utilizing inventive analogy. OCA proposed three types of tasks relative to the 

amount of information given for a classical analogy (i.e., A is to B as C is to D):  

• Provide the A and C terms of the analogy, leaving B, D to conjecture. 

• Provide the A and B terms of the analogy, leaving the target to conjecture. 

• Provide only A, leaving all other terms generated by the student through 

conjecture. 

Lee and Sriraman investigated these problem types in the context of a middle school 

geometry classroom for gifted learners. The present research expands not only on the 

context and population studied, but also expands on the scope of mathematical activity 

that can be expected by implementing an OCA problem: students engaged in the act of 

defining and constructing mathematical structures that were made accessible to them 

through analogical reasoning. As I discuss below, the present research also observed 

students engage in analogical reasoning while constructing proofs, adding analogical 

proof activity to this expanded list. 
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Abstraction and Generalization. English and Sharry (1996) contend that 

abstraction is achievable through analogical reasoning and shared evidence of this 

phenomenon occurring within a group of grade 12 high school students who were asked 

to categorize a list of algebraic equations based on similarity. Looking beyond abstraction 

that students may achieve when given categorizing, I hypothesize that the phenomenon of 

analogical abstraction can play a significant role for inventive analogy. I suspect that the 

analogical activity a student enacts may be tied to their ability to abstract an underlying 

structure under consideration. For instance, the difference between exporting and 

importing the subgroup structure into the target domain of rings may depend upon the 

ability to first abstract the concept of a “sub-structure” from subgroup. In such cases, 

importation may even be conceptualized as the composition of an abstracting activity 

(which creates a third domain) together with an exportation of the abstracted structure 

from this third domain to the original target.  

 Polya (1954) further points to links between the activities of generalizing, 

specializing, and analogizing. Findings within this study provide evidence for this 

hypothesized connection between analogizing and generalizing: when analogically 

comparing between groups and rings, some students became aware of the possibility for 

more general structures, such as a set with three operations, or generalized their 

observations to similar ideas outside of abstract algebra, such as how the notion of 

homeomorphism relates to homomorphism and isomorphism. Connections can be made 

to the Relating-Forming-Extending framework developed by Ellis, Tillema, Lockwood 

and Moore (2017). In particular, this framework identifies inter-contextual and intra-

contextual forms of generalizing to determine whether a student is perceiving similarity 
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as being established across contexts, or within the same context. The activities identified 

within ARM can be put into communication with the inter-contextual category of 

activity. In coordination with ARM, I hypothesize a more robust description of how 

students identify or generate similarities/differences across examples is possible. 

The Process of Analogical Structure Creation. An original intent of this 

dissertation was to develop a model for how students create mathematical structures 

through analogy. As such, a key element of the analogizing task contributed by this 

dissertation is the construction of mathematical structure by way of analogy with a 

previously known structure. As I previously discussed, Stehlíková and Jirotková (2002) 

and Hejný (2002) recognized the possibility of constructing mathematical structures 

through analogical reasoning. Structure creation is described with a model of Internal 

Mathematical Structure (IMS), a representation of mathematical structures that lies 

within an individual’s mind. Stehlíková and Jirotková (2002) investigated the processes 

of building IMSs in the specific context of reasoning analogically between two arithmetic 

structures, and described five phenomena that they claimed were specific to the building 

of a structure by analogy: regularities, anomalies, broadening intuition, obstacles, and the 

development of new strategies.  

Much like the analogical activities presented in the ARM framework, these five 

phenomena relate to general aspects of analogical reasoning rather than describe a 

process of analogical reasoning as a whole. However, the ARM framework also identifies 

specific activities that can occur while reasoning by analogy. In particular, the ARM 

framework dissects the process of reasoning by analogy and interprets local analogical 

reasoning as opposed to the global process. The focus of this dissertation was on 
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students’ analogical reasoning and analogical activity rather than attending specifically to 

the process of constructing a mathematical structure by analogy. Using ARM as a tool for 

describing student’s mathematical activity while reasoning by analogy, I hypothesize that 

the process of generating structures can be abstracted and described across mathematics 

content areas outside of undergraduate algebra as well as within. This would synergize 

well with the heuristic of analogical reinvention: describing processes of analogical 

structure creation may produce generic templates for how students may approach 

analogical reinvention.  

Directions for Future Research 

 Several avenues of research become available from the line of inquiry into 

analogical reasoning in mathematics established in this dissertation. In this section, I 

outline directions for future research based both on the results coming from the proposed 

papers as well as my observations while working on this project. I situate these projects 

within three categories: (1) investigating what students understand and learn about 

structures in ring theory when reasoning by analogy about analogous structures in group 

theory; (2) developing curriculum incorporating analogy and analogical reasoning, 

specifically for the teaching of ring theory after group theory; and (3) investigating the 

process of analogical reasoning in various content areas of mathematics and its ties to 

other mathematical processes. 

Students’ Content Knowledge in Ring Theory 

 The context of reasoning by analogy between structures in ring theory and group 

theory not only allows for the investigation of how students reason by analogy, but also 

establishes a way to investigate what students understand about concepts in ring theory. 
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In particular, there may be affordances to students’ understanding of structures in ring 

theory provided by the novel context of constructing structures by analogy with 

previously known structures in group theory. Furthermore, students may come away with 

enriched understandings of concepts in group theory after developing structures in ring 

theory by analogy. Research on this type of interplay between knowledge of group theory 

and ring theory would be a step toward understanding how students can develop 

structuralist thinking in abstract algebra, such as structure sense (Simpson & Stehlíková, 

2006).  

 I propose that students can build meaningful connections between the content of 

ring theory and group theory when reasoning by analogy in such a way that their 

understanding of both topics is strengthened. Some evidence of this phenomena exists 

within the results of the present study. For example, after discussing “normal subrings” 

and later being given the definition of ideal, one participant made the following 

observation about the structure: 

That definitely did not look the same. I just tried to copy it and I had reasoning 
behind why I thought I would need the multiplication. It turns out no, we did 
addition. So, that was really confusing. And then I forgot I had learned ideal. I 
forgot I learned it because it didn't seem useful in any way. There was no use for 
me to have it at that time. But yeah, now when you start relating it to the group 
theory… If this was a class, I'll probably learn a lot more why I know this stuff, 
which is maybe how graduate school is; you start talking about the why's and 
stuff like that. 

 
In particular, this student suggests that he had actually seen the definition for ideal in the 

past, but had forgotten about it because it was not “useful in any way”. However, because 

he had engaged with developing the structure through analogy and had made several 

connections back to factor groups and normal subgroups, he felt that he had a clearer 

grasp on the overall purpose for the structure. Future research can investigate how 
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students come to recognize these sorts of meaningful connections and determine which of 

those connections are most productive for assisting students with learning ring theory. 

Developing Curriculum Incorporating Analogy  

I hypothesize that analogy and analogical reasoning can be incorporated into a 

variety of mathematics curriculum where exploration is a goal. In this dissertation, I 

displayed Paper #3 as a proof of existence for this hypothesis in the context of 

exploratory structure creation. My intuition suggests that this may be expanded into other 

domains as well, such as exploring and reinventing the definition of limit of a sequence in 

a general topology by analogy with the standard definition of limit of a sequence given in 

real analysis, or by analogy with the definition in a general metric space. In this section, I 

provide my thoughts on developing a curriculum incorporating analogy in the context of 

abstract algebra: analogical reinvention of ideal. 

Analogical Reinvention of Ideal. Abstract algebra is a foundational course for 

future teachers of mathematics as well as future mathematicians. Being that research on 

student thinking in abstract algebra is overwhelmingly dominated by group theory, there 

is much to be learned about how students think about topics in ring theory. Some results 

exist investigating how students might reinvent rings, integral domains, and fields (Cook, 

2012), as well as how students understand basic properties of rings (Cook, 2014; 2017). 

The results of this dissertation complement this work by offering a way to explore not 

only how students think about certain topics in ring theory, but also the interplay of 

knowledge between group and ring theory. Leveraging students’ knowledge of group 

theoretic constructs to introduce topics in rings, in addition to further investigating how 

students understand ring theoretic structures when reasoning by analogy, provides a basis 
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for establishing a curriculum for the teaching of ring theory after introducing group 

theory.  

The existing mathematics education literature related to ring theory has not fully 

approached the topic of ideal. This fact may be a reflection of the complexity associated 

with the structure of ideal (Jovignot, Hausberger & Durand-Guerrier, 2017), and the 

complexity of developing an effective curriculum for introducing the structure of ideal in 

an abstract algebra course. While the results of this dissertation do not offer insight into a 

stand-alone curriculum for the guided reinvention of ideal, this dissertation points to the 

possibility of a different approach: a heuristic for the exploration and discovery of ideals 

through analogy: analogical reinvention. In other words, guided reinvention of ideal 

could be achieved with the assistance of analogical reasoning with normal subgroups in 

group theory. The following outline suggests initial impressions of a possible learning 

trajectory for analogical reinvention of ideals: 

• Students will understand that the group structure is embedded in rings (especially 

the subgroup structure being contained within subrings.)  

• Students will understand that the ring structure contains an Abelian group, so 

every subgroup is normal. 

• Students will develop the quotient ring structure by analogy with quotient group. 

A goal of this would be to recognize the need for ideals. Likely, they will be 

referred to as normal subrings. A subgoal would be to recognize that the normal 

subgroup structure dictates what the cosets of the factor ring would look like.  

• Students will develop the notion of cosets during the creation of quotient ring as 

well as formulate initial thinking about ideals. 
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• Students will understand that the quotient ring structure should be a ring and need 

to properly define the operations on the cosets. 

• Students will recall that the property of normality for normal subgroups allows 

operations on factor groups to be well defined. Students will abstract this concept 

and recognize that the operations of addition and multiplication must be well-

defined to form a quotient ring. 

• Students will establish the definition of ideal. 

 Analogical Proof Activity. An immediate observation coming out of the present 

study is that students’ analogical proof activity is of particular interest. Examples of proof 

by analogy are ubiquitous in abstract algebra due to the existence of several 

commonalities between the structures of group and ring theory. For instance, consider the 

following quote from Gallian (2010): “The next three theorems parallel results we had for 

groups. The proofs are nearly identical to their group theory counterparts and are left as 

exercises” (p. 283). An underlying assumption is made in this quote: because the relevant 

analogous proofs are found in group theory, they are meant to be straightforward and do 

not require a proof written in the book. However, of the three theorems being referred to 

in this quote, one is the first homomorphism theorem for rings, a theorem that is hardly 

considered trivial in an introductory course in abstract algebra.  

It is unclear whether students appreciate the apparent simplicity in suggesting that 

a theorem about a new context is obvious by analogy with a previously known theorem. 

This raises some questions: To what extent do students accept proofs by analogy? In the 

realm of science education, Kapon and diSessa (2012) found that while students accepted 

some analogical arguments outright, they also possess hesitancies or reservations about 
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other analogically established arguments. Furthermore, how might students productively 

construct, comprehend, and validate proofs leveraging analogical reasoning?   
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APPENDIX SECTION 

APPENDIX A 

Group Theory Interview Protocol 

Participant’s History with Abstract Algebra 
 

1. How many courses in modern algebra have you had? When did you last take a 
course in modern algebra? 

2. Was there any coverage of ring theory in any of your classes? If so, what did you 
learn? 

Definition of Group 
3. What is the definition of group? 

Student Generated Examples 
4. Provide an example of a group. 

• If no answer, ask them to recall examples from class.  
• If no answer, ask specifically about integers under addition 

5. Provide a nonexample of a group. 

• If no answer, ask them if they can recall basic example from class. 
• If no answer, ask about integers under subtraction. 

Determining if given sets are Groups 
6. Determine if the following sets are groups: 

i. The set of integers modulo 𝑛 under addition, ℤ". 
ii. The set of natural numbers under addition, ℕ. 

7. Can the set {0,2,4,6,8} form a group? Why or why not? 
8. Can the set {a,b,c} form a group? Why or why not? 

Subgroups 
9. What is the definition of subgroup? 
10. Is Z3 a subgroup of Z9?   

• If no details given: How do you determine if a H is a subgroup of G? 

Group Homomorphisms 

11. What is the definition of group homomorphism? 
12. Is the function defined by 𝑓(𝑥) = 	 #

!
𝑥 a homomorphism from 2Z to Z? 

Definition of Normal Subgroups and Quotient Groups  
13. What is the definition of a normal subgroup? 
14. What is the definition of a quotient group? 

Asking about Other Topics 
15. Do any other topics from group theory come to mind that were not on this list? If 

so, please list them.  
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APPENDIX B 

Ring Theory Interview Protocol 

Introducing Definition of Ring 
• Present the participant with the definition of ring. Allow them time to study the 

definition. Ask them to think aloud as they study the definition.  

Working with Examples of Rings 

1. Determine if the following sets are rings under their usual addition and 
multiplication: 

iii. The set of integers modulo 𝑛,	 ℤ". 
iv. The set of natural numbers, ℕ. 

o If the student does not recognize the structures as groups, ask if and how 
knowledge of groups could have helped assess these examples. 

2. Can the set {0,2,4,6,8} form a ring? Why or why not? 
o If answer is same/different from that given for groups, ask them to 

compare. 

Student Generated Examples of Ring 
3. Construct an example of a ring. 

• If no answer, ask them to recall examples from groups. 
• If no answer, ask specifically about integers under addition 

4. Construct a nonexample of a ring. 

• If no answer, ask them if they can recall examples from groups. 
• If no answer, ask about integers under subtraction. 

Basic Proofs Involving Rings 

5. Prove that the additive identity of a ring is unique.  
• If spontaneous analogy is not present, ask about the analogous theorem in 

group theory. 
6. Let (𝑅,+,∗) be a ring. Prove that 𝑎! −	𝑏! = (𝑎 + 𝑏)(𝑎 − 𝑏) for all 𝑎, 𝑏	 ∈ 𝑅 if 

and only if 𝑅 is commutative.  

Properties of Rings 
7. Determine if the following properties are true for the ring ℤ$. 

a.  𝑎! = 𝑎	implies that 𝑎 = 0 or 𝑎 = 1. 
b. 𝑎𝑏 = 0	implies 𝑎 = 0 or 𝑏 = 0. 
c. 𝑎𝑏 = 𝑎𝑐	and 𝑎	 ≠ 0 imply 𝑏 = 𝑐 

Connections to Group Theory 
8. What connections (if any) have you made to group theory during this session?  
9. How might you expect the study of rings to proceed?  
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APPENDIX C 

Example of Analogizing Task Interview 

Constructing the Definition of Subring 
1. Make a conjecture for a structure in ring theory that is analogous to subgroups in 

group theory. 
a. If the participant is unsure of the meaning of “analogous,” assist them 

with an example (i.e. analogy between atom and solar system) or a 
diagram.  

b. When finished with spontaneous comparisons: Ask what similarities there 
are to subgroups. 

c. Ask what differences there are to subgroups. 

Student Generated Examples of Subrings (given a Ring) 

2. Is ℤ (with usual addition and multiplication) a subring of any rings? 
o If no answer, ask if Z is a subgroup of any groups. 

3. Does ℤ (with usual addition and multiplication) contain any proper subrings? 

Conjecturing the Subring Test 

4. If test did not show up during structure creation present the following task: 
Conjecture a way to test whether 𝑆 is a subring of a ring 𝑅. 

o If no answer, prompt them to recall the subgroup test. 

Determining Examples of Subrings 

5. Is ℤ%	a subring of ℤ&? 
o If no answer, ask to compare to response given for groups. 

6. Suppose that R is a ring and a is an element of 𝑅 such that 𝑎! = 1.  
Let 𝑆	 = 	 {𝑎𝑟𝑎|𝑟 ∈ 𝑅}. Prove that 𝑆 is a subring of 𝑅. 

Proofs Involving Subrings 
7. Suppose 𝑅 is a ring and 𝑆 and 𝑇 are subrings of 𝑅. Prove that 𝑆 ∩ 𝑇 is a subring 

of 𝑅. 
Connections to Group Theory 

8. What connections (if any) have you made to group theory during this session?  
9. How might you expect the study of rings to proceed?  
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APPENDIX D 

Example of Diagram and Description of Codes 

 
 Source Domain Target Domain 

 
Similarities 

Obstacles 
Expanding? 
Carry-over 
Identifying regularities 

Extending? 

Differences Identifying anomalies Adapting 
Broadening intuition? 

 
 
 For this initial attempt at a diagram, I have decided to try and parse out different 
types of activities that may occur based on whether the student is foregrounding the 
source or target domain, and whether the focus is on identifying/generating(?) similarities 
or differences. I have attempted to map the five phenomena (regularities, anomalies, 
obstacles, broadening intuition, and adaption) into these categories as a starting point.  
 
 I describe the four resulting categories here: 
 
 Source Domain Foregrounded: 
Similarities: This category describes those instances where a student is identifying or 
generating similarities between a source and target where the student’s focus is on the 
source structure. This can occur when the student is “stuck” in their way of thinking 
about the old structure and is struggling to adapt to the new context of the target, or when 
the student is actively seeking similarities between the structures that originate from their 
understanding of the source. 
 
Example: In this example, the student is conjecturing that Sylow theory will still be 
applicable in ring theory. The source domain is foregrounded because the conjecture is 
based entirely within knowledge of group theory with no clear sign of adapting to the 
new context of rings. 

Student: P-Sylow subrings ... 

Interviewer: That Sylow theory will come back [crosstalk 01:07:37]. 

Student: Yeah. I feel like it'll probably come back around. I assume something 
would still be applicable in ring theory. 

 
Differences: This category describes those instances of analogical reasoning in which a 
student is identifying or generating differences while maintaining focus on then source 
structure. This can occur when the student is actively seeking what is different between 
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two analogous structures based on knowledge of the source structure.  
 
Example: In this example, the student is examining the definition of ring and reflecting 
on the definition. He recognizes that identities are not necessary for multiplication and 
comments on how that is different from groups. The source is foregrounded because it is 
driving the recognition of the difference. 

Interviewer: Okay. So, our first question here is, just to reflect on the above definition. 
Is there anything that stands out to you about this definition? 

Student: Yeah, I would say it's not necessary. No identity to the ... for 
multiplication.  

Interviewer: Could you explain why that caught your attention? 

Student: Because everything in group theory ... there's a very big part of it, is that 
there needs to be identity and there's also, even clear in this, an identity 
for addition it just seems interesting that when we throw in another binary 
operation it doesn't necessarily need to have an identity as well. Which is 
just interesting to think about.  

 
 
Target Domain Foregrounded: 

Similarities: This category describes those instances of analogical reasoning in which a 
student is identifying or generating similarities while focusing on the target structure.  
 
Example: In this example, the student is conjecturing the existence of ring 
homomorphisms. The target domain is foregrounded because although the conjecture is 
based within knowledge of group homomorphisms, the student is exhibiting signs of 
adapting to the new context of ring theory (sort of like recognizing or predicting that 
differences will eventually occur). 
 

Student: Well, we already talked about sub rings, so then after that we're probably 
gonna want to talk about functions on rings. So, homomorphisms but in 
terms of rings I don't know exactly what you would called them. Next so 
would be functions. 

Interviewer: So some ideas similar to homomorphisms? 
Student: Yeah. Functions on ring forming homomorphism-like structures. From 

there, once you're talking about homomorphisms that kind of just opens up 
a lot other areas. 

 
Differences: This category describes those instances of analogical reasoning in which a 
student is identifying or generating differences while focusing on the target structure.  
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Example: This example is a continuation of the source domain difference example above. 
In this example, the target is foregrounded because the student is now considering how 
the difference manifests itself in the context of rings. 
 

Student: Which also, I would say, opens up a lot more possibilities for what your 
ring is allowed for because I know if you're talking about ... if you're 
wanting to talk about multiplication, I can't have multiplication under ... 
like, if you do multiplication of positives or something like that when 
you're talking about integers to have a group and stuff. Or something like 
that, I don't remember exactly what it was, because the problem of the 
identity or something like that. 

Student: But this'll probably open up a lot more options since you won't necessarily 
need the inverse part to work out or something like that, you know? Oh, 
that's right. It couldn't have zero because there's no inverse for zero. 
That's what it was. Under multiplication. But if you're talking about this 
same set were addition is the first property, then you possibly could still 
do multiplication because you don't need to have that inverse property 
under the multiplication. 
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APPENDIX E 

Example of Memo: Negative Analogical Reasoning 

Date: May 7th, 2020 

Title: Thoughts on Coding Quotient Ring A&B 

In the quotient ring interview, Student A flat out admits that she can’t recall 

anything about what a factor group is. I hadn’t picked up on something like this just yet, 

which seems rather surprising given that it seems like a natural response. I suspect more 

of this happens in Student A’s subring interview. I think that capturing this with some 

kind of code or flag could be useful for describing a student’s overall process of 

reasoning by analogy. Struggling to recall information could be a sign for instructors to 

provide support in some way during instruction.  

Meta-Level Analogical Reasoning 

Student B engaged with an interesting example of analogical reasoning about 

factor rings by first recalling what he did when constructing ring homomorphisms. This is 

the first instance of this that I have seen. In this case, the student is recalling a previous 

episode of reasoning by analogy and considers what was useful. He seems to abstract his 

previous episode by observing that he wanted conditions for ring homomorphisms (rather 

than multiple phis) and maps this concept of conditions to the factor group/ring context. 

What’s interesting to me about this example is that it seems to suggest that he is learning 

about some form of reasoning by analogy in and of itself, rather than just engaging with 

the act of reasoning by analogy. 

Student B: … like the cosets. And then we'll put that mark, we'll call that coset. 
Factor groups. Now, what about rings? What would they even be called? 
How would they even work? Let's write it out. It would be G star and H 
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star versus here, we would have R plus and S plus. And why don't we say 
that S is a subring of R, and R over S would be the… Actually, these are 
using this binary operation. So, this would be the set of… Let's see. Last 
time we did subring, right? 

Interviewer: The last interview? 

Student B: Uh-huh (affirmative). 

Interviewer: It was ring homomorphism. Subring was the previous one. 

Student B: So, ring homomorphism was… We had two functions, right? 

Interviewer: Can you explain? 

Student B: Group homomorphism is, there's a Phi defined describing the relationship 
from one group mapping to the next group, and then ring homomorphism 
is a function Phi defined mapping… I thought it was a ring under one 
operation to the next ring under the first… so, first binary operations, and 
then there was another Phi that mapped the other operation. 

Interviewer: So, just one Phi? 

Student B: There's one Phi- 

Interviewer: And it's actually mapping both operations? 

Student B: Mapping the rings. 

Interviewer: Yea. And both operations are involved in it, but just the one function? 

Interviewer: (silence). 

Interviewer: [inaudible 00:02:46]. 

Student B: Oh, it's the fact that these have to be true. That's what I was thinking. I was 
thinking there was multiple Phis, but it's multiple conditions that have to 
be true. 

Interviewer: Right. 

Student B: So, here, I don't know, it doesn't feel like we have conditions. I understand 
that this is a condition. G over H is a set of cosets under this operation. So, 
R over S, I'm guessing is going to be cosets. It's just confusing now. I want 
to just copy it, but what's the operation between here, and why is it only 
one operation? I'm thinking… Let's see, we'll put idea is that we have S 
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times A for all A in R, we have S plus A for all A in R. And then it goes 
the other way too, because they're rings. Maybe it could be piecewise or 
something like that. Like this. Yeah, we'll do that. 
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