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MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR
THIRD-ORDER THREE-POINT BOUNDARY-VALUE PROBLEMS

LI-JUN GUO, JIAN-PING SUN, YA-HONG ZHAO

ABSTRACT. This paper concerns the nonlinear third-order three-point bound-
ary-value problem

u'(t) + h(t) f(u(t)) =0, t€(0,1),

u(0) =u'(0) =0, /(1) =au'(n),
where 0 <n<land1l<a< % First, we establish the existence of at least
three positive solutions by using the well-known Leggett-Williams fixed point

theorem. And then, we prove the existence of at least 2m — 1 positive solutions
for arbitrary positive integer m.

1. INTRODUCTION

Third-order differential equations arise in a variety of different areas of applied
mathematics and physics, e.g., in the deflection of a curved beam having a constant
or varying cross section, a three layer beam, electromagnetic waves or gravity driven
flows and so on [5]. Recently, third-order boundary value problems (BVPs for
short) have received much attention. For example, [3, 4, 8, 11, 15] discussed some
third-order two-point BVPs, while [1, 2, 12, 13, 14] studied some third-order three-
point BVPs. In particular, Anderson [1] obtained some existence results of positive
solutions for the BVP

2" (t) = f(t,x(t), t1 <t<ts, (1.1)
z(t1) = 2'(t2) =0, ~ya(ts) + 02" (t3) =0 (1.2)

by using the well-known Guo-Krasnoselskii fixed point theorem [6, 9] and Leggett-
Williams fixed point theorem [10]. In 2005, the author in [13] established various
results on the existence of single and multiple positive solutions to some third-order
differential equations satisfying the following three-point boundary conditions

2(0) = 2'(n) = 2"(1) =0, (1.3)

where 7 € [3,1). The main tool in [13] was the Guo-Krasnoselskii fixed point
theorem.
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Recently, motivated by the above-mentioned excellent works, we [7] considered
the third-order three-point BVP

W () + h(E) f(u(t)) =0, te(0,1), (1.4)
u(0) =u'(0) =0, «'(1)=au(n), (1.5)

where 0 < 1 < 1. By using the Guo-Krasnoselskii fixed point theorem, we obtained
the existence of at least one positive solution for the BVP (1.4)—(1.5) under the
assumption that 1 < a < % and f is either superlinear or sublinear.

In this paper, we will continue to study the BVP (1.4)—(1.5). First, some exis-
tence criteria for at least three positive solutions to the BVP (1.4)—(1.5) are estab-
lished by using the well-known Leggett-Williams fixed point theorem. And then, for
arbitrary positive integer m, existence results for at least 2m — 1 positive solutions
are obtained.

In the remainder of this section, we state some fundamental concepts and the
Leggett-Williams fixed point theorem.

Let E be a real Banach space with cone P. A map o : P — [0,+00) is said to
be a nonnegative continuous concave functional on P if ¢ is continuous and

otz + (1 =t)y) > to(z) + (1 = t)a(y)

for all z, y € P and t € [0,1]. Let a, b be two numbers such that 0 < a < b and
o be a nonnegative continuous concave functional on P. We define the following
convex sets

Po={z e P: ||| <a},
P(o,a,b) ={r € P:a<o(x), ||z|] <b}.
Theorem 1.1 (Leggett-Williams fixed point theorem). Let A : P, — P. be com-
pletely continuous and o be a nonnegative continuous concave functional on P such

that o(z) < ||z| for all x € P.. Suppose that there exist 0 < d < a < b < ¢ such
that

(i) {z € P(0,a,b) : o(z) > a} #0 and oc(Az) > a for x € P(o,a,b);
(ii) [[Az|| <d for ||z| < d;
(ii) o(Azx) > a for x € P(0,a,c) with |Az| > b.

Then A has at least three fized points x1, x2, x3 in P, satisfying

o1l <d, a<o(xz), las]| >d, ofxs) <a.

2. PRELIMINARY LEMMAS

In this section, we present several important lemmas whose proof can be found
in [7].

Lemma 2.1. Let an # 1. Then for y € C|0,1], the BVP

o (t) +y(t) =0, te(0,1), (2.1)
w(0) =4/ (0) =0, ' (1)=au'(n) (2.2)
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has a unique solution u(t) = fol G(t, s)y(s)ds, where

(2ts — s2)(1 — am) + t2s(a — 1), s < min{n,t},

1 t2(1 - t?s(a— 1 t<s<
G(t,s) = —— ( O;n) +t%s(a 2)’ == (2.3) |2.30
2(1 —an) | (2ts —s*)(1 —an) +t*(an —s), n<s<t,
t2(1 —s), max{n,t} <s
is called the Green’s function.
For convenience, we denote
1
g(s) = . j_;ﬂS(l —s), s€][0,1]. (2.4) [2.05

For the Green’s function G(t, s), we have the following two lemmas.
lem2.2| Lemma 2.2, Letl < a < % Then for any (t,s) € [0,1] x [0,1],
0 < G(t,s) < g(s).
. Then for any (t,s) € [X,n] x [0,1],
v9(s) < G(t,s),
min{a — 1,1} < 1.

lem2.3| Lemma 2.3. letl <a<

S =

2
wher60<’y:m

3. MAIN RESULTS

In the remainder of this paper, we assume that the following conditions are
satisfied:

(Al) 1<a< %;

(A2) f e C(]0,00),[0,00));

(A3) h € C([0,1],[0,00)) and is not identical zero on [, 7)].

For convenience, we let

= max/ G(t,s)h
te[0,1]

C= mln/Gts

Z.n]

thm3.1| Theorem 3.1. Assume that there exist numbers dy, di and ¢ with 0 < dy < dy <
%1 < ¢ such that

u < [O,do], (31)
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flu) < o u€ [0, c]. (3.3)
Then the BVP (1.4)~(1.5) has at least three positive solutions.
Proof. Let the Banach space E = C[0,1] be equipped with the norm

Jull = max [u(o)].
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‘We denote
P={ueFE:u(t)>0,te]0,1]}.

Then, it is obvious that P is a cone in E. For u € P, we define

o= g 0
and
u(t) = /0 G(t, s)h(s)f(u(s))ds, t € [0,1]. (3.4)

It is easy to check that o is a nonnegative continuous concave functional on P with
o(u) < |lu|]| for uw € P and that A : P — P is completely continuous and fixed
points of A are solutions of the BVP (1.4)—(1.5).

We first assert that if there exists a positive number r such that f(u) < 5 for
u € [0,7], then A : P, — P,. Indeed, if u € P,, then for ¢ € [0, 1],

1
= / G(t, 5)h(s)f (u(s))ds

<L / Gt 5)h(s)ds

<—max/Gts ds=r.

Thus, ||Au|| < r, that is, Au € P,.. Hence, we have shown that if (3.1) and (3.3)
hold, then A maps Py, into Py, and P, into P..

Next, we assert that {u € P(o,d1,d1/7) : o(u) > di1} # 0 and o(Au) > d; for
all w € P(o,dy,dy /7). In fact, the constant function

dl +d1/’y
2

S {U S P(U,dhdl/’}/) : O'(U) > dl}
Moreover, for u € P(o,dy,d;/7), we have

di/y = lull = u(t) > min u(t) = ou) > d,
te[ 2]

for all t € [2,7]. Thus, in view of (3.2), we see that

:mm/Gts (u(s))ds

te[Z,m

> min /n G(t,s)h(s)f(u(s))ds

a G(t, 5)h(s)ds = d
8, [

as required.
Finally, we assert that if u € P(o,dy,¢) and ||Au|| > di /7, then o(Au) > d;. To
see this, we suppose that v € P(o,ds,c) and ||Au|| > di/7, then, by Lemma 2.2
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and Lemma 2.3, we have

:mm/Gts (u(s))ds

te[d

>4 / 9(s)h(s)f(u(s))ds > 7 / G, 5)h(s) f(u(s))ds

for all ¢ € [0,1]. Thus

1
o(Au) > max}/ G(t, $)h(s) F(u(s))ds = || Au]| > ,Y% a4

te0,1

To sum up, all the hypotheses of the Leggett-Williams theorem are satisfied. Hence
A has at least three fixed points, that is, the BVP (1.4)—(1.5) has at least three
positive solutions u, v, and w such that

lull <do, di < min v(t), Jw|] >do, min w(t) <ds.
te[L,n) te|

2, 2l

O

Theorem 3.2. Let m be an arbitrary positive integer. Assume that there exist
numbers d; (1 <i<m)anda; (1<j<m-—1)with0<d; <a <% <dgy <
ag <2 <o <dppy < < —“”;‘1 < dp, such that

d; .
)< F weldl 1<i<m, (3.5)
j"(u)>%7 ue[aj,%], 1<j<m-1. (3.6)

Then, the BVP (1.4)~(1.5) has at least 2m — 1 positive solutions in Py, .

Proof. We use induction on m. First, for m = 1, we know from (3.5) that A : P;, —
Py, , then, it follows from Schauder fixed point theorem that the BVP (1.4)—(1.5)
has at least one positive solution in P, .

Next, we assume that this conclusion holds for m = k. In order to prove that
this conclusion also holds for m = k + 1, we suppose that there exist numbers d;
(I<i<k+l)anda; (1<j<k)with0<d <a1 <% <dy<ap <2 <<
dr < ap < %’“ < dg41 such that

d; .
fw)< g5, uwel0d], 1<i<k+1, (3.7)
) > 2, ue[aj,%], 1<j<kh (3.8)

By assumption, the BVP (1.4)—(1.5) has at least 2k — 1 positive solutions w; (i =
1,2,...,2k — 1) in Py, . At the same time, it follows from Theorem 3.1, (3.7) and
(3.8) that the BVP (1.4)—(1.5) has at least three positive solutions u, v, and w in
m such that

llul| < dk, ar < min v(t), |lw|]>dg, min w(t) < ag.
te[d ] te[d ]
Obviously, v and w are different from w; (i = 1,2,...,2k — 1). Therefore, the BVP
(1.4)-(1.5) has at least 2k + 1 positive solutions in Py, ,, which shows that this
conclusion also holds for m = k + 1. (]
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Example 3.3. We consider the BVP

u"'(t) +24f (u(t)) =0, te(0,1), (3.9)
3,1
u(0) = '(0) =0, u'(1)= §ul(§), (3.10)
where
2
uggly u € [0, %],
%1 7%7 UE[%,l],
flu) = q 2us + 3, u € [1,90],
u=90(160 - 1105 —2-90% — 1) +2-90% + 3, w € [90,110],
160u*, u € [110, 00)

A simple calculation shows that

11 1
D=11, C=— = —.
’ 277 77 90
Let m = 3. If we choose
1
di=3, dy=90.1, d3=11000, ay=1, az=110,

then the conditions (3.5) and (3.6) are satisfied. Therefore, it follows from Theorem
3.2 that the BVP (3.9)—(3.10) has at least five positive solutions.
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