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A SHAPE-DERIVATIVE APPROACH TO SOME PDE MODEL IN
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Abstract. In this paper we analyze the shape derivative of a cost functional

appearing in image restoration. The main feature of this cost functional is the

appearance of a variable exponent.

1. Introduction

Shape derivative (or Hadamard derivative) has been proved to be a valuable
tool in order to study shape optimization problems. The main ideas go back to
Hadamard’s original paper [9] and has been further developed since. See for instance
the books [2, 10, 11].

In this article we are devoted to the analysis of shape derivative of certain func-
tionals arising in image restoration, whose main feature is that it involves a variable
exponent.

Let us begin by discussing the model where these functionals appear. The goal in
image restoration is to obtain an image which is modeled by a function u : Ω→ R,
where Ω = (0, 1)× (0, 1) ⊂ R2, given that one has a distorted image I : Ω→ R.

It is customary to assume that the introduced error, e = u− I, is small and the
objective is to recover u from I without making any further assumptions on the
error e. A classical PDE model introduced by Chambolle and Lions in [3] in 1997,
propose to obtain u as a minimizer of the functional

min
1

2β

(∫
{|∇v|≤β}

|∇v|2 dx+
∫
{|∇v|>β}

|∇v| dx
)

+
β

2

∫
Ω

(v − I)2 dx,

where β > 0 is a parameter that needs to be adjusted by the operator of the method
for each image. The idea behind this method is that the real image must be smooth
in regions where there are no boundaries (which are interpreted as regions where
the derivatives are not big) and, in the ones which contains boundaries, the solution
must admit discontinuities. This method can be re-written as follows

min
1

2β

∫
Ω

|∇v|p(|∇v|) dx+
β

2

∫
Ω

(v − I)2 dx,
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where the exponent p is defined as

p(t) =

{
2 if t ≤ β
1 if t > β.

This method is extremely difficult to study rigorously since the space where the
functional is defined is not a good functional space. That is why, in 2006, Chen,
Levine and Rao introduced in [4] a modification by which the exponent p is com-
puted from I but it is fixed. In this second model,

p(x) = 1 +
1

1 + k|∇Gσ ∗ I|2
,

where Gσ(x) = 1
σ exp(−|x|2/4σ2) is the Gaussian filter, with k, σ > 0 parameters.

Therefore, p ∼ 1 where I is discontinuous and p ∼ 2 where I is smooth.
Then, the problem to be minimized is

min
1

2β

∫
Ω

|∇v|p(x) dx+
β

2

∫
Ω

(v − I)2 dx.

By considering a fixed regular exponent, the authors can use the Sobolev and
Lebesgue spaces with variable exponent, thoroughly studied since the sixties. See
[6].

Here we consider a variant of these methods, that can be thought of being in
between these two, that approximates the one created by Chambolle and Lions
preserving the good functional properties given by the one presented by Chen,
Levine and Rao.

We start by dividing the region Ω into two sub regions D1 and D2 such that for
i = 1, 2,

Di ⊂ Ω is open, D̊i = Di, D1 ∩D2 = ∅, and Ω = D1 ∪D2. (1.1)

By this partition, we make sure that D1 contains the regions with boundaries
of the image and D2 its complement. One way of creating this partition is the
following:

D1 = {x ∈ Ω: |∇Gσ ∗ I| > β}, D2 = {x ∈ Ω: |∇Gσ ∗ I| < β}.

We define an exponent p : Ω→ R given by

p(x) =

{
1 + ε if x ∈ D1

2 if x ∈ D2.

Then we compute u by minimizing the functional

J(v) =
1

2β

∫
Ω

|∇v|p(x) dx+
β

2

∫
Ω

(v − I)2 dx.

To improve the image found, we then may apply an iterative steepest descent type
method by following the shape derivative of the functional. So the main objective
of this paper is to compute this shape derivative.

Let us recall that a related minimization problem was studied in [1]. In that
article it is shown that minimizers are Hölder-continuous across the interphase.
Hence we are left with the problem of computing the shape derivative of J(u) with
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respect to Di, which we describe now. Given V : RN → RN a Lipschitz deformation
field, the associated flow {Φt}t∈R is defined by

d

dt
Φt(x) = V (Φt(x)), t ∈ R, x ∈ RN ,

Φ0(x) = x x ∈ RN .
(1.2)

Let us observe that Φt : RN → RN is a group of diffeomorfisms. That is, Φt ◦Φs =
Φt+s and Φ−1

t = Φ−t.
We will assume that suppt(V ) ⊂ Ω, so that Φt(Ω) = Ω for every t ∈ R. Then,

the regions Di are deformed by Φt and we obtain a family of partitions Dt
i =

Φt(Di), i = 1, 2 that verify (1.1) and we define

pt(x) =

{
1 + ε if x ∈ Dt

1

2 if x ∈ Dt
2.

Observe that pt = p ◦ Φ−t.
Then, for each t ∈ R we define the functional

Jt(v) =
1

2β

∫
Ω

|∇v|pt(x) dx+
β

2

∫
Ω

(v − I)2 dx,

Let ut be the minimizer of Jt. We can consider the function j : R → R given by
j(t) = Jt(ut). The shape derivative consists then in computing j′(0).

Then, by finding a good expression for such derivative, it will be possible to
compute the deformations field V which makes it as negative as possible and so
choose the optimal deformation field to then iterate

D∆t
i ' (id+ ∆tV )(Di).

This article is organized as follows: In section 2 we collect the preliminaries con
variable exponent Lebesgue and Sobolev spaces that will be used in the article.
With the exception of Proposition 2.4 there is no new material so the expert reader
can safely skip this section and move on to the rest of the article. In section 3 we
prove one of the mail results of the paper, namely the differentiability of the cost
functional j(t) = Jt(ut) (Theorem 3.9). In section 4, we prove the second mail
result of the paper (Theorem 4.6), that is the improvement of the formula for the
derivative of the functional j′(0). Finally, we close this paper with an appendix on
some Γ-convergence results that are needed in some parts of our arguments.

2. Preliminaries

Because of the nature of our problem, which deals with piecewise constant expo-
nents, we are unable to assume any regularity on the variable exponent p. There-
fore, since most of the known results for variable exponent Sobolev spaces assume
that the exponent is at least log-Hölder continuous, we need to review the results
that are needed here and prove the missing parts in the case of piecewise constant
exponents.

2.1. Definitions and well-known results. Given Ω ⊂ RN a bounded open set,
we consider the class of exponents P(Ω) given by

P(Ω) := {p : Ω→ [1,∞) : p is measurable and bounded}.
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The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) := {f ∈ L1
loc(Ω): ρp(x)(f) <∞},

where the modular ρp(x) is

ρp(x)(f) :=
∫

Ω

|f |p(x) dx.

This space is endowed with the Luxemburg norm

‖f‖Lp(x)(Ω) = ‖f‖p(x),Ω = ‖f‖p(x) := inf{λ > 0: ρp(x)

(f
λ

)
< 1}.

The infimum and the supremum of the exponent p play an important role in
the estimates as the next elementary proposition shows. For further references, the
following notation will be imposed

1 ≤ p− := inf
Ω
p ≤ sup

Ω
p =: p+ <∞.

The proof of the following proposition can be found in [7, Theorem 1.3, p.p. 427].

Proposition 2.1. Let f ∈ Lp(x)(Ω), then

min
{
‖f‖p−p(x), ‖f‖

p+
p(x)

}
≤ ρp(x)(f) ≤ max

{
‖f‖p−p(x), ‖f‖

p+
p(x)

}
.

Remark 2.2. Proposition 2.1, is equivalent to

min
{
ρp(x)(f)

1
p− , ρp(x)(f)

1
p+
}
≤ ‖f‖p(x) ≤ max

{
ρp(x)(f)

1
p− , ρp(x)(f)

1
p+
}
.

We will use the following form of Hölder’s inequality for variable exponents.
The proof, which is an easy consequence of Young’s inequality, can be found in [6,
Lemma 3.2.20].

Proposition 2.3 (Hölder’s inequality). Assume p− > 1. Let u ∈ Lp(x)(Ω) and
v ∈ Lp′(x)(Ω), then ∫

Ω

|uv| dx ≤ 2‖u‖p(x)‖v‖p′(x),

where p′(x) is, as usual, the conjugate exponent, i.e. p′(x) := p(x)/(p(x)− 1).

The variable exponent Sobolev space W 1,p(x) is defined by

W 1,p(x)(Ω) :=
{
u ∈W 1,1

loc (Ω): u ∈ Lp(x)(Ω) and ∂iu ∈ Lp(x)(Ω) i = 1, . . . , N
}
,

where ∂iu stands for the i−th partial weak derivative of u.
This space posses a natural modular given by

ρ1,p(x)(u) :=
∫

Ω

|u|p(x) + |∇u|p(x) dx,

so u ∈W 1,p(x)(Ω) if and only if ρ1,p(x)(u) <∞.
The corresponding Luxemburg norm associated to this modular is

‖u‖W 1,p(x)(Ω) = ‖u‖1,p(x),Ω = ‖u‖1,p(x) := inf
{
λ > 0: ρ1,p(x)

(u
λ

)
< 1
}
.

Observe that this norm turns out to be equivalent to ‖u‖ := ‖u‖p(x) + ‖∇u‖p(x).
Now we state and prove a simple proposition that characterizes the Sobolev space
when the variable exponent is piecewise constant.
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Proposition 2.4. Let Ω ⊂ RN be an open of finite measure and let D1, D2 ⊂ Ω
be a partition verifying (1.1). Let 1 ≤ p1, p2 < ∞ and let p ∈ P(Ω) be such
that p = p1χD1 + p2χD2 . Then u ∈ W 1,p(x)(Ω) if and only if u ∈ W 1,p1(D1),
u ∈W 1,p2(D2) and u ∈W 1,min{p1,p2}(Ω).

Proof. Observe that (1.1) implies that |Ω \ (D1 ∪D2)| = 0. Then∫
Ω

|u|p(x) dx =
∫
D1

|u|p1 dx+
∫
D2

|u|p2 dx,∫
Ω

|∇u|p(x) dx =
∫
D1

|∇u|p1 dx+
∫
D2

|∇u|p2 dx.

Moreover, assuming that p1 < p2 by Hölder’s inequality, we have∫
Ω

|∇u|p1 dx =
∫
D1

|∇u|p1 dx+
∫
D2

|∇u|p1 dx

≤
∫
D1

|∇u|p1 dx+ |D2|
p2−p1
p2

(∫
D2

|∇u|p2 dx
)p1/p2

<∞.

Analogously, u ∈ Lp1(Ω).
For the converse, we just observe that since u ∈ W 1,min{p1,p2}(Ω), then ∇u is

defined in the whole of Ω. Then is easy to see that ∇u ∈ Lp(x)(Ω) by the same
arguments as before. �

3. Differentiability

Let V be a Lipschitz vector field with support in Ω and let {Φt}t∈R its associated
flux given by (1.2). Let us begin with the following observation.

Remark 3.1. By Taylor expansion, we have

Φt(x) = x+ V (x)t+ o(t)

and so we have the asymptotic formulas

DΦt(x) = Id+ tDV (x) + o(t) = Id+O(t),

JΦt(x) = 1 + tdiv V (x) + o(t) = 1 +O(t),

for all x ∈ RN , where JΦt is the Jacobian of Φt.

The following proposition, though elementary, will be useful in the sequel and
shows that any diffeomorphism Φ: RN → RN , induces a bounded linear isomor-
phism between Sobolev spaces.

Proposition 3.2. Let Φ: Ω1 → Ω2 be a diffeomorphism and p ∈ P(Ω1) be a
bounded exponent.

Then, Φ induces a bounded linear isomorphism

F : W 1,p(Ω1)→W 1,q(Ω2),

where q : Ω2 → [1,+∞) is given by q(x) := p(Φ−1(x)), by the expression

F(u) := u ◦ Φ−1.
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Proof. We first observe that F is clearly a linear isomorphism with inverse given
by

F−1 : W 1,q(Ω2)→W 1,p(Ω1), F−1(v) := v ◦ Φ.
Let us now show that it is also bounded. Let us consider λ > 0 and, for simplicity,
let us denote v = F(u). Then, by changing variable y = Φ−1(x),∫

Ω2

∣∣v(x)
λ

∣∣q(x)
dx =

∫
Ω2

∣∣u(Φ−1(x))
λ

∣∣p(Φ−1(x))
dx

=
∫

Ω1

∣∣u(y)
λ

∣∣p(y)
JΦ(y) dy

≤ ‖JΦ‖∞
∫

Ω1

∣∣u(y)
λ

∣∣p(y)
dy

Let us observe that, if C := ‖JΦ‖∞ ≤ 1, clearly we have

‖u‖p,Ω1 = inf
{
λ > 0:

∫
Ω1

∣∣u(y)
λ

∣∣p(y)
dy ≤ 1

}
≥ inf

{
λ > 0:

∫
Ω2

∣∣v(y)
λ

∣∣q(y)
dy ≤ 1

}
= ‖v‖q,Ω2

Let us now assume that C > 1. Then, since{
λ > 0:

∫
Ω1

∣∣C 1
p− u(y)
λ

∣∣p(y)
dy ≤ 1

}
⊂
{
λ > 0:

∫
Ω1

∣∣u(y)
λ

∣∣p(y)
dy ≤ 1

C

}
⊂
{
λ > 0:

∫
Ω2

∣∣v(x)
λ

∣∣q(x)
dx ≤ 1

}
,

taking the infimum, we conclude that

C
1
p− ‖u‖p,Ω1 = ‖C

1
p− u‖p,Ω1 ≥ inf

{
λ > 0:

∫
Ω1

∣∣u(y)
λ

∣∣p(y)
dy ≤ 1

C

}
≥ ‖v‖q,Ω2 = ‖F(u)‖q,Ω2 .

Analogously,∫
Ω2

∣∣∇v(x)
λ

∣∣q(x)
dx =

∫
Ω2

∣∣∇(u ◦ Φ−1)(x)
λ

∣∣q(x)
dx

=
∫

Ω2

∣∣∇u(Φ−1(x))DΦ−1(x)
λ

∣∣p(Φ−1(x))
dx

=
∫

Ω1

∣∣∇u(y)DΦ−1(Φ(y))
λ

∣∣p(y)
JΦ(y) dy

≤ max{1, ‖DΦ−1‖∞}p+‖JΦ‖∞
∫

Ω1

∣∣∇u(y)
λ

∣∣p(y)
dy.

Therefore, ‖∇F(u)‖q,Ω2 ≤ C‖∇u‖p,Ω1 , which completes the proof. �

Remark 3.3. In the previous proof, given A : Ω → RN×N , we considered the
norm ‖A‖∞ := supx∈Ω ‖A(x)‖ and, given B ∈ RN×N , we considered the norm
‖B‖ := supξ 6=0 |Bξ|/|ξ|.

Observe that, since suppt(V ) ⊂⊂ Ω, it follows that Φt(Ω) = Ω for every t ∈ R
and that if p = p1χD1 + p2χD2 then pt := p ◦ Φ−t = p1χDt1 + p2χDt2 , where
Dt
i = Φt(Di), i = 1, 2.
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Therefore, in view of Proposition 3.2, we have that

Ft : W 1,p(Ω)→W 1,pt(Ω), u 7→ u ◦ Φ−t

is a bounded linear isomorphism.
Let us consider the space Xt := W 1,pt(Ω) ∩ L2(Ω) equipped with the norm

‖ · ‖Xt := ‖ · ‖W 1,pt (Ω) + ‖ · ‖L2(Ω)

and the space X := W 1,p(Ω) ∩ L2(Ω) equipped with the norm

‖ · ‖X := ‖ · ‖W 1,p(Ω) + ‖ · ‖L2(Ω).

It is clear that Ft : X → Xt is still a bounded linear isomorphism.
Given f ∈ L2(Ω), we define the quantity

s̃(t) := inf
v∈Xt

∫
Ω

|∇v|pt
pt

dx+
∫

Ω

|v − f |2

2
dx

which is clearly equivalent to

s(t) := inf
v∈Xt

∫
Ω

|∇v|pt
pt

dx+
∫

Ω

|v|2

2
dx−

∫
Ω

vf dx. (3.1)

In fact, s̃(t) = s(t) + ‖f‖22.
Observe that, since Ft is an isomorphism, one actually has

s(t) = inf
u∈X

∫
Ω

|∇(u ◦ Φ−t)|pt
pt

dx+
∫

Ω

|u ◦ Φ−t|2

2
dx−

∫
Ω

(u ◦ Φ−t)f dx.

So, in view of our previous discussions, our primary goal is to find an expression
for ds

dt (0).

Remark 3.4. Let us observe that, by changing variables y = Φ−t(x),

s(t) = inf
u∈X

∫
Ω

|∇uDΦ−t ◦ Φt|p

p
JΦt dy +

∫
Ω

|u|2

2
JΦt dy −

∫
Ω

uf ◦ ΦtJΦt dy.

Let

Jtu :=
∫

Ω

|∇uDΦ−t ◦ Φt|p

p
JΦt dy +

∫
Ω

|u|2

2
JΦt dy −

∫
Ω

uf ◦ ΦtJΦt dy,

J u :=
∫

Ω

|∇u|p

p
dy +

∫
Ω

|u|2

2
dy −

∫
Ω

uf dy.

Lemma 3.5. There exists δ > 0 such that the functionals {Jt}|t|<δ are uniformly
coercive with respect to the weak topology of X. That is, for any λ ∈ R, there exists
a weakly compact set K ⊂ X such that

{Jt ≤ λ} ⊂ K, for every |t| < δ.

Proof. Take δ > 0 such that 1/2 ≤ JΦt ≤ 2. Therefore,

Jtu ≥
1
2

∫
Ω

|∇uDΦ−t ◦ Φt|p

p
dy +

1
2

∫
Ω

|u|2

2
dy − 2

∫
Ω

|f ||u| dy. (3.2)

By Young’s inequality with ε = 1/8,

2
∫

Ω

|f ||u| dy ≤ 1
8

∫
Ω

|u|2 dy + 8
∫

Ω

|f |2 dy. (3.3)
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As DΦ−t ⇒ Id uniformly on Ω, it follows that ‖DΦt‖∞ is bounded away from
zero and infinity for every |t| < δ, so∫

Ω

|∇uDΦ−t ◦ Φt|p

p
dy ≥ c

∫
Ω

|∇u|p dy. (3.4)

So, combining (3.2), (3.3) and (3.4), we obtain

Jtu ≥ c
∫

Ω

|∇u|p dy +
1
8

∫
Ω

|u|2 dy − 8‖f‖22.

By Proposition 2.2 we easily conclude that there exists a radius R = R(λ) such
that {Jt ≤ λ} ⊂ BX(0, R). Therefore, if we denote K := {‖u‖X < R}, satisfies our
requirements. This completes the proof. �

Lemma 3.6. There exists a unique extremal for s(t) and s(0).

Proof. The proof is an immediate consequence of the fact that both Jt and J are
strictly convex and sequentially weakly lower semicontinuous on W 1,p(Ω). �

Our first result shows that s(t) is continuous with respect to t at t = 0.

Theorem 3.7. With the previous notation,

lim
t→0+

s(t) = s(0). (3.5)

Moreover, if ut and u are the extremals associated to s(t) and s(0) respectively,
then ut ⇀ u weakly in W 1,p(Ω). Finally, if p∗ := pN

N−p > 2 then ut → u strongly in
W 1,p(Ω).

Remark 3.8. The hypothesis p∗ > 2 is needed in order to secure the compact
embedding W 1,p(Ω) ⊂ L2(Ω) for any dimension N . For the case N = 2, one has
p∗ > 2 for any p > 1 so no extra hypothesis is needed.

Proof of Theorem 3.7. Since, by Lemma 3.5, we know that the functionals Jt are
uniformly coercive, the proof of (3.5) will follow from Remark 5.2 if we show that
Jt ⇒ J uniformly on bounded sets of X. Observe that since the minimizers
are unique, we will then have that the whole sequence of minimizers is weakly
convergent.

Let us consider now B ⊂ X a bounded subset and u ∈ B. By Remark 3.1,

Jtu =
∫

Ω

|∇u(Id+O(t))|p

p
(1 +O(t)) dy +

∫
Ω

|u|2

2
(1 +O(t)) dy

−
∫

Ω

u(f ◦ Φt)(1 +O(t)) dy

= (1 +O(t))
{∫

Ω

|∇u(Id+O(t))|p

p
dy +

∫
Ω

|u|2

2
dy −

∫
Ω

u(f ◦ Φt) dy
}
.

Again by Remark 3.1, and by Taylor expansion formula, we obtain∫
Ω

|∇u(Id+O(t))|p

p
dy =

∫
Ω

|∇u|p

p
dy +O(t),

uniformly in B.
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Assume for a moment that f is a continuous function with compact support.
Then, since Φt → id uniformly as t → 0, we have that f ◦ Φt → f uniformly as
t→ 0 and therefore,

‖f ◦ Φt − f‖22 =
∫

Ω

|f ◦ Φt − f |2 dx ≤ ‖f ◦ Φt − f‖2∞|Ω| → 0, (t→ 0).

So we have that ‖f ◦Φt− f‖2 → 0, (t→ 0). Now, by a standard density argument,
it is easy to see that the same result holds for any f ∈ L2(Ω).

Then, by Hölder inequality and since u ∈ B, there is a constant C, independent
of u, such that ∣∣ ∫

Ω

u(f ◦ Φt − f)
∣∣ ≤ C‖f ◦ Φt − f‖2 → 0

as t→ 0+.
Assume now that p∗ > 2. It remains to see the strong convergence of ut to u in

W 1,p(Ω). Let us observe that to see the strong convergence it is enough to show
the convergence of the modulars (see [6]). Let us now recall that∫

Ω

|∇ut|p

p
dy +

∫
Ω

|ut|2

2
dy = s(t) +

∫
Ω

|∇ut|p

p
dy −

∫
Ω

|∇utDΦ−t ◦ Φt|p

p
JΦt dy

+
∫

Ω

|ut|2

2
(1− JΦt) dy +

∫
Ω

ut(f ◦ Φt)JΦt dy.

By Remark 3.1,∫
Ω

|∇utDΦ−t ◦ Φt|p

p
JΦt dy =

∫
Ω

|∇ut − t∇utDV + o(t)|p

p
(1 + tdiv V + o(t)) dy.

Using the Taylor expansion

|∇ut − t∇utDV + o(t)|p = |∇ut|p − pt|∇ut|p−2∇ut · ∇utDV + o(t),

we find that∫
Ω

|∇utDΦ−t ◦ Φt|p

p
JΦt dy

=
∫

Ω

|∇ut|p + t(|∇ut|p div V − p|∇ut|p−2∇ut · ∇utDV )
p

dy + o(t).

So we have ∫
Ω

|∇ut|p

p
dy −

∫
Ω

|∇utDΦ−t ◦ Φt|p

p
JΦt dy

= −
∫

Ω

t(|∇ut|p div V − p|∇ut|p−2∇ut · ∇utDV )
p

dy + o(t)

Now, for our fourth term, we only need to observe that |ut|
2

2 is bounded and
1− JΦt → 0 uniformly. Then, since s(t)→ s(0) and∫

Ω

ut(f ◦ Φt)JΦt dy →
∫

Ω

uf,

we can conclude that∫
Ω

|∇ut|p

p
dy +

∫
Ω

|ut|2

2
dy →

∫
Ω

|∇u|p

p
dy +

∫
Ω

|u|2

2
dy,

which completes the proof. �
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Now we prove the main result of the section, namely the differentiability of the
cost functional s(t). For this result we will need the function f to be of class C1.

Theorem 3.9. s(t) is differentiable at t = 0 and

ds

dt
(0) = R(u)−

∫
Ω

uf div V dy −
∫

Ω

u∇f · V dy,

where

R(u) :=
∫

Ω

|∇u|p

p
div V − |∇u|p−2∇u · ∇uDV + div V

|u|2

2
dy

and u is the extremal of s(0).

Proof. By Lemma 3.6, we can consider u the extremal of s(0). Then, by Remark
3.4,

s(t) = inf
X
Jt ≤ Jt(u)

=
∫

Ω

|∇uDΦ−t ◦ Φt|p

p
JΦt dy +

∫
Ω

|u|2

2
JΦt dy −

∫
Ω

uf ◦ ΦtJΦt dy.

Now, by Remark 3.1, as in the proof of Theorem 3.7 we find that∫
Ω

|∇uDΦ−t ◦ Φt|p

p
JΦt dy

=
∫

Ω

|∇u|p + t(|∇u|p div V − p|∇u|p−2∇u · ∇uDV )
p

dy + o(t).

On the other hand, again by Remark 3.1,∫
Ω

|u|2

2
JΦt dy =

∫
Ω

|u|2

2
(1 + tdiv V + o(t)) dy

=
∫

Ω

|u|2

2
dy + t

∫
Ω

div V
|u|2

2
dy + o(t).

Therefore, setting

R(u) :=
∫

Ω

|∇u|p

p
div V − |∇u|p−2∇u · ∇uDV + div V

|u|2

2
dy,

we conclude that

s(t) ≤
∫

Ω

|∇u|p

p
dy+

∫
Ω

|u|2

2
dy+ tR(u) + o(t)−

∫
Ω

u(f ◦Φt)(1 + tdiv V + o(t)) dy.

Recall that

s(0) =
∫

Ω

|∇u|p

p
dy +

∫
Ω

u2

2
dy −

∫
Ω

uf dy.

Therefore,

s(t)− s(0)
t

≤ R(u) +
o(t)
t
−
∫

Ω

u(f ◦ Φt) div V dy −
∫

Ω

u
(f ◦ Φt)− f

t
dy.

Taking the limit as t→ 0+, we obtain

lim sup
t→0+

s(t)− s(0)
t

≤ R(u)−
∫

Ω

uf div V dy −
∫

Ω

u∇f · V dy,

where we have used that Φ0 = id and Φ̇t = V ◦ Φt.
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Let us consider now {tn}n∈N such that tn → 0+ and

lim inf
t→0+

s(t)− s(0)
t

= lim
n→∞

s(tn)− s(0)
tn

.

Let un := utn ∈ Xtn be the extremal associated to s(tn). By Remark 3.4,

s(tn) =
∫

Ω

|∇unDΦ−tn ◦ Φtn |p

p
JΦtn dy +

∫
Ω

|un|2

2
JΦtn dy −

∫
Ω

utnf ◦ ΦtnJΦtn dy

Arguing as in the previous case, we have that

s(tn)− s(0)
tn

≥
∫

Ω

|∇un|p

p
div V − |∇un|p−2∇un · ∇unDV + div V

|un|2

2
dy

+
o(tn)
tn
−
∫

Ω

un(f ◦ Φtn) div V dy −
∫

Ω

un
(f ◦ Φtn)− f

tn
dy

=R(un) +
o(tn)
tn
−
∫

Ω

un(f ◦ Φtn) div V dy −
∫

Ω

un
(f ◦ Φtn)− f

tn
dy.

Since R(un)→ R(u) when n→∞ (just observe that R is continuous with respect
to the strong topology and un → u in W 1,p(Ω) by Theorem 3.7), we have

lim inf
t→0+

s(t)− s(0)
t

≥ R(u)−
∫

Ω

uf div V dy −
∫

Ω

u∇f · V dy.

So we conclude that s(t) is differentiable at t = 0 and

ds

dt
(0) = R(u)−

∫
Ω

uf div V dy −
∫

Ω

u∇f · V dy,

where u ∈ X is the extremal of s(0). This completes the proof. �

4. Improvement of the formula

Now we try to find a more explicit formula for s′(0). In the following study, we
will need the solution u to the equation

−∆p(x)u+ u = f in Ω,
u = 0 on ∂Ω,

(4.1)

to be C2
loc(D1) ∩ C2

loc(D2) in order for our computations to work. However, this is
not true since the optimal regularity is known to be C1,α

loc (D1)∩C1,α
loc (D2). See [12].

To overcome such difficulty, we will proceed as follows.

4.1. Domain regularization. Let us first define Di(t) := Φt(Di). Now given a
fixed δ > 0, we define the sets

Dδ
i := {x ∈ Di : dist(x,Dj) > δ}, i 6= j

and consider Dδ
i (t) := Φt(Dδ

i ). Now consider the sets

Γδi (t) := ∂Dδ
i (t) ∩ Ω.

Let us observe that, in each Dδ
i , the exponent p(x) = pi is constant so we can apply

the classic regularity results. See for instance [12].
Now we define the sets Aδ := Ω \ (Dδ

1 ∪Dδ
2) and observe that

∂Aδ ∩ Ω = Γδ1 ∪ Γδ2, Ω = Dδ
1 ∪Dδ

2 ∪Aδ.
See Figure 1.
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Figure 1. Partition of Ω

4.2. Operator regularization. Now, for ε ≥ 0, we consider the regularized prob-
lems

−div((|∇v|2 + ε2)
pi−2

2 ∇v) + v = f ε in Dδ
i (t),

v = 0 on ∂Ω ∩ (Dδ
1(t) ∪Dδ

2(t)),

v = u(0) ◦ Φ−1
t on Γδi (t),

(4.2)

with f ε ∈ C∞ such that f ε → f in Lp
′
.

Remark 4.1. Applying classical estimates (see for instance [8] it is possible to see
that the solution of (4.2) is C2,α

loc (Dδ
i )∩C1(Dδ

i ) if ε > 0, since u(0) is C1(Dδ
i ) and Φt

is the identity map in a neighborhood of ∂Ω. See also [12] for regularity estimates
in Sobolev spaces.

Let us define the following sets

Xδ
i := {v ∈W 1,pi(Dδ

i ) such that v = 0 in ∂Ω ∩Dδ
i and v = u in Γδi },

Xδ
i (t) :=

{
v ∈W 1,pi(Dδ

i (t)) such that v = 0 in ∂Ω ∩Dδ
i (t) and

v = u(0) ◦ Φ−1
t in Γδi (t)}.

Let us also consider the functionals J̃ ε,δt,i : Xδ
i (t)→ R defined by

J̃ ε,δt,i (v) :=
∫
Dδi (t)

(
|∇v|2 + ε2

) pi
2

pi
dy +

∫
Dδi (t)

|v|2

2
dy −

∫
Dδi (t)

vf ε dy.

Remark 4.2. Xδ
i (t) is strongly closed and convex, therefore it is weakly closed.

The solutions of (4.2) are the minimuma of the functionals J̃ ε,δt,i in Xδ
i (t).

Since the functional J̃ ε,δt,i is continuous for the strong topology, strictly convex
and coercive, it has a unique minimum in Xδ

i (t) and, therefore, (4.2) has a unique
weak solution. We will denote ũε,δi (t) as the function where the minimum is at-
tained.
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Remark 4.3. Observe that ψt : Xδ
i → Xδ

i (t) defined by v 7→ v ◦Φ−1
t is a biyection

between Xδ
i and Xδ

i (t) and the following equality holds

J ε,δt,i = J̃ ε,δt,i ◦ ψ
−1
t .

By a change of variables as in the previous section we obtain the functional
J ε,δt,i : Xδ

i → R given by

J ε,δt,i (v) :=
∫
Dδi

(
|∇vDΦ−t ◦ Φt|2 + ε2

) pi
2

pi
JΦt dy +

∫
Dδi

|v|2

2
JΦt dy

−
∫
Dδi

vf ε ◦ ΦtJΦt dy.

and define
sε,δi (t) = inf

v∈Xδi
J ε,δt,i (v) = inf

v∈Xδi (t)
J̃ ε,δt,i (v).

We will denote uε,δi (t) ∈ Xδ
i as the function where the minimum of J ε,δt,i is attained.

Observe that uε,δi (t)(x) = ũε,δi (t)(Φt(x)).
To make the notation lighter, we will focus on the needed parameter in each

step. First, ui, then uε and finally, uδ. Let us now define sε,δ := sε,δ1 + sε,δ2 .

Proposition 4.4. If 2 < p∗i , then uε,δi (0) converges to u0,δ
i (0)(= uδi ) strongly in

W 1,pi(Dδ
i ) and sε,δi (0) converges to s0,δ

i (0)(= sδi (0)) when ε→ 0.

Proof. Let us begin by observing that

J ε,δ0,i (v) :=
∫
Dδi

(
|∇v|2 + ε2

) pi
2

pi
dy +

∫
Dδi

|v|2

2
dy −

∫
Dδi

vf ε dy.

Now let us denote

J δi (v) :=
∫
Dδi

|∇v|2

pi
dy +

∫
Dδi

|v|2

2
dy −

∫
Dδi

vf dy.

Observe that J ε,δ0,i , J δi (v) : Xδ
i → R. By Theorem 5.1, it is enough to prove that

J ε,δ0,i Γ- converges to J δi in W 1,pi(Dδ
i ) for the weak topology.

First, let vε ⇀ v weakly in W 1,pi(Dδ
i ). Let us observe that v ∈ Xδ

i since Xδ
i is

weakly closed.
Observe that the first and second terms in J δi are convex and strongly con-

tinuous, therefore weakly lower semicontinuous. And the third term is linear and
continuous, therefore weakly continuous. Therefore,

J δi (v) ≤ limJ δi (vε) ≤ lim inf J ε,δ0,i (vε) +
∫
Dδi

vε(f − f ε).

Applying Hölder’s inequality for the last term above, we have∫
Dδi

vε(f − f ε) ≤ ||vε||pi ||f − f ε||p′i .

Since ||vε||pi is bounded (because of the weak convergence) and f ε → f in Lp
′
i ,

the last term goes to 0. Now, taking {vε} = v as recovery sequence, we have that
J ε,δ0,i (v)→ J ε,δ(v), which completes the proof. �
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Performing analogous computations as in the previous section, we can see that
sε,δi (t) is differentiable at t = 0 and

dsε,δi (0)
dt

= Rε,δi (uε,δi )−
∫
Dδi

uε,δi f div V dy −
∫
Dδi

uε,δi ∇f
ε · V dy

where

Rε,δi (v) :=
∫
Dδi

(|∇v|2 + ε2)
pi
2

pi
div V − (|∇v|2 + ε2)

pi
2 −1∇v · ∇vDV + div V

|v|2

2
dy.

Since the expression of dsε,δi (0)

dt given above only involves first derivatives, we can
conclude the following result from Corollary 4.4.

Proposition 4.5. dsε,δi (0)

dt converges to ds0,δi (0)

dt when ε→ 0.

Observe that, by Propositions 4.4 and 4.5, if we find an expression for the shape
derivative of the regularized operator, we will have found one for the original oper-
ator.

4.3. Improvement of the formula for the regularized operator. Our main
concern in this part of our work will be to find a formula for the shape derivative
that does not involve second order derivatives. Therefore, we will be able to pass
to the limit when ε goes to 0. And so, by Proposition 4.5, we will have found an
expression for the shape derivative of the original operator.

We start with some preliminaries computations in which we will see the need to
have C2 regularity for our solutions. Since

div((|∇uε|2 + ε2)
pi
2 · V )

=
pi
2

(|∇uε|2 + ε2)
pi
2 −1D(|∇uε|2 + ε2) · V + (|∇uε|2 + ε2)

pi
2 div V

= pi(|∇uε|2 + ε2)
pi
2 −1∇uεD2uε · V + (|∇uε|2 + ε2)

pi
2 div V,

we have that
1
pi

∫
Dδi

(|∇uε|2 + ε2)
pi
2 div V

=
1
pi

∫
Dδi

div((|∇uε|2 + ε2)
pi
2 V )−

∫
Dδi

(|∇uε|2 + ε2)
pi
2 −1∇uεD2uε · V

Therefore,

dsε,δi
dt

(0) =
1
pi

∫
Dδi

div((|∇uε|2 + ε2)
pi
2 V )−

∫
Dδi

(|∇uε|2 + ε2)
pi
2 −1∇uεD2uε · V

−
∫
Dδi

(|∇uε|2 + ε2)
pi
2 −1∇uε · ∇uεDV dy +

1
2

∫
Dδi

div(|uε|2V ) dy

−
∫
Dδi

uε∇uε · V dy −
∫
Dδi

uεf ε div V dy −
∫
Dδi

uε∇f ε · V dy.

Let us call νδi the exterior unit normal vector to ∂Dδ
i and observe that, since

supptV ⊂⊂ Ω, ∫
Dδi

div(|uε|2V ) dy =
∫

Γδi

|uε|2V · νδi dS.



EJDE-2018/146 SHAPE DERIVATIVE 15

Since uε is a weak solution of our equation, for every test function ϕ we have∫
Dδi

(|∇uε|2 + ε2)
pi−2

2 ∇uε∇ϕ+
∫
Dδi

uεϕ

=
∫
Dδi

f εϕ.

Let us consider ϕ = ∇uε · V as a test function. Since ∇(∇uε · V ) = D2uε · V t +
∇uεDV , we obtain∫

Dδi

(|∇uε|2 + ε2)
pi−2

2 ∇uε(D2uε · V t +∇uεDV )

=
∫

Γδi

(|∇uε|2 + ε2)
pi−2

2 ∇uε · η∇uε · V +
∫
Dδi

(f ε − uε)∇uε · V.

Since V has compact support in Ω, we arrive at∫
∂Dδi

(|∇uε|2 + ε2)
pi−2

2 ∇uε · η∇uε · V =
∫

Γδi

(|∇uε|2 + ε2)
pi−2

2 ∇uε · νδi∇uε · V.

Therefore, taking into account that ∇uεD2uε · V = ∇uε ·D2uεV T , we have

dsε,δi
dt

(0) =
1
pi

∫
Γδi

(
|∇uε|2 + ε2

) pi
2
V νδi −

∫
Γδi

(
|∇uε|2 + ε2

) pi
2 −1

∇uενδi∇uεV

+
1
2

∫
Γδi

|uε|2V νδi −
∫
Dδi

(
f ε∇uε · V + uεf ε div V + uε∇f ε · V︸ ︷︷ ︸

div(uεfεV )

)
dy.

Again since V has compact support in Ω, we have∫
Dδi

div(uεf εV ) dy =
∫
∂Dδi

uεf εV · νδi dS =
∫

Γδi

uεf εV · νδi dS.

Observe that we arrive at an expression for the shape derivative that does not
involve second order derivatives of uε:

dsε,δi
dt

(0) =
1
pi

∫
Γδi

(
|∇uε|2 + ε2

) pi
2
V νδi −

∫
Γδi

(
|∇uε|2 + ε2

) pi
2 −1

∇uενδi∇uεV

+
1
2

∫
Γδi

|uε|2V νδi −
∫

Γδi

uεf εV · νδi dS.

4.4. Back to the original operator: the limit when ε approaches 0. Now
we able to apply Tolksdorf’s regularity estimates (see [12]). These estimates give
us uniform bounds for ||uε||C1,α so we have uε → u in C1. And so we can pass to
the limit when ε goes to 0. Therefore,

ds0,δ
i

dt
(0) =

1
pi

∫
Γδi

|∇u|piV νδi −
∫

Γδi

|∇u|pi−2∇uνδi∇uV +
1
2

∫
Γδi

|u|2V νδi

−
∫

Γδi

ufV · νδi dS.

In conclusion we arrive at

ds0,δ

dt
(0) =

ds0,δ
1

dt
(0) +

ds0,δ
2

dt
(0)
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=
1
p1

∫
Γδ1

|∇u|p1V νδ1 +
1
p2

∫
Γδ2

|∇u|p2V νδ2 −
∫

Γδ1

|∇u|p1−2∇uνδ1∇uV

−
∫

Γδ2

|∇u|p2−2∇uνδ2∇uV +
1
2

∫
Γδ1

|u|2V νδ1 −
∫

Γδ1

ufV · νδ1 dS

+
1
2

∫
Γδ2

|u|2V νδ2 −
∫

Γδ2

ufV · νδ2 dS.

Let us now observe that νδ1 → ν1 and νδ2 → ν2 = −ν1 when δ → 0. Therefore,
taking limit when δ → 0, the last four terms in the expression above vanish and so
we have proved the following.

Theorem 4.6. Let Ω ⊂ RN be open and bounded. Let D1, D2 ⊂ Ω be such that
(1.1) is satisfied, let p = p1χD1 + p2χD2 , where 1 < p1 < p2 and Γ = D̄1 ∩ D̄2. Let
V : RN → RN be a Lipschitz deformation field, such that suppt(V ) ⊂⊂ Ω and let
s(t) be defined by (3.1). Then, the following formula for the derivative s′(0) holds:

ds

dt
(0) =

∫
Γ

[ |∇u|p
p

]
V · ν dS −

∫
Γ

[|∇u|p−2](∇u · ν)(∇u · V ) dS,

where ∫
Γ

[f ]G · ν dS := lim
δ→0

(∫
Γδ1

fG · ν1 dS −
∫

Γδ2

fG · ν2 dS
)
.

5. Appendix: Gamma convergence results

In this appendix we recall some basic concepts of Γ−convergence that are needed
in the present paper. Although these results are well-known, we decide to include
this appendix in order to make the paper self contained. Also, the results presented
here are not stated in the most general form, but in a for that will be enough for
our work. For a complete presentation of the theory of Γ-convergence, see the book
of Dal Maso [5].

Let ψn and ψ defined in a topological space Xτ with T 2 topology. For our
applications, Xτ will be a Banach space and we will consider the weak topology.
Then, a family of functionals ψn Γ-converges to ψ if

• (liminf inequality) xn →τ x implies that ψ(x) ≤ lim inf ψn(xn) and
• (limsup inequality) there exists yn ⇀ x such that ψ(x) ≥ lim supψn(yn).

Theorem 5.1. Let X be a Banach space, and C ⊂ X be closed and convex. Let
ψn, ψ : C → [−∞,∞] be weakly lower semicontinuous, strictly convex and uniformly
coercive functionals (i.e. for every λ, the set {x ∈ C : ψn(x) ≤ λ} ⊂ Br for every
n) such that ψn Γ-converges to ψ. Then infC ψn = minC ψn → infC ψ = minC ψ.

Moreover, if xn ∈ C is such that ψn(xn) = minC ψn, then {xn}n∈N is precompact
and ψ(x0) = minC ψ where x0 is any accumulation point of the sequence {xn}n∈N.

Proof. Let us start by observing that, since ψn weakly lower semicontinuous, strictly
convex and uniformly coercive functionals, for every n there is a unique xn such
that ψn(xn) = infC ψn and (xn) is bounded if ψn(xn) is bounded. Let us consider
now the following recovery function: x ∈ C such that yn ⇀ x. Therefore,

ψn(xn) = inf
C
ψn ≤ ψn(yn).

So for every x we have

lim supψn(xn) ≤ lim supψn(yn) ≤ ψ(x).
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Therefore,
lim supψn(xn) ≤ inf

C
ψ <∞

and we can conclude that xn ∈ {x ∈ C : ψn(x) ≤ λ} ⊂ Br for every n ≥ n0 taking
λ = infC ψ+1. So (xn) is bounded and, via subsequences if necessary, xn ⇀ x0 ∈ C
(remember that C is convex and closed, therefore weakly closed)).

Finally, observing that

inf
C
ψ ≤ ψ(x0) ≤ lim inf ψn(xn) ≤ lim inf(inf

C
ψn),

the proof is complete. �

Remark 5.2. If ψn → ψ point-wise, the inequality of the inferior limit always
holds (it is enough to take yn equal to x for every n). Therefore, to obtain the
convergence of the functionals it would only be necessary to check the superior
limit inequality.
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