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EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR
ELLIPTIC EQUATIONS

AOMAR ANANE, OMAR CHAKRONE, MOHAMMED CHEHABI

Abstract. In this paper, we study the existence of solutions to the following

nonlinear elliptic problem in a bounded subset Ω of RN :

−∆pu = f(x, u,∇u) + µ in Ω,

u = 0 on ∂Ω,

where µ is a Radon measure on Ω which is zero on sets of p-capacity zero,

f : Ω×R×RN → R is a Carathéodory function that satisfies certain conditions
with respect to the one dimensional spectrum.

1. Introduction

We consider the quasilinear elliptic problem

−∆pu = f(x, u,∇u) + µ in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded open set in RN , N ≥ 2, 1 < p < +∞, µ is a Radon measure
on Ω and f : Ω×R×RN → R is a Carathéodory function. We are interested in the
existence of solutions to this problem. More precisely, we will prove the existence
of a solution u ∈ W 1,p

0 (Ω), if and only if the signed measure µ is zero on sets of
capacity zero in Ω. (i.e µ(E) = 0 for every set E such that capp(E,Ω) = 0).

Boccardo, Gallouet and Orsina have proved in [3] the existence of a solution to
the problem

Au+ g(x, u,∇u) = µ inΩ,
u = 0 on ∂Ω,

where A(u) = −div(a(x,∇u)), a : Ω × RN → R and g : Ω × R × RN → R are
Carathéodory functions such that for almost every x ∈ Ω, for every ξ ∈ RN and for
every s ∈ R,

a(x, ξ).ξ ≥ α|ξ|p,
|a(x, ξ)| ≤ l(x) + β|ξ|p−1,

|g(x, s, ξ)| ≤ b(|s|)[|ξ|p + d(x)],
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where α and β are two positive constants, l ∈ Lp′(Ω), b a real-valued, positive,
increasing, continuous function, and d a nonegative function in L1(Ω). They assume
that for almost every x ∈ Ω, for every ξ and η in RN , with ξ 6= η,

[a(x, ξ)− a(x, η)].(ξ − η) > 0,

They require also that for almost every x ∈ Ω, for every ξ in RN , for every s in R
such that |s| ≥ σ,

g(x, s, ξ) sgn(s) ≥ ρ|ξ|p,
where ρ and σ are two positive real numbers and sgn(s) is the sign of s.

Let (β, α, u) ∈ RN×R×W 1,p
0 (Ω)\{0}. If (β, α, u) is a solution of the problem

−∆pu = αm(x)|u|p−2u+ β.|∇u|p−2∇u in Ω,
u = 0 on ∂Ω,

where 1 < p < ∞ and m ∈ M = {m ∈ L∞(Ω) : meas{x ∈ Ω : m(x) > 0} 6= 0}.
In this case, the pair (β, α) is said to be a one dimensional eigenvalue and u the
associated eigenfunction. We designate by σ1(−∆p,m) ⊂ RN×R the set of one
dimensional eigenvalues (β, α) with α ≥ 0.

Proposition 1.1. (1) σ1(−∆p,m) contains the union of the sequence of graphs
of the functions Λn : RN → R+, n = 1, 2, . . . , where Λn(β) is defined for every
β ∈ RN by

1
Λn(β)

= sup
K∈Aβ

n

min
u∈K

∫
Ω

eβ.xm(x)|u|pdx.

with Aβ
n = {K ⊂ Sβ, K compact symmetrical; γ(K) ≥ n},

Sβ =
{
u ∈W 1,p

0 (Ω) :
( ∫

Ω

eβ.xm(x)|∇u|pdx
)1/p

= 1
}

and γ(K) indicates the genus of K.
(2) Λ1(.) is the first eigensurface of the spectrum of σ1(−∆p,m) in the sense

σ1(−∆p,m) ⊂ {(β, α) ∈ RN×R; Λ1(β) ≤ α}

The proof of the above proposition can be found in [1]. When µ = h ∈
W−1,p′(Ω), Anane, Chakrone and Gossez have proved in [1] the existence of a
solution to (1.1), in the sense∫

Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u,∇u)v dx+ 〈h, v〉

for every v ∈W 1,p
0 (Ω)∩L∞(Ω). This is done under the hypotheses of non-resonance

with respect to the spectrum of one dimensional σ1(−∆p, 1): There exists (β, α) ∈
RN × R with α < Λ1(β,−∆p, 1) where Λ1(.,−∆p, 1) is the first eigensurface of
the spectrum of one dimensional σ1(−∆p, 1), such that for all δ > 0 there exists
aδ ∈ Lp′(Ω) such that

f(x, s, ξ)s ≤ α|s|p + β|ξ|p−2ξs+ δ(|s|p−1 + |ξ|p−1 + aδ(x))|s| (1.2)

for almost every x ∈ Ω and for all (ξ, s) ∈ RN × R; and for all k > 0 there exist
φk ∈ L1(Ω) and bk ∈ R such that

max
|s|≤k

|f(x, s, ξ)| ≤ bk|ξ|p + φk(x) (1.3)

for almost every x ∈ Ω and for all ξ ∈ RN .
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Remark 1.2. (1) If f(x, u,∇u) = αm(x)|u|p−2u + β.|∇u|p−2∇u, then (1.1)
has a solution for every µ ∈W−1,p′(Ω), in the usual sense∫

Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u,∇u)v dx+ 〈h, v〉W−1,p′ (Ω),W 1,p
0 (Ω)

for every v ∈W 1,p
0 (Ω), if and only if (β, α) /∈ σ1(−∆p,m).

(2) If µ /∈W−1,p′(Ω), problem (1.1) does not have always a solution. Indeed in
the case 1 < p ≤ N , we have that L1(Ω) " W−1,p′(Ω) = −∆p(W

1,p
0 (Ω)).

In this work, we assume (1.3) and that µ is a measure. We assume also that for
each δ > 0 there exists aδ ∈ Lp′(Ω) such that

f(x, s, ξ)s ≤ −ρ|ξ|p|s|+ α|s|p + β|ξ|p−2ξs+ δ(|s|p−1 + |ξ|p−1 + aδ(x))|s| (1.4)

for almost every x ∈ Ω and for all (ξ, s) ∈ RN ×R, where (β, α) ∈ RN ×R satisfies
the same conditions as in (1.2) and ρ is a positive real number. In the case δ = 1,
there exists a1 ∈ Lp′(Ω) such that

f(x, s, ξ) sgn(s) ≤ −ρ|ξ|p + α′|s|p−1 + β′|ξ|p−1 + a1(x) (1.5)

for almost every x ∈ Ω and for all (ξ, s) ∈ RN×R, where α′ = α+1 and β′ = |β|+1.

Remark 1.3. (1) The conditions of the sign given in [3] imply (1.4) in the
case α = 0 and β = 0.

(2) The hypothesis (1.3) and (1.4) are satisfied for example if

f(x, s, ξ) = −ρ|ξ|p sgn(s) + α|s|p−2s+ β|ξ|p−2ξ + g(x, s, ξ) + l(x, s, ξ)

where g and l satisfy

g(x, s, ξ)s ≤ 0,

|g(x, s, ξ)| ≤ b(|s|)(|x|p + c(x)),

sl(x, s, ξ) ≤ C(|s|q−1 + |x|q−1 + d(x))|s|

with b continuous, c(x) ∈ L1(Ω), q < p, d(x) ∈ Lp′(Ω) and C a constant.

For every compact subset K of Ω, the p-capacity of K with respect to Ω is
defined as

cap
p

(K,Ω) = inf{
∫

Ω

|∇u|pdx, u ∈ C∞0 (Ω) and u ≥ χK}

where χK is the characteristic function of K; we will use the convention that
inf(∅) = +∞. The p-capacity of any open subset U of Ω is defined by capp(U,Ω) =
sup{capp(K,Ω), K compact and K ⊆ U}. Also the p-capacity of any subsetB ⊆ Ω
by capp(B,Ω) = inf{capp(U,Ω), U open and B ⊆ U}. We will denote by Mb(Ω)
the space of all signed measures on Ω and by Mp

0(Ω) the space of all measures µ
in Mb(Ω) such that µ(E) = 0 for every set E such that capp(E,Ω) = 0.

Our main result is stated as follows.

Theorem 1.4. Assume (1.3), (1.4) and that µ is a measure in Mb(Ω). Then,
there exists a solution u of

−∆pu = f(x, u,∇u) + µ in Ω,
u = 0 on ∂Ω

(1.6)
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in the sense that u ∈W 1,p
0 (Ω), f(x, u,∇u) ∈ L1(Ω), and∫

Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u,∇u)v dx+
∫

Ω

v dµ,

for every v ∈W 1,p
0 (Ω) ∩ L∞(Ω), if and only if µ ∈Mp

0(Ω).

2. Proof of Main result

The notation 〈., .〉 stands hereafter for the duality pairing between W−1,p′(Ω)
and W 1,p

0 (Ω). We define, for s and k in R, with k > 0,

Tk(s) =

{
k sgn(s) if |s| > k,

s if |s| ≤ k,

and Gk(s) = s− Tk(s).

Lemma 2.1. Let g ∈ L∞(Ω) and F ∈ (Lp′(Ω))N . Under the hypotheses (1.3) and
(1.4), the problem

−∆pu = f(x, u,∇u) + g − divF in Ω,
u = 0 on ∂Ω,

(2.1)

admits a solution u ∈ W 1,p
0 (Ω) in the sense that f(x, u,∇u) and f(x, u,∇u)u are

in L1(Ω), and that∫
Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u,∇u)v dx+
∫

Ω

gv +
∫

Ω

F∇v

for every v ∈W 1,p
0 (Ω) ∩ L∞(Ω) and for v = u.

Proof. Letting l = g− divF , we have l ∈W−1,p′(Ω). Then (1.4) implies (1.2), and
Lemma 2.1 is a particular case of a result in [1]. �

Lemma 2.2. Mp
0(Ω) = L1(Ω) +W−1,p′(Ω) for every 1 < p < +∞.

For the proof of the above lemma see [4].

Lemma 2.3. Let a, b be two nonnegative numbers, and let ϕ(s) = seθs2
with

θ = b2/(4a2). Then for all s ∈ R, aϕ′(s)− b|ϕ(s)| ≥ a/2.

Proof. For s ∈ R let ψ(s) = aϕ′(s)− b|ϕ(s)|. Then

ψ(s) = eθs2
[a(1 + 2θs2)− b|s|] = aeθs2

[(1 + 2θs2)− 2
√
θ|s|],

Then ψ is even, and assuming that s ≥ 0, we obtain that for every s ≥ 0,

ψ(s) = 2aeθs2[
(
√
θs− 1

2
)2 +

1
4
]
≥ a

2
.

�

Remark 2.4. Let µ ∈ Mp
0(Ω). If p > N , then L1(Ω) ⊂ W−1,p′(Ω); therefore,

Mp
0(Ω) = W−1,p′(Ω). Then the existence of a solution of (1.6) is a consequence of

[1, Theorem 7.1]. That is why, we assume that 1 < p ≤ N .
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Proof of the Theorem 1.4. Note that if u ∈W 1,p
0 (Ω) is a solution of (1.6), then

µ = −∆pu− f(x, u,∇u)

with ∆pu ∈W−1,p′(Ω) and f(x, u,∇u) ∈ L1(Ω); So by Lemma 2.2, µ ∈Mp
0(Ω).

Conversely, suppose that µ ∈ Mp
0(Ω), so by Lemma 2.2 there exists g ∈ L1(Ω)

and F ∈ (Lp′(Ω))N such that µ = g−divF . There exists a sequence (gn)n of L∞(Ω)
that converges strongly to g in L1(Ω) and g̃ ∈ L1(Ω) such that |gn(x)| ≤ |g̃(x)| for
every n ∈ N and for almost every x ∈ Ω.

By Lemma 2.1, the problem
−∆pun = f(x, un,∇un) + gn − divF in Ω,

un = 0 on ∂Ω,
(2.2)

admits a solution un ∈W 1,p
0 (Ω) in the sense that

f(x, un,∇un), f(x, un,∇un)un ∈ L1(Ω), (2.3)

and ∫
Ω

|∇un|p−2∇un∇v dx =
∫

Ω

f(x, un,∇un)v dx+
∫

Ω

gnv +
∫

Ω

F∇v, (2.4)

for every v ∈W 1,p
0 (Ω) ∩ L∞(Ω) and for v = un.

Lemma 2.5. The sequence (un)n is bounded in W 1,p
0 (Ω).

Proof. Let us choose v = ϕ(T1(un)) as a test function in (2.4), where ϕ(s) = seθs2

with θ = b2

4a2 , a = 1 and b = b1 (b1 ≥ 0 is given for k = 1 by (1.3)). Setting

a(ξ) = |ξ|p−2ξ ∀ξ ∈ RN ,

ϕ1 = ϕ(T1(un)), ϕ′1 = ϕ′(T1(un)),

we have∫
Ω

a(∇un)∇[ϕ(T1(un))]dx =
∫

Ω

f(x, un,∇un)ϕ(T1(un))dx

+
∫

Ω

gnϕ(T1(un))dx+
∫

Ω

F∇[ϕ(T1(un))]dx.
(2.5)

On the other hand,∫
Ω

a(∇un)∇[ϕ(T1(un))]dx =
∫

Ω

a(∇un)ϕ′1∇(T1(un))dx

=
∫

Ω

ϕ′1|∇(T1(un))|pdx.

Since ϕ′ is an even function in R, ϕ′ is increasing in R+ and |T1(un)| ≤ 1, we have∫
Ω

F∇[ϕ(T1(un))]dx ≤ ‖F‖Lp′‖ϕ(T1(un))‖1,p

≤ ‖F‖Lp′ (
∫

Ω

|ϕ′1∇(T1(un))|pdx)1/p

≤ ‖F‖Lp′ϕ′(1)‖T1(un)‖1,p.

Since ϕ is increasing in R, we get∫
Ω

gnϕ(T1(un))dx ≤ ϕ(1)
∫

Ω

|gn|dx ≤ ϕ(1)‖g̃‖L1 .
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Writing ∫
Ω

f(x, un,∇un)ϕ(T1(un))dx

=
∫
{|un|≤1}

ϕ1f(x, un,∇un)dx+
∫
{|un|>1}

ϕ1f(x, un,∇un)dx.

By (1.3), we have

|
∫
{|un|≤1}

ϕ1f(x, un,∇un)dx| ≤
∫
{|un|≤1}

|ϕ1||f(x, un,∇un)|dx

≤
∫
{|un|≤1}

|ϕ1|[b1|∇un|p + φ1(x)]dx

≤ b1

∫
{|un|≤1}

|ϕ1||∇un|pdx+ ϕ(1)‖φ1‖L1

≤ b1

∫
Ω

|ϕ1||∇(T1(un))|pdx+ ϕ(1)‖φ1‖L1 .

On the other hand, on {|un| > 1}, T1(un) = sgn(un), so ϕ(T1(un)) = sgn(un) eθ

and by (1.5), we get∫
{|un|>1}

ϕ1f(x, un,∇un)dx

=
∫
{|un|>1}

eθf(x, un,∇un) sgn(un)dx

≤ eθ

∫
{|un|>1}

[−ρ|∇un|p + α′|un|p−1 + β′|∇un|p−1 + a1(x)]dx.

Adding the above inequalities, by (2.5), we obtain∫
Ω

[ϕ′1 − b1|ϕ1|]|∇(T1(un))|pdx+ ρeθ

∫
{|un|>1}

|∇un|pdx

≤ ‖F‖Lp′ϕ′(1)‖T1(un)‖1,p + ϕ(1)‖g̃‖L1 + ϕ(1)‖φ1‖L1

+ eθ

∫
{|un|>1}

[α′|un|p−1 + β′|∇un|p−1 + a1(x)]dx.

(2.6)

Using Hölder’s inequality, we have∫
{|un|>1}

|∇un|p−1dx ≤ ‖un‖p−1
1,p (meas(Ω))1/p,∫

{|un|>1}
|un|p−1dx ≤ ‖un‖p−1

p (meas(Ω))1/p.

By Poincaré’s inequality, there exists c > 0 such that

‖un‖p ≤ c‖∇un‖p.

So ∫
{|un|>1}

|un|p−1dx ≤ cp−1‖un‖p−1
1,p (meas(Ω))1/p.
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Replacing this in (2.6) and using that ϕ′1 − b1|ϕ1| ≥ 1
2 , we obtain

1
2

∫
Ω

|∇(T1(un))|pdx+ ρeθ

∫
{|un|>1}

|∇un|pdx ≤ c1‖un‖1,p + c2‖un‖p−1
1,p + c3,

where c1 = ‖F‖Lp′ϕ′(1), c2 = eθ[α′cp−1 + β′](meas(Ω))
1
p and c3 = ϕ(1)‖g̃‖L1 +

ϕ(1)‖φ1‖L1 + eθ‖a1(x)‖L1 . Set c4 = min( 1
2 , ρe

θ), we have

c4‖un‖p
1,p ≤ c1‖un‖1,p + c2‖un‖p−1

1,p + c3,

since p > 1, (un)n is a bounded sequence in W 1,p
0 (Ω). �

For a subsequence, still denoted by (un)n, we have

un ⇀ u weakly in W 1,p
0 (Ω),

un → u strongly in Lp(Ω),

un(x) → u(x) for almost every x ∈ Ω.

(2.7)

Lemma 2.6. For every k > 0, the sequence (Tk(un))n converges strongly to Tk(u)
in W 1,p

0 (Ω).

Proof. Let k > 0. Consider ϕ(s) = seθs2
with θ = b2

4a2 , a = 1 and b = ak (ak ≥ 0 is
given by (1.3). Setting

a(ξ) = |ξ|p−2ξ, ∀ξ ∈ RN , ϕn = ϕ(Tk(un)− Tk(u)), ϕ′n = ϕ′(Tk(un)− Tk(u)).

By (2.7), the continuity of ϕ and ϕ′, and the dominated convergence theorem, we
have

ϕn ⇀ 0 and ϕ′n ⇀ 1 weak-∗ in L∞(Ω) and a. e. x ∈ Ω,

ϕn → 0 and ϕ′n → 1 in Lq(Ω) for every q ≥ 1.
(2.8)

We will denote by εn any quantity which converges to zero as n tends to infinity.
Let v = ϕn, be a test function in (2.4). Then∫

Ω

a(∇un)∇(Tk(un)− Tk(u))ϕ′ndx

=
∫

Ω

f(x, un,∇un)ϕndx+
∫

Ω

gnϕndx+
∫

Ω

F∇(Tk(un)− Tk(u))ϕ′n

:= A+B + C +D

(2.9)

For the third term on the right-hand side: Since ϕn ⇀ 0 weak-∗ in L∞(Ω) and
gn → g in L1(Ω), we have

∫
Ω
gnϕndx→ 0 so that

C = εn. (2.10)

For the forth term on the right-hand side: It is clear that Fϕ′n → F in (Lp′(Ω))N

and Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω), so that

D = εn. (2.11)

For the second term on the right-hand side:∫
Ω

f(x, un,∇un)ϕndx

=
∫
{|un|>k}

f(x, un,∇un)ϕndx+
∫
{|un|≤k}

f(x, un,∇un)ϕndx := B1 +B2.
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On the set {|un| > k}, ϕn has the same sign as un, so by (1.5),

f(x, un,∇un)ϕn

≤ −ρ|∇un|p|ϕn|+ α′|un|p−1|ϕn|+ β′|∇un|p−1|ϕn|+ a1(x)|ϕn|
≤ [α′|un|p−1 + β′|∇un|p−1 + a1(x)]|ϕn|.

By Lemma 2.5 and (2.8), we have B1 ≤ εn, so that∫
Ω

f(x, un,∇un)ϕndx ≤
∫
{|un|≤k}

f(x, un,∇un)ϕndx+ εn.

By (1.3), we have

|
∫
{|un|≤k}

f(x, un,∇un)ϕndx| ≤
∫
{|un|≤k}

|f(x, un,∇un)||ϕn|dx

≤
∫
{|un|≤k}

[bk|∇un|p + φk(x)]|ϕn|dx

≤ bk

∫
Ω

|∇Tk(un)|p|ϕn|dx+
∫

Ω

φk(x)|ϕn|dx,

and∫
Ω

|∇Tk(un)|p|ϕn|dx =
∫

Ω

a(∇Tk(un))∇Tk(un)|ϕn|dx

=
∫

Ω

(a(∇Tk(un))− a(∇Tk(u)))(∇Tk(un)−∇Tk(u))|ϕn|dx

+
∫

Ω

a(∇Tk(un))∇Tk(u)|ϕn|dx

+
∫

Ω

a(∇Tk(u))(∇Tk(un)−∇Tk(u))|ϕn|dx.

By (2.8), since (Tk(un))n is bounded in W 1,p
0 (Ω), we have∫

Ω

f(x, un,∇un)ϕndx

≤ εn + bk

∫
Ω

(
a(∇Tk(un))− a(∇Tk(u))

)(
∇Tk(un)−∇Tk(u)

)
|ϕn|dx.

(2.12)

For the firs term on the right-hand side (A): We verify easily that a(∇Tk(un))+
a(∇Gk(un)) = a(∇un), so that∫

Ω

a(∇un)∇(Tk(un)− Tk(u))ϕ′ndx

=
∫

Ω

a(∇Tk(un))∇(Tk(un)− Tk(u))ϕ′ndx+
∫

Ω

a(∇Gk(un))∇(Tk(un)

− Tk(u))ϕ′ndx := A1 +A2.

We have ∇(Tk(un)) = 0 if ∇(Gk(un)) 6= 0, so

A2 = −
∫

Ω

a(∇Gk(un))∇(Tk(u))ϕ′ndx

= −
∫

Ω

a(∇Gk(un))∇(Tk(u))χ{|un|≥k}ϕ
′
ndx.
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Since ∇Tk(u) = 0 on the set {|u| ≥ k}, ∇Tk(u)χ{|un|≥k} → 0 for almost every
x ∈ Ω, so, by Lebesgue theorem A2 = εn. For (A1), we have∫

Ω

a(∇Tk(un))∇(Tk(un)− Tk(u))ϕ′ndx

=
∫

Ω

[a(∇Tk(un))− a(∇Tk(u))]∇(Tk(un)− Tk(u))ϕ′ndx

+
∫

Ω

a(∇Tk(u))∇(Tk(un)− Tk(u))ϕ′ndx := A1.1 +A1.2

By (2.8) , since Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω), we have A1.2 = εn. Thus

A =
∫

Ω

[a(∇Tk(un))− a(∇Tk(u))]∇
(
Tk(un)− Tk(u)

)
ϕ′ndx+ εn. (2.13)

By (2.10), (2.11), (2.12), (2.13) and from (2.9), we obtain∫
Ω

[a
(
∇Tk(un)

)
− a

(
∇Tk(u)

)
]∇

(
Tk(un)− Tk(u)

)
[ϕ′n − bk|ϕn|]dx ≤ εn.

Since ϕ′n − bk|ϕn| ≥ 1
2 with a = 1 and b = bk) and

[a(∇Tk(un))− a(∇Tk(u))]∇
(
Tk(un)− Tk(u)

)
≥ 0,∫

Ω

[a(∇Tk(un))− a(∇Tk(u))]∇
(
Tk(un)− Tk(u)

)
dx = εn;

therefore,

〈−∆p(Tk(un)) + ∆p(Tk(u)), Tk(un)− Tk(u)〉 → 0.

Since Tk(un) ⇀ Tk(u) weakly in W 1,p
0 (Ω),

〈−∆p(Tk(u)), Tk(un)− Tk(u)〉 → 0,

〈−∆p(Tk(un)), Tk(un)− Tk(u)〉 → 0.

Since −∆p belongs to the class (S+) (see [2]), Tk(un) → Tk(u) strongly in W 1,p
0 (Ω).

�

Lemma 2.7. The following to limit hold:

lim
k→+∞

[sup
n∈N

∫
{|un|≥k}

|∇un|pdx] = 0,

lim
k→+∞

[sup
n∈N

∫
{|un|≥k}

|f(x, un,∇un)|dx] = 0.
(2.14)

Proof. For the first limit, we define ψ : R → R+ by ψ(−s) = −ψ(s) for all s ∈ R
and

ψ(s) =


0 if 0 ≤ s ≤ k − 1,
s− (k − 1) if k − 1 ≤ s ≤ k,

1 if s ≥ k,
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where k > 1, so that ψ is continuous, bounded in R and ψ(un) ∈ W 1,p
0 (Ω). We

choose v = ψ(un), as a test function in (2.4) we have∫
Ω

|∇un|p−2∇un∇ψ(un)dx

=
∫

Ω

f(x, un,∇un)ψ(un)dx+
∫

Ω

gnψ(un)dx+
∫

Ω

F∇ψ(un)dx.

Using Young’s inequality, we obtain∫
Ω

|∇ψ(un)|pdx ≤
∫

Ω

f(x, un,∇un)ψ(un)dx+
∫
{|un|≥ k−1}

|gn|dx

+ c

∫
{k−1<|un|<k}

|F |p
′
dx+

1
2

∫
Ω

|∇ψ(un)|pdx.

So that

0 ≤ 1
2

∫
Ω

|∇ψ(un)|pdx

≤
∫

Ω

f(x, un,∇un)ψ(un)dx+
∫
{|un|≥ k−1}

|gn|dx

+ c

∫
{k−1<|un|<k}

|F |p
′
dx.

(2.15)

Using (1.5) and that ψ(s) has the same sign as s, and that is zero if |s| ≤ k− 1, we
get∫

Ω

f(x, un,∇un)ψ(un)dx =
∫
{|un|>k−1}

f(x, un,∇un)ψ(un)dx

≤
∫
{|un|>k−1}

[−ρ|∇un|p|ψ(un)|+ α′|un|p−1|ψ(un)|

+ β′|∇un|p−1|ψ(un)|+ a1(x)|ψ(un)|]dx.

From (2.15), we have

ρ

∫
{|un|>k−1}

|∇un|p|ψ(un)|dx

≤
∫
{|un|≥k−1}

|gn|dx+ c

∫
{k−1<|un|<k}

|F |p
′
dx+ α′

∫
{|un|>k−1}

|un|p−1|ψ(un)|dx

+ β′
∫
{|un|>k−1}

|∇un|p−1|ψ(un)|dx+
∫
{|un|>k−1}

a1(x)|ψ(un)|dx.

(2.16)
Since un → u in Lp(Ω), there exists v ∈ Lp(Ω) such that |un| ≤ |v|. Since |gn| ≤ |g̃|,
|g̃| ∈ L1(Ω) and |ψ(s)| ≤ 1, we have

ρ

∫
{|un|>k−1}

|∇un|p|ψ(un)|dx

≤
∫

Ω

[|g̃|+ c|F |p
′
+ α′|v|p−1 + a1(x)]χ{|v|≥k−1}dx+ β′

∫
{|v|>k−1}

|∇un|p−1dx

≤
∫

Ω

r(x)χ{|v|≥k−1}dx+ β′‖un‖p−1
1,p (

∫
Ω

χ{|v|≥k−1}dx)1/p,
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where r(x) = |g̃| + c|F |p′ + α′|v|p−1 + a1(x). We have r ∈ L1(Ω) and (un)n is
bounded in W 1,p

0 (Ω), so that

lim
k→+∞

[sup
n∈N

∫
{|un|>k−1}

|∇un|p|ψ(un)|dx] = 0.

Since ∫
{|un|≥k}

|∇un|pdx =
∫
{|un|≥k}

|∇un|p|ψ(un)|dx

≤
∫
{|un|>k−1}

|∇un|p|ψ(un)|dx,

it follows that
lim

k→+∞
[sup
n∈N

∫
{|un|≥k}

|∇un|pdx] = 0.

For the second limit, we let l : Ω× R× RN → R defined by

l(x, s, ξ) = f(x, s, ξ)− α|s|p−1 sgn(s)− β|ξ|p−2ξ −
(
|s|p−1 + |ξ|p−1 + a1(x)

)
sgn(s).

From (1.4), we get l(x, s, ξ)s ≤ −ρ|ξ|p|s| for almost every x ∈ Ω, and for all (ξ, s) ∈
RN × R.

By (2.15) and using that ψ(s) has the same sign as s and that it is zero if
|s| ≤ k − 1, we have

0 ≤
∫
{|un|≥ k−1}

|gn|dx

+ c

∫
{k−1<|un|<k}

|F |p
′
dx+

∫
Ω

l(x, un,∇un)ψ(un)dx

+
∫

Ω

[α′|un|p−1 + β′|∇un|p−1 + a1(x)]|ψ(un)|dx.

Since l(x, un,∇un)ψ(un) ≤ −|l(x, un,∇un)|χ{|un|≥ k}, we have∫
{|un|≥ k}

|l(x, un,∇un)|dx ≤
∫
{|un|≥ k−1}

|gn|dx+ c

∫
{k−1<|un|<k}

|F |p
′
dx

+
∫
{|un|≥ k−1}

α′|un|p−1|ψ(un)|dx

+
∫
{|un|≥ k−1}

β′|∇un|p−1|ψ(un)|dx

+
∫
{|un|≥ k−1}

a1(x)|ψ(un)|dx.

In the same way as in the first limit, we prove that

lim
k→+∞

[sup
n∈N

∫
{|un|≥k}

|l(x, un,∇un)|dx] = 0.

Also

|f(x, un,∇un)| ≤ |l(x, un,∇un)|+ α′|un|p−1 + β′|∇un|p−1 + a1(x),

lim
k→+∞

[sup
n∈N

∫
{|un|≥k}

|f(x, un,∇un)|dx] = 0.

�
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Lemma 2.8. The sequence (un)n converges strongly to u in W 1,p
0 (Ω).

Proof. We begin by proving that the sequence {|∇un|p} is equi-integrable in L1(Ω).
Let ε > 0 be fixed. Let now E be a measurable subset of Ω, we have∫

E

|∇un|pdx =
∫

E∩{|un|≤k}
|∇un|pdx+

∫
E∩{|un|>k}

|∇un|pdx.

By lemma 2.7 there exists k > 0 such that for all n ∈ N,∫
{|un|>k}

|∇un|pdx ≤
ε

2
.

For k fixed, we have∫
E∩{|un|≤k}

|∇un|pdx ≤
∫

E

|∇Tk(un)|pdx.

Since Tk(un) converges strongly to Tk(u) in W 1,p
0 (Ω), there exists γ > 0 such that

meas(E) < γ ⇒ ∀n ∈ N
∫

E

|∇Tk(un)|pdx ≤ ε

2
,

so that

∀n ∈ N
∫

E∩{|un|≤k}
|∇un|pdx ≤

ε

2
.

Then, there exists γ > 0 such that

meas(E) < γ ⇒ ∀n ∈ N
∫

E

|∇un|pdx ≤ ε.

Therefore, the sequence {|∇un|p} is equi-integrable in L1(Ω). By Lemma 2.6 we
have ∇un → ∇u for almost every x ∈ Ω, so, |∇un|p → |∇u|p strongly in L1(Ω),
thus the sequence (un)n converges strongly to u in W 1,p

0 (Ω). �

Lemma 2.9. The sequence (f(x, un,∇un))n converges to f(x, u,∇u) in L1(Ω).

Proof. We begin by proving that the sequence {|f(x, un,∇un)|} is equi-integrable
in L1(Ω). Let ε > 0 be fixed. Let now E be a measurable subset of Ω, we have∫

E

|f(x, un,∇un)|dx

=
∫

E∩{|un|≤k}
|f(x, un,∇un)|dx+

∫
E∩{|un|>k}

|f(x, un,∇un)|dx.

By Lemma 2.7, there exists k > 0 such that

∀n ∈ N,
∫

E∩{|un|>k}
|f(x, un,∇un)|dx ≤ ε

2
.

When k is fixed, by (1.3) we have∫
E∩{|un|≤k}

|f(x, un,∇un)|dx ≤
∫

E

[bk|∇Tk(un)|p + φk(x)]dx.

Since φk ∈ L1(Ω) and Tk(un) → Tk(u) strongly in W 1,p
0 (Ω), there exists γ > 0 such

that

meas(E) < γ ⇒ ∀n ∈ N
∫

E

[bk|∇Tk(un)|p + φk(x)]dx ≤ ε

2
,
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so that
∀n ∈ N

∫
E∩{|un|≤k}

|f(x, un,∇un)|dx ≤ ε

2
.

Therefore, the sequence {|f(x, un,∇un)|}n is equi-integrable in L1(Ω). Since f :
Ω×R×RN → R is a Carathéodory function, we have f(x, un,∇un) → f(x, u,∇u)
for almost every x ∈ Ω. so f(x, un,∇un) → f(x, u,∇u) strongly in L1(Ω). �

Going back to the the proof of Theorem 1.1, by (2.4) we have that for every
v ∈W 1,p

0 (Ω) ∩ L∞(Ω),∫
Ω

|∇un|p−2∇un∇v dx =
∫

Ω

f(x, un,∇un)v dx+
∫

Ω

gnv +
∫

Ω

F∇v.

As n approaches infinity, we get that for every v ∈W 1,p
0 (Ω) ∩ L∞(Ω),∫

Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u,∇u)v dx+
∫

Ω

gv +
∫

Ω

F∇v.

Thus the problem

−∆pu = f(x, u,∇u) + µ in Ω,
u = 0 on ∂Ω

admits a solution u ∈W 1,p
0 (Ω) in the sense that f(x, u,∇u) ∈ L1(Ω), and for every

v ∈W 1,p
0 (Ω) ∩ L∞(Ω),∫

Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u,∇u)v dx+
∫

Ω

v dµ.

�
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quasi-linéaires, Bollettino U.M.I. (8) 4-B (2001), 483-519.
[2] J. Berkovits, V. Mustonen; Nonlinear mapping of monotone type (classification and degree

theory), 1988, Math. Univer. Oulu, Linnanmaa, Oulu, Finland.

[3] L. Boccardo, T. Gallouet, L. Orsina; Existence and nonexistence of solutions for some non-
linear elliptic equations, J. Anal. Math. 75. (1997), 203-223.

[4] L. Boccardo, T. Gallouet, L. Orsina; Existence and uniqueness of entropy solutions for nonlin-
ear elliptic equations with measure data, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 5 (1996),
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