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ABSTRACT

SUB-PIXEL REMOTE SENSING FOR MAPPING AND

MODELLING INVASIVE TAMARIX: A CASE

STUDY IN WEST TEXAS, 1993-2005

by

José L. Silván-Cárdenas, Ph.D.

Texas State University-San Marcos
May 2009

SUPERVISING PROFESOR: F. Benjamin Zhan

A number of economical and environmental issues involved with invasive species

worldwide is demanding the analysis of large-scale observations made through

remote sensing. The saltcedar invasion in the Western US represents a high

priority case where some remote sensing observations can play an important role in

both controlling and researching the invasion process. Unfortunately, the analysis

of these complex datasets still offers a number of challenges that hinders their

widespread adoption. For example, recent studies in remote sensing of vegetation

xv



have proposed a simple parameterization of the light-canopy interaction that

would allow more accurate estimations of the relative abundance of plant species.

These non-linear mixture models are, however, difficult to invert and their

application for large-scale studies is still to be assessed. Furthermore, the accuracy

assessment of this new level of information represents a bottleneck for furthering

the data analysis. This dissertation reviews and tests a number of existing and

custom-developed methods for studying the saltcedar invasion along the Rio

Grande in West Texas. These techniques include cross-comparison matrices for

assessing the accuracy of sub-pixel land cover classifications (Chapter 2), methods

for retrieving the sub-pixel canopy coverage of saltcedar and associated native

species (Chapter 3), a post-classification change detection method based on

sub-pixel maps (Chapter 4) and a metapopulation model for linking remote sensing

land cover change to population dynamics (Chapter 5). It is shown how moderate

resolution observations from Landsat satellite coupled with sub-pixel techniques

can provide a cost-effective means to support control efforts by providing

continuous monitoring of its distribution, as well as a way to study its invasion by

providing information on location, abundance, and rate of change, which are

particularly useful for a factorial analysis and for the assessment of its impacts on

the water availability. A spatially explicit metapopulation model is introduced as a

means to enable remote sensing to access population parameters along the riparian

corridor and as hypothesis-testing framework for general invasion processes. The

analysis of multitemporal Landsat images allowed to assess the status of invasion

long a segment of the Rio Grande river, from Candelaria, Texas to Presidio, Texas.

xvi



The observations support prior in-situ observations on saltcedar dynamics and its

competitive superiority over the native species. Although not extensively tested,

the metapopulation model has led to the identification of conditions for

invasiveness under competition and could be potentially useful to explain

distribution patterns observed through remote sensing.

xvii



Chapter 1

INTRODUCTION

1.1 Problem overview

Around 20% percent of species in any given country are estimated to be

non-native, which represents a significant component of global change and a major

cause of species extinction (Alpert et al., 2000; Drake et al., 1989; Vitousek et al.,

1996). A general consensus is that the negative ecological and economical

implications of most non-native invasive species surpass their beneficial use by

humans. Among other things, newly introduced species may act as vectors of

disease, drive native species to extinction, reduce biodiversity and alter ecosystems

by depleting resources. They also imply tremendous costs from direct loss of

affected crops, rangelands and commercial forrests, as well as from expenses

associated with controlling the invasion. In the United States the overall economic

loss due to the presence of invasive species is estimated over $137 billion per year,

greater than all other natural disasters combined (National Invasive Species

Council, 2001).

Indeed, most riparian systems in the Western US have undergone extensive

changes in flow regimes over the past 100 years, due primarily to human impacts

resulting from water storage and diversion projects. Human-induced flow regimes

have created conditions unfavorable to most native species that are adapted to

1



2

predictable spring flooding caused by snowmelt (Howe and Knopf, 1991). This has

resulted in the explosive colonization of riparian habitats by a number of exotic

species. One of the greatest invasive threats to western riparian systems is from

saltcedar (Tamarix spp.), an exotic shrub native to Eurasia that has been subject

to many control and environmental restoration efforts since the 1960s (Shafroth

et al., 2005). The Rio Grande (or Rio Bravo del Norte in Mexico) has not been the

exception to saltcedar invasion (Busch and Smith, 1995; Everitt, 1998; Howe and

Knopf, 1991). As a matter of fact, the Rio Grande was recently identified as the

most vulnerable site to saltcedar in the nation (Morisette et al., 2006), where the

most recurrent issue linked to saltcedar invasion is a decrease in water quantity

and quality due to its higher water consumption rates (Brotherson and Field,

1987; Cleverly et al., 2002; Di Tomaso, 1998; Everitt, 1998; Smith et al., 1998).

The efficient control of invasive species demands early discovery and

continuous monitoring of their spread (Lass et al., 2005). However, performing

frequent and detailed assessment of species distribution in order to conduct

scientifically sound environmental management can be prohibitively expensive by

direct means (Hunt et al., 2003; Turner et al., 2003). Therefore, remote sensing,

coupled with other geospatial technologies, provides a practical means for

collecting information on species abundance and distribution, which represents a

departure point for analyzing the factors that affect their spread and assessing

their impacts on native ecosystems (Joshi et al., 2004). This approach, among

other things, increases accessibility to remote and dangerous places, increases area

coverage, allows consistency in repetitive observations, improves spatial resolution
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and geometric fidelity, and provides continuous monitoring capability.

1.2 Context and related works

1.2.1 A review on saltcedar invasion

Eight species of the genus Tamarix, family Tamaricaceae, were introduced

into the US since early 1800’s from Eurasia. These species were originally used as

agent of erosion prevention of river banks, as wind shields and for ornamentation

(Baum, 1967). According to herbarium collections, saltcedar escaped cultivation

by the 1870’s, but its spread was slow and almost unnoticed until the 1920’s when

its proliferation and associated problems were more evident (Brotherson and Field,

1987). To date, saltcedar extent is estimated to exceed 600,000 ha (1.5 million

acres) only in the Southwestern US, but its range has continued to expand

northward into Montana and Canada (Pearce and Smith, 2003), and southward

into northwestern Mexico, reaching elevations as high as 2,135 m (Di Tomaso,

1998). Of the eight introduced species, three are more weedy and more widely

distributed across north America (T. parviflora DC., T. ramosissima Ledeb, T.

chinensis Lour1), but all invasive forms have similar ecological relationships

(Di Tomaso, 1998). T. chinensis which is native to China, Mongolia, and Japan,

and T. ramosissima, which is widespread from eastern Turkey to Korea (Baum,

1967), are the most difficult to distinguish from each other and are more widely

distributed in the Southwestern US. Interestingly, the most common saltcedar

plant in the US invasion is a hybrid combination of these two species, which are

1These three species together with the hybrids are collectively referred to as saltcedar throughout
this dissertation. Other common names found in the literature are salt cedar, tamarisk and tamarix.
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geographically isolated in their native Eurasian range (Gaskin and Schaal, 2002).

The impacts of saltcedar on native ecosystems are well documented

(Brotherson and Field, 1987; Busch and Smith, 1995; Di Tomaso, 1998; Smith

et al., 1998). Saltcedar grows faster than the native plants, including cottonwood

(Populus spp.), willow (Salix spp.) and mesquite (Prosopis spp.), and can quickly

form dense stands, out-competing native plants for sunlight, moisture, and

nutrients. The plant brings salts to the surface by excreting it through the leaves

and dropping into the soil surface below the canopy. Only xeric species (plants

requiring little water) or halophytes (salt-tolerant species) can tolerate the

understory environment of saltcedar thus excluding most native species

(Brotherson and Field, 1987). Furthermore, leave-drop increases combustible

materials at the plant base. Over the years, this material builds-up and dries

creating a surface that fuels allowing wildfire to move between contiguous

saltcedar plants even when there is no wind to move the fire. Fire kills all above

the ground, but root reserves quickly output dense shoots and growth (Stenquist,

2000). The hydrological implications of saltcedar invasion are perhaps the most

worrying. The invasion of floodplain or river bank usually leads to depletion of

stream/river flow, lower water table, increase the area inundated by floods due to

clogging of stream channels, and increase sediment production leading to poor

water quality (Di Tomaso, 1998; Smith et al., 1998). It also endangers fish by

changing stream morphology and diminishes human enjoyment of and interaction

with the river environment (Tamarisk Coalition, 2003). As saltcedar moves into

adjacent upland habitats, it consumes even more water as it replaces the native
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grass/sage/rabbit brush plant communities which are low water consumers.

Although estimates on water consumption by saltcedar and associated species vary

greatly depending on location, maturity, density, and depth to groundwater, a

reasonable estimation indicates an over-consumption of saltcedar over 1 foot per

year for riparian areas and 4 feet per year for upland areas (Tamarisk Coalition,

2003). Nonetheless, as the water table declines, its deep root system (of up to 100

feet) enables it to survive where some native species cannot.

The negative effects of saltcedar on native ecosystems are not compensated

with its ecological value. The wildlife species diversity tied to saltcedar is

remarkably low compared to that of native riparian vegetation. Wildlife habitat of

saltcedar is limited to screening cover for mammals, nesting sites for some birds,

including the endangered southwestern willow flycatcher, and pollen source for

bees (Stenquist, 2000).

1.2.2 A review on remote sensing of saltcedar

One of the first approximations for species occurrence has been land cover

analysis, along which remote sensing research has flourished since its early years.

Other indirect approaches that provide the potential to infer species composition

are based on remote sensing of primary productivity, climate, and habitat

structure (Turner et al., 2003). As technology and methods become more

sophisticated, the capability for direct detection down to the individual level

improves. A promising approach to detect vegetation down to species level is the

remote sensing of phenological change, including fruiting/flowering events and
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early/late onset greenness or senescence (Turner et al., 2003). In particular,

saltcedar has been identified using the unique orange-brown color prior to leaf

drop which contrasts with the greenish and darker tones of associated native

species (Everitt, 1996; Everitt and DeLoach, 1990; Everitt et al., 1992). Although

the improved quality, lower costs, and increasing availability of remote sensing

data, which also concur with the development of more accessible geographic

information systems (GIS), are providing historic opportunity for advancing

applications in mapping and modelling distribution of invasive species, the

progress has been slow, perhaps due to the lack of an integrative approach (Joshi

et al., 2004). To date, remote sensing has been successfully applied for direct

detection of canopy-dominant plant species, but limitations still exist when it

comes to detecting understory plants or animal species (Joshi et al., 2004). In

these cases, however, educated guesses made through indirect approaches and

supported with field observations can be equally valuable (Turner et al., 2003).

Early work on remote sensing of saltcedar was based on aerial photography.

Aerial photographs have been useful to detect a number of weeds having unique

growth patterns different from surrounding vegetation, such as saltcedar (Everitt,

1996; Lass et al., 2005). Unfortunately, the high-cost of color infrared film and

processing, variable interpretation, and the requirement for manual scanning or

digitizing to use in a GIS prevented their extensive use for weed detection in

rangelands and pastures (Lass et al., 2005). Carruthers et al. (2006) assessed the

spectral separability of scanned aerial photographs and found limitations in

separating saltcedar from surrounding habitats along Cache Creek, in California.
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However, they showed that separability can be improved when texture information

is also used for automatic interpretation (Carruthers et al., 2006). Digital camera

photography and videography were introduced as inexpensive, easily available and

flexible alternatives to standard photography. Everitt et al. (1992) introduced

videography to detect weedy species, including saltcedar, along the Rio Grande

near Yuma, Arizona, and Presidio, Texas. Assessment of computer classifications

of digitized conventional color video images showed higher false detections than

omissions (overestimation error was around 6.2% of the total area mapped) and

identified the reddish soils and some dry vegetation as major sources of confusion

(Everitt et al., 1992). Later on, the integration of GPS technology with

videography allowed researchers to geo-reference video frames for producing

regional maps of saltcedar infestations along the Colorado River in southwestern

Arizona and the Rio Grande in West Texas (Everitt, 1996). Unfortunately, the

coarse spectral resolution of these sensors (with typically 1 to 4 wide bands) tends

to limit its application for species identification.

With the advent of hyperspectral sensors, which can measure from a few

dozen to several hundreds of narrow bands of the electromagnetic spectrum, came

the potential to identify unique spectral signatures of invasive plants relative to

background of native species. However, the methods for processing these type of

data are still ad hoc and generally more complex. High spatial resolution

hyperspectral sensors have been recently assessed for mapping saltcedar in riparian

habitats of Southern California (Hamada et al., 2007) and have been found

effective for saltcedar bio-control assessment (Carruthers et al., 2006). Although
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overall accuracies as high as 95% have been reported for classification from

hyperspectral sensors, results have also indicated that the price of higher

accuracies includes larger false detections and higher processing times (Hamada

et al., 2007). Therefore, the application of this approach in monitoring large

geographical regions is still unfeasible due primarily to the high volume of data

and the lack of efficient methods for accurate detection.

Alternatives to airborne sensors are space-borne sensors mounted on

satellites orbiting the Earth. Examples of satellites include the Landsat and SPOT

series. These type of remote sensing systems have the advantages of covering

larger spatial extents and providing continuous monitoring capability while

maintaining spatial and temporal consistency. Nevertheless, their relatively coarse

resolution had limited their application to the detection of relatively large stands

of weeds (Hunt et al., 2003). High-spatial resolution space-borne sensors are also

available from commercial satellites such as IKONOS and Quickbird. IKONOS

records four visible or near-infrared (NIR) channels of data at 4-m resolution and

one panchromatic channel with 1-m resolution over an 11-km swath. Quickbird

records one 61-cm panchromatic and four 2.44-m VNIR channel images over a

16.5-km swath. Data from both IKONOS and Quickbird sensors have been used

for detecting individual species and capturing plant phenological state (Turner

et al., 2003). National Aerospace Administration (NASA)’s EO-1 satellite is

carrying the Advanced Land Imager (ALI) and Hyperion instruments. The ALI

sensor provides 10 bands including a panchromatic with 10-m spatial resolution

and a thermal band with 30-m spatial resolution. The Hyperion instrument is a
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grating imaging spectrometer that possesses a 30 meter ground sample distance

over a 7.7-km swath. It provides 10-nm contiguous bands (up to 220 spectral

bands) of the solar reflected spectrum from 400 nm to 2500 nm. The effectiveness

of these sensors in detecting saltcedar is still to be seen.

With so many sensors already operating and many others under

development, there is an increasing need for more effective, ready-to-use techniques

that can aid to embrace the new technologies for invasive species management and

research.

1.2.3 Status of the study site

The Rio Grande, with its 3034 km (1885 miles) length, is the third longest

river system in the United States and one of the American Heritage Rivers since

1997. Its headwaters are situated in the southern Colorado Rockies surrounding

the San Juan Valley. From El Paso, Texas, to the Gulf of Mexico, the river forms

the international boundary between the US and Mexico since 1848. The twin cities

of El Paso-Juarez, with their more than 1.5 million inhabitants, represent the

largest site where the river is heavily used. With no tributary to replace the water

withdrawn for irrigation, the river frequently dries up by the time it reaches Fort

Quitman, Texas. The major tributary, the Rio Conchos, enters at Ojinaga,

Chihuaha, below Presidio, Texas, and supplies most of the water in the

Texas-Mexico border segment. The 320-kilometer (200-mile) stretch of the river

that flows from Fort Quitman, below El Paso-Juarez, to its confluence with the

Rio Conchos at Presidio-Ojinaga has been called the “Forgotten River” due to the
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little research performed in it and the absence of important cities along its way

(Harris, 1999). In this site, the river channel has been taken over by dense thickets

of saltcedar, and the native cottonwood (Populus spp.), that once dominated the

area, is completely absent.

The present state of the Forgotten River reach may be attributed to 125

years of water development, which resulted in over appropriation of this resource

and a consequent transformation of the river’s hydraulic and ecological capacities.

In 1915, Elephant Butte reservoir was built upstream of El Paso/Juarez area,

causing most of the sediment load to drop into the dam. The construction of the

dam was not the only factor that impacted the river flow. In 1926 saltcedar trees

were deliberately brought in to the middle Rio Grande as a soil conservation

experiment (Everitt, 1998). In 1942 two successive flood events caused Elephant

Butte to spill. This dramatically increased the presence of saltcedar in the area,

and dug a deeper channel decreasing the average channel width from 30 meters to

10 meters (Everitt, 1998; Harris, 1999). After this flood event, in 1951-1958, an

extended drought existed that caused zero flows for 10 consecutive months. This

extreme drought killed most of the native vegetation and provided a growth

advantage to the invasive saltcedar, which is able to get water by extending its

root system to reach falling water tables (Di Tomaso, 1998).

Reeling from a decade of severe drought and over-use, the river failed to

reach the Gulf of Mexico for the first time in recorded history in the summer of

2001. The event repeated in the summer of 2002. As of 2008, when this

dissertation is written, the river reaches the Gulf of Mexico once again. However,
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the full irrigation utilization, increased riparian evapotranspiration, and long

lasting droughts have led ecologists to fear an imminent extinction of the river

were no strict water conservation measures adopted.

1.3 Study objectives and research questions

The recent advancements in sub-pixel mapping techniques have increased

potential for moderate spatial resolution sensors for weed detection. However, the

adoption of these techniques in management operations is still hindered by the

lack of standardized procedures for accuracy assessment, change detection

analysis, and modelling. It is along these research lines that the main contribution

of this dissertation fits.

Specifically, this dissertation aims at providing answers to the following

research questions: How can saltcedar mapping be improved using recent

developments on spectral mixture analysis and multiple scattering concepts? How

can the accuracy of these representations be assessed in a way that is consistent

with the standardized confusion matrix of crisp classifications? How can these

representations be useful to study invasion dynamics, support control efforts, and

contribute to conservation of native ecosystems? Can moderate resolution

observations confirm known trends in saltcedar occurrence, dynamics and impacts?

What are the most important environmental factors that may be driving saltcedar

dynamics? How can this new level of information and knowledge in analysis and

modelling may help to advance theoretical concepts related to invasive species?

The general research objective of this dissertation is to develop and test
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new remote sensing methods that may assist in facing saltcedar invasion along the

Rio Grande. However, in order to look for appropriate answers to main research

question posed above, this dissertation has the following specific objectives:

1. Review the existing methods for sub-pixel accuracy assessment, identify

limitations and needs, and develop theoretical grounds for a more general

framework.

2. Assess existing and newly developed methods for sub-pixel detection of

saltcedar, particularly toward understanding the role of incorporating recent

models of multiple scattering phenomena on the detection accuracy, and

determining the advantages and practical implications of incorporating such

non-linear relationships for regional mapping applications.

3. Apply sub-pixel change detection analysis of moderate resolution

observations in order to identify the role of environmental factors affecting

saltcedar spread and the impacts of its spread on the water availability along

a riparian habitat.

4. Develop a spatially explicit model that can incorporate the main factors

involved in plant invasion process and competition concepts, determine, by

using computer simulations, conditions for invasiveness of saltcedar under

competition of a native species prototype, and identify ways in which

available remote sensing observations and environmental measurements may

enhance the model-based research.
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1.4 Relevance and contributions

The relevance of remote sensing of invasive species research is made evident

by the exponential increment in the number of related publications during the past

two decades (Joshi et al., 2004; Lockwood et al., 2007). The beginning of this

increased interest on invasive species coincides with the publication of a whole

series of books and journal articles on the topic produced by the Scientific

Committee on Problems of the Environment (SCOPE) in mid-1980’s

(www.icsu-scope.org). Furthermore, invasive species research is currently one of

the twelve elements of application of national priority identified by NASA’s

Applied Science Program (http://nasascience.nasa.gov/earth-science). Therefore,

the topic is pertinent and tuned with ongoing efforts for building capabilities to

detect and predict invasive species by a number of government agencies such as

NASA’s Office of Earth System Science and the US Geological Survey which are

currently developing the Invasive Species Forecasting System (ISFC, 2008). By

using remote sensing products coupled with ecological models, the ISFS is aimed

at providing regional-scale distributions of invasive species such as saltcedar while

identifying the most vulnerable habitats.

The study presented here makes contribution to both remote sensing

research and to saltcedar invasion research. From a pure remote sensing

perspective, this dissertation contributes to expand the concepts of accuracy

assessment and change detection analysis when a sub-pixel ontology is adopted for

analysis. From an invasive species standpoint it provides tested methods that can

be readily used for estimating population parameters, which are required for
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several management operations and research. Moreover, the findings support a

long suspected significant impact in the river flow and confirmed that saltcedar is

not actively displacing the native species, but rather taking advantages of

hydrologic disturbances. Knowledge and products derived may be useful to

support decision-making by several agencies that are undertaking the bio-control

of saltcedar (DeLoach et al., 2004; Shafroth et al., 2005) as well as in the

restoration of riparian ecosystems endangered by saltcedar invasion (Harris, 1999;

Hart et al., 2005; Taylor and McDaniel, 1998).

1.5 About this dissertation

The substantive content of this dissertation is organized as follows.

Chapter 2 provides a thorough review of the existing alternatives, while identifying

major drawbacks and desirable properties, for sub-pixel accuracy assessment based

on cross-comparison matrices, and develops theoretical grounds, for a more general

accuracy assessment of soft classifications, that account for the sub-pixel class

distribution uncertainty.

Chapter 3 reports results on the assessment of several linear and non-linear

spectral mixture models for repeatable mapping of sub-pixel canopy cover of

saltcedar and associated native species from Landsat measurements. The research

focus is on identifying the advantages and practical implication of incorporating

non-linear relationships that result from multiple-scattering processes.

Chapter 4 introduces a post-classification change detection method based

on sub-pixel classifications for studying the dynamics of saltcedar along the
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segment of the Rio Grande river between the towns of Candelaria, Texas, and

Presidio, Texas. The research focuses on testing the role of several environmental

factors in driving observed distributions and changes, and estimate the

relationship of saltcedar encroachment with reductions of river flow.

Chapter 5 describes a spatially-explicit metapopulation model for linking

remote sensing land cover change to population parameters and for hypothesis

formulation on the study of general invasion process under competition. This

chapter focuses on the theoretical derivation of a land cover change model, referred

to as the COEXOD (COlonization-EXtinction-Occlusion-Dominance) model, and

its coupling with remote sensing observations for population parameters

estimation. While the COEXOD model is derived from a spatially explicit

metapopulation model, the latter is also used to determine conditions for

invasiveness under competition through simulated populations, where saltcedar

invasion under the presence of established mesquite is taken as a case study.

Chapter 6 presents a discussion on conclusions drawn from results reported

in prior Chapters.



Chapter 2

CROSS-TABULATION MATRICES FOR SUB-PIXEL
CLASSIFICATION ANALYSIS∗

2.1 Introduction

The significance of land cover as an environmental variable has made

remote sensing one of the most attractive tools for the production of thematic

maps of the earth’s surface. However, in order for remote sensing to succeed as a

valuable source of land cover information, more reliable accuracy measures are

needed (Foody, 2002). In the past few decades, the prevailing concerns on

ecological and environmental issues, occurring especially at regional to global

scales, have prompted significant advances on the use of remote sensing data for

the estimation of land cover information at sub-pixel level (Carpenter et al., 1999;

Cross et al., 1991; Fisher and Pathirana, 1990; Gutman and Ignatov, 1998;

Roberts et al., 1993). However, the quality of such classification products, as well

as the performance of the classification protocol employed, are difficult to quantify.

Moreover, there is an increasing need for sub-pixel and super-pixel assessment of

classification products made evident by recent remote sensing research (Latifovic

and Olthof, 2004; Okeke and Karnieli, 2006; Ozdogan and Woodcock, 2006;

Shabanov et al., 2005). The assessment of the conventional (hard) allocation of

∗An extended version of this chapter appeared in the Remote Sensing of Environment Journal
(see Silván-Cárdenas and Wang, 2008b, for further details).

16
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image pixels to discrete classes has been standardized (to some extent) through

the confusion matrix and some derived measures (Congalton, 1991; Congalton and

Green, 1999; Stehman and Czaplewski, 1998). However, this method is

appropriate only for hard classifications, where it is assumed that each pixel is

associated with only one class in both the assessed and the reference datasets. For

soft classifications, where multiple classes are assigned to a single pixel, a

comparable standardized assessment procedure has not been established yet.

For the evaluation of soft classifications in general, various suggestions have

been made (Binaghi et al., 1999; Congalton and Green, 1999; Foody, 1995; Gopal

and Woodcock, 1994; Green and Congalton, 2004; Lewis and Brown, 2001;

Pontius Jr and Cheuk, 2006; Townsend, 2000), among which, the fuzzy error

matrix (Binaghi et al., 1999) is one of the most appealing approaches, as it

represents a generalization (grounded on the fuzzy set theory) of the traditional

confusion matrix. In spite of its sound theoretical basis, the fuzzy error matrix is

not generally adopted as a standard accuracy report and statement for soft

classifications. Some reasons for this have been highlighted as counterintuitive

characteristics (Pontius Jr and Cheuk, 2006). Specifically, for a cross-comparison

to be consistent with the traditional confusion matrix, it is desirable that the

cross-comparison results in a diagonal matrix when a map is compared to itself,

and that its marginal totals match the total of membership grades. More

importantly, a cross-comparison should convey readily interpretable information

on the confusion among the classes. A composite operator for computing a

cross-comparison matrix that exhibits some of the aforementioned desirable
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characteristics was then proposed as a tool for the sub-pixel comparison of maps

(Pontius Jr and Cheuk, 2006; Pontius Jr and Connors, 2006). Nevertheless, its

utility has not been demonstrated beyond the use of traditional accuracy indices,

and neither has the use of the off-diagonal cells been demonstrated, nor is their

interpretation clear.

In light of the above, the objectives of this research are:

1. Review the existing alternatives, while identifying major drawbacks and

desirable properties, for sub-pixel accuracy assessment based on

cross-comparison matrices, and

2. Develop theoretical grounds for a more general cross-comparison of sub-pixel

classifications accounting for the sub-pixel class distribution uncertainty.

The remaining of the chapter is organized as follows. In Section 2.2, a

theoretical framework for generalized cross-comparison matrices is discussed, and

various potential cross-comparison matrices for sub-pixel accuracy assessment are

compared within this framework. In Section 2.3, a new cross-comparison matrix

that reports the confusion interval in the form of a center value plus-minus

maximum error is introduced. The new matrix is referred to as sub-pixel

confusion-uncertainty matrix (SCM). Sub-pixel accuracy measures are also derived

and illustrated in this section.
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2.2 Theoretical background

2.2.1 Notation and definitions

The following symbols are used throughout the text:

N - number of pixels in the reference and assessed datasets,

K - number of categories or classes,

n - pixel index, where n = 1, . . . , N ,

k, l - class indices, where k, l = 1, . . . ,K,

snk - grade of membership of pixel n to class k assigned by the assessed

dataset,

rnl - grade of membership of pixel n to class l assigned by the reference

dataset,

s+k - total grade of class k from the assessed dataset, s+k =
∑

n snk,

r+l - total grade of class l from the reference dataset, r+l =
∑

n rnl,

s′nk - overestimation error of class k at pixel n, s′nk = max(snk − rnk, 0),

r′nl - underestimation error of class l at pixel n, r′nl = max(rnl − snl, 0),

pnkl - agreement-disagreement between membership grades from assessed

class k and reference class l at pixel n; it is called agreement when k = l and

disagreement (or confusion) when k 6= l,
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Pkl - overall agreement-disagreement between assessed class k and reference

class l, Pkl =
∑

n pnkl,

Pk+ - marginal row sum of Pkl for class k, Pk+ =
∑

l Pkl,

P+l - marginal column sum of Pkl for class l, P+l =
∑

k Pkl,

P++ - total sum of Pkl, P++ =
∑

k

∑
l Pkl,

The grade of membership have various interpretations throughout the text,

including possibility, probability and sub-pixel fractions of land-cover. In any case,

they are constrained so that 0 ≤ rnk ≤ 1, 0 ≤ snk ≤ 1 and
∑

k rnk =
∑

k snk = 1

hold for all the pixels. The agreement-disagreement at pixel n, pnkl, is computed

using a comparison operator of the form C(snk, rnl). The notations pC
nkl and PC

kl

may be used to specify the comparison operator, C, employed for computing the

per-pixel and overall agreement-disagreement, respectively. A confusion matrix is a

cross-tabulation (see Table 2.1(a)) formed by the overall agreement-disagreement,

Pkl, where row and column labels of the matrix represent assessed categories and

reference categories, respectively. Thus, the agreement values correspond to the

diagonal cells, whereas the disagreement values correspond to the off-diagonal cells.

2.2.2 A generalized cross-comparison framework

Hard classifications are commonly assessed through the so-called confusion

matrix (also known as error matrix) and a series of derived indices (Congalton,

1991; Congalton and Green, 1999; Stehman and Czaplewski, 1998). Once

generated, the confusion matrix can be used for a series of descriptive and
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analytical techniques, such as those based on accuracy indices. Table 2.1(a) shows

the general structure of the confusion matrix and Table 2.1(b) lists the most

common accuracy indices derived from the confusion matrix. Details on the

definitions and uses of these accuracy indices for hard classifications can be found

in (Congalton, 1991; Congalton and Green, 1999; Stehman and Czaplewski, 1998),

to list just a couple. Naturally, many researchers have tried to generalize the

confusion matrix for soft classifications (Binaghi et al., 1999; Latifovic and Olthof,

2004; Lewis and Brown, 2001; Pontius Jr and Cheuk, 2006; Townsend, 2000;

Woodcock and Gopal, 2000). While all these efforts have some value for various

remote sensing applications, the theoretical background behind each of them does

not generally consider a set of desirable characteristics inherited from the

confusion matrix, and thus are difficult to interpret (at least in the sense of a

traditional confusion matrix).

In the search for the fundamental characteristics of a generalized confusion

matrix for soft classifications, it is sometimes suggested that the matrix should

fulfill two characteristics:

i. Diagonalization. The matrix should be diagonal if, and only if, the assessed

data match perfectly the reference data.

ii. Marginal sums. Marginal sums should match the total grades from the

reference and assessed data.

The first characteristic is desirable for the matrix to be useful in identifying a

perfect matching case; nevertheless, it does not constrain the matrix characteristic
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Table 2.1: Traditional error analysis for crisp classifications. Cross-tabulation (a)
and accuracy indices (b). K is the number of classes.

Reference
Class class 1 class 2 . . . class K Row Tot.
class 1 P11 P12 . . . P1K P1+

class 2 P21 P22 . . . P2K P2+
...

...
...

. . .
...

...
class K PK1 PK2 . . . PKK PK+

Col. Tot. P+1 P+2 . . . P+K P++

(a)

Accuracy Index Formulaa

Overall accuracy, OA
∑

k Pkk

P++

k-th User accuracy, UA(k) Pkk
Pk+

k-th Producer accuracy, PA(k) Pkk
P+k

Expected proportion of agreement, Pe

∑
k Pk+P+k

P 2
++

Kappa coefficient of agreement, κ (Po−Pe)
(1−Pe)

a Po is the observed proportion of agreement = OA

(b)
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under slight deviation from the perfect match. Therefore, many alternatives could

be envisaged that lead to a unique diagonal matrix for the perfect matching case,

but to rather different matrices when non-perfect match occurs. The second

characteristic is desirable (although it may not be necessary) for the matrix to be

useful in deriving accuracy indices such as those listed in Table 2.1(b). For hard

classifications, accuracy indices are customarily written in terms of row and

column totals, provided that these marginal sums correspond to the class

proportions in the assessed and reference datasets, respectively (i.e., P+l = r+l,

Pk+ = s+k, and P++ = N). For soft classifications, however, marginal sums not

matching the class proportions are often ignored, and class proportions are used

instead for the computation of accuracy indices (e.g., Binaghi et al., 1999; Okeke

and Karnieli, 2006; Shabanov et al., 2005).

Instead of looking at the properties of a generalized confusion matrix, this

research seeks to establish a number of fundamental properties on the

agreement-disagreement measures that can lead to meaningful matrix entries.

These properties are loosely described below and then formalized in mathematical

terms. First, a meaningful agreement measure does not consider whether the

assessed pixel membership is above or below the reference pixel membership, i.e.,

does not depend on the over- or underestimation errors. In contrast, the sense and

amount of discrepancy are important for defining a disagreement measure. An

overestimation of the reference pixel membership by the assessed pixel membership

leads to errors of commission type. These commission errors appear in the

off-diagonal cells along the row of the class. Conversely, an underestimation of the
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reference value by the assessed value leads to errors of omission type. These

omission errors appear in the off-diagonal cells along the column of the class.

Second, agreement and disagreement are, in some sense, complimentary yet

non-negative measures. This is also stated by the constrained marginal sums

characteristic. Consequently, when the agreement for a given class achieve its

maximum (e.g., in the case of a perfect match), the overall disagreement (sum of

off-diagonal cells) for that class must be minimum (zero). Conversely, if the overall

disagreement is maximum, then the agreement is minimum.

In formal grounds, one requires the agreement-disagreement measure to

conform to Equation (2.1), where A and D denote agreement and disagreement

operators, respectively, which satisfy the properties outlined in Table 2.2, and s′nk

and r′nl denote the over- and underestimation errors at pixel n. Notice that the

expressions given in Equations (2.2) and (2.3) for the over- and underestimation

errors, respectively, are mathematically equivalent to those given in Section 2.2.1.

C(snk, rnl) =

{
A(snk, rnl) if k = l

D(s′nk, r
′
nl) if k 6= l

(2.1)

s′nk = snk −min(snk, rnk) (2.2)

r′nl = rnl −min(snl, rnl) (2.3)

The Commutativity property expresses a symmetric characteristic of

agreement-disagreement measures respect to its arguments. It ensures that under-

and overestimation of a membership grade are equally considered. The Positivity

ensures closure over the positive space of membership values and, together with

the Nullity property, constrains non-null comparison values to pixels with non-null
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Table 2.2: Basic properties for general agreement and disagreement measures.
C(s, r) denotes a comparison (agreement or disagreement) measure between grades
s and r, and a is a positive number.

Property Definition Agreement Disagreement
i. Commutativity C(s, r) = C(r, s) Yes Yes
ii. Positivity s > 0 ∧ r > 0 ⇒ C(s, r) > 0 Yes Yes
iii. Nullity s = 0 ∨ r = 0 ⇒ C(s, r) = 0 Yes Yes
iv. Upper bound C(s, r) ≤ C(r, r) Yes No
v. Homogeneity C(as, ar) = aC(s, r) Yes Yes

membership values. The Upper bound property implies that the comparison

operator measures essentially the degree of similarity, as contrasted to dissimilarity

or distance measures, between two membership values. The Homogeneity property

states that the agreement-disagreement values can be denormalized in proportion

to denormalized grade values. This property is desirable when the accuracy

assessment is inserted in a multi-resolution framework (see Pontius Jr, 2002;

Pontius Jr and Cheuk, 2006; Silván-Cárdenas and Wang, 2008b, for further

details). In sum, two notable differences between agreement and disagreement

measures are established: 1) an agreement value depends on the original assessed

and reference values, whereas a disagreement value depends on the over- and under

estimation errors, and 2) an agreement value has an upper bound at perfect match,

whereas disagreement values do not share an upper bound at null agreement.

2.2.3 Operators for assessing sub-pixel classifications

2.2.3.1 The sub-pixel ontology

According to Pontius Jr and Cheuk (2006), each cross-comparison operator

is rooted on a specific ontology of the pixel. More specifically, a cross-comparison
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depends on how the pixel-class relationship is defined and quantified. Two major

definitions for the pixel-class relationship that admit multiple memberships have

been broadly used in the land-cover classification research. The first definition

conceives this relationship as uncertain and formalizes it through the probability

theory. The second definition conceives this relationship as vague or ambiguous

and formalizes it through the fuzzy set theory. In both cases, the hard

classification is covered as a special case, that is when no uncertainty nor

ambiguity exists. A third pixel-class relationship, that has received less attention

(at least from the accuracy assessment point of view, with exception of Latifovic

and Olthof, 2004), relates pixel to class through a fractional land cover. This

pixel-class relationship definition implies the existence of unknown crisp

boundaries among the classes at sub-pixel level. It should be noted that the kind

of uncertainty a sub-pixel classification represents can be related only to the

positional accuracy resolved by the sensor (pixel resolution). Soft classifications

emphasizing the thematic uncertainty, which are linked to the impossibility of

uniquely identifying a land cover category regardless of the sensor resolution, are

not being considered here. If the uncertainty represented by a soft classification

describes vague concepts, which are characteristic of the human reasoning, then

other alternatives may be pursued (see for instance Gopal and Woodcock, 1994).

For the sub-pixel ontology the following definitions are considered here:

1. The pixel-class relationship is defined through the sub-pixel fraction of class

coverage, and



27

Table 2.3: Four basic operators.
Operator Operator of the Traditional Sub-pixel

ID forma C(snk, rnl) interpretation interpretation
MIN min(snk, rnl) fuzzy set intersect. maximum overlap
SI 1− |snk−rnl|

snk+rnl
similarity index normalize max.

PROD snk × rnl joint probability expected overlap
LEAST max(snk + rnl − 1, 0) minimum overlap minimum overlap

a snk and rnk denote assessed and reference grades of class k at pixel n

2. The agreement-disagreement is quantified as the proportion of area overlap

among the classes at sub-pixel level.

2.2.3.2 Basic operators

Various operators have been developed under rather distinct pixel ontology,

some of which are listed in Table 2.3. Some have been considered previously

within a multi-resolution framework (Kuzera and Pontius Jr, 2004; Pontius Jr and

Cheuk, 2006), and their sub-pixel interpretation has been also discussed

(Pontius Jr and Connors, 2006). However, the major focus has been so far on the

accuracy indices at multiple resolutions. The present review investigates their

suitability for assessing sub-pixel classifications within the context of the

generalized cross-comparison framework introduced above.

The minimum operator (MIN) is the classic fuzzy set intersection

operator. This operator has been suggested as the natural choice for producing

cross-comparison matrices for fuzzy classifications (Binaghi et al., 1999). In the

traditional ontology of fuzzy classifications, the pixel-class relationship describes

the admission of the possibility (given by a so-called membership function) that
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the pixel is a member of a class. This pixel-class relationship definition is useful for

handling the imprecision of meaning of concepts that are characteristic of much of

the human reasoning (Gopal and Woodcock, 1994). Unfortunately, the area

estimation by map users is generally difficult under this ontology (Woodcock and

Gopal, 2000). In the sub-pixel fraction ontology, the MIN operator measures the

maximum sub-pixel overlap among the classes. Therefore, if membership values

are (linearly) related to sub-pixel land cover areas (see e.g., Shabanov et al., 2005),

the fuzzy set intersection operator corresponds to the maximum sub-pixel overlap

between the classes. The minimum operator satisfies all the properties outlined in

Table 2.2. However, the MIN matrix can overestimate the actual sub-pixel

agreement-disagreement and, consequently, the marginal sums can be greater than

the sub-pixel fractions. Also, even in the case of a perfect match, non-null degrees

of mismatch are obtained for the off-diagonal cells. These characteristics generally

limit the matrix’s utility for drawing a conclusion about the confusion among the

classes.

A variant of the MIN operator is sometimes used as a similarity index (SI)

for comparing soft classifications (see e.g., Townsend, 2000). This variant results

after normalizing the MIN operator by the sum of the grade values, and can be

expressed as shown in Table 2.3. The SI operator is also meaningful for sub-pixel

comparison, as it corresponds to a normalized maximum sub-pixel overlap.

Nevertheless, it does not satisfy the homogeneity property, as it is invariant under

scaling of the grade values. A cross-comparison matrix based on the SI operator

does not satisfy the diagonalization and marginal sums characteristics outlined



29

above.

The product operator (PROD) arises from a pure probabilistic view of the

pixel-class relationship. In the traditional probabilistic ontology, the pixel-class

relationship represents the probability that a pixel (entirely) belongs to a class,

and the PROD operator gives the joint probability that the reference and assessed

pixels belong to two given classes, provided that the pixels have been

independently classified. In the sub-pixel fraction ontology, the PROD operator

measures the expected class overlap by chance between the reference and assessed

sub-pixels partitions. More specifically, consider a randomly drawn point from the

space spanned by pixel n. Since all the points within the pixel have the same

probability to come out, then the joint probability that the point belongs to class

k in the assessed partition and to class l in the reference partition is given by the

product snk × rnl, provided that the land-cover fractions snk and rnl have been

generated by independent processes. A cross-comparison matrix based on the

PROD operator has marginal sums that agree with the per-class areas. However,

non-null disagreement values can result from the perfect matching case. In fact, it

does not satisfy the upper-bound and homogeneity properties of Table 2.2. The

latter, however, could be fulfilled if the operator is properly normalized (see the

MIN-PROD composite operator below). The use of this operator for the

assessment of soft classifications has been demonstrated in (Lewis and Brown,

2001), and its counterintuitive characteristics have been illustrated in (Pontius Jr

and Cheuk, 2006).

The LEAST operator was recently introduced in the discussion of sub-pixel
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comparison of maps (Pontius Jr and Connors, 2006). The expression for the

LEAST operator is given in Table 2.3. This operator measures the minimum

possible sub-pixel overlap between two classes. Even though this operator is

meaningful for sub-pixel accuracy assessment, it may be of little use for other

contexts, as it has even more counterintuitive characteristics than the PROD

operator. Specifically, this operator fails to fulfill all but the commutativity and

nullity properties from Table 2.2. As with the PROD operator, the homogeneity

property could be met by a modified LEAST operator that relaxes the sum-to-unit

constraint (see the MIN-LEAST composite operator below).

2.2.3.3 Composite operators

None of the basic operators above satisfy the diagonalization characteristic

discussed in Section 2.2.2. Indeed, in order for an operator to exhibit the

diagonalization characteristic, it must conform to Equation (2.1). This type of

operator is referred to as composite. The formalism in Table 2.2 is then useful for

guiding the selection of potential composite operators for general soft

classifications. For example, the only operator from Table 2.3 that satisfies all the

basic properties in Table 2.2 for an agreement measure is the MIN operator. The

uniqueness of the MIN operator as an agreement measure is also evidenced in

Equations (2.2) and (2.3), where over- and underestimation errors are given in

terms of the MIN operator. Here, I consider only three composite operators that

use the MIN operator as agreement measure. They are referred to as MIN-PROD,

MIN-MIN and MIN-LEAST, respectively. These are defined in Table 2.4.
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Table 2.4: Three composite operators.
Operator ID Agreementa Disagreementb (k 6= l) Sub-pixel confusion
MIN-PROD min(snk, rnk) s′nk × r′nl/

∑
i r

′
ni constr. expected

MIN-MIN min(snk, rnk) min(s′nk, r
′
nl) constr. maximum

MIN-LEAST min(snk, rnk) max(s′nk + r′nl −
∑

i r
′
ni, 0) constr. minimum

a snk and rnk denote the assessed and reference grades for class k at pixel n
b s′ni and r′ni denote the over- and underestimation errors of class i at pixel n

The MIN-PROD composite operator was recently proposed by Pontius Jr

and Cheuk (2006). It uses the minimum operator for the diagonal cells and a

normalized product operator for the off-diagonal cells, thus combining the fuzzy set

view with the probabilistic view. Expressions for the agreement and disagreement

from this composite operator are presented in Table 2.4. This operator satisfies the

basic properties of Table 2.2. In addition, the MIN-PROD matrix satisfies the

diagonalization and marginal sums characteristics. The interpretation of the

composite operator in the context of sub-pixel agreement-disagreement is aligned

with an assumption of maximum overlap between corresponding categories

(diagonal cells), followed by the allocation of the residual sub-pixel fractions onto

the other categories (off-diagonal cells). The disagreement measure corresponds to

the expected overlap by chance constrained to the unmatched sub-pixel fraction.

Specifically, the disagreement between two membership values, snk and rnl,

corresponds to the joint probability that a randomly drawn point within the space

spanned by the unmatched fraction, 1−
∑

i min(sni, rni), of pixel n, belongs to

classes k and l in the residual class fractions snk −min(snk, rnk) and

rnl −min(snl, rnl) of the assessed and reference pixels, respectively.

The MIN-MIN composite operator uses the minimum operator for both
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agreement and disagreement. However, it differs from the MIN operator in that it

assigns agreement in a first step and then, in a second step, it computes the

disagreement based on the over- and underestimation errors. Table 2.4 shows the

expressions for agreement and disagreement from this composite operator. The

MIN-MIN composite operator satisfies all the properties outlined in Table 2.2. In

addition, it leads to a cross-comparison matrix that satisfies the diagonalization

property. However, it does not warrant the marginal sum characteristic. Marginal

totals of a MIN-MIN matrix will, generally, overestimate the class proportions

from the reference and assessed datasets because the MIN operator, used for

computing the off-diagonals cells, accounts for the maximum possible overlapping

area among the residual fractions at sub-pixel level. In this sense, the

disagreement measure from the MIN-MIN operator provides an upper bound for

the possible sub-pixel overlap constrained to the unmatched sub-pixel fraction.

The MIN-LEAST composite operator uses the MIN operator for the

diagonal cells and a re-normalized LEAST operator for the off-diagonal cells.

Table 2.4 shows the expressions for agreement and disagreement from this

composite operator. While the agreement measure satisfies all the properties of

Table 2.2, the disagreement measure does not satisfy the required positivity

property: Non-null over- and underestimation errors can lead to null disagreement

values. The MIN-LEAST operator produces a diagonal matrix for a perfect

matching case. However, sub-pixel areas from the reference and assessed datasets

are generally underestimated by marginal totals. This is because the disagreement

measure corresponds to the minimum possible sub-pixel overlap constrained to the
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unmatched sub-pixel fraction. Specifically, the re-normalized LEAST operator

determines the excess of the sum of two residual class fractions, snk −min(snk, rnk)

and rnl −min(snl, rnl), respect to the unmatched pixel fraction,

1−
∑

i min(sni, rni).

2.3 The sub-pixel confusion-uncertainty matrix

2.3.1 Sub-pixel confusion intervals

The preceding review of potential cross-comparison matrices for assessing

sub-pixel classifications has shown that: 1) a composite operator is necessary to

warrant the diagonalization characteristic, and 2) the MIN operator is the most

appropriate candidate for agreement measure. It is worth noting that the use of a

MIN operator for allocating sub-pixel proportions along the diagonal cells accounts

only for the agreement at pixel level, i.e., the possible spatial distribution of classes

within the pixel is not taken into account, but only the sub-pixel area proportions

are matched. In contrast, the sub-pixel disagreement can take into account the

possible spatial distribution of classes within the pixel. Nevertheless, there is no

unique way to exactly allocate the remaining sub-pixel proportion into the

off-diagonal cells. Specifically, the sub-pixel area allocation problem remains

underspecified, as there are more unknowns (K2 −K off-diagonals elements) than

equations (2K constraints from column and row totals). Some exceptions occur,

for example, if K = 2 or K = 3. One possibility is to use the statistical center of

possible confusions, as given by the MIN-PROD composite operator. However, the

sub-pixel distribution uncertainty could not be accounted in this way. An
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alternate solution is proposed here that uses the confusion intervals,

[PMIN-LEAST
kl , PMIN-MIN

kl ], formed by the MIN-LEAST and MIN-MIN operators.

These intervals express the possible confusions among the classes. As

demonstrated below, if there is a unique solution to the area allocation problem,

then these intervals are tight (i.e., the lower and upper bounds of each confusion

interval have the same value). In this case, the three composite operators of

Table 2.4 lead essentially to the same confusion matrix.

2.3.1.1 A simple example

In order to illustrate the use of the confusion intervals, consider a reference

pixel belonging to classes 1, 2, 3, and 4 with membership values r1 = 0.4, r2 = 0.3,

r3 = 0.2 and r4 = 0.1, respectively. Consider also the following three cases of

assessed pixels:

(a) Perfect matching : s1 = 0.4, s2 = 0.3, s3 = 0.2, s4 = 0.1

(b) Non-perfect matching 1 : s1 = 0.3, s2 = 0.2, s3 = 0.4, s4 = 0.1

(c) Non-perfect matching 2 : s1 = 0.3, s2 = 0.1, s3 = 0.4, s4 = 0.2

The fundamental difference between the cases (b) and (c) is in the number of

overestimated classes (one and two overestimated classes, respectively). The

sub-pixel confusion intervals for cases (a)-(c) are shown in Tables 2.5(a)-(c),

respectively. Notice that the sub-pixel area allocation problem is uniquely

determined for cases (a) and (b), as the maximum and minimum confusions are

the same. However, it cannot be uniquely resolved for case (c), where the
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minimum and maximum confusions of class 1 and class 2 with class 3 are not the

same. What this matrix says is, for instance, that class 2 is confounded with class

3 in at least 0.1 ([0.1,0.2]), whereas class 1 might not be confounded at all with

class 3 ([0,0.1]). Table 2.6 shows the MIN-PROD matrix for case (c). As pointed

out before, the confusion values provided by the MIN-PROD operator must be

considered as the expected confusion by chance, i.e., it represents a statistical

center for all possible confusions; whereas the confusion interval defines the

uncertainty associated to the sub-pixel confusion.

Since a confusion interval involves the notion of uncertainty on the

confusion, it is natural to inquire under which circumstances the confusion

intervals would be tight for an arbitrary number of classes. In Appendix I it is

shown that if no more than one class is either over- or underestimated at each

single pixel, then the sub-pixel area allocation problem can be uniquely resolved.

Not surprisingly, this unique-solution scenario includes any of the following cases:

1) there is a perfect match, 2) there are no more than three classes, 3) at least one

of the datasets is crisp.

2.3.2 Sub-pixel confusion-uncertainty matrix

In practice, it is convenient to express each confusion interval in the form

Pkl ± Ukl, where Pkl and Ukl are the interval center and the interval half-width,

respectively. These are computed as indicated by Equations (2.4) and (2.5),

respectively.

Pkl =
PMIN-MIN

kl + PMIN-LEAST
kl

2
(2.4)
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Table 2.5: Sub-pixel confusion interval matrices for three cases: Perfect matching
(a), underestimation with unique solution (b), and underestimation without unique
solution (c). CPR and CPA are class proportion from reference and assessed pixels,
respectively.

Reference
Class 1 2 3 4 CPA
1 [0.4,0.4] [0,0] [0,0] [0,0] 0.4
2 [0,0] [0.3,0.3] [0,0] [0,0] 0.3
3 [0,0] [0,0] [0.2,0.2] [0,0] 0.2
4 [0,0] [0,0] [0,0] [0.1,0.1] 0.1
CPR 0.4 0.3 0.2 0.1 1.0

(a)

Reference
Class 1 2 3 4 CPA
1 [0.3,0.3] [0,0] [0,0] [0,0] 0.3
2 [0,0] [0.2,0.2] [0,0] [0,0] 0.2
3 [0.1,0.1] [0.1,0.1] [0.2,0.2] [0,0] 0.4
4 [0,0] [0,0] [0,0] [0.1,0.1] 0.1
CPR 0.4 0.3 0.2 0.1 1.0

(b)

Reference
Class 1 2 3 4 CPA
1 [0.3,0.3] [0,0] [0,0] [0,0] 0.3
2 [0,0] [0.1,0.1] [0,0] [0,0] 0.1
3 [0,0.1] [0.1,0.2] [0.2,0.2] [0,0] 0.4
4 [0,0.1] [0,0.1] [0,0] [0.1,0.1] 0.2
CPR 0.4 0.3 0.2 0.1 1.0

(c)
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Table 2.6: MIN-PROD matrix for case (c) of Table 2.5. Values are rounded to two
decimals.

Reference
Class 1 2 3 4 Row Tot.

1 0.30 0.00 0.00 0.00 0.30
2 0.00 0.10 0.00 0.00 0.10
3 0.07 0.13 0.20 0.00 0.40
4 0.03 0.07 0.00 0.10 0.20

Col. Tot. 0.40 0.3 0.2 0.10 1.00

Ukl =
PMIN-MIN

kl − PMIN-LEAST
kl

2
(2.5)

This notation is preferred, as it provides a center value and allows documenting

explicitly its associated uncertainty1, which in turn is necessary for further error

propagation analysis. By extension to our definitions, row marginal sum, column

marginal sum, and total sum from uncertainty values are defined as Uk+ =
∑

l Ukl,

U+l =
∑

k Ukl, U++ =
∑

k

∑
l Ukl, respectively.

Equation (2.4) defines an operator that satisfies all the basic properties in

Table 2.2. This operator leads to a matrix that exhibits the diagonalization

characteristic. However, it does not warrant the marginal sum characteristic. A

typical way to circumvent this inconvenience has been the use of area proportions

from the reference and assessed datasets in place marginal totals (Binaghi et al.,

1999). Examples of this kind of cross-tabulations are shown in Tables 2.5(a)-(c)

and, more formally, in Table 2.7. In this way, the accuracy indices of Table 2.1(b)

are readily generalized, where row and column totals are simply replaced by the

1The half-width of the confusion interval is termed the uncertainty, as it reflects the uncertain
nature of the sub-pixel distribution of classes.
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Table 2.7: Sub-pixel confusion-uncertainty matrix, where marginal totals have been
replaced by the class proportions from the reference (CPR) and assessed (CPA)
datasets.

Reference
Class class 1 class 2 . . . class K CPA
class 1 P11 P12 ± U12 . . . P1K ± U1K s+1

class 2 P21 ± U21 P22 . . . P2K ± U2K s+2
...

...
...

. . .
...

...
class K PK1 ± UK1 PK2 ± UK2 . . . PKK s+K

CPR r+1 r+2 . . . r+K N

corresponding area proportions. Unfortunately, the accuracy indices so-derived

cannot reflect the uncertainty of the confusion as they do not depend on the

off-diagonal cells. Notice that diagonal cells in Table 2.7 does not provide

U -values. Since the U -values reflect the sub-pixel distribution uncertainty, which is

not considered for the agreement, these are zeros for the diagonal cells.

Another possibility, which is pursued here, is to consider column and row

totals as intervals (Table 2.8(a)). These intervals can be used to derive intervals of

accuracy indices that reflect the uncertain nature of the sub-pixel distribution of

classes. Table 2.8(a) shows the general structure of the proposed sub-pixel

confusion-uncertainty matrix (SCM).

2.3.3 Derived accuracy-uncertainty indices

Table 2.8(b) shows the expressions of derived accuracy-uncertainty indices

based exclusively on values from Table 2.8(a). These expressions represent

generalizations from traditional single-valued accuracy indices to intervals, which

are expressed in the form of a center value plus-minus maximum deviation (or
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Table 2.8: General structure of the SCM (a) and derived sub-pixel accuracy-
uncertainty indices (b). Row and column totals of the SCM are determined as sum
of center values (Pkl) plus-minus sum of uncertainty values (Ukl). The observed pro-
portion of agreement (Po ±Uo) corresponds to the overall accuracy (OAs), whereas
the expected proportion of agreement (Pe ± Ue) is given by Equations (2.6-2.7).

Reference
Class class 1 class 2 . . . class K Row Tot.
class 1 P11 P12 ± U12 . . . P1K ± U1K P1+ ± U1+

class 2 P21 ± U21 P22 . . . P2K ± U2K P2+ ± U2+
...

...
...

. . .
...

...
class K PK1 ± UK1 PK2 ± UK2 . . . PKK PK+ ± UK+

Col. Tot. P+1 ± U+1 P+2 ± U+2 . . . P+K ± U+K P++ ± U++

(a)

Sub-pixel Accuracy Index Center Uncertainty
Overall accuracy, OAs

P++
∑

k Pkk

P 2
++−U2

++

U++
∑

k Pkk

P 2
++−U2

++

k-th User Accuracy, UAs(k) PkkPk+

P 2
k+−U2

k+

PkkUk+

P 2
k+−U2

k+

k-th Producer Accuracy, PAs(k) PkkP+k

P 2
+k−U2

+k

PkkU+k

P 2
+k−U2

+k

Kappa coefficient, κs
(Po−Pe)(1−Pe)−(∗Uo+Ue)Ue

(1−Pe)2−U2
e

∗(1−Po)Ue+(1−Pe)Uo

(1−Pe)2−U2
e

∗ = sign of (1− Po − Uo)(1− Pe − Ue)

(b)
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uncertainty). For instance, the definition of the kappa coefficient interval (κs) is

based on the definition of the traditional kappa coefficient of agreement (Cohen,

1960, see Table 2.1(b)), where the overall accuracy interval (OAs) was considered

as the observed proportion of agreement; this is specified in the form Po ± Uo.

Likewise, the expected proportion of agrement was determined in terms of

marginal totals and overall total from the SCM and specified in the form Pe ± Ue.

The explicit expressions for the expected proportion’s center value and uncertainty

are given in Equations (2.6) and (2.7), respectively. The uncertainties from both

the observed and expected proportions of agreement are propagated onto the

kappa coefficient, which results in an interval of kappa coefficients specified

through a center value and its associated uncertainty, as given in Table 2.8(b).

Pe =
∑

k

(P 2
++ + U2

++)(P+kPk+ + U+kUk+)− 2P++U++(U+kPk+ + P+kUk+)
(P 2

++ − U2
++)2

(2.6)

Ue =
∑

k

2P++U++(P+kPk+ + U+kUk+)− (P 2
++ + U2

++)(U+kPk+ + P+kUk+)
(P 2

++ − U2
++)2

(2.7)

The new accuracy-uncertainty indices must be interpreted as

approximations to the traditional ones. Such approximations are in the order of

the associated uncertainties. As a matter of fact, in the absence of uncertainty, the

expressions for their center values are similar to those of Table 2.1(b).

Interestingly, in the limit when uncertainty tends to zero, the overall accuracy

(OAs) can be interpreted as a complimented distance between membership values,
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as stated by Equation (2.8).2

OAs = 1− 1
2N

∑
k

∑
n

|rnk − snk| (2.8)

2.3.3.1 A simple example

The following example illustrates the utility of the accuracy-uncertainty

indices. As before, consider a reference pixel belonging to classes 1, 2, 3, and 4

with membership values r1 = 0.4, r2 = 0.3, r3 = 0.2 and r4 = 0.1, respectively. Let

us now compare the accuracy of the following two classified pixels:

(a) No uncertainty : s1 = 0.2, s2 = 0.3, s3 = 0.4, s4 = 0.1

(b) Uncertainty : s1 = 0.3, s2 = 0.4, s3 = 0.1, s4 = 0.2

Notice that the maximum classification error committed in case (b) is lower than

in case (a). Therefore, one should expect higher accuracy for case (b) than for case

(a). Furthermore, in case (a) the errors are concentrated in two classes (class 1 and

class 3), whereas in case (b) the errors are evenly distributed among the four

classes. Since the source of errors can be attributed to a larger number of sub-pixel

confusions, one should expect the error uncertainty (and thus the accuracy

uncertainty) to be higher for case (b) than for case (a). However, these

observations could not be revealed through the traditional indices. Specifically, if

the assessment is based on the MIN-PROD operator3, an overall accuracy of 80%

2This expression can be derived by applying the identity min(a, b) = (a + b − |a − b|)/2.
3The same result is obtained if the assessment is based on Table 2.7.



42

is obtained for both case (a) and case (b). Indeed, the kappa values obtained for

case (a) (0.7297) and case (b) (0.7222) are even counter-intuitive. In contrast, if

the SCM is applied, an overall sub-pixel accuracy of 80%± 0% (κs = 0.7297± 0)

results for case (a) and 83.33%± 16.67% (κs = 0.7778± 0.2222) for case (b), thus

agreeing with the reasoning above. In sum, the accuracy-uncertainty indices from

the SCM are able to differentiate between sub-pixel classifications having distinct

error distributions, even in the case they have the same overall accuracy. Evidently,

the larger the uncertainty of an index is, the less useful the center value will be.

2.4 Conclusions

This research has shown that when membership values correspond to land

cover fractions and the agreement and disagreement are defined in terms of the

amount of sub-pixel overlap among the reference and assessed pixels there may not

be a confusion matrix that can uniquely quantify the interclass confusion and the

underlaying sub-pixel accuracy. For a cross-comparison report to be useful for

identifying a perfect match between the reference and assessed data, it is necessary

to constrain the agreement measure at the pixel level. Even though, there is no

analytical way to determine uniquely the actual confusion based solely on the

information of land cover fractions. This problem was termed the sub-pixel area

allocation problem.

A previously proposed operator, termed the MIN-PROD composite

operator (Pontius Jr and Cheuk, 2006), seemed meaningful for assessing sub-pixel

classifications. However, it was shown how this operator provides one of a
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(possibly) infinite number of solutions to the sub-pixel area allocation problem.

That solution corresponds to the expected sub-pixel class overlap constrained to

the unmatched sub-pixel fraction. Two new composite operators (MIN-LEAST

and MIN-MIN) were introduced to provide the minimum and maximum possible

sub-pixel class overlap constrained to the unmatched sub-pixel fraction. The

intervals defined by these operators are arranged within a matrix, in the form of a

center value plus-minus its uncertainty, termed the sub-pixel confusion-uncertainty

matrix (SCM). It was shown that all the confusion intervals are tight (i.e., no

confusion uncertainty exists) when at most one class is either under- or

overestimated at each pixel. Only in these circumstances, the SCM results in the

MIN-PROD composite operator-based cross-comparison matrix. This is certainly

the case when at least one of the compared sets is crisp, or when the number of

classes is less than four. Therefore, uncertainty-free matrices can result often

provided that there are many remote sensing methods for producing soft

classifications, based on spectral mixing models, in which only three classes may

suffice for describing a wide variety of land cover characteristics (Carpenter et al.,

1999; Milton, 1999; Roberts et al., 1993; Small, 2004). This result is also

convenient for the common practice of assessing continental and global products

through moderated resolution images. In this case, crisp classification from coarse

resolution images are assessed using fractions derived from moderate resolution

images (Latifovic and Olthof, 2004). It is also relevant for applications where

reference data cannot be acquired, as in the case of historical data. In such cases,

the hardened version of a fuzzy classification can be assessed using the fuzzy values
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(Okeke and Karnieli, 2006). Indeed, the SCM results in the traditional confusion

matrix if both datasets are crisp.



Chapter 3

RETRIEVAL OF SALTCEDAR SUB-PIXEL CANOPY COVERAGE
FROM LANDSAT∗

3.1 Introduction

Saltcedar is among the three most frequently occurring woody riparian

plants in the Western United States (Friedman et al., 2005) and its control has

significant economic implications (US Department of Interior, 2005; Zavaleta,

2000). It has brought several critical problems to invaded ecosystems, among

which depletion of stream/river flow is the most worrying (Di Tomaso, 1998; Smith

et al., 1998). A repeatable approach for accurate mapping of saltcedar over large

spatial extents, yet with the ability to detect low density stands, is urgently

needed for both assessing invasion severity and measuring its rate of spread, as

well as for assisting in the implementation of, and monitoring the impacts from,

effective control programs (Carruthers et al., 2006; DeLoach et al., 2004).

Prior studies have shown the relationship between remotely-sensed spectral

response and nonnative saltcedar habitat (Carruthers et al., 2006; Everitt, 1996;

Everitt and DeLoach, 1990; Everitt et al., 1992; Hamada et al., 2007). By using

high-spatial resolution data, and hyperspatial resolution in some cases, coupled

with traditional hard pixel-level classification, these approaches can achieve high

∗A REVISED VERSION OF THIS CHAPTER HAS BEEN CONDITIONALLY ACCEPTED
FOR PUBLICATION IN THE REMOTE SENSING OF ENVIRONMENT JOURNAL.
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detection accuracies, but are impractical for large-scale monitoring. The

application of moderate resolution satellite images could be advantageous in this

respect. For example, NASA’s MODerate resolution Imaging Spectroradiometer

(MODIS) has been successfully used to map saltcedar habitat suitability at

country level (Morisette et al., 2006). Nevertheless, the width of saltcedar bands

along the river typically varies from a few meters to hundreds of meters making it

difficult for this type of sensors to accurately detect saltcedar. Furthermore, it is

crucial for an effective management to have the ability to detect saltcedar in the

early stages of an invasion episode when its spatial extent is small (Shafroth et al.,

2005). Therefore, it is hypothesized that Landsat-like measurements represents the

best compromise between spatial resolution and spatial extent.

Recent advancements in sub-pixel mapping from remote sensors have

improved over traditional hard classification techniques by allowing quantifying

sub-pixel fraction of species coverage. The rationale of this approach is that mixed

pixels from remote sensing result from a systematic combination of component

spectra (end-members) present in the sensor’s instantaneous field of view (IFOV)

(Adams et al., 1993; Gillespie, 1992; Milton, 1999). The relative contribution of

component spectra is then determined by the inversion of mixture models (Chang

and Heinz, 2000; Heinz and Chang, 2001; Hu et al., 1999; Keshava and Mustard,

2002). While horizontal mixing of vegetation types across the landscape due to an

increase in the IFOV respect to plant canopy is primarily a linear process (Roberts

et al., 1993), the interaction of light with vegetation components in the

three-dimensional space is known to be highly nonlinear (Borel and Gerstl, 1994;
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Smolander and Stenberg, 2005). Although the general consensus is that linear

spectral unmixing (LSU) methods represent the simplest way to estimate the

relative cover of plant canopies and bare soil patches with reasonable accuracy

(Adams et al., 1995), the question of whether linear or non-linear processes such as

multiple-scattering from vegetated land surfaces (Borel and Gerstl, 1994;

Smolander and Stenberg, 2005) can dominate the spectral signatures of mixed

pixels over scrubland-type ecosystems is still an unresolved matter. The objective

of this study was to assess linear and non-linear mixture models for repeatable

mapping of sub-pixel canopy cover of saltcedar and associated native species, and

at the same time, identify the advantages and practical implication of

incorporating non-linear relationships for sub-pixel retrieval of saltcedar canopy

cover from Landsat data.

3.2 Data Used

3.2.1 Study site and field measurements

A test bed site was selected on the Forgotten River reach of the Rio

Grande River near the town of Candelaria, Texas (Figure 3.1). The vegetation on

both banks of the river is composed mostly of saltcedar (Tamarix chinensis L.)

with some mixes of willow (Salix spp). The spatial distribution of saltcedar along

the river is typically variable, due in part to changes in the local hydrologic

system. As one moves into the uplands, the honey mesquite (Prosopis spp.) is

found, although it is generally mixed with other bushes, weeds and saltcedar itself.

A giant saltcedar species (Tamarix aphylla L. Karst or athel tamarisk) can be also
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Figure 3.1: Geographic location of the study site (left) and species-level classification
map at 1-meter resolution (right).

found in this study site, although in very sparse occurrences along the uplands.

The giant saltcedar is an evergreen tree of up to 12 meters in height when mature.

It is widely cultivated in the Southwest and rarely weedy (Di Tomaso, 1998).

Prior to its dormant phenological stage, saltcedar’s foliage turns a

yellow-orange to orange-brown color before leaf drop (Everitt and DeLoach, 1990).

This phenological change starts in late fall or early winter seasons, although some

isolated small populations generally do not change foliage until mid-January to

early February (Everitt and DeLoach, 1990). Around the same time, the dominant

mesquite is already leaf-off, and the willow leaf is dominated by brown, green and

gray tones.

A field campaign was conducted on December 18-19 of 2005 along a foot
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trail located just above Candelaria, Texas. Spectral measurements were taken

using a portable hand-held spectro-radiometer (ASD VNIR Field Spectrometer).

The sensor has a field of view of 25o and a spectral resolution of 1nm. The sky was

nearly cloud-free at the time of data acquisition, which was from 11 a.m. to 2 p.m.

(local time). Measurements were made on well illuminated foliage of various

species, including saltcedar, willow and mesquite, at various phenological

conditions. Locations of sample species and features were also recorded with a

hand-held GPS unit with sub-meter accuracy. A two level classification system

was defined in order to link field observations to image observations. Table 3.1

summarizes the two level classification system used in this study. While the focus

was on testing remote sensing observations at the landscape level, field samples

were available at the species level.

3.2.2 Image acquisition and preprocessing

The Airborne Imaging Spectroradiometer for Applications (AISA) sensor

system (Spectral Imaging LTD) was flown over the study site on 21 December

2005. The AISA imagery acquired has 61 bands with bandwidths of around 10

nanometers and spatial resolution of 1 meter. Five image strips of 10-km length

and 1-km swath were mosaiced and a subset of 2.3-by-10 km extracted for

accuracy assessment purposes. A Landsat 7 ETM+ (path 31, row 39) acquired on

19 December 2005 was tested in this study. Since the image was acquired in the

Scan Line Corrector (SLC)-off mode, a processing level 1G was required

(http://landsat.usgs.gov). Although data gaps were nearly absent in the subset of
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Table 3.1: Two-level classification system used in the study.
Landscape
level

Species level Description

Invasive
species

Saltcedar–Green Tamarix chinensis L. with predominantly
green leaves (brown-to-green tone)

Saltcedar–Dry Tamarix chinensis L. with predominantly
dry leaves (orange-to-brown tone)

Giant saltcedar Tamarix aphylla (L.) Karst (evergreen)

Native
riparian
species

Willow Salix gooddingii B. among others
Mesquite Prosopis glandulosa (honey mesquite)
Poverty weed Iva spp.
Marsh weed Limnophila spp.

Clear
space/other
land cover
types

Herbaceous–Green Green herbaceous plants and grasses
Herbaceous–Dry Dry herbaceous plants and grasses
Creosote bush Larrea tridentata, sparsely distributed
Wetland Emergent herbaceous wetlands
Water River, pond or lake
Sand Sandy bare ground
Gravel Barren gravel, gravel road
Road Asphalt paved road
Roof Any kind of house roof
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the study site, thin cirrus clouds were present on the central part (Figure 3.2(a)),

so an atmospheric correction process was necessary (FLAASH, Research System

Inc.). Only bands 1-4 were used, as their wavelength ranges overlap with reference

data from AISA and field spectra. These wavelengths are also the most useful for

saltcedar discrimination (Everitt and DeLoach, 1990). The four bands were

co-registered and re-calibrated to match the reflectance values from a synthesized

Landsat image from AISA data (Figure 3.2(b)).

3.2.3 Reference data

Because of the intrinsic difficulties of collecting ground-truth fractional

coverage in the field, reference data were derived from AISA imagery and field

spectra. As suggested by prior work (e.g., Glenn et al., 2005), a band reduction

method based on the minimum noise fraction transform (MNF) was first applied

on the AISA imagery to obtain 10 MNF-bands, which represented nearly 90

percent of the total variance. Detailed extensions of sixteen land cover classes

(Figure 3.1-right), including two saltcedar classes (Table 3.1, species level), were

determined through applying a maximum likelihood classifier (MLC, Richards and

Jia, 1999) on the MNF-bands. Field spectra, coupled with the spectral angle

mapper method (Kruse et al., 1993), were used to produce potentially pure pixels

for training the MLC. The classification result was then aggregated in three broad

categories (Table 3.1, landscape level) and reference fractions produced by spatial

aggregation to a 30-meter resolution. Uncertainties associated with reference

fractions were also accounted by determining the entropy of MLC posterior
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probabilities (Richards and Jia, 1999). Averages of 1-m resolution entropies within

a 30-meter resolution pixel were used as uncertainty measures of the reference

fractions. Two sample sets of 300 points each were randomly drawn for training

and testing purposes. At each sampled site, four reflectance values from Landsat

bands and associate sub-pixel fractions for Invasive, Native, and Clear categories

were recorded. In addition, uncertainty values from the entropy band were

attached to each fraction in the test data.

Figure 3.2(c) shows a map of reference sub-pixel fractions, where full

sub-pixel coverage of saltcedar is shown in an intense red tone, full sub-pixel

coverage of native riparian species is shown in an intense cyan tone, and full

sub-pixel coverage of other land cover types are shown in white. Combinations of

the three land cover types yield intermediate tones. In this figure, large red

patches represent established stands of saltcedar that have monopolized the space

and replaced the native species, whereas smaller patches (pink and dark cyan

tones) represent incipient saltcedar invasion or areas where saltcedar remains an

inferior competitor due to environmental stress (Sher et al., 2002).

3.3 Methods

3.3.1 Linear spectral unmixing

In the linear spectral mixture (LSM) model, mixed spectra from remote

sensing images are assumed to represent linear combinations of signatures from

spatially segregated materials (end-members) that are present in the IFOV

(Adams et al., 1993; Gillespie, 1992; Milton, 1999). The relative contribution of
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(a) (b) (c)

Figure 3.2: True-color composite of a subset of the Landsat ETM+ image acquired
on December 19, 2005 (a), true-color composite of a synthetic Landsat image from
an AISA image acquired in December 22, 2005 (b), and map of sub-pixel fractional
coverage of Invasive saltcedar (Red) and Native riparian (Cyan) vegetation (c).
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each end-member is, in principle, proportional to its areal coverage, and the

process of inverting the linear relationships for inferring the relative cover of each

material is referred to as linear spectral unmixing (LSU). LSU methods have

become standard tools to determine the relative abundance of materials, land

cover types, or even species composition from hyperspectral and multispectral

imagery (Miao et al., 2006). There are four linear methods, which differ in the way

sub-pixel fractions are constrained. These are termed unconstrained LSU

(UCLSU), sum-constrained LSU (SCLSU), non-negativity constrained LSU

(NCLSU) and fully constrained LSU (FCLSU). Details on the formulation and

solution of each LSU method have been provided in a number of references (see

e.g., Chang and Heinz, 2000; Heinz and Chang, 2001; Hu et al., 1999; Keshava and

Mustard, 2002) and will not be reviewed here.

Image end-members for LSU methods were produced at the landscape level

by averaging the spectra from training pixels having land-cover fractions above

0.95 (i.e., nearly pure pixels), whereas species-level end-members were selected

from the original AISA imagery with the aid of GPS points acquired in the field.

Figure 3.3 shows the location of end-members on the plane spanned by the two

principal components (PC), which explain 99.6% of the total variance of the

Landsat data. The two-dimensional histogram of mixed pixels is displayed as

background image.
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3.3.2 Non-linear spectral unmixing

In addition to the four LSU methods, three non-linear methods were tested

in this study. The first method tested builds upon results from canopy scattering

modelling (Huang et al., 2007; Lewis and Disney, 2007; Smolander and Stenberg,

2005). These models allow for a simple relationship from leaf-level to canopy-level

scattering (reflectance plus transmittance). The multiple-scattering approximation

relates the canopy scattering to the leaf scattering through a nonlinear model that

can be expressed as a Neumann series (Smolander and Stenberg, 2005).

Considering a single end-member (e.g., leaf reflectance from one species), the

model uses a single canopy structural parameter termed the re-collision probability

(p), which is interpreted as the mean probability by which a photon scattered from

a leaf in the canopy will interact within the canopy again. This photon-canopy

interaction can be seen as a closed system with a positive feedback of gain p. Such

a system can be graphically represented as shown in Figure 3.4(a), where the input

corresponds to incoming radiation and the output corresponds to outgoing

radiation. The outer box represents the reflectance off the canopy (mixed pixel),

the inner box represents the reflectance off leaves (end-member), and the feedback

link represents the multiple-scattering process. The system-like conceptualization

makes it easier to extend the model for a general case with m end-members. The

system diagram for the general case is shown in Figure 3.4(b). This model is

hereafter referred to as multiple-scattering approximation (MSA). Noticeably, if

the re-collision probabilities are forced to zero, the LSM model results. In the most

general case, the total incoming radiation is split into intercepted proportions (α’s)
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by each end-member. A single photon that has interacted with the i-th

end-member may interact with the j-th end-member with probability pij or escape

re-collision with probability qi. This system can be also expressed in mathematical

terms using matrix notation (Appendix II). This is expressed in Equation (3.1) for

each of n spectral bands:

yi = qT (I−XiPT )−1Xiα, for i = 1, . . . , n (3.1)

where yi denotes the mixed pixel value for spectral band i, α = [α1 · · ·αm]T is

termed the abundance vector, q = 1−P1 is a vector of escaping probabilities, Xi

is the diagonal matrix formed with the i-th spectral sample from each

end-member, and P = [pjk] defines a re-collision probability matrix. The inversion

of these equations was implemented as a least square estimate of the abundance

vector α and the structural canopy parameters, P. Figure 3.5 exemplifies the

effects of within-canopy and above-canopy end-members at the species level for

linear and non-linear mixture models. While MSA and LSU methods perform

similarly with above-canopy end-members, within-canopy end-members favor the

MSA method. In practice, however, it is hard to acquire within-canopy

end-members as they vary significantly across space. Therefore, above-canopy

end-members at landscape level were used to test the MSA method (Figure 3.3).

The second non-linear method tested is a piece-wise linear method that

consists of multiple runs of a FCLSU with varying end-members. The method

makes use of end-members at the species level (Figure 3.3). According to the LSM

paradigm, many of the spectral signatures recorded at the species level should be
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Figure 3.5: Linear and non-linear unmixing of a saltcedar spectrum from hyperspec-
tral AISA measurement (a), and plots of within-canopy (field) and above-canopy
(image) end-members (EM). The effect of multiple scattering is apparent in the
attenuation of above-canopy reflectance.

considered mixed rather than pure pixels, as they are are interiorly located within

a mixing space (Small, 2004). However, other studies have treated this signatures

as end-members and proposed a multi-step unmixing strategy to deal with such

interiorly located end-members (Carpenter et al., 1999; Miao et al., 2006). In that

case, mixed pixels are spatially segregated at each step to ensure the end-members

fall in the corner of the cloud of mixed pixels. In this study, the mixed pixels are

segregated spectrally rather than spatially. The geometric interpretation of this

method is depicted in Figure 3.6 for four end-members with two bands. In general

terms, a subset of exactly n + 1 end-members is selected for each mixed pixel,

where n is the number of spectral bands. The subset of end-members form a

n-dimensional simplex that encloses the mixed pixel. A simplex corresponds to a
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Figure 3.6: Tesselated linear spectral unmixing, in which end-members A, B and D
are used to unmix an interior mixed pixel P, whereas end-members A, C and B are
used to unmix the exterior mixed pixel Q.

triangle in the case of Figure 3.6. Simplices enclosing each mixed pixel are built as

a Delaunay tessellation from the full set of end-members. While selected

end-members can have non-null contributions to the mixed pixel, excluded

end-members are forced to have a null contribution at that particular pixel. An

exception occurs if the pixel is exterior to the convex hull of the full set of

end-members. In this case, there is no simplex enclosing the pixel and all the

end-members in the convex hull are used for the unmixing process. In the final

step, abundances from the TLSU are aggregated to a landscape level according to

Table 3.1.

The third method tested uses a backpropagation neural network (BPNN).

A BPNN is a multi-layered, feed-forward network trained by the so-called

backpropagation algorithm (Rumelhart et al., 1986). For the unmixing problem,

the BPNN associates mixed spectra with land-cover fractions by learning from

training sets. Noticeably, the network cannot explain how mixed pixels are related

to end-members within such a ‘black-box’ setting. The architecture of the network



61

consists of one input node per band, one output neuron per class and one hidden

layer. The number of hidden neurons is generally selected by trial and error until a

satisfactory result is achieved (Liu and Wu, 2005). Three BPNNs, each with one

hidden layer of 5, 10 or 20 neurons, respectively (hereafter referred to as BPNN5,

BPNN10 and BPNN20) were tested. A network with five hidden units was found

to maintain the error characteristic for both internal and external data, so that no

overfitting of the training data occurs, and had the additional advantage of

minimal complexity.

3.3.3 Methods of accuracy assessment

The performance of each unmixing method was assessed using the root

mean square error (RMSE) criterion on predicted reflectance and sub-pixel

fractional coverage. In addition, the overall accuracy measure was derived by

means of the sub-pixel confusion-uncertainty matrix (SCM) introduced in

chapter 2. The SCM provided detailed information on the source and type of

errors, in analogy to the traditional confusion matrix for crisp classifications

(Congalton and Green, 1999). In the most general case, the SCM is formed by

confusion intervals that reflect the uncertain nature of sub-pixel distributions.

However, if the classification system consists of two or three classes, interclass

confusions can be uniquely determined through Equation (3.2):

Cij =

{∑
n min(α̃in, αjn) for i = j∑
n ∆α̃in × ∆αjn∑

k ∆αkn
for i 6= j

(3.2)

where α̃in and αjn denote the estimated and actual sub-pixel fractions for classes i

and j at pixel n, respectively, and ∆α̃in = α̃in −min(α̃in, αin) and
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∆αjn = αjn −min(α̃jn, αjn) denote the over- and underestimation errors of classes

i and j at pixel n, respectively.

3.4 Results

Table 3.2 summarizes the RMSE of sub-pixel retrieval from each method.

In general, non-linear methods performed better than linear methods, with

exception of the physically-based non-linear method (MSA) which was

outperformed by a fully constrained linear spectral unmixing method (FCLSU).

Neural networks achieved the best estimation in terms of sub-pixel class coverage

estimation, but do not provide estimation of mixed reflectance nor explain the

mixing mechanisms. While all linear unmixing methods can accurately predict the

reflectance of mixed pixels, limitations exist for accurate sub-pixel area estimation

from these methods, and specially through unconstrained and partially constrained

linear methods. Even the best performed methods (BPNN, TLSU and FCLSU)

led to errors of above 20% the pixel size, implying a limitation for small coverage

detection. Figure 3.7(a) shows the degree to which estimated fractions conform to

physically realizable fractional cover in terms of 1) how well they sum to unit, 2)

how well they are non-negative, and 3) how well they are under unit. Figure 3.7(b)

depicts the methods’ performance in terms of overall accuracy and reliability in

sub-pixel coverage retrieval from test samples. Comparison of errors from testing

data and errors from training data indicated that both unconstrained and partially

constrained linear spectral unmixing methods had lower error for the training

dataset and much higher error for the test data (low reliability), indicating a
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Table 3.2: Performance comparison of linear and non-linear spectral unmixing meth-
ods. See the text for further details.

Method RMSE Overall
Acc. (%)Reflectance [%] Area [%]

Linear
Mixing
Model

UCLSU 0.1 75.8 14.0
SCLSU 0.3 77.0 20.4
NCLSU 0.5 39.7 55.9
FCLSU 0.9 34.9 61.2

Non-linear
Mixing
Model

MSA 0.6 36.7 58.6
TLSU 0.1 28.2 67.5
BPNN5 N/A 23.9 71.5

tendency to over-fit the training data. The more reliable method was the TSLU.

Displays of retrieved sub-pixel fractions from the top-five methods are shown in

Figure 3.8. It can be seen that NCLSU and MSA overestimate the Invasive and

underestimated the Native class. Although similar in distributions, canopy covers

from BPNN5 and TLSU appear smoother than those from FCLSU. Moreover, pure

saltcedar stands seems to be better retrieved through TLSU than through BPNN5.

The best linear and non-linear methods, namely FCLSU and BPNN, were

subject to further analysis. Figure 3.9 shows box plots of estimation errors split

across various fraction ranges. In general, both methods tend to overestimate

canopy cover for low-density patches and to underestimate species canopy cover

for large-density patches. Errors from BPNN have less variability (height of boxes)

than errors from FCLSU, indicating better consistency in estimated fractions

within the same fraction range. However, median errors (center line of boxes) from

BPNN deviate more from zero than those from FCLSU, indicating larger bias in

estimations. The moderate to poor performance of each method could have been
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Figure 3.7: Estimation errors (a) and overall accuracy (b) for each method. Per-
class errors represent standard errors on predicted fractions, per-pixel errors measure
deviations from a sum-to-one condition, and below zero (< 0) and above one (> 1)
errors represent average percent of estimated area below or above acceptable sub-
pixel fraction values for any class. The reliability index correspond to the ratio of
per-class training errors to per-class testing errors.
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(a) (b) (c) (d) (e)

Figure 3.8: Sub-pixel canopy cover retrieved from several method. From left to
right: NCLSU, FCLSU, MSA, TLSU and BPNN5 (see the text).
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influenced by the ground-truth data used. An evaluation of the degree of

association between prediction errors and fraction uncertainties revealed a

significant linear correlation for FCLSU (r = 0.1199, p < 0.05) but not significant

correlation for BPNN5 (r = 0.0631, p = 0.2760). Nevertheless, a nonparametric

test based on the spearman rank correlation coefficient, which accounts for

nonlinear association (Daniel, 1990), revealed that there is indeed a significant

nonlinear correlation for BPNN5 (r = 0.2434, p < 0.05). Tables 3.3(a)-(b) show

the sub-pixel confusion matrix for these methods. The most significant difference

between these matrices is noted at the intersection of the first and second rows

with the first column. BPNN5 presents higher agreement for Invasive class (69.2%)

than FCLSU (46.8%), mainly due to the fact that FCLSU tends to confound more

Invasive with Native (36.5%) than BPNN5 does (13.6%). This is also portrayed in

the user and producer accuracies shown in Table 3.3(c). Note the highest

difference in producer accuracy from FCLSU with respect to that from BPNN5. A

significant higher overall accuracy (OA) was obtained from the non-linear method.

In addition, the CPU time required for training and testing were measured on a

conventional desktop computer. The training time for FCLSU consists of the

computation time of the end-members, which was negligible since training data

were available, whereas the training time for the BPNN5 was around 8 seconds. In

contrast, FCLSU required nearly 3 seconds to unmix one thousand pixels, where

BPNN5 took only 0.05 seconds.
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Table 3.3: Results from best linear and non-linear sub-pixel mapping methods. Sub-
pixel confusion matrix from FCLSU (a), sub-pixel confusion matrix from BPNN5
(b), and accuracy indices for each method (c).

Reference (%)
Class Inva Nati Clear Total
Inva 46.8 17.8 11.7 24.9
Nati 36.5 71.2 23.1 42.5
Clear 16.7 11.0 65.2 32.6
Total 100.0 100.0 100.0 100.0

(a)

Reference (%)
Class Inva Nati Clear Total
Inva 69.2 16.1 18.2 34.0
Nati 13.6 72.8 9.6 30.9
Clear 17.2 11.0 72.3 35.5
Total 100.0 100.0 100.0 100.0

(b)

FCLSU BPNN5
Class Prod. Acc. User Acc. Prod. Acc. User Acc.
Invasive 46.8 60.3 69.2 65.4
Native 71.2 52.7 72.8 74.5
Clear 65.2 73.0 72.3 74.6

OA = 61.20 (κ = 0.4187) OA = 71.45 (κ = 0.5711)

(c)
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3.5 Conclusions

Sub-pixel classification of moderate resolution remote sensing, such as

Landsat TM/ETM+, represents a cost-effective repeatable method for mapping

the canopy cover of saltcedar and native species over wide extents, which is crucial

to face the invasion problem on a continental scale. In this study, a number of

linear and non-linear methods for spectral unmixing were tested for retrieval of

saltcedar canopy cover. Image-based end-members were preferred over field-based

(or spectral library) end-members, as they are guaranteed to represent

measurements under nearly the same conditions of the image acquisition (Plaza

et al., 2004). The accuracy assessment was based on high-spatial resolution

hyperspectral data through RMSE measurements and sub-pixel cross-comparison

techniques (Silván-Cárdenas and Wang, 2008b).

Accuracy assessment results indicated that linear models can achieve low to

moderate accuracy if properly constrained. Although the linear model can afford

good predictions of mixed reflectance from Landsat, the relative contribution of

end-members to the mixed reflectance does not accurately represent its areal

coverage. It was shown that despite its physical basis and simple parameterization,

a method that incorporates multiple-scattering processes (Huang et al., 2007;

Lewis and Disney, 2007; Smolander and Stenberg, 2005) has high requirements

that cannot be met by multi-spectral Landsat data. Furthermore, while

within-canopy end-members are essentially non-linearly mixed due to multiple

scattering, MSA can only achieve moderate to low performance if used with

above-canopy end-members, which are mostly linearly mixed (Roberts et al.,
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1993). A piecewise linear unmixing method termed TLSU was implemented as a

means of assessing to what extent the broadly defined end-members were a factor

affecting the predicted species canopy cover from linear mixture models. The

superior performance of TLSU over FCLSU demonstrated that the number and

relative location of end-members within the cloud of mixed pixels might have been

a major factor affecting the linear spectral unmixing results. Although lacking a

physical basis, the TLSU method can be useful when the feature of interest cannot

be described in terms of extreme points of the mixed pixel cloud, such as green

vegetation, soil/rock substrate, and dark surface/shadow (Small, 2004). Results

also confirmed prior findings showing that backpropagation neural networks can

outperform linear and other nonlinear methods (Atkinson et al., 1997; Carpenter

et al., 1999; Liu and Wu, 2005), yet they require numerous training samples that

are hard to collect in the field. Less obvious is the fact that a significant higher

efficiency, in nearly a factor of 60, can be achieved with a well-sized BPNN over the

best linear spectral unmixing method. This means that, for example, if one were

to process an entire Landsat scene (∼50M pixels), once the end-members have

been determined and the network has been trained, BPNN5 would take around 42

minutes, whereas FCLSU would take around 41 hours to run on a conventional

personal computer. Therefore, the simplicity of the LSM model, largely responsible

for its popularity in the remote sensing community, is not necessarily translated

into a more efficient method for repeatable sub-pixel mapping tasks. Further

research should also consider time complexity analysis of unmixing methods for

tackling regional and global environmental problems by means of remote sensing.



Chapter 4

SUB-PIXEL CHANGE DETECTION: ANALYSIS OF SALTCEDAR
SPREADING DYNAMICS

4.1 Introduction

Since its introduction in the mid-1800s as an ornamental, windbreak and

agent of erosion control (Baum, 1967), saltcedar (Tamarix spp.) has expanded

over 600,000 hectares along riparian corridors, from sea level to 2200 m, at a rate

of 18,000 hectares per year (Di Tomaso, 1998; Everitt, 1980; Zavaleta and Royval,

2001). The most significant impacts of this drought-deciduous tree on invaded

ecosystems are the increase of soil salinity, increase of wildfire hazards, and

depletion of stream/river flow (Di Tomaso, 1998). Because of this, saltcedar has

been subject to many control and environmental restoration efforts since the 1960s

with varied success (Shafroth et al., 2005). This study hypothesizes that remote

sensing observations can provide new insights toward understanding its dynamics

and assessing its impact on native ecosystems, that are crucial to support ongoing

control efforts.

Being able to quantify extents and changes of invasive species represents a

departure point toward disentangling relationships between an invasion process

and underlying environmental fluctuations. For this matter, remote sensing change

detection analysis techniques can play a crucial role (Hamada et al., 2007; Joshi

et al., 2004; Lass et al., 2005). A variety of change detection analysis techniques

71
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have been developed for a number of applications (see reviews by Lu et al., 2004,

and Rogan et al., 2002) and new applications are being constantly developed.

However, the application of change detection techniques for saltcedar studies is

still very limited. Change detection techniques through moderate resolution

satellite observations can play an important role both in assessing effectiveness of

ongoing biological control programmes (Carruthers et al., 2006; DeLoach et al.,

2004) and in forecasting its potential spread by examining links between global

climate change, species invasion, and the welfare of native ecosystems (Friedman

et al., 2005; Morisette et al., 2006; Zavaleta and Royval, 2001).

Change detection analysis in the context of natural resources deals not

only with detecting if a change has occurred or not, but also with identifying its

nature and quantifying its aerial extents. Several change detection analysis

techniques such as image differencing and image transformation techniques can

only provide change/non-change information, whereas other techniques such as

post-classification comparison techniques can provide a complete matrix of change

directions (Lu et al., 2004). In recent years, spectral mixing models (SMM) have

been increasingly applied for land use/land cover change analysis (Adams et al.,

1995; Roberts et al., 1998; Rogan et al., 2002). As a classification approach, SMM

is appealing because it can provide information on the relative abundance of land

cover types at sub-pixel level, which is crucial for early detection of an invasion

episode (Lass et al., 2005; Silván-Cárdenas and Wang, 2008a). As a change

analysis tool, however, it presents difficulties when it comes to determining change

directions. The problem can be reduced to sub-pixel area allocation in a
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cross-comparison of categorical sub-pixel maps, for which several alternatives have

been devised (see Silván-Cárdenas and Wang, 2008b, and literature cited therein).

This paper builds upon these ideas to demonstrate a post-classification change

detection method based on sub-pixel classifications that can provide full

information on change directions. The proposed method can be summarized in

two steps. In the first step, sub-pixel classifications of multitemporal images are

derived using the tesselated linear spectral unmixing method (TLSU) proposed by

Silván-Cárdenas and Wang (2008a). In the second step, estimates of sub-pixel

fractional changes are quantified by means of a cross-tabulation matrix termed the

sub-pixel change matrix (SChM). The SChM is useful to estimate transition

probabilities which can be further used for land cover change analysis and

modeling.

The proposed approach is demonstrated on a segment of the Rio Grande

river between the towns of Candelaria, Texas, and Presidio, Texas, using

multitemporal Landsat TM/ETM+ data acquired at five dates within the period

1993-2005. Observed extents and changes were correlated with a number of

environmental factors known to influence saltcedar spread (Cleverly et al., 2002;

Di Tomaso, 1998; Friedman et al., 2005; Sher et al., 2002; Stromberg, 1998; Tickner

et al., 2001; Warren and Turner, 1975; Zavaleta and Royval, 2001) in order to:

1. Determine the dynamics of saltcedar and associate native riparian species

along the stretch of the river,

2. Test the role of several environmental factors in driving observed
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distributions and changes, and

3. Determine whether or not a relationship between reductions in river flow and

saltcedar coverage exists in statistically significant manner.

The organization of the paper is as follows. Section 4.2 provides a brief

description of major environmental relationships as involved in saltcear invasion.

Section 4.3 describes the study site and data used. Section 4.4 provides details on

the image classification and sub-pixel change detection methods, and shows how

the change matrix is applied in a Markov chain model. Section 4.5 presents results

obtained with a discussion pertaining to the posed research questions above, and

Section 4.7 provides conclusions drawn from the study.

4.2 Environmental interactions and saltcedar invasion

Saltcedar is a prolific, self-compatible plant that can produce over a half

million seeds, which require prolonged moisture for germination and subsequent

establishment (Di Tomaso, 1998; Warren and Turner, 1975). Because viability of

seeds is relatively short, one major determinant of the successful establishment of

saltcedar are the fluctuations in river flow during the peak flowering season

(Warren and Turner, 1975). Although it can bloom almost the entire growing

season (Everitt, 1980), saltcedar has one major peak of seed production in June to

July and one minor peak in August to September (Warren and Turner, 1975). Its

establishment occurs mainly along exposed areas of gently sloping river banks

(Di Tomaso, 1998); however its growth during the first few years of establishment

has been observed to be negatively correlated with neighbor density, suggesting a
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limited ability to spread in presence of competition (Sher et al., 2002). Once

established, saltcedar is remarkably tolerant to a number of environmental stress

conditions including droughts, inundations and high soil salinity (Cleverly et al.,

1997; Di Tomaso, 1998; Warren and Turner, 1975). The deep root system of

saltcedar (up to 50 m) is the main trait responsible for its survival under stress

(Di Tomaso, 1998). Observations in the San Pedro River, Arizona, has suggested

that fluctuations in groundwater depth influence differently age structure of

saltcedar and cottonwood stands (Stromberg, 1998). Moreover, saltcedar tends to

increase in relative abundance at sites that show evidence of ground-water decline.

Despite the complex relationship of hydrogeomorphic factors that seem to

affect saltcedar dynamics (Tickner et al., 2001), empirical investigations have

found that mean annual precipitation and mean annual minimum temperature are

strong predictors of saltcedar occurrence on a continental scale (Friedman et al.,

2005; Zavaleta and Royval, 2001). Zavaleta and Royval (2001) reported that

occurrence of saltcedar peaks at lowest mean annual precipitation in the US (47

mm/yr) and lowers to zero by 1150 mm/yr supporting the existing hypothesis that

saltcedar is limited in distribution to relatively dry areas. Nevertheless, the same

study reported a higher saltcedar occurrence within the precipitation range of 350

to 650mm/yr, occurring mostly in warm regions. Friedman et al. (2005) reported a

positive correlation between saltcedar occurrence on 475 stream gaging stations in

17 states of the Western US and the mean annual minimum temperature, which

supports the existing hypothesis of frost sensitivity of saltcedar. It is also well

known by its researchers (see Zavaleta and Royval, 2001, and literature cited
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therein), that saltcedar range and expansion rates are also limited by local

elevation. Although it has been reported to occur as high as 3350 m above see

level, it spreads very slowly after 1220 m.

The impact that saltcedar invasion has on the river flow is also an

important and controversial issue. Estimates on water consumption by saltcedar

vary greatly depending on location, maturity, density and depth to groundwater.

Evapotranspiration estimates for saltcedar range from 0.7 to 3.4 m/yr depending

on the measuring technique, site conditions, and duration of measurements

(Shafroth et al., 2005). Based on peer-reviewed scientific literature for the last 40

years, sap flux rates and sap wood area, and potential evaporation rates, Owens

and Moore (2007) determined an upper bound of saltcedar water composition at

tree-level on a daily basis as 122 L/d, (which is converted to 1.78 m/yr considering

an average canopy area of 25 m2, or to a larger value if the stand density is

considered as well). Studies along the middle Rio Grande River in New Mexico

have reported significant saltcedar evapotranspiration between May and October,

with estimated maximum (around 6 mm/d or 2.19 m/yr) occurring in mid August

(Cleverly et al., 2002). In contrast, the water used by the native mesquite within

May and September has been measured from 1 to 2.4 mm/d (0.36-0.88 m/yr) and

around 1.2 yr/d for willow (see Scott et al., 2000, and literature cited therein).

The timing is relevant for testing the hypothesis that saltcedar consumes more

water on an areal basis. If saltcedar has significant impact on the water flow, then

the correlation between the loss of discharge within the segment of the river during

peak evapotranspiration months and vegetation extent should be stronger for
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saltcedar than for native plants. A conservative estimate of the overuse of water

by saltcedar is over 0.3 m/yr respect to the water used by associated native species

(Tamarisk Coalition, 2003).

4.3 Study site and data used

The study area is located in Presidio Valley, between the sister towns of

Candelaria, TX-San Antonio del Bravo, Chihuahua, and Presidio, TX-Ojinaga,

Chihuahua, from 1993 to 2005. At this site, the river banks have been taken up by

saltcedar, and the native cottonwood (Populus spp.), that once dominated the

area, is completely absent. The successful establishment of saltcedar in Presidio

Valley has been attributed to two consecutive floods in 1941 and 1942 followed by

a prolonged drought during the second half of the century and the subsequent

abandonment of irrigation fields (Everitt, 1998), thus portraying saltcedar as an

opportunistic rather than an aggressive colonizer.

The boundary of the study site was selected to match the Forgotten River

Management project carried out by the University of Texas at Austin (UT

Austin)’s Center for Space Research (CSR, 2007) for the US Army Corps of

Engineers, and clipped at the top 6 km (3.7 mi) above Candelaria town and at the

bottom 1.6 km (1 mi) above Presidio town in West Texas (Figure 3.1). The

boundary of the Forgotten River Management project was produced by

intersecting a 3-kilometer buffer surrounding the main channel centerline of the

Forgotten River reach and a mask of areas with elevation above the river channel

base elevation of 100 m or less (CSR, 2007). The total study area is
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17,700.3 hectares. The average annual precipitation in the study period was less

than 254 mm (10 inches), most of which falls during the summer growing season,

and the average temperature was around 21oC (70oF) (Figure 4.2).

4.3.1 Image acquisition and preprocessing

Four Landsat TM images acquired in years 1993, 1996, 2000 and 2003 and

one Landsat ETM+ image acquired in 2005 in the Scan Line Corrector (SLC) off

mode (path/row = 31/39) were used in this study. All the images were acquired in

December when senescent saltcedar is best discriminated from native willows

(Salix spp.) and mesquites (Prosopis spp.) (Everitt and DeLoach, 1990). Table 4.1

summarizes the characteristics of the five Landsat images used. Image TM96 had

minor striping noise that becomes apparent only after processing. Image ETM05

had cloud cover of 35%, but only 22% located in the lower-left quadrant, and even

less in the subset of the study site, where clouds were nearly transparent and

localized in the northern end. In addition to these images, one hyperspectral image

acquired with the Airborne Imaging Spectroradiometer for Applications (AISA)

sensor at 1-m resolution on Dec-21-2005 was used for radiometric calibration, and

one ETM+ image registered in the UTM NAD27 coordinate system was acquired

from the CSR. This image, hereafter referred to as ETM02, was acquired on

Nov-11-2002 and was used only as spatial reference for co-registration.

Of the various requirements of preprocessing for change detection,

multi-temporal image registration and radiometric and atmospheric correction are

the most important (Lu et al., 2004). All the Landsat images were clipped,
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Figure 4.1: Geographic location and boundary of the study site.
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Table 4.1: Characteristics of Landsat images used in the study.
Image Sensor Acq. Date Acq. Time Sun Elev/ Comments
ID (GMT) Az [deg]
TM93 TM5 Dec-26-1993 4:49 p.m. 28/147 Excellent quality
TM96 TM5 Dec-18-1996 4:49 p.m. 29/148 Minor striping
TM00 TM5 Dec-29-2000 5:07 p.m. 30/150 Excellent quality
TM03 TM5 Dec-22-2003 5:06 p.m. 30/151 Excellent quality
ETM05 ETM+ Dec-19-2005 5:17 p.m. 32/154 SLC-off, cloudy

co-registered, and normalized onto a common basis. The co-registration was

performed using the image ETM02 as base. Ground control points between the

base and the target images were manually paired. The number of control points

varied from image to image (from least to most recent acquisition dates these were

12, 13, 17, 15 and 13, respectively), but the root mean square error was assured

under one half the pixel size in most of the cases (0.57, 0.36, 0.64, 0.40 and 0.36,

respectively). The warping function was a 1st order polynomial and the

resampling method was the cubic convolution method. During the registration

process the images were re-projected from WGS84 to UTM NAD27 coordinate

system to match the base image.

The radiometric normalization was based on the iteratively re-weighted

multivariate alternation detection (IR-MAD) transformation method (Canty and

Nielsen, 2008; Nielsen, 2007). The IR-MAD method automatically detects pseudo

invariant features by applying iteratively a spectral invariant transformation (the

MAD transformation) on a pair of images. The normalization of the TM images

was carried out sequentially starting with the latest image (TM03) and ending

with the oldest (TM93). The AISA image was used as reference for the first image.

Then the normalized TM03 was used as reference to normalize TM00, and so on.
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By using the closest date as reference rather than a fixed date, the influence of

changes in the normalization with the IR-MAD method is minimized for all the

images. The ETM05 image was normalized using the AISA image as a base image

and was subject to a further cloud removal processing. The cloud removal method

used relies in the ability to sample the difference between the clean image (TM03)

and the cloudy image (ETM05) at known sites of invariant features. This was

possible by using the pseudo-invariant features detected with the IR-MAD

transformation between the TM03 and the AISA images. Samples were then

interpolated using geostatstical tools to create a cloud distribution map that can

be subtracted from the cloudy image.

All image processing was performed with the ENVI image analysis

environment (ITT Visual Information Solutions) and ArcGIS (Environmental

Systems Research Institute). Extension to ENVI for the IR-MAD was acquired

from Canty (2006).

4.3.2 Environmental data

This research used several datasets in order to investigate the role of some

environmental factors known to influence saltcedar dynamics. Table 4.2

summarizes the characteristics and how each dataset was used in the study.

Details on these datasets are provided below.

Monthly climate records maintained by the National Oceanic and

Atmospheric Administration (NOAA)’s National Climatic Data Center (NCDC)

were acquired from climatological stations at Candelaria, Texas (station number
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Table 4.2: Characteristics and purpose of environmental data used in the study.
Environmental data Characteristics How used
1. Precipitation

Non-spatial,
dynamical

Role in driving overall
change

2. Temperature
3. Discharge
4. Groundwater

5. Loss of discharge
Impact on water
availability

6. Elevation
Spatial,
non-dynamical

Role in determining
local capacity

7. Slope
8. Distance to river

411416/99999), and Presidio, Texas (station number 417262/99999). Figure 4.2

shows the climograph based on these datasets.

Daily discharge records maintained by the International Boundary and

Water Commission (IBWC) were acquired for gauge stations at “Rio Grande Near

Candelaria, Texas, and San Antonio del Bravo, Chih”, and at “Rio Grande above

Rio Conchos near Presidio, Texas, and Ojinaga, Chih.” The total discharge for the

growing season was computed from data recorded between 1-May and 31-October.

The lowest discharge record (Figure 4.3) occurred in 2003. The loss of flow for each

month was also determined by subtracting downstream flows from upstream flows.

Since local storms and irrigation surplus may increase the river flow downstream,

only positive differences (losses) of monthly totals between May and October were

accumulated for each year. Figure 4.3 shows plots from these datasets.

As stated in Section 4.2, the level of groundwater is a major controlling

factor of saltcedar dynamics. Groundwater depth measurements were provided by

the Texas Water Development Board (TWDB) at both Candelaria and Presidio.
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Figure 4.2: Climograph of the study area. Error bars indicate temperature ranges
between mean minimum and mean maximum. Plots are based on the Annual Cli-
matological Summary provided by NOOA National Climatic Data Center for Can-
delaria, TX (station 411416/99999) and Presidio, TX (station 417262/99999).

Of 75 wells located within the boundaries of the study area only 16 had

measurements during the study period, most of which were made in 2000. The

more or less continuous record throughout the period was generated by two

co-located wells near Candelaria (state well numbers 5151807 and 5151808).

Existing data gaps for years 1997, 1999 and 2003 were linearly interpolated. In

order to obtain a better estimate of the average groundwater depth in the region,

measurements from another well (state well number 7430706), not falling within

the boundaries, though located near Presidio, was considered. Again, there were

data gaps for the years 1997, 1998, 2001 and 2003 which were filled through

interpolation. The average of groundwater depth measurements at the two

extreme ends of the study area should be representative of values along the river

length, yet it may not be representative of the groundwater depth of an

across-section of the riparian zone. Nonetheless, this study did not consider spatial
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Figure 4.3: River discharge data. Total discharge for the growing season (May-Oct)
at Candelaria and Presidio with estimated water lost in millions of cubic meter
(mcm) (a) and monthly averages from the two stations during image acquisition
years (b). The data were provided by the International Boundary and Water Com-
mission (IBWC) with data for 2004 through 2007 provisional and subject to revision.
Flow data for Candelaria during most of 2003 was missing.
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Figure 4.4: Variation of groundwater level from measurements near Candelaria and
Presidio, Texas. Plots are based on the Water Level Table for Presidio county
as provided by the Texas Water Development Board (TWDB). The time series
for Candelaria is based on two wells identified by the state well numbers 5151807
and 5151808 and the time series for Presidio corresponds to the state well number
7430706.

or intra-annual variations of groundwater depth measurements. Figure 4.4 shows

plots of these data, and the average over the two sites.

A digital elevation model (DEM) was provided by the CSR and was

produced at 15-meter resolution by mosaicing the best available data from both

the Mexico and the US sides of the river (CSR, 2007). The data were resampled at

30 meters to match Landsat resolution and because some artifacts became evident

after processing at its original resolution, especially on the Mexican side. A slope

layer was derived from the resampled DEM. The main river channel was extracted

from the National Hydrography Dataset (NHD) and the distance to the main

channel was produced through a minimum distance function available in ArcGIS.
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4.4 Methods

4.4.1 Sub-pixel classification method

The multi-temporal normalized Landsat images were classified using the

tesselated linear spectral unmixing method described in Chapter 3. The TLSU

method is based on a two-level classification system. The level 1 defines the classes

of interest at landscape level. The level 2 defines the classes down to species level,

which are considered end-members within multiple spectral mixture models. The

end-members are used to partition the entire cloud of mixed pixels based on their

relative location within the radiometric space. Each subset of pixels is unmixed by

inverting a mixture model that considers only the closest end-members in the

radiometric space. In the last step, fractions are aggregated at the level 1. In this

study, we considered three classes at level 1: Invasive, Native, and Clear. These

classes were further split into 16 classes at level 2. The land cover class Invasive

consists of two classes at level 2: Saltcedar-Green and Saltcedar-Dry, which are

intended to capture the radiometric variability of saltcedar canopy at the time of

image acquisition. Likewise, the land cover class Native is composed of the main

woody riparian vegetation types in the area. This category is represented by four

classes at level 2: Willow, Mesquite, Poverty weed, and Marsh weed. The class

Clear included any other land cover type, but it is primarily dominated by open

areas such as grasslands and wetlands. This category is represented by 10 classes

at level 2: Creosote bush, Herbaceous-Green, Herbaceous-Dry, Row Crops,

Wetland, Water, Sand, Gravel, Paved Road and House Roof. The use of only three

broad categories in place of more detailed ones allows keeping the problem
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manageable while retaining the most important information from a standpoint of

invasive species. The above method was implemented in MATLAB programming

system (The Mathworks Inc.) using a unique set of end-members for all the

images. The end-members were extracted from the AISA image with the help of

GPS points collected in the field two days prior to the acquisition of the image

(Silván-Cárdenas and Wang, 2008a). Because the AISA image measures the

electromagnetic spectrum only in the visible and near infrared regions, Landsat

bands 5 and 7, which fall in the mid-infrared region, could not be used.

Fortunately, the VNIR spectral region has proved effective in discriminating

saltcedar from native species around the acquisition date (Everitt and DeLoach,

1990).

4.4.2 Sub-pixel change matrix

A cross-tabulation matrix, termed the sub-pixel change matrix (SChM), is

introduced for the analysis of multi-temporal sub-pixel classifications. The

definition of the SChM is based on a fundamental assumption of minimal change

at sub-pixel level, an approach that is similar to that of the MIN-PROD operator

proposed previously for map comparisons and accuracy assessment (Pontius Jr and

Cheuk, 2006; Silván-Cárdenas and Wang, 2008b). The minimal change assumption

acknowledges that not all changes occurring within the pixel are reflected as

changes in the fractional cover. Undetected changes are primarily due to changes

in location of classes within the pixel (sub-pixel location change) rather than to

changes of areal extent (quantity change). The quantity change is given by the
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absolute difference between co-registered fractions of two consecutive dates,

whereas the unchanged fraction (which may include the sub-pixel location change)

is given by the minimum between the two dates’ fractions.

More formally stated, let αi and βi denote the sub-pixel fractions of class i

at initial and ending dates, respectively. Then, ui = min(αi, βi) defines the

unchanged fraction of class i, and gi = βi − ui and li = αi − ui define the gained

and lost fractions of class i, respectively. Since the total gained fraction must equal

the total lost fraction, they can be further split on pair-wise changes using the

expected sub-pixel change given by the probability pij that a random point from

the total change fraction had changed from class i to class j, i.e., pij = ligj/
∑

k gk.

Therefore, the change fraction from class i into class j can be expressed in

mathematical terms as in Equation (4.1):

Cij =

{
ui for i = j

li
gj∑
k gk

for i 6= j
(4.1)

The entries of SChM correspond to the sum of change fractions given by

Equation 4.1 over all pixels of the study site. Change fractions can be also

multiplied by the pixel area to reflect change areas rather than fractions. A

convention is used here when reporting the SChM that the diagonal cells

correspond to the persistent area for each class indicated by the row (or column)

labels, whereas off-diagonal cells correspond to the area changed from the class

indicated by the row label to the class indicated by the column label (see e.g.,

Table 4.4).

Change fractions defined by Equation 4.1 comply with the important
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properties of diagonalization and marginal sum (Silván-Cárdenas and Wang,

2008b), which can be re-stated as follows:

i. Diagonalization. Sub-pixel changes are null if, and only if, the fractions at

initial and ending dates are the same.

ii. Marginal sums. Marginal sums of sub-pixel changes match total fractions.

More specifically,
∑

j Cij = αi and
∑

i Cij = βj .

4.4.3 Markovian transition dynamics

Because of the properties above, the SChM can be used to estimate the

transition probabilities of a random finite-state time-homogeneous Markov chain

model (Meyn and Tweedie, 2008). This idea is not new at all. Land research

scientists have exploited this idea in empirical investigations of urban dynamics

using traditional land cover change matrices from crisp classifications (see e.g.,

de Almeida et al., 2003). What is novel in this study is the use of sub-pixel

classifications in place of crisp classifications. Sub-pixel classification makes it

possible to add the spatial component to the analysis as the transition

probabilities can be estimated on a per-pixel basis. This is possible provided that

land cover fractions can be treated as probabilities, i.e., the probability that a

random point within the pixel belongs to a class.

In a Markov chain model, land cover changes occur randomly and

stationarily. The process is entirely described by a transition probability matrix

(TPM) P, formed by the probabilities Pij of change from class i onto class j
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within one single period (e.g., one year). According to the Markovian principle,

the TPM for n periods is obtained by multiplying P n times, i.e., P ·P · · ·P = Pn

is the n-period TPM. Elements of the n-period TPM can be estimated through the

normalized changes Cij/αi. Furthermore, as long as the eigenvalues of Pn are

strictly positive, P can be determined as the nth root of matrix Pn (Bini et al.,

2005). Once estimated, the transition probabilities can be applied for predicting

land cover fractions. Specifically, if α0 denotes the column vector of land cover

fractions for a given pixel at initial time, then the land cover fractions after n

periods can be determined as αn = Pnα0. Noticeably, as n increases, αn

approaches the steady state of the system. The long-term equilibrium of a

Markovian model does not generally match the dynamics of real systems, yet the

stationary transition probabilities can be used as an approximation for the first

few periods, after which conditions may change and new data is necessary to

recompute the transition probabilities.

Two estimates of TPMs are independently considered in this study. The

first estimation assumes space-invariance and consists of one TPM per n-period,

each derived from the average change over all pixels of the study site. The second

estimation assumes time-invariance and consists of one TPM per pixel, each

derived from a weighted average change over all the periods, with weights

corresponding to the number of years within each period.
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4.5 Results

4.6 Validation of sub-pixel classifications

Figure 4.5 shows distributions of sub-pixel cover derived from the TLSU

method. With the purpose of showing the continuum of mixture proportions and

density of mixtures, these maps represent the values of native and invasive land

cover fractions by means of a two dimensional color ramp (red-cyan-white). The

two dimensional color ramp is simulated by setting the display channels as follows:

R = 1−N , G = B = 1− I, where R, G, and B represent the display channels for

red, green and blue, respectively, and N and I represent the fractional land cover

of native and invasive species, respectively. According to this color scale, the pure

red color corresponds to a pure, dense saltcedar stands, whereas pure cyan color

corresponds to pure native stands. Combinations of the red and cyan tones

represent mixed stands with various densities.

Given the difficulties to measure the actual vegetation cover in the ground

and the lack of historic maps showing actual extends of the riparian vegetation,

direct quantitative assessment of classification accuracy was only possible for the

2005 data using the AISA image as reference. In a related study, Silván-Cárdenas

and Wang (2008a) performed a comprehensive accuracy assessment of sub-pixel

classifications from a number of classification methods including TLSU. A similar

approach was adopted here to assess the accuracy of the 2005 map. Groundtruth

fractional cover were derived by the maximum likelihood classification of the AISA

image into 16 classes (level 2) followed by spatial and thematic aggregation to

match the Landsat resolution and the classification level 1. The overall accuracy,
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Figure 4.5: Multi-temporal sub-pixel classifications for a subset of the study site
located in Ruidosa, TX. GPS polygons recorded in October, 2006 are overlaid on
the classification map of 2005.
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Table 4.3: Comparison between vegetation composition from remote sensing and
field observations for the polygons shown in Figure 4.5.

Poly Area Classification
ID [Ha] Saltc Nati Field observations
14 10.35 54% 39% mostly saltcedar, apparently submerged
15 11.43 13% 49% mixed mesquite/poverty weed/creosote bush
30 10.08 39% 46% saltcedar, hard to see NAIP
31 6.39 58% 12% mixed saltcedar/mesquite/willow/grasses
32 64.26 56% 36% thick saltcedar near road/mixed mesquite
33 24.93 13% 5% mixed creosote bush/mesquite/50% bare soil

based on random samples along the 10-km stretch covered by the AISA data, was

74%(κ = 0.58). Because the segment corresponds to the cloudy part of the ETM05,

the above accuracy provides a rather conservative estimation of the classification

accuracy from other images, which had superior radiometric quality. In addition,

inspection of 36 polygons recorded by the CSR crew in 2006 showed an acceptable

match with computed fractional coverage from ETM05. Table 4.3 presents some

examples of estimated areas for polygons shown in Figure 4.5 (right).

In order to perform a validation for the other datasets, the total coverage

was assessed using the river flow data. It is widely recognized that vegetation

fluctuation along riparian corridors are largely a resemblance of the fluctuations in

river flow regimes (Auble et al., 1994; Merritt and Cooper, 2000). In this study,

total hectares covered by each species were correlated with peak winter and peak

summer river discharge during the image acquisition years. Although

non-statistical significant at 0.05-level, saltcedar land cover was better correlated

with the winter peak discharge (R2 = 0.69, p = 0.08, n = 5) than with the summer

peak discharge (R2 = 0.32, p = 0.32, n = 5), whereas the native species land cover
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Figure 4.6: Estimate coverage of woody riparian vegetation along the segment of the
Rio Grande River from Candelaria to Presidio, TX. Yearly estimations (discontinue
lines) are based on a Markov model. Thinner bars correspond to estimated areas
for 2002 from an external source (see the text).

was better correlated with the summer peak discharge (R2 = 0.60, p = 0.14, n = 5)

than with the winter peak discharge (R2 = 0.40, p = 0.26, n = 5). In addition, an

external estimate of the species coverage was derived from a land cover

classification produced by the CSR (2007), which was based on the ETM02 image.

Areas from CSR categories Saltcedar, Saltcedar (submerged), Saltcedar

(mowed/new growth/sparse) plus 50% from Saltcedar/mesquite mix correspond to

Saltcedar area here, whereas areas from categories Vegetation in water/shadow,

Other dense shrub/scrub, plus 50% from Saltcedar/mesquite mix correspond to

Native area here. Figure 4.6 shows a plot of the total hectares covered by each

species together with yearly estimates yielded by the transition probability

matrices and estimates from classification maps produced by the CSR.
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4.6.1 Land cover changes

In order to provide an answer to the first research question, change areas

were determined through the SChM for each time period. Table 4.4 shows the

results. Total hectares covered by each species are given in the column and row

totals, which correspond to the wide vertical bars plotted in Figure 4.6.

Contrary to expectations, the results support that there has not been a

expansion of saltcedar range nor a continuous reduction of native species. The

greatest change into saltcedar land cover type (+2606 hectares) occurred between

2003 and 2005 and was preceded by the greatest saltcedar reduction

(-2437 hectares) between 2000 and 2003. These extreme changes of saltcedar

concur with the extreme changes of native land cover type species but in the

reverse direction (-1782 and +1713 hectares, respectively). These changes could

have been influenced by the combination of two extreme events. The record low

flow during most of 2003, under 1 milion m3 and with only 15 days of precipitation

above 2.5 cm, suggests that the water table was indeed significantly lower than the

interpolated value shown in Figure 4.4. Therefore, as a drought-deciduous,

saltcedar could have shed off leaves well before the acquisition date, which resulted

in less saltcedar being detected while more native species from the under story

became apparent. The following year, when precipitation peaked (averaging

650 mm), saltcedar appear to have recovered vigorously.
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Table 4.4: Sub-pixel change matrix results. Tables are based on the time periods
1993-1996 (a), 1996-2000 (b), 2000-2003 (c), and 2003-2005 (d). Entries are in
hectares and rounded to the nearest integer.

1996 Change
fromClass Saltc Native Clear Total

19
93

Saltc 2868 885 1159 4911 2043
Native 741 2008 694 3443 1435
Clear 862 511 7974 9346 1372
Total 4470 3403 9827 17700 4851

Change to 1602 1395 1853 4851
Image diff. 441 40 -481

(a)

2000 Change
fromClass Saltc Native Clear Total

19
96

Saltc 2898 744 829 4470 1572
Native 816 2074 513 3403 1329
Clear 1261 653 7914 9827 1913
Total 4974 3471 9256 17700 4814

Change to 2076 1396 1342 4814
Image diff. -504 -68 572

(b)

2003 Change
fromClass Saltc Native Clear Total

20
00

Saltc 2537 1211 1226 4974 2437
Native 549 2366 555 3471 1104
Clear 783 503 7970 9256 1285
Total 3869 4080 9752 17700 4826

Change to 1332 1713 1781 4826
Image diff. 1105 -609 -496

(c)

Continued on next page.
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Table 4.4: Continued.

2005 Change
fromClass Saltc Native Clear Total

20
03

Saltc 2526 479 864 3869 1343
Native 1205 2298 577 4080 1782
Clear 1402 593 7757 9752 1995
Total 5132 3370 9199 17700 5120

Change to 2606 1072 1442 5120
Image diff. -1263 710 553

(d)

4.6.2 Role of environmental factors

While a complex suite of environmental relationships appear to be involved

in saltcedar invasion, simple correlations between land cover change types and

environmental measurements can help to disclose the relative merit of each

environmental factor in driving the overall land cover change dynamics. A number

of environmental factors known to influence saltcedar dynamics were correlated

with estimated yearly, space-independent transition probabilities for each period.

The most significant factors in terms of correlation were the average annual

precipitation (PRECIP1), the average mean minimum temperature (TEMP1), the

peak winter discharge (DISCH1), the growing season discharge for the first year

(DISCH2) and the maximum groundwater depth in the period (DEPTH1). The

R-square values for these factors are summarized in Table 4.5. Although the

analysis is based on only four time periods, some results were statistically

significant at 0.05-level. With exception of DISCH2, all these factors influence,

either positively or negatively, the changes from native vegetation and clear space
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into saltcedar (P21,P31). While an increase in precipitation favors these types of

change, increase in temperature or groundwater depth seems to affect them

negatively. These factors also correlate well with the probabilities of colonization

of clear space by native species (P32) and of persistence of the clear space

throughout the period (P33). Interestingly, these factors did not correlate well with

the probability of change from saltcedar to native species on a yearly basis,

perhaps due to a mismatch in the temporal scale between the environmental

factors and the type of change. Indeed, when using a two-year transition

probability, the change from saltcedar into native was also strongly correlated with

precipitation (rightmost column of Table 4.5). Furthermore, this type of change

was negatively correlated with growing season discharge during the first year of the

period, suggesting that the replacement of saltcedar occurs mainly during the

early stages of its establishment when its survival depends on the river flow. This

is also in agreement with observations on competitive inferiority of saltcedar

during its early stage (Sher et al., 2002). That change probabilities P13 and P23

were not significantly correlated with any of the factors tested suggests that

clearing process in the area may not be dominated by environmental interactions,

but rather by human-induced disturbances.

In order to test the role of local elevation, slope and distance to main

channel of the river, the temporal maximum of sub-pixel fractions were computed

and grouped by percentiles for each dataset. The maximum fraction so-computed

provides an indication of the cell carrying capacity assuming a proportional

relationship between over story area covered and the number of individuals within
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Table 4.5: R2 values from yearly transition probabilities and environmental data.
Pij denotes the yearly transition probability from class i to class j, where i, j can
take a values 1 for Saltcedar, 2 for Native, and 3 for Clear. Values in boldface
were statistical significant on an F-test (p = 0.05), and values in cursive indicate a
negative correlation. P

(2)
12 is a two-year transition probability.

Explanatory P11 P21 P31 P12 P22 P32 P13 P23 P33 P
(2)
12

PRECIP1 0.2 0.9 1.0 0.3 0.8 1.0 0.6 0.2 1.0 0.9
TEMP1 0.0 1.0 0.9 0.2 0.9 1.0 0.4 0.2 1.0 0.8
DISCH1 0.0 1.0 0.9 0.2 0.9 0.9 0.4 0.3 0.9 0.8
DISCH2 0.8 0.0 0.0 1.0 0.0 0.0 0.3 0.1 0.0 0.0
DEPTH1 0.1 0.8 1.0 0.1 0.7 0.9 0.4 0.1 0.9 0.8

the 30-by-30 meter plot defined by each cell. In addition, the sum of time-invariant

transition probabilities from each vegetation type into other land cover type, i.e.,

P12 + P13 for saltcedar and P21 + P23 for native species, were computed and

grouped by percentiles as well. These probabilities are referred to as extinction

probabilities because they provide indication on the extinction rates for each

species at each site. Means of maximum fractions and extinction probabilities were

estimated for each group, grouping variable, and vegetation type. Plots of

estimated means with confidence intervals are provided in Figure 4.7. In terms of

apparent local capacity, saltcedar was superior under varying topographic

conditions. The variation of local capacity along elevation gradients was the most

erratic, although with an overall positive trend. Slope variations showed little or

no influence in variability of local capacity, whereas distance to main channel had

the most structured covariation among the three. Local capacity of native species

seems nearly constant within a 300-meter buffer along the river channel, where

saltcedar’s decays linearly. Beyond that point, both capacities would decay at
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similar rates but saltcedar’s remain greater than native’s. In terms of extinction

probabilities, the overall trends are reversed from those observed for local capacity.

Saltcedar extinction was not significantly different from native species under

varying topographic conditions; however, saltcedar mortality seems to increase

slower than native’s as one moves away from the channel. The apparent larger

capacity or lower mortality for saltcedar at sites farther away from the the river

channel may be explained by its deep roots which enable it to reach lowering water

tables at these sites (Di Tomaso, 1998).

4.6.3 Relation of water lost with vegetation extents

Yearly Markovian estimates of vegetation coverage (Figure 4.6) were

correlated with the loss of river flow during the growing season, i.e., the water lost

(Figure 4.3). Figure 4.8 illustrates these relations. Although the estimated water

lost within the segment of the river does not take into account contributions from

local storms or losses from surface evaporation and local irrigation, there is no

reason to think these fluctuations should favor one species in particular. However,

the influence from extremely large fluctuations of river flow, especially during the

winter season (Figure 4.3(b)), and/or the fact the Markov model may not capture

the variations in vegetation coverage due to such fluctuations, was considered with

care. Specifically, the points for the years 1995 and 2002, which showed relatively

high values of water lost and for which the vegetation extent did not come directly

from remote sensing observations, were not taken into account. Figure 4.8(a)

shows that the water lost in the segment of the river is positively correlated with
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Figure 4.7: Estimate mean of maximum sub-pixel fractions (left column) and time-
invariant extinction probabilities grouped by percentiles of terrain elevation (top),
terrain slope (middle), and distance to main channel (bottom). Error bars indicate
the confidence intervals of estimated mean at 0.05-level.
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saltcedar extent (R2 = 0.69, p = 0.002, n = 11). Furthermore, the slope of the

regression line yields an estimated increment of water lost per hectare of saltcedar

around 2 m/yr, which is in agreement with the average evapotranspiration regime

of saltcedar (Shafroth et al., 2005). In contrast, Figure 4.8(b) shows that the

correlation of native species coverage with water lost was negative, yet not

statistically significant at 0.05 level (R2 = 0.28, p = 0.094,n = 11,n = 11).

4.7 Conclusions

This research demonstrated the application of a sub-pixel change detection

technique for vegetation change analysis. Saltcedar invasion along the Rio Grande

was taken as case study. A cross-tabulation matrix termed the sub-pixel change

matrix (SChM) was adopted as the main change analysis tool because it provides

full information on change directions. Furthermore, because the SChM fulfills the

diagonalization and marginal sum characteristics (Silván-Cárdenas and Wang,

2008b), it is useful for estimating transition probabilities, which can be further

correlated with change drivers or used as model for land cover change.

Contrary to suspicions, sub-pixel classifications of multi-temporal Landsat

data acquired at five dates within the period 1993-2005 showed no continuous

expansion of areas covered by saltcedar nor continuous reduction of areas covered

by native species. Nonetheless, results from the change detection analysis suggests

that saltcedar dynamics is more sensitive to environmental fluctuations, and

confirms its ability to recover from droughts and periods of groundwater drop

(Smith et al., 1998). Simple correlations between estimated yearly transition
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Figure 4.8: Relationship between vegetation extent and monthly averages of dis-
charge loss of the Rio Grande between Candelaria and Presidio, TX.
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probabilities with environmental data suggests that the most significant correlates

of changes occurred in the study area were the average annual precipitation, the

average minimum temperature, the peak winter discharge and the maximum

groundwater depth in the period. The interdependency of these factors was

evidenced by the fact that they correlated similarly (except for a sign) with the

same types of changes (Table 4.5).

Although saltcedar occurrence has been shown to be negatively correlated

with annual precipitation when considering a wide range of precipitation regimes,

it is also true that such relation is reversed within the precipitation range from 350

to 650 mm/yr, which occurs mostly in warm regions (Zavaleta and Royval, 2001).

Since this much narrower precipitation range matches the precipitation regime of

the study site, it is then expected that the increase of precipitation stimulates the

displacement of native vegetation by saltcedar and, at the same time, promotes

the colonization of bare exposed soil by either native or invasive species. The issue

is not simply that an increment of precipitation leads to an increment of change

from native into saltcedar. As a matter of fact, the reverse change direction is also

stimulated by increments in precipitation, but this type of change would occur

slower. Therefore, the associated traits that enable saltcedar to grow faster under

favorable conditions is what may be causing the displacement of the native

vegetation. Closely related to the annual precipitation was the peak winter

discharge (October-March). The extreme discharge during this season (especially

during October-December, see Figure 4.3(b)) can promote more channel

movement, vegetation scour, sediment reworking, and thus provides prolonged
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moisture essential to sustain seedlings and exposes competition-free seed beds for

both the native and non-native species (Stromberg, 1998). Although the mean

minimum temperature has been shown to correlate positively with saltcedar

occurrence on a large scale (Friedman et al., 2005), on a local scale it correlates

negatively with the displacement of native species by saltcedar. The mechanism is

related to the maximum groundwater depth because at higher temperatures the

water table drops due to high evapotranspiration rates. Under these stress

condition, the population dynamics (or the rate of change in areas covered by such

population) for both native and non-native species tend to slowdown.

Not surprisingly, the discharge during the first year of the period was the

only factor that correlated well with estimated transition probabilities from

saltcedar land cover into native species land cover, thus confirming that hydrologic

regimes represent an important equilibrating force that may aid both to maintain

native species and to control the proliferation of saltcedar (Busch and Smith, 1995;

Stromberg, 1998). The comparison between mean maximum sub-pixel fractions

suggested that the local capacity (within a 30-by-30m plot) is superior for

saltcedar than for native species under varying topographic conditions (defined in

terms of elevation, slope, distance to main channel). Likewise, the comparison

between extinction probabilities (transition probabilities from each vegetation type

into other land cover type) confirmed the lower extinction rate of saltcedar at

increasing distances from the river channel. This result is consistent with the

physiological traits that enable saltcedar to survive in the upland habitats where

the native species cannot survive (Di Tomaso, 1998).
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Although not consistently increasing throughout the period, saltcedar

extent was positively correlated with the loss of discharge in the river reach,

confirming a long suspected significant impact in water availability of the region.

In contrast, a relationship between the extent of native species and the loss of

discharge could not be established. Although estimated water lost within the

segment of the river does not take into account contributions from local storms or

losses from surface evaporation and local irrigation, estimated consumption by

saltcedar was consistent with field measurements (Cleverly et al., 2002; Shafroth

et al., 2005). This is by no means a recommendation on how to estimate water

consumption by saltcedar, but rather a demonstration where remote sensing

observations coupled with a modeling approach are able to confirm suspected

impacts on water availability.



Chapter 5

LINKING LAND COVER CHANGE TO POPULATION DYNAMICS:
A STUDY OF SALTCEDAR INVASION

5.1 Introduction

When a species colonizes a new area, it spreads across that area in the

form of an invasion wave. The speed of this wave is determined by the vital rates

of the population such as births and deaths as well as the dispersal capabilities of

each species (Alpert et al., 2000; Higgins et al., 1996; Higgins and Richarson, 1996;

Shea and Chesson, 2002). Means to measure consistently such vital rates are of

great importance to invasive species research and to many ecological studies

(Marco et al., 2002; Rees and Paynter, 1997; Scanlon et al., 2007). Among other

things, this requires the acquisition of information related to population density

and distribution, which is generally unavailable and prohibitively expensive to

collect by direct means (Joshi et al., 2004; Turner et al., 2003). Such information

is particularly valuable for the calibration and/or validation of spatially explicit

models of invasion (Marco et al., 2002; Nehrbass et al., 2007).

To date, remote sensing has served as a valuable means to derive land

cover information, which can be considered as a first-order analysis of species

occurrence (Turner et al., 2003). Nevertheless, limitations still exist when it comes

to detecting understory plants or animal species (Joshi et al., 2004). While

high-resolution remote sensing have made it possible to detect sparsely-distributed

107
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individual tree crowns, scrubland-type ecosystems, where plants share virtually the

same space, still represent a big challenge because occlusions prevent direct

observation from afar. Even with the use of the state-of-the-art hyperspectral

sensors, with which one may have access to the vertical structure of canopies by

explicitly modelling the multiple scattering phenomena (see Chapter 3), the

challenge of separating individual tree crowns in such a scrubby environment would

remain. This study hypothesizes that only when the land cover change is properly

linked to the underlying population dynamics, one can have access to certain

population parameters of densely forested areas from remote sensing observations.

Instead of looking at increased resolution data (either spatial or spectral),

the alternative described in this chapter exploits the temporal information

embedded in bi-temporal or multi-temporal sub-pixel fractional canopy cover

estimations from Landsat measurements. An inference of the proportion of hidden

plants in the understory of canopy-dominant plants is enabled by formulating a

spatially explicit metapopulation model of the underlying dynamics and linking it

to a land cover change model. The latter is referred to as the COEXOD model for

its parameterization in terms of species COlonization and EXtinction probabilities,

as well as in terms of canopy Occlusion and Dominance. The model parameter

estimation is carried out by matching the COEXOD model with the yearly

sub-pixel change matrices introduced in Chapter 4. The spatially explicit

metapopulation model presented here is largely inspired in the traditional

competition principle of ecology (Vandermeer and Goldberg, 2003). Although an

attempt has been made to incorporate some of the major species traits and factors
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suggested by previous works as involved in plant invasion processes (Higgins and

Richarson, 1996; Marco et al., 2002), the model has been kept as simple as

possible. Indeed, it is not the purpose of this modelling approach to accurately

represent the complex interactions among the native species assemblages, the

invader and the habitat itself, as envisaged by much of the invasion ecology

research (Alpert et al., 2000; Higgins et al., 1996; Higgins and Richarson, 1996;

Shea and Chesson, 2002), but rather to demonstrate how a simple population

dynamics model can be matched to remote sensing observations, and how such

observations can lead to inferring population parameters that may be verifiable

with empirical observations. Although it is shown how the model can be specified

at the level of species traits, it is at the level of extinction and colonization rates

where remote sensing observations are shown to be useful. Because the parameters

at the level of species traits are not accessible through remote sensing, the

parameter selection at this level can only be guided by knowledge from ground

observations. The metapopulation model is also proposed here as

hypothesis-testing framework on the invisibility under competition.

In sum, the study presented in this chapter 1) addresses the general

questions of how remote sensing can be better applied to infer population

parameters by using a modelling approach, 2) investigates the spatio-temporal

pattern of extinction and colonization rates of saltcedar in Western Texas, and 3)

inquires about the role of the interspecific competition on the rate of advance of

the invader and on the persistence of the native species in a simulated invasion.

The remaining of the chapter is organized as follows. The spatially explicit
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metapopulation model is described in Section 5.2, whereas the derivation of the

land cover change counterpart is presented in Section 5.3. The results on

population parameter estimation along Western Texas are presented in

Section 5.4.1, and the results on the test of invasivenss under competition are

presented in Section 5.4.2. The main conclusions are summarized in Section 5.5.

5.2 Spatially explicit metapopulation model

The spread of invasive species, like many biological processes, exhibits a

high degree of complexity that makes it hard to develop analytical approaches to

model the process. The analysis of such a complex process is more amenable

through computational models such as cellular automata (Wolfram, 1984). This

approach has been widely used to study spatiotemporal patterns of plant

distribution (Keymer et al., 1998; Nehrbass et al., 2007) invasiveness and speed of

invasion (Kawasaki et al., 2006; Marco et al., 2002) as well as competition

interactions (Silvertown et al., 1992). In its most elementary form, a cellular

automaton consists of a discrete simulation of changes on cell states. Changes in

cell states are dictated by a number of transition rules that are local in nature, but

can incorporate external factors as well. The cellular automaton described in this

chapter is an attempt to model explicitly the main factors suggested by previous

works as involved in a plant invasion process. It is built upon the ideas of

metapopulation models (Gotelli, 2001, Ch.4) and competition principles

(Vandermeer and Goldberg, 2003).
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5.2.1 The invasion system and model parameters

The woody riparian native species that are replaced by saltcedar include

mesquite (Prosopis spp.), cottonwoods (Populus spp.) and willows (Salix spp.)

(Di Tomaso, 1998). In this study, saltcedar is taken as a prototype non-native

invasive species and mesquite is taken as the prototype native species for the

purpose of model parameter selection. Values for the selected parameters and their

meaning are provided in Table 5.1. The model parameters that relate to species

invasiveness are life history traits (mean maximum longevity, mean seed dispersal

distance and age of reproductive maturity), and demographic traits (annual adult

survival probability, annual seed production, mean germination probability and

juvenile survival probability). The reasons for selecting some of these values are

explained below. The model parameters related to habitat invasibility include the

carrying capacity and the interspecific competition interactions. These are

explained in the following subsections.

Saltcedar spreads both vegetatively and by seeds. Invasion of saltcedar

typically occurs in bare, moist, and exposed areas. A single mature saltcedar plant

can produce around half million of seeds per year (annual seed production per

plant of 500000, Warren and Turner, 1975). Seeds are quite small and light (0.1

mg). The seeds have a tuft of hair on the end, which enable them to travel several

kilometers downwind from release sites (Warren and Turner, 1975; Young et al.,

2004), or can be carried and deposited along sandbars and riverbanks by water.

Because the range of seed dispersion varies a lot depending on wind conditions

during seed release, here I picked a conservative value of 1 km for the long distance
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dispersion range. The tiny seeds of saltcedar have high initial viability, but for

relatively short-time periods (5 weeks under normal conditions, Di Tomaso, 1998).

Although germination occurs within 24 hours following contact with water, it

requires wet soils for several weeks. Young et al. (2004) have observed that

saltcedar seeds germinate over a large range of temperatures, ranging 0-6% for

very cold seed beds and 75-100% for optimal temperature profiles. In the model

described below, I considered a germination rate of 40%, which is within the

fluctuating and cold regimes defined by Young et al. (2004). Although saltcedar

seedlings tend to be more abundant than mesquite seedlings, its mortality is also

much greater resulting in similar densities after the third year (Sher et al., 2002).

Seedling survival depends on a number of biotic and abiotic factors. Sher et al.

(2002) have reported a mortality of around 90% for saltcedar and around 40% for

mesquite during the first year. In order to to reflect the extreme situation when

the survival condition for the native species at the seedling stage is optimum, I set

the probability of juvenile survival to 0.1 for saltcedar and to 1 for mesquite.

Saltcedar seedlings may grow up to a foot a month in early spring (3 to 4 m in one

year). From germination, it takes one or two years to develops into a small

flowering tree (Di Tomaso, 1998). In the model, the age of reproductive maturity

of saltcedar was 2 years and for mesquite was 5. Once developed, saltcedar is

remarkably tolerant to mechanical injury as well as a variety of environmental

conditions including drought, floods and high soil salinity. The typical lifespan of

saltcedar has been reported around 75 to 100 years (Di Tomaso, 1998). Here I

picked a mean maximum longevity of 80 years. On the other hand, mesquite
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reproduces only by seed and not vegetatively. Honey mesquite seeds are borne in

pods which are about 8-12 inches long and contain 10-30 seeds per pod. The

production of pods varies per plant and per year, but the average value is around

800 pods/plant/yr, which would yield an average seed production per plant of

16000. A much lower number was selected (10000) to reflect the fact that only a

portion of this seeds become available for germination. Specifically, most pods that

fall to the ground are destroyed by insects or fungi or are consumed by animals.

Seeds germinate within six hours of wetting at round 34oC and can remain viable

for many years. This storage effect of long viability of mesquite seeds is not

considered in the model. Germination occur principally during early spring and

late fall when soil moisture is favorable. Seeds are dispersed away from the parent

tree by foraging animals in the process of consuming the pod (Ansley et al., 1997).

The dispersion range of mesquite seeds is unknown, but it is generally much

shorter than saltcedar’s (here I selected 500 m). Old mesquite trees (> 3 years)

can tolerate fire or other disturbances by resprouting from the bud zone if the

aboveground parts are destroyed or damaged.

5.2.2 A landscape made of cells

In the cellular automata model, the landscape is considered composed of

square cells. Many cellular automata models for plant dynamics use a cell size that

matches the average crown size of adult individuals (Marco et al., 2002; Nehrbass

et al., 2007; Scanlon et al., 2007). That choice leads to two possible cell states:

empty (0) or occupied (1). In contrast, this study focused on a larger scale, so that



114

Table 5.1: Values for parameters used in the metapopulation model and their mean-
ing. Reasons for these values are provided in the text.

Symbol Description Saltcedar Mesquite
K cell carrying capacity 40 50
u annual seed production per plant 500000 10000
rSD short-distance dispersion range [m] 20 20
rLD long-distance dispersion range [m] 1000 500
fLD fraction of long-distance dispersed seeds 0.1 0.1
pLD probability of long-distance dispersion 0.1 0.1
pg probability of seed germination 0.4 0.6
ps probability of seedling establishment 0.1 0.5
q probability of juvenile survival 0.1 1
amax mean maximum longevity [years] 80 50
amat age of reproductive maturity [years] 2 5

many individuals can inhabit a single cell and the state of the cell at any time

corresponds to the population of each species within the boundaries of the cell.

The cell size used here corresponds to the spatial resolution of Landsat imagery

(30 by 30 meters), which is considered an independent dataset for parameter

estimation. Cells are considered homogeneous across its extent, so that no spatial

preference of individuals within the cell can be attributed. Each cell has a spatial

location associated, which is defined by the center of the cell. Cells’ carrying

capacity in absence of competition are held constant. The carrying capacity

defines the maximum number of sites that can be colonized by each species within

each cell. Site occupancy and individual extinction occur randomly, but no

colonization is allowed to occur outside the boundaries of the cells grid. Occupied

sites can either remain occupied or become empty and empty sites can either

remain empty or become occupied at each time step, but no multiple change

operations are allowed in a single time step. Thus, if an individual dies at one time
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step, its site is not made available for colonization until the next time step. Yet, a

site can be colonized by the two species simultaneously, but one may be excluded

by competition at a later time.

5.2.3 Population dynamics: The transition rules

The transition rules considered here are stochastic in nature and

correspond directly with the colonization and extinction rates on an annual basis

(i.e., a time step is a year). For the time being, let us assume that the probabilities

of colonization and extinction are known at each time step. Then, the simulation

model is expressed in pseudo-code as follows:

for each time step t,

for each cell j,

for each species x,

i. get colonization and extinction probabilities: cx, ex;

ii. with probability ex,

drive to extinction individuals of species x;

iii. with probability cx,

colonize available sites for species x;

The concept of species competition is incorporated at the level of site

availability. More specifically, let Xt and Yt denote the densities of native and

non-native species within a given cell at time t, respectively. In absence of

competition, an empty cell can support up to Kx individuals of native species, and

up to Ky individuals of invasive species. However, if species compete for resources
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within the cell, (e.g., nutrients, sunlight, moisture, or, simply, space) then the

capacity for each species will decrease in proportion to the density of the

competitor. Therefore, at each time step, the number of sites available for

colonization for each species are given by Kx −Xt − αxYt and Ky − Yt − αyXt,

respectively, where αx and αy are termed the interspecific competition coefficients.

The interspecific competition coefficients represent the effects that the presence of

each species has on the habitat of the other1. Considering the available space for

each species, the stochastic transition rules can be approximated by the following

deterministic dynamical equations at each cell:

Xt+1 = Xt + cx(Kx −Xt − αxYt)− exXt

Yt+1 = Yt + cy(Ky − αyXt − Yt)− eyYt (5.1)

where the second and third terms in the righthand side of each equation

correspond to the mean field approximations of the colonization and extinction

rates, respectively. This competition model resembles the classical Lotka-Volterra

competition model (Vandermeer and Goldberg, 2003), but in a discrete domain.

Noticeably, the competition interactions in this model have a symmetric structure

affecting directly the rate of colonization of competing species. Empirical evidence

has shown that some competitive interactions also influence the death rate, but are

age-dependent. Specifically, saltcedar survival during the first few years of

establishment is sensitive to the density of native species, whereas the survival of

the native is not directly affected by the density of saltcedar (Sher et al., 2002).

1Note that the effect that each species has on itself, the intra-specific competition coefficient, is
the unit.
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Unfortunately, it is not clear how these competition interactions take place above

and below the ground and, hence, are not considered in the model. Nonetheless,

the differences in demographic and life history traits should reflect the competitive

superiority of one species or another. The simulation model above is further

specified through models for the colonization and extinction probabilities given in

terms of species demographic and live history traits. These models yield space-

and time-varying colonization and extinction rates.

5.2.3.1 Age-dependent extinction

In each year, an individual at age a dies with a probability e(a) and

survives with probability s(a) = 1− e(a). The annual survival probability Ps(a) is

related to the longevity amax and the survival during the first year q through a

truncated geometrical distribution for the probability of dying at age a, in such a

way that Ps(1) = q and Ps(a) = 0 for a ≥ amax (see Section III.3 in the

Appendix III). A linearity constraint imposed on e(a) allows using the average age

per cell in place of individuals’ ages. More specifically, each year any individual die

with probability e(āt), where āt is the cells’ average age at time t. The average age

is estimated using the recursive formula (see Appendix III, Section III.3 for further

details):

āt = 1 +
(

1− Ct−1

Xt

)
(āt−1 − b)− b

Et−1

Xt
(5.2)

where Ct−1 and Et−1 denote the colonization and extinction rates in the previous

year and b = qσ2/(amax − 1), where σ2 is the variance of the truncated geometric

distribution.
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5.2.3.2 Colonization by seed dispersal

Colonization of a site occurs when at least one seed germinates and

survives the seedling stage. If pg denotes the mean germination probability of the

species and ps denotes the probability that a seedling survives the establishment

stage, then the colonization probability can be determined, assuming statistical

independence of the two events as (Marco et al., 2002):

cj = 1− (1− pspg)Sj/K (5.3)

where Sj is the total number of seeds at cell j, K is the number of habitable sites

per cell and hence Sj/K is the average seeds per site.

Seeds are produced by mature trees and dispersed isotropically around the

parent tree. Most of seeds will settle around the parent’s range (short-distance

dispersal or SDD), while a minor fraction of seeds undergo long-distance dispersal

(LDD) by wind (saltcedar) or animals (mesquite). To account for both SDD and

LDD, the model builds upon prior formulations of a stratified diffusion model

(Hengeveld, 1989; Kawasaki et al., 2006). According to the stratified diffusion

model, the species extents its range concentrically at a constant speed by SDD,

while at the same time producing LDD of seeds to create nuclei of new colonies at

distance well separated from their parents. The total number of seeds Sj received

by the cell j from individuals located at cell i is given by:

Sj =
∑

i

uMif(dij) (5.4)

where u is the mean number of seeds produced per plant, Mi is the population in

the reproductive maturity age at cell i, dij is the distance between cells i and j,
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and f is a dispersal distribution function defined as a negative exponential

function of the form 2 exp(−2d/r)/πr2, where parameters r’s are selected

according to the dispersion range for each species and type of dispersion

(Table 5.1). While all cells can experience SDD with dispersion range rSD, LDD

can take place with probability pLD. Sites selected for LDD are convolved with a

second negative exponential term with dispersion range rLD. This process

simulates a fat-tail distribution typically found in seed dispersal models (Katul

et al., 2005). The convolution operation of Equation (5.4) is limited to a 3-by-3

neighborhood for SDD, and to a 21-by-21 neighborhood for LDD. The population

in the reproductive maturity age at time t is approximately determined by

applying the expected survival rate to past colonization terms. This is expressed in

Equation (5.5) (see Section III.4 of Appendix III for further details).

Mt = Xt −
amat−1∑

a=1

Ps(a− 1)Ct−a (5.5)

This formula requires up to amat − 1 past colonization terms which are saved

during the simulation, and are assumed null for the first amat iterations.

Figure 5.1 shows the progression of a simulated front of saltcedar

population due to both SDD and LDD. Partial occupancy of the cell is apparent

from the smooth transition between black and white tones. Note that patchy

distribution appears only at distant locations ahead of the contiguous distributed

range.
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Figure 5.1: Progression of saltcedar expansion due to both short- and long-distance
seed dispersal at three time points t = 20, t = 25, t = 30. The gray scale represents
the percent of sites covered within each cell.

5.2.3.3 Verification of the extinction and colonization models

In order to assess the impact that the approximations of the average age

and the population in the reproductive maturity have on the estimation of the

population density, the metapopulation model was compared with a model that

tracks individual ages to maintain the age structure. Since the latter demands

more memory and computing time, only one single cell (with internal colonization

only) was simulated in both cases. The two models were run independently, but

using the same parameters as given in Table 5.1, and αx = Kx/Ky and

αy = Ky/Kx. Note that because the models are stochastic in nature, the outcomes

vary between runs even with the same initial conditions. Figure 5.2.3.3 shows the

outcomes of the two models from one single run in the form of scatterplots, where

the horizontal axes (actual) correspond to the model with age structure, and the

vertical axes (estimated) correspond to the model based on averages. Although

multiple simulations showed varying deviations in estimated average ages and
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Figure 5.2: Comparison between a simulation based on the age-structure (actual)
and a simulation based on average age and expected survival (estimated). Values
correspond to population density (top row), average age (middle row) and popula-
tion in the reproductive maturity age (bottom row) for saltcedar (left column) and
mesquite (right column) populations.
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mature population from actual values, they generally yielded estimated population

density with high R-square values (R2 > 0.9). Furthermore, observations from the

multiple simulations confirmed that the estimations are unbiased for a range of

parameter values.

5.3 COEXOD: A spatially explicit land cover change model

A land cover change counterpart of the above spatially explicit

metapopulation model can be derived by linking the mean field approximation of

Equation (5.1) to a three-state markov model of site state transitions, provided

that the normalized densities can be treated as probabilities and the following

conditions of the underlying dynamics are met:

1. the displacement of species occur either through clearing of sites or through

competitive interactions at jointly occupied sites,

2. the persistence of jointly occupied sites is negatively impacted by

competitive interactions,

3. at jointly occupied sites, only one species is visible from above, that is the

canopy-dominant species,

4. the species that first colonizes an empty site becomes canopy-dominant for

all its lifespan,

5. if simultaneous colonizations of a site occur, then the canopy-dominant

species is determined by a dominance probability (δ),
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6. the canopy-dominant species can affect the understory species through

competitive interactions, but the latter cannot affect the former, and

7. the probabilities that one species occludes the other given that is being

observed from above, i.e., the occlusion probabilities (λx and λy), are known.

Although these conditions may not reflect the complexity of real life, they are

convenient to keep the model simple and yet capture some empirical knowledge

about the competition process. This model is termed the COEXOD model because

it is parameterized in terms of species COlonization and EXtinction probabilities,

as well as in terms of canopy Occlusion and Dominance, and because it alludes an

appropriate model description: ‘species COEXistance as seen from the OverheaD’.

The derivation of the transition probabilities undergoes three mayor stages each of

which produces a markov model with four, five and three states, respectively

(Figure 5.3). Description of each model follows.

5.3.1 Four-states markov model

Considering four states, at each time step (years) each site can be: occupied

by native species alone (x), occupied by invasive species alone (y), occupied by

both species simultaneously (z), or empty (w) (Figure 5.3(a)). Then, the transition

among the four states is specified by a fourth-order transition probability matrix

(TPM), which is derived from the following normalized version of Equation (5.1):

X̃t+1 = sxX̃t + cx(1− X̃t − γxỸt)

Ỹt+1 = syỸt + cx(1− Ỹt − γyX̃t) (5.6)
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Figure 5.3: Markovian state transitions of the COEXOD model. Four-state markov
model (a), five-state markov model (b) and three-state markov model (c). State
labels correspond to: x = site is occupied by native species alone, y = site is
occupied by invasive species alone, z = zx + zy = site is simultaneously occupied by
both species, zx = site is jointly occupied, but the native species is canopy-dominant,
zy = site is jointly occupied, but the invasive species is canopy-dominant, w = site
is not occupied at all, a = x + zx = site is covered by native species as seen from
above, and b = y + zy = site is covered by invasive species as seen from above. See
Table 5.2 for the transition probabilities.
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Table 5.2: Transition probability matrices for the four-state markov model (a), five-
state markov model (b), and three-state markov model (c). See text for explanation
of parameters.

To

Fr
om

x y z w
x sx − (1− γy)cy 0 (1− γy)cy ex

y 0 sy − (1− γx)cx (1− γx)cx ey

z sxey + γycy exsy + γxcx sxsy − γxcx − γycy exey

w cx(1− cy) (1− cx)cy cxcy (1− cx)(1− cy)

(a)

To

Fr
om

x y zx zy w
x sx − (1− γy)cy 0 (1− γy)cy 0 ex

y 0 (sy − (1− γx)cx) 0 (1− γx)cx ey

zx sxey + γycy/δ exsy sxsy − γycy/δ 0 exey

zy sxey exsy + γxcx/(1− δ) 0 sxsy − γxcx/(1− δ) exey

w cx(1− cy) (1− cx)cy δcxcy (1− δ)cxcy (1− cx)(1− cy)

(b)

To

Fr
om

a b w
a 1− ex λxex(1− ey) (1− λx)ex + λxexey

b λy(1− ex)ey 1− ey (1− λy)ey + λyexey

w cx(1− (1− δ)cy) cy(1− δcx) (1− cx)(1− cy)

(c)
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where X̃t = Xt/Kx and Ỹt = Yt/Ky are fractional abundances and γx = αxKy/Kx

and γy = αyKx/Ky are the normalized interspecific competition coefficients. The

idea here is to express the normalized densities in terms of the fraction of sites

occupied by native species alone, sites occupied by invasive species alone, sites

occupied by both species simultaneously, and the fraction of empty sites. The

algebraic manipulation of these equations is guided by the two first conditions

listed above. The condition 1 implies that a site occupied by one species alone at

one time cannot be occupied by the other species alone the next time step, and

thus the probabilities defining these transitions equal zero. The condition 2

requires that the transition probability defining the persistence of jointly occupied

sites have the interspecific competition coefficients as a negative term. The TPM

for the four-state markov model is expressed in terms of extinction probabilities

(ex, ey), colonization probabilities (cx, cy) and normalized interspecific competition

coefficients (γx, γy), as given in Table 5.2(a). Details on the derivation of the

four-state markov model are provided in Section III.5 of Appendix III.

5.3.2 Five-states markov model

In a second stage, the proportion of jointly occupied sites (z) is split in two

proportions (zx + zy) yielding a five-state markov model (Figure 5.3(b)). The

splitting assumes that only one species can be visible from above (condition 3).

That species is termed the canopy-dominant species. Furthermore, the splitting

applies the conditions 4-6 above. The condition 4 implies that the probabilities of

change from canopy-dominant native species into canopy-dominant invasive
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species, and the reverse change direction, are zero. The condition 5 states that, if

the two species arrive to the site at the same time, then the probability that the

native species dominates the canopy is δx = δ, whereas the probability that the

invasive species dominates the canopy is δy = 1− δ. The condition 6 states that

the canopy-dominant species has a direct effect on the abundance of the

understory specie, but the latter has no directs effect on the abundance of the

canopy-dominant species. Thus, for example, the change from canopy-dominant

native species into invasive species alone is not attributable to the presence of the

understory species, but rather to the intrinsic extinction rate of the native species.

Therefore, the interspecific competition coefficients do not appear in these type of

changes (see Table 5.2(b)). Details on the derivation of the five-state model are

available in the Section III.5 of Appendix III.

To further make sense of the role of the interspecific competition in jointly

colonized sites, consider the third and fourth columns of Table 5.2(b). The

colonization rate of a colonizing species in presence of the other already

established is given by the non-zero entries at (row,column)=(x,zx) and (y,zy).

These terms become negligible if the effect of the established species on the

colonizing species is significant (i.e., the γ parameter approaches one). Likewise,

the joint survival rate of simultaneously occupied sites is given by the entries at

(zx, zx) and (zy, zy). These correspond to the intrinsic joint survival, but decreased

in proportion to the effect that the canopy-dominating species has on the

understory. The last row at the intersection with the third and fourth column

correspond to the colonization rates for each species assemblage.
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5.3.3 Three-states markov model

In the last step, the five-states model above is reduced to a three-states

model (Figure 5.3c) by merging the states with similar above-canopy coverage, i.e.,

the fraction of sites with canopy-dominant native species (zx) is added to the

fraction of sites with native species alone (x), and the fraction of sites with

canopy-dominant invasive species (zy) is added to the fraction of sites with

invasive species alone (y). Then, sites can be at one of three states: covered by

native species (a), covered by invasive species (b) or not covered at all (w). As

with the previous model, this model assumes that only the canopy-dominant

species is visible from above. The merging is carried out by evaluating the

conditional probabilities of observing a land cover at a given time step given the

observed land cover at previous time step and considering the condition 7, that

requires knowing the occlusion probabilities. The occlusion probabilities represent

the ratio between jointly occupied sites for each canopy-dominant species relative

to the proportion of sites with same above-canopy cover. The TPM associated

with this model is given in Table 5.2(c) and the details of its derivation are

provided in Section III.5 of Appendix III.

Note that since the effect of the interspecific competition has been isolated

within changes between merged states, they do not seem to play a role in driving

the dynamics as observed from above. Nonetheless, the occlusion probabilities are

not independent from the interspecific competition, as the latter are somehow

absorbed in the definition of the former. Both occlusion and dominance

probabilities have been expressed as ratios between pairs of fractional densities,
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which are in turn defined in terms of the interspecific competition coefficients.

Although the time-dependency has been obviated in the notation, it is important

to keep in mind that both dominance and occlusion probabilities are

time-dependent. Moreover, these parameters are related through:

δ =
aλx

aλx + bλy
(5.7)

where a and b are the prior fractional densities of native and invasive species,

respectively, as seen from above.

5.3.4 Estimating population parameters from remote sensing

If a linear relationship exists between species density and land cover area,

then the fractional densities delivered by the COEXOD model correspond to the

proportion of canopy coverage within each cell. Such information matches

perfectly with the sub-pixel canopy cover as derived from remote sensing (where

cells are matched to image pixel). Fortunately, the number of independent matrix

entries in the model equals the number of parameters, thus allowing a stable

inversion of the model. That is because each row of the TPM sums to exactly one,

letting only six independent equations. This number of independent equations

equals the number of independent parameters (cx, cy, ex, ey, λx and λy, while δ can

be determined through Equation 5.7). Nonetheless, the analytic inversion of the

model is somewhat complex. Because of this, a numeric solution based on the least

square estimation was implemented here. The entire process can be summarized as

follows:
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1. Produce sub-pixel classifications from images acquired at two dates (ideally,

one year apart) using the TLSU classification method described in Chapter 3,

2. Define homogeneous regions, i.e., connected cells with similar dynamics,

across the entire study area,

3. For each homogeneous patch, estimate a TPM using the sub-pixel change

matrix described in Chapter 4,

4. For each pixel, estimate the parameters of the 3-state markov model by

minimizing the euclidian norm between land cover fractions predicted from

the estimated TPM and from the model TPM.

Once the COEXOD model parameters have been determined, the various

population terms can be computed as indicated in Table 5.3. The formulas given

in Table 5.3 correspond to expected values and should be treated as mere

estimations of species population (up to a proportionality constant, namely the

carrying capacity) under the premise that the land cover dynamics matches with

the COEXOD model. What these formula say is that the key parameters for

relating land cover to abundance are the occlusion probabilities. This result agrees

with the intuitive reasoning that if occlusion is low, then land cover is a good

estimator of abundance, but if occlusion is high, then land cover will generally

underestimate the abundance.

Although the interspecific competition cannot be directly estimated using

the COEXOD model, one can use the time series of estimated colonization,

extinction, and species densities, to determine these parameters. Specifically, since
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Table 5.3: Population density from land cover. a and b denote land cover fractions of
native species and invasive species, respectively; and λx and λy denote the occlusion
probabilities for native and invasive species, respectively. The time-dependency of
fractional abundance and probabilities have been eliminated to simplify notation.

Cell fractional abundance Formula
Native species alone (1− λx)a
Invasive species alone (1− λy)b
Canopy-dominant native sp. λxa
Canopy-dominant invasive sp. λyb
Jointly occupied sites λxa + λyb
Native sp. a + λyb
Invasive sp. b + λxa

the time series should follow a dynamics as described by the system of

Equations (5.6), it suffices to apply a regressive approach to determine the two

constants γx and γy.

5.4 Results

5.4.1 Population parameters for the invasion in West Texas

The study site and data used in this test has been introduced in a

Chapter 4 and will not be further described here. The total fractional abundance

was estimated for the study site within the period from 1993 to 2005. As described

in Section 5.3.4, the parameters were estimated on a per-pixel basis and the

fractional abundance was based on estimated occlusion probabilities. The

homogeneous regions were produced by applying an unsupervised clustering

method on three stacked layers consisting of terrain slope, terrain elevation and

distance to the main channel of the river, and then connected segments were

labelled as unique homogeneous regions. One TPM was then estimated for each
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homogenous region. Because the estimation of the TPM required a relatively large

sample, regions with less than 10 pixels were clumped to one contiguous region.

Also, since the images used here were acquired more than one year apart (1993,

1996, 2000, 2003 and 2005), the k-th power of the model TPM, with k equal to the

number of years between two consecutively acquisition years, was fitted to

estimated multiple year TPM. This assumes that the model parameters did not

change between the initial and final years. Because the later assumption cannot be

warranted, the estimated parameters should be considered as affective values

within a time period.

The total fractional abundance (summed over all pixels of the study area)

is plotted as a time series in Figure 5.4(a) and its relation with the area covered is

shown as a scatterplot in Figure 5.4(b). Both area and abundance are computed

from estimated transition probability matrices, the difference being in that the

former is based on a parameterized model and the latter is not (see Figure 4.6 in

Chapter 4 for the time series of land cover areas). Note that the relationship

between abundance and area is strongly linear for both species. The extremely

higher abundance noted as a big jump in year 2004 in the time series and as

outliers in the scatterplots of Figure 5.4 called for special attention. At this year,

extreme precipitation occurred (see Figure 4.2 in Chapter 4) which may explain

the extremely higher species abundance. Indeed, the correlation between average

precipitation and species abundance was statistically significant (R2 = 0.75 for

saltcedar and R2 = 0.67 for native species), whereas the correlation between area

covered with precipitation was not (R2 = 0.009 for saltcedar and R2 = 0.005 for
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native species). Although it is reasonable to think that the incipient vegetation

during this rainy year might have been mostly present under the canopy of

existing vegetation, the time series for the occluded population (see lower lines

shown in Figure 5.4(a)) tells us a slightly different story. These curves reveal that

while a great portion of the increase in native population during 2004 was located

under the canopy of saltcedar (note the increase of the occluded native

population), the significant increase of saltcedar population was not found under

the canopy of native species (note that there is no increase in the occluded

saltcedar population). This is reasonable, considering that unlike native willow or

mesquite species, saltcedar seedling have more chance to survive without

competition (Sher et al., 2002). Then, why is this conspicuous change during 2004

not apparent in the covered area? The explanation to this is because the model

used to generate the fractional cover considered a spatially-aggregated TPM,

which does captures the spatial variability that may be driven by precipitation

patterns, and which is capture by the COEXOD model.

That species abundance increases with precipitation is not surprising,

specially knowing that both species relay on water availability for successful

establishment and survival. However, there are worth noting differences between

the two species. The differences between species is better visualized in terms the

probability parameters. Figure 5.5 shows a subset of the spatial distribution of

estimated probabilities for the time period 2003-2005. As revealed in this figure,

there are not notable difference in terms of canopy dominance and occlusion

probabilities, but there are notable differences in terms of colonization and
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Figure 5.4: Fractional abundance time series (a) and area-abundance scatterplot.
Abundance estimations were based on the COEXOD model whereas area estimations
were based on a space-invariant transition probability matrix (see Chapter 4). The
lower lines in (a) correspond to the occluded portions for each species, and the
vertical bars corresponds to estimations coming from the sub-pixel classifications
rather than from the model. The the regression line in (b) corresponds to the
pooled data of both species, but without the outlier points of 2004.
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extinction probabilities. These maps demonstrate the superiority of saltcedar in

terms of colonization and extinction rates, specially along the river floodplain. The

apparent higher colonization probability and lower extinction probability of

saltcedar was also observed for all other time periods confirming that its

superiority was not attributable to the availability of more water, but rather to the

traits that enable it to reproduce profusely and to tolerate the environmental

stress (Di Tomaso, 1998).

In order to provide an overall quantitative comparison of the two species,

time-averaged probabilities were sampled at 1000 randomly selected points across

the entire study site. Samples were then grouped in 25 classes according to

percentiles of distance to main channel and averages computed for each group.

Figure 5.6 shows the average probabilities as function of average distance to the

river. As expected, saltcedar had the highest colonization probability and the

lowest extinction probabilities for the entire distance range. Both species had

indistinguishable occlusion probabilities, which suggests that saltcedar has similar

chances to occlude the native in the understory than the native itself to occlude

the understory saltcedar. Nonetheless, the probability that saltcedar dominates

the canopy seems to be higher within the 150-meter bands along the river. This

have been personally observed during several field trips to Candelaria during

2005-2006 (unpublished data) and by some studies showing that saltcedar typically

outgrows the native species willows and mesquite trees along the riverbanks. The

patterns of extinction and colonization shown in Figure 5.6 are also intuitive.

Since nearer sites to the riverbanks are more likely to be flooded than farther sites,
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Figure 5.5: Color-stretched images of estimated probabilities of COEXOD model.
The images correspond (from left to right) to colonization, extinction, occlusion
and dominance probabilities for native species (top) and saltcedar (bottom). The
subset of the study site is located around Ruidosa, Texas and the time period was
2003-2005.
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it is reasonable to think that the colonization and extinctions rates will follow a

similar pattern: increasing extinctions/decreasing colonization rates at farther

distances from the river channel. Furthermore, the replication of the extinction

pattern shown in Figure 5.6 through the metapopulation model would require

increasing average age for increasing distance to the river channel. This

requirement is in agreement with observed age structure of saltcedar and

cottonwood in the San Pedro River in Arizona (Stromberg, 1998), where the

increasing stand age corresponds to increasing groundwater depths, and thus to

increasing distance from the river channel.

5.4.2 Test of invasion under competition

There is an active and ongoing debate as to when saltcedar can replace

native plants and if it is actively displacing native plants or it is just taking

advantage of disturbance by removal of natives by humans and changes in flood

regimes (Everitt, 1998; Pratt and Black, 2006; Sher et al., 2002). Research on

competition between saltcedar seedlings and co-occurring native trees has found

that the seedlings are not competitive over a range of environments (Sher et al.,

2002; Young et al., 2004). However, once established, saltcedar monopolizes the

space and displaces the native species. This issue was investigated here by means

of the metapopulation model. The objective was to determine if saltcedar invades

by virtue of its competitive effect on the established native species or by the lack

of an effect on it by the native species.

More specifically, an experiment was designed to test the effect of
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Figure 5.6: Time-averaged colonization, extinction, occlusion and dominance prob-
abilities for the period 1993-2005 along a gradient of distance to the main channel
of the river. Averages are based on 1000 points randomly selected across the entire
study site, and grouped within 25 distance classes. The horizontal axis corresponds
to the average distance in meters for each distance class.
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competition levels of both saltcedar and mesquite on the invasion speed and

steady average density. In all the tests, the invasion started from the leftmost

column and expanded toward the rightmost column of the simulation grid. The

invasion speed was estimated as the rate of change of an average front position

(Marco et al., 2002). The front position for each row of cells was determined as the

position of the rightmost-cell that has been colonized by saltcedar, where cell’s are

considered colonized if the species’s abundance is at least ten percent of its

carrying capacity. The average front position is then determined by averaging over

all rows (and over five simulations to reduce the effect of randomness).

The simulated invasion process considered the native species already

established in the habitat. For this matter, a randomly distributed population of

mesquite was evolved for 100 years in the absence of the invader. In that

simulation the initial condition for the native species was randomly set to density

values uniformly distributed between zero and one half the carrying capacity. The

final distribution had an average abundance of 45.26 (std. = 2.08). The average

age of the population was initially set to one year for all the cells and ended up

around 6 years (std. = 0.5). After the 100-year period the invader was introduced

at the left-most column of cells and the simulation was resumed for 200 years

more. The initial density of the invader was randomly allocated from zero to a

relatively low density (10 percent of its carrying capacity) at the leftmost cells and

zero at all other cells. The invasion speed and the average abundance at the end of

the simulation period were determined for three cases: 1) when only mesquite

competes (γx = 0,γy = γ), 2) when only saltcedar competes (γx = γ,γy = 0) and 3)
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when both species compete equally (γx = γ,γy = γ).

The results are shown in Figure 5.7. Two main observations from these

results are that 1) saltcedar can invade (expand its range and grow in density)

only if the native species compete bellow a coexistence threshold and 2) the

competitive effect of saltcedar on the native species does not accelerate the

invasion rate. Figure 5.7(c) shows that saltcedar’s competition level has negligible

effect on its invasion speed. In contrast, the effects of mesquite on saltcedar’s

invasion can be significant. The chance of saltcedar to expand its range decrease

rapidly as the competition level of mesquite approach to a coexistance threshold

(which seems to be around 0.6). No expansion was observed for competition levels

of mesquite greater than the coexistence threshold during the 200-years period,

and the invader was soon excluded by competition in most cases. Similar behavior

was observed (data not shown) for several parameter combinations other than

those shown in Table 5.1. Although some of these parameters are known to

promote the speed of the invader, such as percent of seeds available for

long-distance dispersion, the probability that a cell catch long-distance dispersed

seeds and the dispersion range (Kawasaki et al., 2006; Nehrbass et al., 2007), when

held constant with varying competition levels, the same conclusions were met.

5.5 Conclusions

A cellular automata-based metapopulation model was conveniently

parameterized in terms of colonization probabilities, extinction probabilities and

interspecific competition coefficients. This parameterization level allowed
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Figure 5.7: Effects of competition level on saltcedar abundance (a), mesquite abun-
dance (b), and invasion front speed (c) for three competition scenarios. The com-
petition scenarios were defined as 1) only mesquite competes (γx = 0,γy = γ), 2)
only saltcedar competes (γx = γ,γy = 0), and 3) both species compete equally
(γx = γ,γy = γ).
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incorporating relevant species traits and coupling moderate resolution remote

sensing observations. The parameterization at the level of species traits yielded an

age-dependent mortality model that only depends on the average age per cell,

whereas the colonization probabilities incorporate a model of seed dispersal in

which the average population in the reproductive maturity is estimated from

expected survival rates. Both approximations were shown to lead to estimates that

are comparable to those determined when the age structure is maintained.

Although this detailed specification incorporated some of the species traits that

are desirable for studying saltcedar invasion, it was at the level of extinction and

colonization probabilities that remote sensing observations could be matched with

the model parameters. Specifically, the metapopulation model was used to derive a

model, termed the COEXOD model, that is more suitable for studying the

dynamics from a remote sensing perspective. The COEXOD model is a spatially

explicit model that prescribes the changes among site states in terms of transition

probability matrices. The transition probabilities are derived from the

metapopulation model and are parameterized in terms of species colonization and

extinction probabilities as well as in term of canopy occlusion and dominance

probabilities. The parameterization in terms of occlusion and dominance

probabilities was a convenient way to express the competitive interaction as seen

from the overhead.

The inversion of the COEXOD model through multi-temporal sub-pixel

land cover change matrices showed interesting patterns of the saltcedar invasion in

West Texas. First, the estimated abundance pattern confirmed the remarkable
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influence of precipitation in driving the overall dynamics, thus illustrating one of

the most cited paradigms in aridland ecology: Noy-Meir’s ‘pulse-reserve’

conceptual model. The pulse-reserve model depicts a simple, direct relationship of

plant growth with rainfall (Noy-Meir, 1974). As it appears, a pulse event of

precipitation in 2004 triggered a pulse of plant growth that was most significant

for saltcedar. The underlaying mechanism is now recognized to be much more

complex and highly dependent on soil storage capabilities and plant functioning

(Reynolds et al., 2004; Schwinning et al., 2004). Second, the estimated model

parameters supported the superiority of saltcedar over the native mesquite and

willow communities in terms of per-capita colonization and extinction rates, as

well as in terms of canopy-dominance along the river banks. Third, the modelling

approach enabled the estimation of abundance and distribution of saltcedar and

native species (previously unavailable), which can be further analyzed for

hypothesis formulation and/or for guiding the modelling at the level of extinction

and colonization rates.

On the other hand, the metapopulation model was used to analyze the

competitive effects on the speed of a virtual invasion. A simple experimental

settings was used to measure the rate of advance of an invasion front in presence of

an established species. Saltcedar invasion of a mesquite-dominated landscape was

taken as a case study. Results from computer simulations indicate that saltcedar

does not actively increase its dispersion speed over a wide range of competition

levels. In contrast, the competition level of the native can slowdown the invasion

process and, eventually, prevent it. Consistent with the coexistence principle of
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ecology (Chesson, 2000), the model predicts that saltcedar can invade without

competing, provided that the native species’s intra-specific competition is more

significant than its interspecific competition. It must be recognized that this

finding may not extrapolate to the saltcedar invasion in West Texas, primarily

because the experiment relies on fairly simple seed dispersal and extinction

models. In the extinction model, individuals die only because they get older, but

not because of a direct effect from competitive interactions (or from exogenous

disturbances). Also, the seed dispersal model does not consider water and animal

seed dispersal mechanisms which are important factors of invasion. Unfortunately,

the relative proportions of seeds dispersed through wind, water and animals are

unknown and difficult to measure in the field (Hedrick, 2005).



Chapter 6

DISCUSSION

6.1 Sub-pixel accuracy assessment

Determining land cover information accurately from remote sensing is

crucial to understand several ecological and environmental processes occurring at a

range of scales, such as saltcedar invasion. Since the spatial pattern of land cover

information can be smaller than the sensor footprint, sub-pixel classifications offer

a flexible way to infer sub-pixel land cover information. However, accuracy

assessment of these representations has been recognized to be far more difficult

than traditional crisp classifications (Foody, 2002). A great variety of measures

derived from the traditional error matrix exists for describing the accuracy of crisp

classifications (Congalton, 1991; Congalton and Green, 1999; Stehman and

Czaplewski, 1998). However, this method is appropriate only for hard

classification, where it is assumed that each pixel is associated with only one class

in both the assessed and the reference datasets. For sub-pixel classifications, where

multiple classes are assigned to a single pixel, a comparable standardized

assessment procedure has not been established yet. The main contribution in

sub-pixel accuracy assessment (Chapter 2) were: 1) a thorough review of existing

methods for accuracy assessment of sub-pixel classifications, and 2) the

development of a more ontologically-grounded cross-tabulation matrix that

accounts for the sub-pixel distribution uncertainty.

145



146

For the cross-comparison report to be useful for identifying a perfect match

between the reference and assessed data, it was necessary to constrain the

agreement measure at the pixel level. Even though, it was shown that there is no

analytical way to determine uniquely the actual confusion based solely on the

information of land cover fractions. This problem was termed the sub-pixel area

allocation problem. In this context, it was shown how a previously recommended

composite operator (Pontius Jr and Cheuk, 2006) provides one of (possibly)

infinite number of solutions to the sub-pixel area allocation problem. This solution

corresponds to the expected sub-pixel class overlap constrained to the unmatched

sub-pixel fraction. Two new composite operators were introduced to provide the

minimum and maximum possible sub-pixel class overlap constrained to the

unmatched sub-pixel fraction. The intervals defined by these operators are

arranged within a matrix, in the form of a center value plus-minus its uncertainty,

termed the sub-pixel confusion-uncertainty matrix (SCM). Furthermore, accuracy

indices from the traditional confusion matrix were also generalized from the SCM

to account for the sub-pixel distribution uncertainty.

It was shown that when at most one class is either under- or overestimated

at each pixel the SCM results in the original composite matrix (Pontius Jr and

Cheuk, 2006), meaning that no uncertainty arise on the interclass confusions. One

typical instance of this occurs when at least one of the compared sets is crisp, as in

the assessment of continental and global products through moderated resolution

images (Latifovic and Olthof, 2004). In this case, crisp classification from coarse

resolution images are assessed using fractions derived from moderate/high
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resolution images. The cross-comparison of crisp- against soft-classified pixels also

arises in the assessment of historical datasets for which ground-truth data is

unavailable. In this case, the hardened version of a fuzzy classification can be

assessed using the fuzzy values (Okeke and Karnieli, 2006). Another common

instance of uncertainty-free matrices arises when the number of classes is less than

four. This is also significant because many remote sensing methods for producing

soft classifications, typically based on spectral mixing models, use three classes

(end-members) to describe a wide variety of land cover characteristics (Carpenter

et al., 1999; Milton, 1999; Roberts et al., 1993; Small, 2004). Bottom line, the

SCM results in the traditional confusion matrix if both datasets are crisp, in which

case, the generalized accuracy indices result in the traditional ones as well.

6.2 Sub-pixel mapping techniques

In the past, the poor classification accuracy obtained from Landsat-like

sensors for species identification has been largely attributed to the sensor’s spatial

and spectral characteristics. However, since the theoretical bounds of the accuracy

from such limitations are unknown, one should conjecture on the existence of more

sophisticated methods that can improve over prior ones. Among other things, this

study (Chapter 3) has tested the conjecture that the incorporation of some

non-linear relationship arising from the light-canopy interaction can produce more

accurate estimations of sub-pixel canopy cover. Moreover, several linear and

non-linear spectral unmixing methods were tested for retrieval of saltcedar canopy

cover to serve as a guidance for subsequent repetitive mapping tasks. The main
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contribution of Chapter 3 is two fold: 1) the identification of a practical and

accurate method for repetitive mapping of the canopy cover of invasive saltcedar

and associated species, and 2) the elucidation on the practical implications of

applying a physically-based model that accounts for the light-canopy interaction.

More specifically, results reported in Chapter 3 indicated that linear

models can achieve low to moderate accuracy if properly constrained. Although

the linear model can afford good predictions of mixed reflectance from Landsat,

the relative contribution of end-members to the mixed reflectance does not

accurately represent its areal coverage. It was shown that despite its physical basis

and simple parameterization, a method that incorporates multiple-scattering

processes (Huang et al., 2007; Lewis and Disney, 2007; Smolander and Stenberg,

2005) has high requirements that cannot be met by multi-spectral Landsat data.

Furthermore, while within-canopy end-members are essentially non-linearly mixed

due to multiple scattering, MSA can only achieve low to moderate performance if

used with above-canopy end-members, which are mostly linearly mixed (Roberts

et al., 1993). A piecewise linear unmixing method termed TLSU was implemented

as a means of assessing to what extent the broadly defined end-members were a

factor affecting the predicted species canopy cover from linear mixture models.

The superior performance of TLSU over FCLSU demonstrated that the number

and relative location of end-members within the cloud of mixed pixels might have

been a major factor affecting the linear spectral unmixing results. Although

lacking a physical basis, the TLSU method can be useful when the feature of

interest cannot be described in terms of extreme points of the mixed pixel cloud,
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such as green vegetation, soil/rock substrate, and dark surface/shadow (Small,

2004). Results also confirmed prior findings showing that backpropagation neural

networks can outperform linear and other nonlinear methods (Atkinson et al.,

1997; Carpenter et al., 1999; Liu and Wu, 2005), yet they require numerous

training samples that are hard to collect in the field. Less obvious is the fact that

a significant higher efficiency, in nearly a factor of 60, can be achieved with a

well-sized BPNN over the best linear spectral unmixing method. This means that,

for example, if one were to process an entire Landsat scene (∼50M pixels), once

the end-members have been determined and the network has been trained, BPNN5

would take around 42 minutes, whereas FCLSU would take around 41 hours to run

on a conventional personal computer. Therefore, the simplicity of the LSM model,

largely responsible for its popularity in the remote sensing community, is not

necessarily translated into a more efficient method for repeatable sub-pixel

mapping tasks. Further research should also consider time complexity analysis of

unmixing methods for tackling regional and global environmental problems by

means of remote sensing.

6.3 Sub-pixel change detection analysis of saltcedar invasion

Chapter 4 demonstrated the application of a sub-pixel change detection

technique for vegetation change analysis of saltcedar invasion along the Rio

Grande. A cross-tabulation matrix termed the sub-pixel change matrix (SChM)

was adopted as the main change analysis tool because it provides full information

on change directions. The SChM was used for estimating transition probabilities,
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which were further correlated with a number of environmental factors known to

influence the dynamics of riparian vegetation. The main contributions and findings

from this study were: 1) a new method for sub-pixel change detection analysis,

which provides full information on change direction, 2) disclose the relative merit

of factors that have influenced species dynamics in the region, and 3) provide

supporting evidence on the significantly higher impact of saltcedar abundance on

river discharge as compared to native species abundance.

Contrary to suspicions, sub-pixel classifications of multi-temporal Landsat

data acquired at five dates within the period 1993-2005 showed no continuous

expansion of areas covered by saltcedar nor continuous reduction of areas covered

by native species. Nonetheless, saltcedar dynamics appeared more sensitive to

environmental fluctuations, confirming its ability to recover from droughts and

periods of groundwater drop (Smith et al., 1998). Simple correlations between

estimated yearly transition probabilities with environmental data suggested that

the most significant, yet somewhat redundant, determinants of changes occurred in

the study area and period were the average annual precipitation, the average

minimum temperature and maximum groundwater depth in the period.

Although saltcedar seems to be confined to relatively dry lands (Zavaleta

and Royval, 2001), increasing precipitation in warm regions seems to stimulate the

displacement of native vegetation by saltcedar and, at the same time, promote the

colonization of bare exposed soil by either species. The issue is not simply that an

increment of precipitation leads to an increment of changes from native into

saltcedar. As a matter of fact, the reverse change direction is also stimulated by
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increments in precipitation, but this type of change would occur more slowly.

Therefore, the associated traits that enable saltcedar to grow faster under

favorable conditions is what may be causing the displacement of the native

vegetation. Closely related to the annual precipitation was the peak winter

discharge (October-March). The extreme discharge during this season can promote

more channel movement, vegetation scour, sediment reworking, and thus provides

prolonged moisture essential to sustain seedlings and exposes competition-free seed

beds for both the native and non-native species (Stromberg, 1998).

Likewise, although the minimum annual mean temperature correlates

positively with saltcedar occurrence on a large scale (Friedman et al., 2005), it

negatively influences the displacement of native species by saltcedar. The

mechanism is related to the maximum groundwater depth because at higher

temperatures the water table drops due to high evapotranspiration rates. Under

these stress condition, the dynamics of both native and non-native species appear

to slowdown.

Interestingly, the discharge during the first year of the period was the only

factor that correlated well with estimated transition probabilities from saltcedar

land cover into native species land cover. This confirms that hydrologic regimes

represent a unique equilibrating force that may aid both to maintain native species

and control the proliferation of saltcedar (Busch and Smith, 1995; Stromberg,

1998). Furthermore, estimated mean maximum sub-pixel fractions and steady

extinction probabilities grouped by percentiles of elevation, slope and distance to

main channel showed that local capacity of saltcedar appear superior than local



152

capacity of native species under varying topographic conditions and confirmed the

lower extinction rates respect to native species at increasing distances from the

river channel, which is consistent with physiological traits that enable saltcedar to

survive in the upland habitats (Di Tomaso, 1998).

Although not consistently increasing throughout the period, saltcedar

extent was positively correlated with the loss of discharge in the region, confirming

a long suspected significant impact in water availability of the region. In contrast,

a relationship between the extent of native species and discharge loss could not be

established. Although estimated water lost within the segment of the river does

not take into account contributions from local storms or losses from surface

evaporation and local irrigation, estimated consumption by saltcedar was

consistent with field measurements (Cleverly et al., 2002; Shafroth et al., 2005).

This is by no means a recommendation on how to estimate water consumption by

saltcedar, but rather a demonstration where remote sensing observations coupled

with a modelling approach are able to confirm suspected impacts on water

availability.

The study presented here may be extended in many different directions.

Further research should confirm the observed relations over larger study areas and

longer periods. The incorporation of many more image acquisition dates with

concurrent field observations would enable a more robust analysis. Unfortunately,

field observations are rarely available for historical data and interpretations need to

be guided by knowledge of phenomena in question. The approach presented here

also opens the possibility for building models of transition probabilities that can
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account for meaningful driving factors. Such models may be useful in forecasting

invasion severity, assessing impact on ecosystems and supporting decision making.

6.4 Development of a metapopulation model for estimating population
parameters from land cover change

In Chapter 5, a cellular automata-based metapopulation model to establish

the links between remote sensing land cover change and the underlying population

dynamics was described. The metapopulation model is an attempt to account

explicitly for the main mechanisms suggested by previous works as involved in a

plant invasion process (Higgins and Richarson, 1996; Marco et al., 2002). The

simulation approach was inspired in traditional metapopulation models (Gotelli,

2001, Ch.4). The original metapopulation model was extended in this dissertation

to incorporate interspecific competition (Vandermeer and Goldberg, 2003). The

linking process led to a land cover model termed the COEXOD model, which is a

spatially explicit model based on land cover transition probabilities. Such

probabilities are parameterized in terms of species colonization and extinction as

well as canopy occlusion and dominance.

The inversion of the COEXOD model using remote sensing measurements

for the saltcedar invasion in West Texas led to confirm the superiority of saltcedar

in terms of per-capita colonization and extinction rates across a range of habitat

characteristics dictated by the distance to the river channel, as well as in terms of

canopy dominance along habitats located next to the banks of the river. The

COEXOD model also enabled the estimation of spatially distributed abundance of

saltcedar along the riparian corridor, which is hard to acquire otherwise. It can be
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anticipated that such information will play a crucial role in understanding

environmental fluctuations associated to species dynamics. For example, the

remarkable influence of precipitation in driving the overall dynamics in such an

arid environment was easily confirmed by the high correlation between estimated

overall abundance and precipitation measurements.

On the other hand, the metapopulation model proved a reasonable means

to analyze the effects of inter-specific competition on an invasion process. Simple

experimental settings were used to measure the rate of advance of an invasion

front in presence of an established species. Saltcedar invasion of a

mesquite-dominated landscape was taken as a case study. Results from computer

simulations indicated that saltcedar does not actively increase its dispersion speed

over a wide range of competition levels. In contrast, the competition level of the

native can slowdown the invasion process and, eventually, prevent it. Consistent

with the coexistence principle of ecology (Chesson, 2000), the model predicts that

saltcedar can invade without competing, provided that the native species’s

intra-specific competition is more significant than its interspecific competition.

While habitat invasibility was determined by competitive levels of the native

species rather than by traits of the invasive species, the persistence of the former is

very much dependent on the levels of competition of the later. Prior work had

shown that species’ demographic traits and dispersal capabilities, such as long

distance dispersal mechanism, have also a positive impact on the speed of invasion

(Kawasaki et al., 2006; Nehrbass et al., 2007). A simple test where the percent of

available seeds that can undergo long-distance dispersal (data not shown) by
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random chance confirmed that, in effect, saltcedar’s ability to colonize distant

locations from its original range plays also an important role in its expansion.

Although these observations are largely based on a pure modelling

approach, they should serve as a motivation to find out the relative importance of

major driving factors in general invasion mechanism. This modelling approach

could provide new insights into the debate as to when saltcedar can outcompete

native plants and if it is actively displacing native plants or it is just taking

advantage of disturbance by removal of natives by humans and changes in flood

regimes (Everitt, 1998; Pratt and Black, 2006). Mechanisms of superior seedling

establishment above- and bellow- ground of native species over saltcedar reveals

that saltcedar is not a good competitor at the seedling stage (Sher et al., 2002),

yet it can displace a native species over time. The issue is complicated because the

relative importance of competitive interactions is not well understood yet.

There were a number of parameters that were held constant in the model.

Further research is needed to account for their relative importance for species

invasiveness. Future research should also focus on the incorporation of factors of

habitat invasibility. Specifically, identify what determines the susceptibility of a

riparian habitat to the establishment and spread of saltcedar? Suggestions have

been made that perfect timing between riverbank flooding and seed availability are

the key factors in the successful establishment of saltcedar (Everitt, 1998; Warren

and Turner, 1975). Preliminary results on simulated populations with varied

survival probability across gradients of groundwater table depth revealed

interesting patterns (data not shown) that might be useful for explaining, in future
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work, the actual plant distribution as observed from remote sensing imagery.
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Appendix I

TIGHT CONFUSION INTERVALS

Consider the n-th reference and assessed pixels with membership values rnk

and snk, respectively, of belonging to class k, for k = 1, ...,K, where K > 1. If no

class is underestimated nor overestimated, then there is a perfect match, and the

proof for tight intervals is straightforward. The analysis when only one class is

underestimated follows. Assume underestimation for class i at pixel n, so that

sni < rni and snk ≥ rnk for k 6= i. The contributions to the diagonal elements,

from both the MIN-LEAST and MIN-MIN operators, will be rnk, at row k 6= i,

and sni, at row i. Then, the contribution to the confusion intervals for columns

l 6= i becomes zero. Whereas the contributions to the lower and upper bounds of

the confusion interval, at column i row k 6= i, become

max(snk − rnk, 0) = snk − rnk and min(snk − rnk, rni − sni) = snk − rnk,

respectively. The latter equality can be concluded from the sum-to-unity

constraint. Table I.1 shows the form of the contribution by the n-th pixel to both

the upper and lower bounds of the matrix. A similar matrix can be obtained when

only one class is overestimated, wherein only one row has non-null elements in the

off-diagonal positions. Therefore, the confusion intervals are tight if at most one

class is either overestimated or underestimated on a per-pixel basis.
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Table I.1: Contribution of the n-th pixel to the upper and lower bounds of the
confusion intervals for K classes, when only class i is overestimated.

Class 1 2 . . . i . . . K − 1 K Row Tot.
1 rn1 0 . . . sn1 − rn1 . . . 0 0 sn1

2 0 rn2 . . . sn2 − rn2 . . . 0 0 sn2
...

...
...

. . .
...

. . .
...

...
...

i 0 0 . . . sni . . . 0 0 sni
...

...
...

. . .
...

. . .
... 0

...
K − 1 0 0 . . . snK−1 − rnK−1 . . . rnK−1 0 snK−1

K 0 0 . . . snK − rnK . . . 0 rnK snK

Col. Tot. rn1 rn2 . . . rni . . . rnK−1 rnK 1



Appendix II

MULTIPLE SCATTERING APPROXIMATION

Let zj denote the proportion of light reflected from the jth end-member (or

the output of the jth box in the diagram of Figure 3.4(b)), then

zj = xj

(
αj +

m∑
i=1

pijzi

)
(II.1)

where the first term in parenthesis corresponds to the proportion of light reflected

directly and the second term corresponds to the proportion light that undergoes

multiple scattering. This equation can be solved for the z’s using matrix notation

as follows:

z = X
(
α + PTz

)
=
(
I−XPT

)−1
Xα

where I is the identity matrix of order m, X = diag(x1, . . . , xm) is a diagonal

matrix of end-members spectra, and P = [pij ]i,j=1,...,m is the matrix of re-collision

probabilities. Furthermore, following the flow diagram of Figure 3.4(b), the MSA

mixture model can be written as:

y =
m∑

j=1

zjqj

=
m∑

j=1

zj

(
1−

m∑
k=1

pjk

)
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where qj is the escaping probability from end-member j, i.e., the probability of no

re-colliding. Using matrix notation, and replacing the expression for z above,

results in

y = (1−P1)T (I−XPT
)−1

Xα (II.2)

where 1 is a m-column vector of ones.



Appendix III

METAPOPULATION MODEL

III.1 Definitions and notation

For the dynamical analysis of the model, I consider here a generic cell to

avoid indexing the cells. At each time t, Xt =
∑

a Xa,t is the population density,

expressed in terms of age-structured population densities Xa,t, i.e., the population

density of the a-age class for each a; Ct is the colonization rate, i.e., the number of

off-springs; Et =
∑

a Ea,t is the extinction rate expressed in term of age-structured

extinctions rates Ea,t, i.e., number of dying individuals in the a-age class. Sums

are over all ages, a = 1, 2, . . . By definition X0,t = 0, for all t, and the zero-age

class density is given by Ct. The average age at time t is defined as

āt =
∑

a aXa,t

Xt
(III.1)

with squared standard error

SEt =
∑

a(a− āt)2Xa,t

Xt
(III.2)

Likewise, the average extinction age at time t is defined as

āe,t =
∑

a aEa,t

Et
(III.3)

The survival distribution function for the a-age class is expressed as

Ps(a) = Pr(A > a), where Pr is read as ‘the probability that’, and the capital
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letter A denotes a random variable defined as the age at which an individual die.

The survival at an age a, given the survival at the previous year, is denoted as

s(a) = Pr(A > a|A > a− 1) and is referred to as the yearly survival probability.

Likewise, the probability of extinction at an age a is denoted by

pe(a) = Pr(A = a) = Ps(a− 1)− Ps(a). The survival distribution function is

prescribed by the Bayes rule as Ps(a) = s(a)Ps(a− 1), for a = 1, 2 . . ., and

Ps(0) = 1, or, after recursive substitutions,

Ps(a) =
a∏

k=1

s(k) (III.4)

III.2 The extinction model

At each year, each individual in the a-age class survives with probability

s(a) and dies with probability e(a) = 1− s(a), where e(a) is the yearly extinction

probability. Then, the expected extinction rate is given by Equation (III.5):

Êt =
∑

a

e(a)Xa,t (III.5)

where the hat (x̂) is used to denote expectation. Because tracking the age

structure in a spatial explicit model is not efficient, it is desirable to be able to

predict the extinction rate from total density without knowing the age structure.

The following expression for the extinction rate is more desirable:

Êt = e(āt)Xt (III.6)

This relation holds only if the yearly survival function is linear in a. Under this

constraint, the simplest model for the yearly survival function is a constant, say
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1− p, in which case the survival density function corresponds to a geometric

density function with one parameter p, the probability of dying each year.

Although easy to implement, the geometric model may not be realistic because

there is a small, yet positive chance that an individual live for ages significantly

larger than the maximum longevity, and because the extinction probability of a

younger individual is always larger than the extinction probability of an older one,

which might not be always the case for real plants such as saltcedar. A more

realistic model is obtained for non-constant yearly survival function.

The linear model can be parameterized in terms of the maximum longevity

amax and the extinction probability during the first year q, i.e.,

s(a) = q
amax − a

amax − 1
(III.7)

Replacing this expression in Equation (III.4), the survival distribution function

results:

Ps(a) =
(

q

amax − 1

)a (amax − 1)!
(amax − 1− a)!

(III.8)

for a = 0, 1, . . . , amax. Consequently, the probability of dying at the exact age a

becomes:

pe(a) =
(

1− q
amax − a

amax − 1

)(
q

amax − 1

)a−1 (amax − 1)!
(amax − a)!

(III.9)

for a = 1, 2, . . . , amax. Since this probability density function converges to the

geometric distribution as amax tend to infinity, I refer to it as a truncated

geometric distribution. Plots of this distribution are shown in Figure III.2 for

several values of q and amax = 100.
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Figure III.1: Plots of the truncated geometric distribution for several values of the
probability of success for the first trial (q) and maximum number of success (amax)
of 100.
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III.3 Average age update

The dynamical equations for the a-age class can be written as:

Xa,t = Xa−1,t−1 + δa,1Ct−1 − Ea−1,t−1 (III.10)

where δn,m is the Kronecker delta (i.e., δn,m = 1, for n = m and δn,m = 0

otherwise), and the sum over all ages yields

Xt = Xt−1 + Ct−1 − Et−1 (III.11)

Using these expressions with the definitions of Equations III.1 and III.3, results in

the recursive expression for the average age:

āt = 1 +
(

1− Ct−1

Xt

)
āt−1 − (āe,t−1 − āt−1)

Et−1

Xt
(III.12)

for Xt > 0. Furthermore, using the expected extinction rates in Equation III.3, it

can be shown that the third term in this expression is proportional to the standard

error (Eq. III.2) and, after algebraic manipulation, it results in the recursive

formula

āt = 1 +
(

1− Ct−1

Xt

)
āt−1 −

qSEtEt−1

(amax − 1)Xt
(III.13)

where rightmost term can be neglected for large values of amax. For small amax, the

term SEt is approximated by the variance of the truncated geometric distribution.

III.4 Reproductive maturity population

The population in the reproductive maturity age is based on the

age-structured density. An explicit expression for the age structure can be
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obtained by using expected extinction values in Eq. III.10, so that

Xa,t = s(a− 1)Xa−1,t−1 + δa,1Ct−1

= Ct−a

a−1∏
k=1

s(k)

= Ct−aPs(a− 1)

Then, the reproductive maturity density can be determined as

Mt = Xt −
amat−1∑

a=1

Ps(a− 1)Ct−a (III.14)

where amat is the minimum age of reproductive maturity.

III.5 Land cover change counterpart

The first step consists of expressing the fractional densities in terms of the

fraction of sites occupied by native species alone x, invasive species alone y, both

species together z, and the fraction of empty sites w. This is accomplished by

making the variable substitutions X̃t = xt + zt, Ỹt = yt + zt and

wt = 1− xt − yt − zt in the system of Equations (5.6), and then defining the

common terms of both equations as zt+1. Therefore, the first equation of the
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system can be expressed as:

X̃t+1 =sxxt + sxzt + cx[1− xt − zt − γx(yt + zt)]

=sxxt + sxzt + cxwt + (1− γx)cxyt − γxcxzt

=sxxt + sx(sy + ey)zt + cx(cy + 1− cy)wt + (1− γx)cxyt − γxcxzt

=sxxt + sxeyzt + cx(1− cy)wt − (1− γy)cyxt + γycyzt

+ sxsyzt + cxcywt + (1− γx)cxyt + (1− γy)cyxt − γxcxzt − γycyzt

=(sx − (1− γy)cy)xt + (sxey + γycy)zt + cx(1− cy)wt

+ (1− γy)cyxt + (1− γx)cxyt + (sxsy − γxcx − γycy)zt + cxcywt

where the appropriate conditions have been applied. Proceeding in the same way

with the second equation yields:

Ỹt+1 = (sy − (1− γx)cx)yt + (syex + γxcx)zt + cy(1− cx)wt

+ (1− γy)cyxt + (1− γx)cxyt + (sxsy − γxcx − γycy)zt + cxcywt

If the common part of both equations is defined as the joint occupancy term, zt+1,

then the dynamical equations of the fractional densities can be expressed as:

xt+1 = (sx − (1− γy)cy)xt + (sxey + γycy)zt + cx(1− cy)wt (III.15)

yt+1 = (sy − (1− γx)cx)yt + (syex + γxcx)zt + cy(1− cx)wt (III.16)

zt+1 = (1− γy)cyxt + (1− γx)cxyt + (sxsy − γxcx − γycy)zt + cxcywt (III.17)

and, consequently, the fraction of empty sites results in:

wt+1 = exxt + eyyt + exeyzt + (1− cx)(1− cy)wt (III.18)
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The second step consists of splitting the proportion of jointly occupied sites

into two parts, one where the native is canopy-dominant (zx) and other where the

invasive species is canopy-dominant (zy). This is accomplished by making the

variable substitution zt = zx,t + zy,t and by forcing the coefficients of the resulting

system to reflect the conditions outlined in Section 5.3. For example, the term

(sxey + γycy)zt in Equation (III.15) is expressed as (sxey + γycy/δ)zx,t + sxeyzt,y

because it reflects the fact that the competitive effect on the invasive species (γy)

does not play a role in driving the change from canopy-dominant invasive species

(zy) into native species alone (x), but it does play a role in driving the change

from canopy-dominant native (zx,t) into native species alone (x). Note that for the

above term to be equivalent to that in Equation (III.15), the relations zx,t = δzt

and zy,t = (1− δ)zt must hold, and hence δ defines the proportion jointly occupied

sites where the native species dominates the canopy. Therefore, the application of

the above conditions to equations Equation (III.17) through (III.18) yields the

following dynamical system of five state variables:

xt+1 = (sx − (1− γy)cy)xt + (sxey + γycy/δ)zx,t + sxeyzy,t + cx(1− cy)wt

yt+1 = (sy − (1− γx)cx)yt + syexzx,t + (syex + γxcx/(1− δ))zy,t + cy(1− cx)wt

zx,t+1 = (1− γy)cyxt + (sxsy − γycy/δ)zx,t + δcxcywt (III.19)

zy,t+1 = (1− γx)cxyt + (sxsy − γxcx/(1− δ))zy,t + (1− δ)cxcywt

wt+1 = exxt + eyyt + exeyzx,t + exeyzy,t + (1− cx)(1− cy)wt

The last step consists of merging states with similar above-canopy cover.

The idea here is to evaluate the conditional probabilities of observing a land cover
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at a given time step given the observed land cover at previous time step, where the

fractions a = x + zx, b = y + zy and w at initial time step are considered as prior

probabilities. Let X, Y, Zx, Zy and W denote the events of observing the land cover

types: native only, invasive only, both with canopy dominating native, both with

canopy-dominating invasive and clear, respectively. Let A = X
⋃

Zx denote the

event of observing the native species from above, and B = Y
⋃

Zy denote the event

of observing the invasive species from above. Then, the probability of observing a

land cover (LC) i at time t + 1 given that a land cover j has been observed at time

t, is denoted by pi,j = P (LCt+1 = j|LCt = i). Here I just evaluate pa,a and pa,b for

the sake of illustrating the idea and present the results for the other probabilities:

pa,a = P (A|A) = P (A|X ∪ Zx)

= P (X ∪ Zx|A)
P (A)

P (X ∪ Zx)

=
P (X|A)P (A) + P (Zx|A)P (A)

P (X ∪ Zx)

=
P (A|X)P (X) + P (A|Zx)P (Zx)

P (X) + P (Zx)

=
P (X|X)P (X) + P (Zx|X)P (X) + P (X|Zx)P (Zx) + P (Zx|Zx)P (Zx)

P (X) + P (Zx)

=
(sx − (1− γy)cy)x + (1− γy)cyx + (sxey + γycy/δ)zx + (sxsy − γycy/δ)zx

x + zx

=
sxx + (sxey + sxsy)zx

x + zx
= sx

where I have used Bayes rule to go from line one to line two and from line three to
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line four. Likewise,

pa,b = P (B|A) = P (B|X ∪ Zx)

= P (X ∪ Zx|B)
P (B)

P (X ∪ Zx)

=
P (X|B)P (B) + P (Zx|B)P (B)

P (X ∪ Zx)

=
P (B|X)P (X) + P (B|Zx)P (Zx)

P (X) + P (Zx)

=
P (Y |X)P (X) + P (Zy|X)P (X) + P (Y |Zx)P (Zx) + P (Zy|Zx)P (Zx)

P (X) + P (Zx)

=
0x + 0x + exsyzx + 0zx

x + zx

= exsy
zx

x + zx
= λxexsy

where λx is the probability that the observed native species is occluding the

invasive species in the understory.

Proceeding similarly for the other land cover change probabilities results in

the following land cover change model, here expressed in the form of a system of

linear equations:

at+1 = sxat + λysxeybt + cx(1− (1− δ)cy)wt

bt+1 = λxexsyat + sybt + cy(1− δcx)wt (III.20)

wt+1 = [(1− λx)ex + λxexey]at + [(1− λy)ey + λyexey]bt + (1− cx)(1− cy)wt

where the new parameters λx = zx/(x + zx) and λy = zy/(y + zy) represent the

probability that the observed species is occluding the other species in the

understory.
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