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EXISTENCE OF A SOLUTION AND ITS NUMERICAL
APPROXIMATION FOR A STRONGLY NONLINEAR COUPLED
SYSTEM IN ANISOTROPIC ORLICZ-SOBOLEV SPACES

FRANCISCO ORTEGON GALLEGO, HAKIMA OUYAHYA, MOHAMED RHOUDAF

ABSTRACT. We study the existence of a capacity solution for a nonlinear el-
liptic coupled system in anisotropic Orlicz-Sobolev spaces. The unknowns are
the temperature inside a semiconductor material, and the electric potential.
This system may be considered as a generalization of the steady-state ther-
mistor problem. The numerical solution is also analyzed by means of the least
squares method in combination with a conjugate gradient technique.

1. INTRODUCTION

This work concerns a generalization of the steady-state thermistor problem. It
consists of two coupled nonlinear elliptic equations governing the temperature, u,
and the electric potential, ¢, inside a semiconductor device, namely,

—A(u) = p(w)| Vo2 0
div(p(u)Ve) =0 in Q,
¢ =¢o ondQ,
=0 on 01,

(1.1)

where  C R? (the thermistor geometry) is a bounded domain, d > 2 is an integer,
and the operator A, given by

d
A(w) = 0y (as(w,u. 00)), 0, = ai’

i=1

which is assumed to be of the Leray-Lions type on certain Orlicz-Sobolev spaces. For
eachi =1,...,d, the function a;(z, s,(): QXRXR — R is a Carathéodory function,
that is, measurable with respect to x in Q for all (s,() € R2, and continuous with
respect to (s,() for almost every & € €. The vector function a = (aq,...,aq)
satisfies certain monotonicity and coercivity conditions in the anisotropic Orlicz-
Sobolev space

WL (Q) = {u € Lp, (Q) : Ou € Ly, (), i =1,...,d},
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where M = (M, ..., My), My, ..., My are N-functions which, in general, do not
satisfy the Ag-condition, and My = mini<;<q M;. Also, p € €(R) N L>®(R) stands
for the temperature dependent electric conductivity and ¢ € H'(Q) N L>®() is
given.

System is a mathematical model which generalizes the so-called thermistor
problem [2] [6] 10, 13]. In most practical cases, one has p(s) > 0 for all s € R and
p(s) = 0 as s — +oo. In particular, the equation for ¢ is nonuniformly elliptic,
and consequently, no a priori estimates for Vi will be available so that ¢ may not
belong to a Sobolev space. This means that the search for weak solutions to
is not well-suited in this setting.

To deal with this difficulty, we consider the function ® = p(u)|V¢|? as a whole
and then show that it belongs to L2(Q)?. A new formulation of system will
lead us to the introduction of the notion of capacity solution.

The concept of capacity solution was first introduced by Xu in [I7] in the analysis
of a modified version of the evolution thermistor problem. He also applied this
concept to more general settings where weaker assumptions [18] or mixed boundary
conditions [I9] are considered. Later on, it has also been used by other authors
in different situations [6, 12, [14]. For instance, in [6] the authors analyzed the
existence of a capacity solution for the evolution thermistor problem in WP for
p > 2. Moussa et al. [12] studied this system in isotropic Orlicz-Sobolev spaces,
whereas Talbi et al.
citeHajar considered the anisotropic case with polynomial growth with respect to
the variable (.

The goals of this paper are twofold. First, we analyze the existence of a capacity
solution to for arbitrary and different growths of the functions a;(z, s, (),
i = 1,...,d (in particular, some or all of the functions M;, i = 1,...,d, do
not need to satisfy the As-condition). For instance, in d = 2, we may have
ai(x,5,() = [¢|P72¢ and as(z,s,) = 2Bexp(B¢?)¢ where the corresponding N-
functions are given by M (¢) = |¢|P/p and M»(¢) = exp(B¢?) — 1, respectively; in
this case, M; satisfies the As-condition whereas M, does not. Secondly, we de-
scribe a numerical algorithm for the approximation of the solution to problem
based on the least squares method combined with a conjugate gradient technique
[, 5]. Though some numerical simulations have led to good results by using this
algorithm, the numerical resolution of for arbitrary functions a; remains a
challenge; this is related to the machine precision. Indeed, since this algorithm
generates a sequence of approximate solutions for the temperature, say (u’ff)7 by
means of descent directions, (2]), that is uZH'l =up" — Az, where Ay, > 0 is an
optimal value, it may occurs that \,, becomes smaller than the machine precision
which may result in an underflow situation. Consequently, A, is taken to be zero
inside the machine, and the algorithm would produce uZ”l = u}" after that value
of m.

Notice that the numerical resolution of system is an important issue. These
numerical simulations may yield a very useful information while designing a ther-
mistor for certain specific purposes. In this sense, knowing the steady-state tem-
perature distribution inside the thermistor for a given geometry Q2 and potential
o is crucial, although this is only a first step in this analysis (we also want to
know the whole history of both, temperature and potential, from a known initial
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temperature up to being close enough to the steady-state by solving the evolution
problem).

This article is organized as follows. In Section 2 we introduce some notation,
concepts and functional spaces together with certain technical results that will be
needed along this paper. Section 3 states the assumptions on data and introduces
the concept of a capacity solution to in the framework given in the previous
section. In Section 4 we present an existence theorem along with its proof. Finally,
Section 5 is devoted to the description of a numerical algorithm for the approximate
solution to problem for certain choices of the functions a;, 1 < i < d, including
some numerical results obtained by the implementation of this algorithm.

2. PRELIMINARIES

We begin by recalling some definitions and properties of Orlicz spaces [1} [TT] and
then we introduce the anisotropic Orlicz-Sobolev spaces.

2.1. N-functions. The basic concept in an Orlicz normed space is that of -
function.

Definition 2.1. A function M: R — R is called an N-function if it fulfills the
following conditions:
(i) M is convex in R: M(Asy + (1 — A)s2) < AM(s1) + (1 — A\)M(s2), for all
s1,82 € R and for all X € [0, 1].
(ii) M is an even function: M(s) = M(—s) for all s € R.
(iii) M(0) =0 and M(s) > 0 for all s € R.
(iv) 22 5 0ass—0and 28 5 150 as s — +oo.

S S

An N-function M is said to satisfy the As-condition for all s € R if, for some
k>0,

M(2s) <kM(s) orallseR.

We say that M satisfies the Ag-condition for s large if there exist sg > 0 and k > 0
such that

M(2s) < kM(s) forall s> sq.

An equivalent definition [T1] of an N-function is a function M that admits the
representation

Is|
M(s):/o m(o) do,

where m: RT — RT is a non-decreasing and right-continuous function, m(s) > 0 for
all s > 0 and m(s) — 400 as s — +oo. For an N-function M, the complementary
or conjugate is defined by

s = [ " (o) do

where m: RT — RT is given by m(t) = sup{s : m(s) < t}.
We have the Young’s inequality

[ts| < M(t) + M(s) for allt,s € R.
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Let 2 be an open set in R? and d € N. The Orlicz class ./ (2) (resp. the Orlicz
space Lp(Q)) is defined as the set of (equivalence classes of) real-valued Lebesgue
measurable functions « in £ such that

/ M(u(z))de < 400 (resp. / M(@) dz < 400 for some A > 0).
Q

Notice that Ly (€2) is a Banach space under the so-called Luxemburg norm

ullar = inf{/\ >0: /QM(U(;)) do < 1},

and £ () is a convex subset of Ly (). Indeed, Lp(92) is the linear hull of
Zr(2). The closure in Ly () of the set of bounded measurable functions with
compact support in Q is denoted by Ej/(Q2). The equality Eps(2) = L () holds if
and only if M satisfies the As-condition, for all s or for s large according to whether
Q has infinite measure or not. The dual of Ej/(£2) can be identified with L ;;(€)
by means of the duality pairing [, u(x)v(z)dz, and the dual norm on Ly;(Q) is
equivalent to || - || z-
In L () we define the Orlicz norm

lullan = sup [ w(e)o(e) da (2.1)
where the supremum is taken over all v € Ey; ) such that [[v[|; < 1. It turns out
that the norms || - [[as and [ - [|(ar) are equivalent. In fact, it can be shown that

llullar < llull(ary < 2\|ullar for all u € L (2). (2.2)
Also, the Holder inequality holds
/ fu(z)o(@)] dz < Jullallvllr  for all u € La(€) and v € Ly (),
and by .
/ |u(z)v(x)| de < 2||ullam|v]liz  for all uw € Ly(2) and v € Lz ().

In particular, if  has finite measure, Holder’s inequality yields the continuous
inclusion Ly (Q) € LY(9Q).
An important inequality in Ly, (£2) is the following;:

/ M (u(x))de < ||ul|(ary for all u € Ly () such that |lufan <1, (2.3)
wherefrom we readily deduce
/ M(M) dz <1 forall ue Ly(Q)\ {0} (2.4)
o Mullan

Definition 2.2. We say that (u,) C L () converges to u € Ly (Q) for the
modular convergence in Lys(Q) if, for some A > 0, one has

AM(M)dI%O as n — o0.

Modular convergence is weaker than the convergence in the norm of L (Q).
However, it is enough to our purposes. The next result tells us that the modular
convergence in Lj; implies the convergence in the weak-* topology o(Las, Lj)-
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Lemma 2.3 ([3, 7). Let (u,) C Ly (Q), u € Lp(Q) and v € Lz (Q) such that
Uy, — u with respect to the modular convergence. Then
(1) unv — uv strongly in L*(2). In particular, [, unv — [, uv.
(2) Furthermore, if (v,) C Ly (Q) is such that v, — v with respect to the
modular convergence, then u,v, — uv strongly in L*(9).

2.2. Anisotropic Orlicz-Sobolev spaces. Let €2 be an open subset of Rd,iand
M; be an N-function for each i = 1,...,d. We write M = (My,..., Mqa), M =
(Mjy, ..., My). The anisotropic Orlicz space La(§2) (respectively, FEnq(£2)) is de-
fined by

d d
LM (Q) = HL]VL', (Q) (respeCtiVQIY7 EM (Q) = HEM7 (Q))a
i=1 i=1
endowed with the norm .
lull = luslla, (2.5)
i=1

To introduce the anisotropic Orlicz-Sobolev spaces it will be interesting to define
the function
My(s) = min M;(s). (2.6)

Remark 2.4. It is easy to check that:
(i) The function My is an N -function.
(ii) The embedding Ly, (2) — Lag, () is continuous for each i € {1,...,d}.
The anisotropic Orlicz-Sobolev spaces are defined by
WILM(Q) = {u € L, () : 0ju € Ly, (Q), i =1,...,d},
WYEMm(Q) = {u € Ep, () : 0;u € Ep, (), i =1,...,d},

which are Banach spaces under the norm

d
1 = l[ullagg + ) 1|0sullar,- (2.7)
i=1
Both spaces, W!L () and W!E\(Q), can be identified as subspaces of the
product space II = Lp;(2) x Laq(2). Then, the predual space of II, ﬁ, is
= Ej7, () x E 4 (€2). We will use the weak-* topology o (11, IT). Let 2(9) be the
space of functions in 4°°({)) with compact support in Q. The space Wi E ()
is defined as the (norm) closure of the space () in W!'Ex(Q), and the space
WL L () as the o(IT, IT)-closure of 2(€2) in WL ().

Lemma 2.5 ([12]). Let Q be a bounded and open set in R?. Assume that m;(t) >t
forallt > 0 and all i = 1,...,d. Then the following continuous embeddings hold
fori=1,...,d:

[ u

L, () = L*(Q) = Ly ().
In particular, W Ly () = HY(Q) and H=H(Q) — WL 4 (Q).
Remark 2.6. Assume that, for each i =1,...,d, one has m;(t) >t for all t > 0.
Then

/ vide < 2/ M;(v)dz, for allv € Ly, (2). (2.8)
Q Q
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Theorem 2.7 ([16]). Let Q2 C RY be an open and bounded set with locally Lipschitz
boundary. Then the embedding WLy () < En(Q) is compact. Furthermore,
the compact imbedding Wi Ly (Q) < En(Q) holds without the locally Lipschitz
boundary assumption.

Corollary 2.8. Let Q be an open and bounded set in R¢ and My the N-function

defined in ([2.6). Then, the embedding Wi L () < En, () is compact.
Poincaré’s inequality in W La(Q2) also holds.

Lemma 2.9 ([7]). Let Q@ C R? be an open and bounded set. Then, there exist

constants ko and k1 = k1(2) such that

d
/ My(u)dz < kg Z/ M;(k10u;)dx for all u € Wi Laq(9).
Q — Ja

Corollary 2.10. The seminorm u € WLy (Q) Zf-l:l |0iullps; is @ norm in
W3 Lam() and it is equivalent to the norm || - |1 m given in .

Since the elements of the space WiLa(£2) have been defined as the weak-x
limit of convergent sequences in 2(1), the following result states that, for certain
domains 2, 2(1) is ‘dense’ in W L4(2) with respect to the modular convergence
as well.

Definition 2.11. A bounded domain  C R? is said to satisfy the segment prop-
erty, if there exist a locally finite open covering {U;} of 92 and corresponding
vectors {y; } C R? such that for all x € QNU; and any p € (0, 1) one has 4 puy; € .

Lemma 2.12. Let Q C R? be an open and bounded set satisfying the segment
property and u € WL (Q). Then there exists a sequence (u,) C 2(Q) such that
Uy, — u with respect to the modular convergence in WL (2); that is, there exists
A > 0 such that

d
/QMO((UTL—U)/A)+;/§2Mi((3¢un—5¢u)/)\)—>O as n — oo.

The proof of the above lemma is a straightforward adaptation of [8], Theorem 4]
for isotropic Orlicz-Sobolev spaces.
Finally, we introduce the following dual spaces

d
WL ={f € 2'(Q): f = 8:fi with f; € Ly, (), for all i, 1 < i < d}
=1

d
WIEGQ) ={fe2(@Q): f= Zaif,» with f; € Ey,(Q), for all i, 1 <14 < d}
i=1
These spaces are equipped by their usual quotient norms.

3. ESSENTIAL ASSUMPTIONS AND MAIN RESULT

From this point on we will assume that  C R? is an open and bounded set
satisfying the segment property. We now state the assumptions on the differential
operator in divergence form given by A: Wl La(Q) — WLL ()

d
Au) = Z 0; (ai(x,u, Ozu))
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(Al) For each i = 1,...,d the function a;: Q@ X R xR = R, a; = a;(x,s,() is a
Carathéodory function (measurable in z for all (s, () and continuous with
respect to (s, () almost everywhere (a.e.) in Q).

(A2) There exist N-functions M;, i = 1,...,d, a function ag € Ey;, and positive
constants k and v such that a.e. in 2, for all (s,¢) € R? and fori = 1,...,d.

lai(z, 5, Q)| < (ao(w) + M; " (Mi(K[C]))) - (3.1)

(A3) For a.e. in ©, for all s € R, and all ¢,¢" € R with ¢ # ¢, ¢ = (Gr,+ o),
¢ =((,. .., ¢ we have

d
Z[ai(x787<i) - (li(l‘, 87(11)](9 - Cz/) >0 (32)

(A4) There exists A9 > 0 such that a.e. in , for all s € R, and all ((y,...,(q) €
R? we have

d d
Zaz‘(x757Ci)Ci > ale(%) (33)
i=1 i=1

(A5) Let B C R be a bounded set. Then for a.e. in , for all s € B, and

(=G, eR?
d

D lai(w,5,G) = ailw, 5, ¢ — ¢) = +oo (34)

i=1

as [¢| = 400, ¢ = ((1, ..., ) € RY, uniformly in s.
(A6) For alli=1,...,d, we have

ai(z,5,0) =0 (3.5)
(AT) p € €(R) and there exists p € R such that for all s € R,

0<p(s) <p (3.6)
(A8) o € HY(Q) N L>=(Q).
Now we are ready to state the definition of a capacity solution to problem .

Definition 3.1. A triplet (u,p, ®) is called a capacity solution to problem (1.1)) if
it satisfies the following conditions:

(A9) u € WgLm(Q), a;i(-,u,0iu) € Ly () for 1 < i < d, ¢ € L®(Q) and

o L2(Q)4.
(A10) (u,p,®) verifies the system of differential equations in the sense of distri-
butions
d
- Z 9i(a;(z,u,0u)) = div(e®) in €,
i=1

diveé=0 in .

(A11) For every S € %3 (R) (that is, S € ¢(R) and has compact support in R),
one has S(u)p — S(0)po € HE(2), and

S(w)® = p(u)[V(S(u)p) = ¢V S(u)].



8 F. ORTEGON GALLEGO, H. OUYAHYA, M. RHOUDAF EJDE-2022/84

Remark 3.2. Notice that the concept of capacity solution involves a third com-
ponent, namely, ® € L?(Q)?. Where this vector field comes from? The original
problem only has two unknowns so that there must be a relationship between ® and
(u, ¢). Indeed, this is true and the relationship is given by the condition expressed
in (A11). In fact, assume that u € L>(€) and take S € %, (R) such that S = 1
in the interval [—||u||oo, ||tt]|oc]. Then, we deduce that ¢ € H*(Q), ® = p(u)Vep
and div(¢®) = p(u)|Vul?. Consequently, bounded capacity solutions are weak so-
lutions. In the general case where u ¢ L>(2) the expression given in (A11) allows
us to define the gradient of ¢ pointwise almost everywhere from the identity

DX (juj<k} = P(W)VOX{ju<k} for any K > 0.

4. AN EXISTENCE RESULT
In this section we establish the main result of this article.

Theorem 4.1. Under the assumptions (A1)-(A8), system (L.1) admits a capacity
solution.

To prove the main result, we will need to show the existence of a weak solution
to a similar problem but under a more restrictive assumption, namely,
p € €(R) and there exist p; and ps € R such that

4.1
0 < p1 <p(s) <pg, forall seR. (4.1)

Theorem 4.2. Assume (A1)—(A6), (A8) and (A.1) hold. Then, there exists a
weak solution (u,p) to (L)), that is u € Wi La(Q), ai(-,u, 0;u) € Ly, (), for all
1<i<d, o — o€ HN}Q)NL®(Q), and

d
3 / ai(,u, Dyu)icp = / (W)Yo, for all & € WELam(),
=1

/ p(u)VeVip =0, for all i € Hy ().
Q

Proof. To prove the existence of a weak solution, Schauder’s fixed point theorem
will be applied together with a result on the existence and uniqueness of a weak
solution to an elliptic equation.

For a function w € Ejy, (€2) we consider the elliptic problem

div(p(w)Ve) =0 in £,
p=1o on Of.

Thanks to Lax-Milgram’s theorem, (4.2) has a unique solution ¢ € H'(Q). In this
case, from the maximum principle we also have ¢ € L () and

(4.2)

lellze @ < lleollLe(o)- (4.3)
Using ¢ — pg € H}(Q) as a test function in (4.2)) we obtain
[ o9k = [ p)vevin

hence
" / Vol de < /Q (@) [V Vool dz < p / Vol Vigo| de.
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By the Cauchy-Schwarz inequality, we obtain

[ Ve az < Clon o) = € (4.4)
Q

Thanks to the elliptic equation for ¢, the term p(w)|V¢|? also belongs to the space
H=Y(Q). Indeed, let ¢ € 2(Q) and take ¢ = ¢y as a test function in (4.2). We
have

/Q P(w) VoV (6p) dz = 0,
that is
/Q p(w)| V26 da = / PW)PV Vo de = (div(p(@)pV ), 6) (e o)

This means that
p(W)Ve|* = div(p(w)pVy) in 7'(Q). (4.5)
Since p(w)pVe € L2(Q)N we finally deduce the regularity

div(p(w)pVe) € H ().

Now we consider the elliptic problem

d
- Z az (ai (1[,’, w, 81“)) = le(P(W)SDVSO) in Qv

pt (4.6)
u=0 on 0.
The variational formulation of this elliptic equation is
u€ Wy Lam(Q), ai(-,w,0u) € Ly (Q), fori=1,....d,
(4.7)

d
> [ aitew.0mti0 = - [ pw)eVeVo, forall 6 € WELu(®).
=179 Q

We have div(p(w)eVe) € H Q) — WL, 4(Q) because of Lemma The
proof of the existence and uniqueness of solution to is a straightforward ap-
plication of the result given in [15].

Now, we show that d;u/ANg € L, () for i = 1,...,d, where \g is the constant
appearing in 7 and the estimates

d
Z/ Ml(alu/)\o) d.’E S C(Lpo, a, )\0,p2) = CQ, (48)
i=1"9

d
Z ”ai('vw’ alu)HJVIZ < (1. (4'9)

i=1
Indeed, let A > 0 such that |Q;ul/A € L, (Q) for i =1,...,d. Since p € H'(Q) C
WL 4 (9Q), there exists g > 0 such that ip2||<p0||Loo(Q)6¢<p € Ly, (Q) for i =
1,...,d. By taking ¢ = u as a test function in (4.7)), from (3.3), (3.5), (4.1), (4.3)

and Young’s inequality, we obtain

d
(%
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d
il
< — a;(x,w,diu)d;udx
ey )

d d
<3 [ Wiliollim@diplnda+ Y [ Mi@iu/3de <o
i=1 i=1

This shows that d;u/Ng € L, () for i = 1,...,d. To obtain (4.8), by using
Young’s inequality and the estimate (2.8)), we deduce

d d
aZ/ M;(O;u/ o) dx: Z/ a;(z,w, d;u)djudx
i=179

2
< (2 Rleoldeie [ 1Vl + 2 [ 10m/20P)
- « =) Q 4 Q ’

i=1

d
(0%
< C*(§007a5 )\07P2) + 5 ;AMZ(alU/Ao)

U

and thus (4.8) holds for Cy = 2C. (o, @, Ao, p2)/a. To obtain (4.9)), first notice
that from the previous two inequalities we obtain

d
Z/ ai(z,w, 0u)dudr < alCy. (4.10)
; Q

Then, because of (3.2), for any ¢ € Wi Er((Q2) such that 25:1 10:bl(ar,y = 1/(k+1)
we have

d
0< Z/ (a;(z,w, 0u) — a;(z,w, %;8)) (Oiu — 0;¢) da
=17/

Owing to (4.10) and Young’s inequality, we deduce
d
Z/ a;(z,w, 0u)0;¢ dx
i=17%
d d
< Z/ a;(z,w, Oju)d;udr — Z/ ai(z,w, 0;0)(O;u — 0;¢) da
i=17% i=17%

d d

< aCy+ Z/ la;(z,w, 0;¢)0;u| da + Z/ ai(z,w, 0;¢)0;¢ dx
i i=17%

< aCy + 27X Z/ M) + M;(95u/ )] dz

+zyz / (Glee00) W)) + My(|0:6])) da

where v is the constant appearing in (3.1]). Since

4 ai(aw 0;0) 1
ZM(%) 52 (Mi(ao(@)) + Mi(k|o,4]) ae.in O,
i=1 i=1
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using we obtain
Z/ azxwazﬁﬁ))d < = Z/M ao(x )dx+f Cs.

Notice that Cy does not depend on w. Therefore, gathering all these estimates, we
deduce that for all ¢ € Wi Ex(Q) such that Zle 10:9|l (ar;y = 1/(k + 1) we have

d
Z/ a;i(z,w,0u)0ipdx < Cq,
=179

from which, by considering the dual norm on L, (Q2), for each i = 1,...,d, we
obtain the estimate .

Now we introduce the operator G: w € Epy, (Q) = G(w) = u € WiLam(Q), with
u being the unique solution to . Our strategy is to show that G satisfies the
conditions of Schauder’s fixed pomt theorem. From Corollary [2.8) WL (Q) —
En, (Q) with compact embedding. Consequently, G maps Ejy, (Q) into itself and,
due to the estimates , G is a compact operator. Moreover, from Corollary
and we have, for R > 0 large enough G(Br) C Br where B = {v € Ej;,(Q) :
lvlla; <R, fori=1,...,d}.

To complete the proof, it remains to show that G is a continuous operator.
Indeed, let (w,) C Bpg such that w, — w strongly in Ej () and consider the
corresponding functions to wy,, that is, u, = G(wy), ¥n, © = G(w), and . Since the
injection Eyy, () C L%(9) is continuous, we can assume that for a subsequence, still
denoted in the same way, it is w, — w a.e. in Q. Then, putting F,, = p(wn)©nVen
and F = p(w)pVe, it is easy to check that F,, — F strongly in L?(Q)¢. On the
other hand, since (u,) C W} La(€) is bounded in this space, from Corollary
there exist a subsequence, still denoted in the same way, and a function U € E)y, (2)
such that u, — U strongly in Ejs, () and a.e. in 2. We need to prove that u = U.
To do so, we first need the following result.

Lemma 4.3. There ezists a subsequence, still denoted in the same way, such that
Vu, — VU a.e. in €.

This result is a special case of Proposition [{.4] below. For the proof of Lemmal[d:3]
one may repeat the arguments given in the proof of Proposition [£.4]

As a consequence of Lemma there exists a subsequence, still denoted in the
same way such that

a;(z,wp, Oiuy) — aj(z,w,0;U) a.e. in Q, fori=1,...,d.

On the other hand, from the estimate (4.9), (a;(z,wn, Oiuy)) C La, () is bounded
in this space and thus, there exist a subsequence, still denoted in the same way,
and functions ®; € Ly, (), 4= 1,...,d, such that
a;i(z,wn, Oju,) — ®;  weak—x in Ly (),
and therefore ®; = a;(z,w,0;U) for i =1,...,d.
By using all these convergences and passing to the limit in the equation of w,,,
that is,

d
> [ aitewn 006 do =~ | plon)enVionVoda,
— Jo Q
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we obtain
d
Z/ ai(x,w,aiU)ai(j)dx:—/ plw)pVeVedr,
i=17% Q

Since u = G(w), we also have

d
Z/ a;(z,w,0u)d;¢dx = —/ p(w)pVeVeode,
/e Q

Thus,
d
Z / [ai(z,w, Ou) — a;(z,w, U)]|0;¢pdr =0  for all ¢ € WL ().
=179

By taking ¢ = u — U and using (3.2)) we deduce that v = U. In particular, it is the
whole sequence (u,,) that converges to u in Ejpy, (2) and this shows the continuity
of the operator G. This completes the proof of Theorem [4.2 O

Proof of Theorem The proof is divided into several steps. We start by
introducing a sequence of approximate problems and derive some a priori estimates
for the respective solutions to these approximate problems, then we show two in-
termediate results, namely, the strong convergence in L (2), up to a subsequence,
of both d;u, for i = 1,...,d and ¢,,, where (u,,p,) is a weak solution to the
n-th approximate problem of . The passing to the limit in the approximate

problems will yield the main result.
Step 1. Approximate problems and a priori estimates. We define the truncation
function at height K > 0, T, by
Tr(s) =sif |s| < K, Tw(s)= Kﬁ if |s| > K,
S

and we introduce the following regularization of the data, for every n € N,

1
pn(s) = p(s) + e (4.11)
The n-th approximate problem is
d
- Z@i (ai(z,un, aiun)) = pn(un)|V<pn\2 in Q, (4.12)
i=1
div(pn(un)Ve,) =0 in Q, (4.13)
up =0, =g on I, (4.14)
In view of (3.6]), we have that
nt < pu(s) <p+1=ps, forallscR. (4.15)

Thus, we can apply Theoremto deduce the existence of a weak solution (uy, ¢r,)

to (L1311,

By the maximum principle we have

lenllze ) < llvollze= () (4.16)

therefore, there exists a function ¢ € L*°(Q) and a subsequence, still denoted in
the same way, such that

©n — @  weakly-* in L>°(Q). (4.17)
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Multiplying (4.13]) by ¢, — po € H}(Q) and integrating in Q we obtain

/Q (1) [ Vi 2 = /Q (10 Vi Vipg

< ([ ot ¥enl) ([ o)
< ([ ontwnlvenl) " (on [ 196?) ",

/ pn(w)|Veon|?de < Oy, forall n > 1, (4.18)
Q

hence

where C1 = Ci(ps, ||¢olln1(0)). Consequently, (p,(un)Vey) is bounded in L2(Q).
Thus, there exists a function ® € L?(Q2)? and a subsequence, still denoted in the
same way, such that

pn(tn) Ve, — ® weakly in L2(Q)<. (4.19)

This weak limit function ® € L?(Q)? is in fact the third component of the triplet
appearing in the Definition [3.1] of a capac1ty solution.
Taking u,, as a test functlon in , we obtain

d d
Z/ a;i (T, Un, Oity, ) Oy, A = 72/ P (Un ) 00,050 Oy, Ao (4.20)
=179 =179

Since u, € WgLm(Q) and ¢ € HY(Q) C WlLM( there ex1st )\ > 0 such that

for i = 1,...,d one has Qju, /A, € Ly, (). By .7 , , , ,

and Young’s inequality, we obtain
d
OéZ/ Ml(@un/)\o) dx
i=17%
d
<3 [ puwlenl Vi l0ua] da
i=1
d
<> [ VAol Vol Vonl O] da
i=1

< d p3||<p0|‘%°°(ﬁ))\72l 2, @ M. (6 A d
< (| ) Va5 [ Mi(@iun /), d)
i=1

which implies that O;u, /Ao € L, (). In particular, we may take A, = Ag for all
n > 1 and then

d
ZAMi(aiun/Ao)dw <C, (4.21)
i=1

where C' is a positive constant not depending on n. Thus, from Corollary
and (4.21), the sequence (u,) is bounded in Wg Lx4(f2), and since the embedding
WL (Q) = Ep, () is compact, there exist a subsequence of (u,,), still denoted
in the same way, and a function u € Fjy, (2) such that

un, — u  strongly in Epy, () and a.e. in Q. (4.22)
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On the other hand, since (Vu,) C Lap(Q) is bounded and using (4.22)), we also
have that, up to a subsequence,

Vu, = Vu weak-x in Ly(Q) (4.23)
Now let ¢ € Wi Ea(Q) be such that S0 [18i¢]/ar) = 1/(k +1). In view of
the monotonicity of a = (ay,...,aq), we easily find that

d
Z/ i (2, Up, Oin)0ip
=179
d d
< Z/ i (%, Un, Ojtin ) Oty — Z/ a;i (2, tn, 0;¢) (Oiun — 0;) (4.24)
i=1 7% i=1 7/
d d
< C+Z/ |ai(@, un, 0;0)0jun| +Z/ ;i (2, Un, 0i$)0i,
=179 =179

The last integrals in (4.24]) are bounded with respect to n. Indeed, for the first one,
owing to Young’s inequality

/ @i, 00, 0i)dyun| < moz / M) + Mi(@ittn/Xo)]
by using we have
4 a; (T, Up, 0;d) a
2y M, (%) <Y (Mi(ao(x)) + M;(kd,g)) ,
i1 i=1

and thus Z?:l Jo lai(z, un, 8;0)05un| < C, for all n > 1 and ¢ € W3 Eaq(€2) such
that Z?Zl 10:¢ll(p,y = 1/(k +1). In the same way, we can show that the second
integral in (4.24) is bounded. Gathering all these estimates, and using the dual
norm, it is easily deduced that, for i =1,...,d,

(ai(z,un, O;u,)) is bounded in Ly (). (4.25)
Thus, we have that, for a subsequence still denoted in the same way, there exists
d; € Ly, (Q), for each i = 1,...,d,, such that

a;i (T, Up, Ojun) — 0;  weak-+ in Ly (). (4.26)

Step 2. Introduction of regularized sequences and the almost everywhere conver-
gence of the gradients. By using Lemma there exists a sequence (v;) C Z(1)
such that

(1) v; = u in Wi La(2) for the modular convergence;

(2) v; > wand d;v; > Quae inQfori=1,...,d.
We will establish the following result.

Proposition 4.4. Let (u,,p,) be a solution of the approximate problem —
(4.14). Then there exists a subsequence, still denoted in the same way, such that
fori=1,...,d,

Oiu, — O;u  a.e. in €, (4.27)

as n tends to +oo.
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Proof. We denote by xJ and ys, respectively, the characteristic functions of the sets
d d
0l ={recQ:) [0Tk(v;)| <s} and Q= {ze€Q:> |0:Tk(u)| <s}.
i=1 i=1
We denote by €(n, j) and €(n, j, s) any quantities such that

limsuplimsupe(n,j) =0, limsuplimsuplimsupe(n,j,s) =0.
j—o0 n—oo s§—00 j—o00 n—oo

For v > 0 and i,j,n > 1 using the test function ¢}, ; =T, (up, — Tk (vy)) in ,
we obtain

d
Z/ a; (x, U, Ojun ) O; T, (Uy, — T (v5)) da = / P ()| V20" jdz. (4.28)
=179 Q
From (4.18) it follows that
Z/ a; (X, Un, Ojun)0i T, (un, — T (v5)) do < Chu. (4.29)
Q

On the other hand

d
>~ [ it 00T, — (o) da
— Ja
= Z/ ai(x;unaaiun)ai(un - TK(U])) dz
; {lun =Tk (v;)I<v}

= Z/ a; (T, Un, Qi )0; (U, — Tk (v5)) dz
i=1 7 {lun > K30 {un =Tk (v;)|<v}

+) / (2, 1, Oyt — T (v7))
{lun | KK} {|tn =Tk (vj)|<v}

_Z/Tx(un) T (v;)| <v} ai(x, Tk (un), 0i Tk (un))(0i Tk (un) — 0Tk (v;)) dx

+ a; (T, Up, Oy ) Oy, da

P /{|un|>K}m{|unTK(vj)l<u}
d

/ a;(x, Un, Ojuy)0; T (vj) de.
i—1 Y tun|>K}n{|un—Txk (v;)|<v}

Then, using (3.3)), we have

d
> / 04(2 D) 5T, (1, — Tic(v))

= Z/ ai(2, Trc (un), 0iTr (un)) (0i Tk (un) — 90Tk (v5)) (4.30)

{|Tk (un)—Tk (v;)|<v}

—Z/ a;i (2, Up, Osun )0 Tk (vj) de.
— [t | >KIN{|up—Tk (v;)|<v}
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Also, in the set {|u, —Tk (v;)| < v}, we have |u,| < |up—Tx (vj)|+|Tk (vj)] < v+K,
and thus, we can write

d
>/ 0i( t, Byt 5T (v7) da
i—1 Y un|>K}n{|un—Txk (v;)|<v}
d

(4.31)
_ / a5, Tys i (tn), 0Ty s 1¢ (1)) O, Tic (v;) dor.
i—1 7 {un|>KIN{|un—Tk (v;)|<v}
By (4.31)), (4.30) becomes
d
Z/ a; (z, Up, Oiun )0 T, (U, — T (v5)) da
=1 Q
d
>/ ai(, T (un), 04T () (0, Tic () — 0T (7)) (4.32)
i—1 YTk (un) =Tk (v;)|<v}
d
- / a;(z, Ty k (un), 0; Tyt k (un)) 0Tk (V).
i=1 {lun|>K}n{|un_TK(Uj)‘gl’}
We put
d
n=y [ 04( Ty ). Ty 1 ()0, Ti (v)
i—1 Y {un|>K}0{|un—Tk (v;)|<v}

Since (a;(@, T4 (un), 8Z-TK+1,(un)))n is bounded in Ly;. (€2), for each i = 1,...,d,
we obtain, for certain [ +v € Ly, (Q), and up to a subsequence, that
i (2, Tre 4 (un), 0iTr 40 (un)) = Uy, Weakly-x in Ly, ().
Consequently,
d

/ i Ty 1 (1), T s () 0iTic (v)
i—1 Y lun|>K}N{|un—Tk (v;)|<v}

d

— / iK+yaiTK(vj) dz
i=1 Y {lu2K}0{|lu—Tk (v;)|<v}

as n approaches infinity. Using Lemma [2.3] we obtain, as j tends to infinity, that
d

/ k00T (v5)
i—1 Y {u|>K}n{|u—Tk (v;)|<v}

d

- / k40 0Tk (u) = 0.
i1 > K3n{u—Tx (w)|<v}

since 0; Tk (u) = 0 in the set {|u| > K}. This implies
Ji = e(n, §). (4.33)
Using (4.29) and (4.33) in (4.32)), we obtain

d
Z/ a; (.’L‘7 TK(un), 8ZTK(un))(8ZTK(un) — @TK (Uj)) dz
1 Y {ITk (un) =Tk (v;)|<v}

< Civ +¢€(n, j). (4.34)
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On the other hand,

Z / ai(x, T (un), 0iTx (un)) (8; T (un) — 8; Tk (v;)) dz
{ITk (un) =Tk (v;)|<v}
- Z / 040 Tic (1), B5Txc () (BT (1) — BT (0)x3)
{ITk (un)—Tk (vj)|<v}

+ Z/ ai(@, Tre (un), 0T (un))(0i Tk (v5)X5 — 0Tk (v5))

{ITx (un)~Tx (v;)|<v}
= Jo + Js. (4.35)
The second integral, J3 tends to 0 as, first n, then j approach infinity. Indeed, since
ai(z, Tr (un), 0: Tk (up)) = Ui weakly-x in (L, (€2))

and

(0T (v1)X5 = BT (V1)) X{|Tie () T ()<}

= (8iTw (v7)x5 — 0T (V) X Tc ()~ Tie (v7)| <1}
strongly in Ey; () asn — oo, fori = 1,...,d, it follows that

lim / i (0T (0)X" — 0T (v;)) da.
noo? Z (1T ()~ TK(vJ>|<u} I

Finally letting j, then s, approach infinity, we deduce that

J3 = €e(n, J,s). (4.36)
Consequently, from (4.34]), (4.35), and (4.36), we have
d
Jo = Z/ ai(@, T (un ), 0: Tk (un)) (0: Tk (un) — 0: Tk (v5)X5)
{ITk (un) =Tk (v;)|<v}
< Civ+e€(n,j,s). (4.37)

Let S, be the non-negative expression
d
Z al x, TK ’U,n &TK(un)) —ai(x, TK(’U,n), &TK(u)))(alTK(un) —@TK(U)),
=1
and for each 0 < § < 1, we write I, , = fﬂr SZ dz. We have

fw:/Q SZXHTK(un)—TK(vj)\sH}+/Q S XA Txe (wn) T ()] >0} (4.38)

r r

By using Holder’s inequality, the second term of the right-side hand is bounded by
0 1-6
(/ Sn dw) : (/ X{| T (un)—Txc (v;)|>v'} dx) :
Q, Q,

d
Sedr=3"| / (2, T (1), DT (1)) ;T ()

Q- - -Ja.

- /Q a5(@, T (1), 3 T (1)) 3 T (1) d

Note that
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—|—/ a;i(x, Tk (un), 0; Tk (1)) 0; Tk (u) dz
Q

r

- /Q s, T (), T () O, () .

Since, for each ¢ = 1,...,d, the quantity (ai(m,TK(un),aiTK(un)))n is bounded
in Ly, (), (0;Tk (un)),, is bounded in Ly, (), and (ai(z, Tk (un), 0Tk (u))), is
bounded in Ey;, (), it follows that (S,) is bounded in L*(£2,.). Then there exists
a constant C3 > 0 such that

/ SzX{\TK(un)—TK(vj)bu} da < C3 meas{|Tx (un) — Tr(v;)| > v} 70 (4.39)
Q.
Using again Holder’s inequality, we deduce that

/Q SX{Tke () ~Tic (v)] <v} 42

9 .
< (/Q7 1d$)1 (/{lTK(un)_TK(Uj)léu}nQT Sh dI) (4.40)

0
< 04(/ Sn dx) )
{‘TK(un)_TK('Uj)ISV}mQT
From (4.39) and (4.40), we obtain

I, < Cameas{|Txk (u,) — T (v;)| > v} ~°

0
+ C4</ Sh dx) .
{ITK (un) =Tk (v;)| <v}NQ,

Let s > r > 0. We have

(4.41)

/ Sy dx
{ITk (un) =Tk (v;)I<v}INQ,

<

/ S, dz
(1T ()T () | <w} €2,

d
- Z/ [, T (1n), 0T (n)) = @i (3, Tic (un), 0 Tic () )]
i1 Y Tk (un) =Tk (v;) | <v}INQ

X [0iTk (upn) — 0;Tk (u)xs) do

d
< / [a;(z, Tk (), 0Tk (un)) — a;(x, Tr (un), 0; Tk (w)xs)]
=1 {lTK(un)_TK(’Uj)lSI/}
X [0iTk (un) — 0;Tk (u)xs] dz
d
i=1 {|Tx (un)=Trk (vj)|<v}
X [0 Tk (un) — 0; Tk (Uj)xj] dx
" ai(@, T (un), 0Tk (un)) - [0: Tk (v5)X5 — 0Tk (u)xs] dx
{Tx (wn) =T (vj)|<v}
+

/ [ai(z, T (un), 0Tk (v)X5) — ai(w, Trc (un), 0; T (u)x*)]
{ITk (un) =Tk (v;)|<v}
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X 0; Tk (up,) dx

- / (20, Tic (un), iTic (07)X5) - O:Tc (7).
{ITk (un) =Tk (v;)|<v}

+ / ai(x, Trc (un), 0; T (1) Xs) - Os Tk (1) xs dx}
{ITk (un) =Tk (vj)|<v}
d

(Lin+ Lo+ L+ Lia+1Lis) =L+ L+ Is+ I + Is.

i=1

where [, = Zle I for 1 <k < 5. We will take the limit first in n, then in j and
s, as they tend to infinity in these last five integrals.

Estimate for I;. We rewrite

d

L = [ai(z, Tk (un), 0Tk (un)) — ai(z, Tk (un), 0Tk (v)X;)]

i=1 /{ITK(u,,L)TK(vj)|<V}
X [0 Tk (un) — 9; Tk (v;) ;]

d
= Z/ ai(z, T (un), 0iTxk (un))[0i Tk (un) — 03T (vj)X;]
i—1 Y Tk (un) =Tk (vj)|<v}

d
_ Z/ ai(w, Tr (un), 0iTr (v;)Xx;)[0i Tk (un) — 0Tk (vj)Xj]
i=1 {ITk (un) =Tk (vj)|<v}

=Jy — Ju.

The estimate for Js is given by (4.37)). As Jy is concerned, we may repeat the same
arguments above as we did for Js to obtain that J; = €(n, j,s). Therefore,

I <Cv+e¢(n,j,s) (4.42)

Estimate for I,. Since (ai(x,TK(un),aiTK(un)))n converges to % weakly-* in
Ly, (©) and ((&TK(fuj)X;t - 8iTK(U)Xs)X{|TK(un)—TK(vj)|§u})n converges to
(0iTk (v5)X; — 0Tk (W) Xs)X{|Tk (w)—Tx (v;)|<v} Strongly in Eny, (§2), we obtain

d
L= 21/{ U (0: Tk (vj)X§ — 0iTk (u)xs) Az + €(n).

| T (u) =Tk (v)|<v}
By letting now j — oo, and using Lemma [2.3] we obtain that

I, = e(n, j). (4.43)

Estimates for I3—I5. Using similar arguments as above yields

Iy = e(n, j), (4.44)

d
L=-) /Q ai(x, Tic (u), ;T (w)xs) 0 T (u) xs + €(n, J, 5), (4.45)
i=1

d
Is = E_; /Q ai(x, Ti (u), 0iTk (u)xs)0; Tk (u)xs + €(n, j, 5). (4.46)
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Gathering estimates (4.41))-(4.46)), we obtain
I, < (Cv+e(n,j,s)? + Cymeas{|Tx (un) — T (vy)] > v}7. (4.47)

By taking, first the lim sup with respect to n — oo, then j — 0o, s > occand v — 0
yields

d
hmsupZ/ﬂr [(az(xaTK(un)aalTK(un)) - al(z7TK(un)7alTK(u)))

n—oo
=1

0
X (0iTk (un) — aiTK(u))} dz = 0.
Consequently, there exist a subsequence, still denoted in the same way, and a

negligible subset Z C 2 such that for all z € Q\ Z one has

d
Z (ai(@, Tr (un), 0iTk (un)) — ai(z, T (un), 0; Tk (u)))

X (0iTk (un) — 0Tk (u)) — 0.

(4.48)

Let © € Q\ Z be fixed. Then, according to assumption (A5), the sequence
(aiTK(un)(x))n C R is bounded for ¢ = 1,...,d. By extracting a convergent
subsequence, still denoted in the same way, for some ¢ = ({1, ..., (s) € R?, we have
that 0; Tk (un)(z) — ¢, for i = 1,...,d. Passing to the limit in (4.48) yields
d

> (@il T (w)(@), G) = @i, Tic(w)(@), 0, T (w)(2))) - (G = 0, Tic (w)(x)) = O,

i=1
which, according to (3.2)), it is only possible if {; = 0;Tk(u)(z) for i = 1,...,d.
Therefore, for any K > 0, we have deduced that, up to a subsequence, VT (u,,) —
VTk(u) a.e. in €. Since K is arbitrary, we finally obtained the desired result. This
completes the proof of Proposition 4.4 |

Remark 4.5. A straightforward consequence of Proposition [£4] is that, owing to
" 52 = (li(l', u, 82“’) that iS,
a;i (T, Un, Oupn) = a;(x,u, Oju) weakly-* in Ly (). (4.49)

Step 4. L'—convergence of (¢,). In this step, we will show that ¢,, — ¢ strongly
in L'(Q) up to a subsequence. The strongly convergence of (,,) in L(£2) is based in
the next results which generalize that of Gonzélez Montesinos and Ortegén Gallego
[13, Lemma 4] which, in its turn, generalize the original results due to Xu in [I7].

Lemma 4.6 ([12]). Let M; be an N-function for each i = 1,...,d which admits

the representation M;(t) = Olt‘ m;(s)ds and such that s < m;(s) for all s > 0 and

alli=1,...,d. Let My be the N-function defined in (2.6). Let (u,) be a bounded

sequence in WELa(Q) such that u, — u strongly in En,(Q). Then there exists a

subsequence (Un(;)) C (un) such that, for every e >0, there exists a constant value
M = M(e) and a function ¢» € WH1(Q) satisfying the following properties:

0<y<l, (4.50)

¥ =) + IVl < (4.51)

[ul, [unyl < M on {¢p > 0} forall j > 1. (4.52)



EJDE-2022/84 EXISTENCE OF A SOLUTION AND ITS PPROXIMATION 21

Lemma 4.7 ([13]). Let (un,¢,) be a weak solution to the system (4.12)-(4.14),
u € Ep, () and ¢ € L®(Q) the limit functions appearing, respectively, z'n
and ([£.22). Then, for any function S € €, (R), there exists a subsequence, still
denoted in the same way, such that

S(n)pn — S(u)p weakly in H*(Q). (4.53)

Moreover, if 0 < S <1, then there exists a constant C' > 0, independent of S, such
that

n—oo

limsupApn(un)IV[S(un)% = S@)e]? < O[S loo(1+ 115" lls0)- (4.54)

Lemma 4.8. There exists a subsequence (¢, (jy) C (pn) such that

lim /Q loniy — @l = 0. (4.55)

j—o0

The proof of this result is a straightforward adaptation to that of [I2, Lemma 5.7].

Step 5. Passing to the limit. According to (4.17)), (4.19)), (4.23]), and (4.25), it is
straightforward that condition (A9) of Definition 1 is fulfilled. The convergences

in Proposition [.4] and Lemma [£.§ lead us to (A10), and to obtain (A11), using
Proposition and Lemma again with (4.53)), it is sufficient to let j approach

infinity in the expression

S(Un(3)Pn() (Un()V ni) = Pui) () [V (S (Un())Pn(i) = ni) VS (un()l-
This completes the proof of Theorem [4.1]

Remark 4.9. Condition (3.4) is not necessary when the constant k£ appearing

in (3.1)) is less than 1.

5. NUMERICAL APPROXIMATION

In practical situations, it is very interesting to know the behavior of the solution
(u, ) of for different choices of the functions a;(z,s,¢),i=1,...,d, and p(s),
not only from the quantitative standpoint but from the qualitative one as well. This
information can be then used in order to design a thermistor useful for a particular
task, for instance, for not letting pass the electric current (by self-destruction) in
the event of an unexpected voltage increase.

The numerical resolution of a problem like faces certain challenges. One
reason is that this system is strongly coupled through nonlinear terms. Also, we do
not know whether or not the solution given by Theorem [£.1] is unique.

In this section, we describe a numerical algorithm based on the least squares
method to obtain a numerical approximation of a solution to a system like
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with certain mixed Dirichlet-natural boundary conditions in d = 1, 2 or 3, namely,

d
=" 01 (ailw, u, 0u)) = p(u)|Vepl? in Q,
i=1
div(p(u)Ve) =0 in €,
d (5.1)
u=ug onlp, Zai(x,u,aiu)ni =0 on Iy,
i=1
dp
on
where Q C R? is a Lipschitz bounded domain with boundary 0 = I'p U 'y,
I'pNTxy =0, Ty being an open set with respect to the induced topology of 9%,
Jr, > 0, up > 0'is a constant value, po € H'(Q) N L>(Q), n = n(z) is the unit,
outer normal vector at € 'y (a.e. in I'y), n = (n1,...,nq), and the functions
ai,...,aq and p satisfy the assumptions (A1)—(A7) and (A9)—(All). A similar
analysis like the one developed in the previous sections yields to the existence of a
capacity solution to the system (5.1)).

p=¢o onlp, =0 only,

5.1. Least squares and conjugate gradient method. In [I4] the authors im-
plemented a fixed-point iterative method to obtain the numerical approximation of
a system like for d = 2 in which T'y = @ and the elliptic operator of the first
equation is the anisotropic p-Laplacian, that is a1 = a1(01u) and ag = as(d2u) are
given by

a1(¢) = [C[P* 3¢, as(C) = [¢[P27%¢, for all ¢ € R, (5.2)

for some p1,p2 € R with p1,ps > 2. The numerical simulations described in [14]
based in the referred iterative method have shown good convergence properties for
values of p; and ps in the interval (2,5). However, when we try to apply this
same technique when a; or as have not a polynomial growth, the algorithm does
not converge. Instead, we have developed a technique based on the least squares
method [4, B]. The application of this technique needs more regularity to both
a=(a1,...,aq) and p, namely,
(A12) forae. .z € Q,all{ e Randalli=1,...,d, the function s € R — a;(x, s, ()
is of class €.
(A13) forae. x € Q,all s€ Rand alli =1,...,d the function ( € R — a,(z, s, ()
is of class €.
(A14) p € €L(R).

We apply the finite element method to approximate the functions in the spaces
involved in the solution of . We first consider polygonal /polyhedral approxima-
tions of Q, I'p and I'x (all of them still denoted in the same way). Let .7, = {7} };Vgl
be a triangulation of the domain Q, Ny = card .7},. We consider the discrete space

Vi, ={up € €(Q) : /Uh|Tj € P(T;), for j=1,...,Np}, (5.3)

where ¢ > 1 is an integer and & (Tj) is the space of polynomial functions in T} of
degree ¢. Notice that V;, € WH(Q) C WL(2). We consider the projection of
o € H'(Q) onto V}, and we still denote this projection as ¢g. We also consider the
subspace Vg, C V}, defined as Vo, = {v, € V3, 1 vp|r, = 0}.
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Now we introduce the functional J: ug + Vpr, — R as
1
J(up) = 5/ V&2, (5.4)
Q

where &, = &, (up) is defined in the following way. First, we compute @5, € V}, as
the unique solution to the problem
Find ¢ € V}, such that ¢ = ¢g on I'p and

5.5
/ p(up)VerVe, =0, for all ¢, € Vi, such that ¢p|r, = 0. (5:5)
Q

Then, &, € V}, is the unique solution to the problem
Find &, € V}, such that &, =0 on I'p and

d
_ 2
/QVQIVWL = ;/ﬂai(x,uh,aiuh)aivh—/Qp(uh)|V<ph| v, (5.6)

for all vy, € V}, such that vg|r, = 0.

Clearly, J(up) > 0 for all uj, € ug + Vo, and J(up) = 0 if and only if (up, ¢p) is
the solution to the discrete problem

up € Vi, up=wuponlp, eV, ¢ =¢yonlpand

d
Z/ ai(ffauh,aiuh)ath/P(uh)|V90h|2”h,
i=i 79 Q

for all vy, € V}, such that vy|p, = 0.
/ p(un)VorVon, =0, for all ¢;, € V), such that ¢p|r, = 0.
Q

Problem (5.7) is a nonlinear discrete version of the variational formulation of
problem hus, if (up, pp) is a solution to then uy is a global minimizer
of the functional J on ug+ Vp,. To obtain an approximation of the solution to ,
we generate a minimizing sequence (u}")m>1 C up + Vop, so that the non-negative
sequence (J(up'))m>1 C R is a decreasing sequence. We can do this by means of
the Polack-Ribiere version of the conjugate gradient method [4, [5]. Denoting by
J'(up) € Vg, the derivative of J at up € ug + Von, Vj, being the dual space of Vo,
this algorithm consists of the following four steps:

Step 1. Initialization. Given u € ug + Vop, compute g9 € Vo, as the solution to
the variational problem

eV, ¢2=0 onTp and

5.8
/ ViV, = (J'(u}),vs), for all v, € V}, such that vy|p, = 0. (5:8)
Q

and put zg = g%.

Then, for m > 0, assuming that u}*, g;* and 2}, are already known, compute
u;’:H, anH and ZZH_l by:
Step 2. Descent.

Uttt =l — Az, (5.9)
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Am > 0 being the value where the function A € [0,00) — J(uj" — Az}") attains its
minimum, that is

J(upt — Amzpt) < J(upt — Azpt),  for all A € [0, 00). (5.10)

Step 3. Construction of the new descent direction. Let g}TH € Vo, be the solution

to the variational problem

gt eV, g™t =0 on T'p and
+1 10, m+l (5.11)
/ Vg Vop = (J'(u)""),vp), for all vy, € V4 such that vg|r, = 0.
Q
Then, define the number ~,, € R and the new descent direction zZ"H as follows
L JaVET VG gi) (51
Jo Vg
it =gt by, (5.13)

Step 4. Stopping test. If a certain stopping test is not satisfied, then increase m
by one, go to Step 2 and proceed.

For the generation of the sequence (g}’) we first need to compute the gradient
of J at up'. To do so, let uj, € ug + Voi and wy, € Vop, then from we obtain

(T (un), wh) = /Q V€l wn) Ven, (5.14)

where &, € Z(Vop) is the derivative of &, with respect to up, (here, £ (Vyy,) stands
for the space of linear and continuous mappings from Vpy into itself). Owing
to (5.6), and taking into account that a; = a;(x,s,¢) ae. in Q, for all s € R
and ¢ € R, we deduce the problem for (&5, ws) € Von

(&},,wp) € V}, such that (&, wp) =0 on I'p and

V(GL, wh>Vvh

S

d
Z [/ 8sai(1'7uhaaiuh)whaivh+/ 8Cai(xauh78iuh)aiwhaivh} (5.15)
; Q Q

1=1

- / o () [ Vign [2on, — 2 / p(un) V(& wn) Veonon,
Q Q

for all vy, € V}, such that vy|r, = 0.

In our computations, we neglected the last term in the right side of . The
reason is twofold. First, this term has appeared to be of a smaller order in front
of the other terms in this equation and, secondly, the computation of (J'(uy),wp)
becomes much simpler.
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Thus, making v, = &, in (5.15)) yields
(J' (un), wn)

d
= Z {/ Osai(x, up, Oun ) wp0i&n +/ O¢ai(x, up, Ojun)0;wn 0y, (5.16)
i=1 79 Q '

- / o (unyon|Vion P
Q

The expression ([5.16) is then used to compute the sequence (¢7")m,>1 from the

solution of problems ([5.8) and (5.11)).

Remark 5.1. Notice that the description of the full algorithm described above only
involves functions lying in the discrete space V}, defined in . One may check
that each term in the above expressions makes sense from the assumptions (Al)-
(A11), (A12)—(A14), and from the fact that V;, € W1>°(Q). If we try to develop
the same algorithm within the spaces WL (2) and H'(Q) then, in general, these
terms would not be well defined, and this algorithm would be meaningless.

18 mm

20 mm

/Fb

(a) Thermistor boundary and dimensions. (b) Thermistor triangulation.

FIGURE 1. Description of the thermistor boundary 9 = I'h, U
I'2, UT'y and the mesh used in the finite element simulations.

5.2. Numerical simulations. The algorithm described in the previous section
has been implemented to compute the numerical approximation of a solution to
problem (5.1). To do so, we have used the Freefem-++ software package ([9]). These
numerical simulations have been carried out in the 2D domain €2 of Figure and
with the following data.

ar = a1(¢) = |¢[773C, a2 = az(C) = 28T,
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for the particular choices p = 2.8, 3 and 3.2, and 8 = 10~ 7. The electric conduc-
tivity p is given by
p(s) = 10e~1s730/20 5 e R,
The domain € is a barril shape set in R2. In Figurewe may find the description
of the boundary and the actual dimensions of 2. The Dirichlet boundary I'p has
two connected components, namely, I'}, and I'%), and the natural boundary I'y is
the complement set of I'p in 0.
As far as the boundary conditions are concerned, we have taken

0 onTY,

ug = 30, =
0 o {Vo OHFQD,

where Vj is a constant voltage, namely, V) =10 V or V =40 V.
Figure shows the finite element triangulation of {2 from which the discrete
space V}, is defined as in (5.3)). It consists of 6,382 triangles, and 3,257 vertices.

Remark 5.2. One may wonder why the mesh density in Figure is higher
along the horizontal central line than elsewhere. The reason is that we first try the
algorithm described in the previous section for the case of the p-Laplacian operator
where the functions a; and ag are given by . We checked the convergence of
this algorithm for this case. However, the error function &, presented a singularity
along this horizontal central line. This led us to consider a denser mesh along this
central line, then obtaining better results.

In the definition of the space V}, we have taken ¢ = 1. On the other hand, the
initial guess u?L of the initialization stage (Step 1) have been u?L = uy in all cases.

20788 4
20778
20768

20758

J(upt — Az1)

20748 4

20738 -

‘ ‘ ‘ ‘
0 0.2x10~% 0.4x10~% 0.6x10~% 0.8x10~% 1x10~4% 1.2x104

A
T~— A= J(up’ = Az]")

FIGURE 2. The function A € [0,400) — J(ul* — Az}*) is plotted
around the optimal value A, for m = 40, p = 3.0 and V{j = 10.

Figure [2| shows the behavior of the function J along a descent direction at iter-
ation m = 40 for p = 3.0 and Vj = 10. This plot puts in evidence one of the issues
concerning the execution of this algorithm in this context: the range of values near
Am is very small versus the actual values of the error function J(u}* — Az}*). This
is not a particular case: it has happened in the six situations we have run, that is,
p € {2.8,3.0,3.2} and V; € {10,40}, and for each m > 0.
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We have used two different stopping tests (see Step 4 above). The first one indi-
cates a maximum number of iterations, Nyax, so that if m > Ny, then the algo-
rithm stops and we keep ug max and go,ly max a5 an approximation of the corresponding
problem. The second stopping test compares the value of ~,,, given in , with
a very small value, say ey > 0. In this case, if v, < emin, the algorithm stops as
well, and we keep uj' and ' as an approximation of the corresponding problem.
This second test avoids underflow situations: whenever v,,, < emin occurs, it would
yield u;anH = u;", and the sequence becomes stationary for m > mg. We took
Niax = 10,000 and epin = 2 x 10719,

1,

52
3
=
N
= 0.1
Ee
S
=
N
0.01 -
0227 769 2000 3029 3938 5000 6000 7000 8000 9000 10000

Iterations m of the conjugate gradient method

—~— p=28,Vy =10 p=23.0,Vp=10 ——— p=3.2, Vp =10
p=28Vog=40 ——— p=23.0,Vhp =40 —~— p=23.2, Vj =40

FIGURE 3. Descent of the mnormalized error functional
J(up)/J(ul) along the iterations generated by the conju-
gate gradient method u = uj.

Figure (3| plots the descent of J/J(u))) as a function of the iterations for the
six different cases we have considered. Only when p = 3.0 and p = 3.2, with
Vo = 10 in both cases, the maximum number of iterations Ny, was reached and
the convergence is very slow. In the other cases, though the convergence is much
faster, the execution was stopped at iterations m = 227 (p = 2.8, Vo = 40), m = 769
(p =3.0,Vp =40),m =3,029 (p = 2.8, Vo = 10) and m = 3,938 (p = 3.2, V = 40),
respectively.

In Figure {4 six different iterations of the sequence (u}') are shown for p = 3.0
and Vy = 10. Starting from u% = 30, these iterations seem to have an increasing
character. Notice the different scale in each plot.

Figures [5| and |§| show the numerical approximation (u}", @) obtained from the
conjugate gradient algorithm described in the previous section where m is the index
of the last computed iteration. Figure[5]plots the distribution of the temperature wy,
in the six considered cases, whereas Figure [6] plots the corresponding potential ¢y,.
Obviously, it is expected that the higher the voltage Vj the higher the maximum
temperature. For this reason, we think that the algorithm has underestimated
the computed temperature in the case p = 2.8, Vj = 40. We also remark that
for Vo = 10 the maximum temperature decreases with p, whereas for Vy = 40 is
just the contrary. This behavior may be interesting for the design of a particular
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thermistor that should switch off the current passing through itself in the event of
an unexpected voltage increase. In this situation, the thermistor is used as a fuse
protecting certain circuit components which are much more expensive than a single
thermistor.

6. CONCLUSIONS

We have analyzed a nonlinear strongly coupled system of two partial differential
equations of elliptic type, the second equation not being uniformly elliptic. This
system is a generalization of the so-called thermistor problem in which the physical
unknowns are the temperature, u, and the electric potential, ¢, in a semiconductor
device. The special anisotropic structure of the operator in the first equation leads
us to consider this analysis in the framework of the anisotropic Orlicz-Sobolev
spaces. On the other hand, since the second equation is not uniformly elliptic,
we have introduced the concept of capacity solution adapted to this situation, and
show an existence result of a capacity solution.

To obtain a numerical solution of this problem, we first consider a projection
of the original problem from a straightforward application of the finite element
method. This yields a discrete variational formulation in certain finite dimension
vector spaces.

We have described a least squares method for the numerical approximation of
this discrete variational formulation. The minimizing sequence is generated by
means of the Polack-Ribiere version of the conjugate gradient method. We have
implemented this whole algorithm in a 2D domain by using the Freefem++ software
package and run some numerical simulations for different choices of the functions
a1(z, s,¢) and as(z, s, (), and for a given conductivity p(s). These numerical results
may provide the necessary information in order to design a specific thermistor in
an electric circuit.

Finally, the convergence of the minimizing sequence obtained from this algo-
rithm may be very slow. This could be improved by the introduction of some
preconditioning technique, which may be considered in future works.
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Vo = 10.
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