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ANISOTROPIC NONLINEAR ELLIPTIC SYSTEMS
WITH MEASURE DATA AND ANISOTROPIC
HARMONIC MAPS INTO SPHERES

MOSTAFA BENDAHMANE, KENNETH H. KARLSEN

ABSTRACT. We prove existence results for distributional solutions of anisotropic
nonlinear elliptic systems with a measure valued right-hand side. The func-
tional setting involves anisotropic Sobolev spaces as well as weak Lebesgue
(Marcinkiewicz) spaces. In a special case we also prove maximal regularity
and uniqueness results. Some of the obtained results are applied, along with
an anisotropic variant of the div-curl lemma in the Hardy one space, to prove
that the space of anisotropic harmonic maps into spheres is compact in the
weak topology of the relevant anisotropic Sobolev space.

1. INTRODUCTION

Let © be a bounded open set in RV (N > 2) with Lipchitz boundary 092. Our aim

is to prove the existence of at least one distributional solution u = (u1,...,um)"
(m > 1) to the anisotropic nonlinear elliptic system

XN: i0 (x %) = in Q

2 9y "\ ) T ’ (1.1)

u=0, on Jf,

where the right-hand side g = (p1, ..., i) is a given vector-valued Radon mea-
sure on ) of finite mass.

We assume that the vector fields o; : @ x R™ — R™, [ = 1,..., N, satisfy
the following conditions concerning continuity, coercivity, growth, and strict mono-

tonicity:
oi1(x,€) is measurable in x € Q for every £ € R™ and
o1(x, &) is continuous in £ € R™ for a.e. & €
o(z,&)- &> clmpl —c, Y(z,£) € QA xR™;
jor( O < e + b V(w,€) € QX R™
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and for all z € Q, and all £,&" € R™,

csl€ ~ s/l”’ it pr > 2,
_ Y. (6 =& > 1.3
(o1(x,8) —ou(,€") - (£ =€) > ‘o ( e, ifl<p <2, (1.3)
for some positive constants ¢y, c2, ¢}, ¢, c3, c4.
We assume that the exponents pq,...,py > 1 satisfy
PN —1) pN-1)
— <p < ——, p<N. lzl,...,N, (14)
Np-1) N-p
where p denotes the harmonic mean of py,...,pn, i.e.,
N
1 1 1
=== —. 1.5
P N — D (15)

The relevance of is discussed in Remark Here it suffices to say that
the lower bound implies that solutions belong at least to W', so that we can
understand the partial derivatives in in the distributional sense.

Fundamentally different from the scalar case (m = 1), it is well-known [27] 28]
18, [17, 19, [6] that an additional structure condition is needed to have existence of
solutions to elliptic systems with L' or measure data. Here we shall mainly use
the following anisotropic version of the so-called (right-)angle condition (but see
Section [5| for a different condition):

Vo € Q, V¢ € R™, and Va € R™ with |a| <1,

o(z,8) - [(I-a®a)§] >0, 1=1,...,N, (1.6)

where (I —a®a) is the rank m — 1 orthogonal projector onto the space orthogonal
to the unit vector a € R™. If 0;;, 7 = 1,...,m, denotes the components of the
vector o;, then the angle condition can be stated more explicitly as
m

> oia(@,€)&(6i5 — aiaj) > 0.

i,j=1
Clearly, condition (1.6)) is void in the scalar case.

A prototype example that is covered by our assumptions is the anisotropic p-

harmonic, or (p1, ... ,pN)—harmonic system

*Z oz, <|6xl " Zaxl) = # (1.7)

We prove herein the existence of a solution to (1.1)). The proof is based on the
usual strategy of deriving a priori estimates for a sequence of suitable approximate
solutions (ue)o<e<1 (for which existence is straightforward to prove) and then to
pass to the limit as € — 0. Introduce the numbers

Np-1) ,_ N¢ N@E-1)

[ frd frd . 1.8
1= N1 TN .- N3 (1.8)
Bug

We derive a priori estimates for u. and the partial derivatives Z:= in the weak

Lebesgue spaces M9 and MP19/P | respectively (see Section |2 for the definition of
weak Lebesgue spaces). To prove the weak Lebesgue space estimates we employ an
anisotropic Sobolev inequality [45]. Having derived the weak priori estimates, we
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then prove a.e. convergence of the partial derivatives ‘ZZ_? , which can be turned into

strong L' convergence thanks to the MP /P estimates and, by , piq/p > 1.
Equipped with this convergence we pass to the limit in the strong L' sense in
the nonlinear vector fields o;(x, %), and finally conclude that the approximate
solutions u. converge to a solution of .

Our existence result and the method of proof rely heavily on previous work by
Dolzmann, Hungerbiihler, and Miiller [I8] (see also [I7}, 19, 22 47, [15]) dealing with
the isotropic p-harmonic system

—div (’Du|p72Du) = u. (1.9)

Under the assumption 2 — ﬁ < p < N, the work [I8] proves existence and regularity
results for distributional solutions of the p-harmonic system. These solutions satisfy
u € M? and Du € MY, where ¢, ¢* are defined as in but with p replaced by p.
The lower bound on the exponent p is known to be optimal (also in the scalar case).
Regarding the anisotropic system , note that implies 2 — % <p<N.

Even when p; = p for all [, so that implies 2 — % < p < N and our results
yield the existence of a solution u to such that v € M7, g—;‘l € M1 for all [,
does not coincide with .

While (1.9) can be viewed as the Euler-Lagrange system of the classical energy
functional

Iw] ::/Q;)|Du‘pdx (1.10)

on the Sobolev space WO1 P ([1.7) can be viewed as the Euler-Lagrange system of
the anisotropic energy functional

Iw] == iv: i\a—w]’” dzx (1.11)
o p1' Oz '

Q=1

on the anisotropic Sobolev space WO1 (ProePN) - Thig fllustrates a key difference

between and 7 even when p; = p for all [.

We recall that in the scalar case (m = 1), existence and regularity results for
distributional solutions with L! or measure data have been obtained in [9, 29} 30,
3] for a class of anisotropic elliptic and parabolic equations. For an anisotropic
parabolic reaction-diffusion-advection system similar results have been established
in [4]. These works can be viewed as extensions of parts of the well known theory
developed for distributional solutions of isotropic elliptic and parabolic equations
with measure data, see, e.g., [8, [IT], [10] and the references cited therein.

When p € (1,2 — 3] one cannot expect solutions to belong to W', and hence
the notions of weak derivatives and distributional solutions break down. This
problem is dealt with in the literature on scalar equations using the notion of
entropy/renormalized solutions, see, e.g., [B] [7, [T} 16} 32, B5]. For isotropic ellip-
tic systems (such as (L.9)) Dolzmann, Hungerbiihler, and Miiller [17] introduced a
notion of solution based on replacing the weak derivative Du by the approximate
derivative ap Du. Moreover, existence results for such solutions were proved.

In our anisotropic setting , we cannot expect solutions to belong to Wh!
as long as 1 < p; < ]Jj\%j;’ which implies p € (1,2 — %] Although we are not
going to pursue this here, let us mention that it seems likely that one can adapt
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the notion of solution as well as the arguments used in [I7], together with the ideas
used in the present paper, to analyze also in the range 1 < p; < & (é\; B

In [I9], Dolzmann, Hungerbiihler, and Miiller proved maximal regularity and
uniqueness of solutions to isotropic N-Laplace type systems. We apply the ma-
chinery developed in [I9] to prove similar results for anisotropic N-Laplace type
systems. A typical example of such a system is with p; = N for all [ (which
does not coincide with with p = N).

One of our motivations for studying comes from applications to (p1,...,pN)-
harmonic maps from © into the sphere S®~! C R™ (m > 2), sometimes simply
called anisotropic harmonic maps.

Let b: Q — S™ ! be a smooth function, and consider the anisotropic Dirichlet
energy with w belonging to the admissibility class

A= {we WhHFrPn)(Q:§m=1) . 4y = on AN in the trace sense}.  (1.12)

The corresponding Euler—Lagrange system is the anisotropic elliptic system

—Z D, <|8:vz " zaxl) = ZI [, (1.13)

together with the constraint |u| =1 a.e. in Q. A vector-valued map u of class
WHPpn) (Q; ™1 s called (pi,...,pn)-harmonic if it satisfies (T.13) in the
distributional sense. Note that the critical growth right-hand side of belongs
to L1(Q;R™).

Although anisotropic harmonic maps have been very little studied in the liter-
ature, harmonic maps (between general manifolds) have been intensively studied
over the years in terms of their compactness, existence, uniqueness, and regularity
properties. For an excellent introduction to the theory of harmonic maps, we refer
to the recent book by Hélein [25].

In the final section of this paper we study the question of compactness of
sequences of (p1,...,pn)-harmonic maps with respect to the weak topology of
Whprpn) at least when 1 < p < N. If (ue)o<e<1 is a sequence of such maps that
converges weakly to a limit map w as € — 0, is it then true that w is (p1,...,pN)-
harmonic? This is a highly nontrivial question since the system has a non-
linearity of critical growth. Questions like this have been studied by Chen [I3],
Shatah [38], Evans [21] 20], and Hélein [25] for harmonic maps, which are special
cases (p = 2) of p-harmonic maps (see also earlier work by Schoen and Uhlenbeck
[36] on minimizing maps). A p-harmonic map u from €2 into S~ is a distributional
solution of

—div (‘Du‘p_QDu) = }Du’pu.

Compactness properties of p-harmonic maps (between general manifolds) have been
studied by Toro and Wang [44] (see also Hardt and Lin [24] and Luckhaus [33] for
earlier work on minimizing maps). Inspired by Toro and Wang, we prove that
limits of weakly converging sequences of (p1,...,pn)-harmonic maps are again
(p1,-..,pn)-harmonic. This is done under the assumption that the anisotropy
(p1,...,pN) > 1 satisfies

P<N, P> Pmax (1.14)
The important condition is the last one, which requires that the anisotropy is not
too much spread out. The proof relies on some compactness arguments used for
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and the important fact that the right-hand side of belongs to the local
Hardy one space Hi (). To deduce this compensated integrability property we
rely on an anisotropic variant of the Hardy space version of the div-curl lemma
due to Coifman, Lions, Meyer, and Semmes [I4], which we prove under assumption
(1.14).

The remaining part of this paper is organized as follows: Section [2] is devoted
to mathematical preliminaries, including, among other things, a brief discussion of
anisotropic Sobolev and weak Lebesgue spaces. We also prove a weak Lebesgue
space estimate that will be used later to obtain a priori estimates for our approx-
imate solutions. The main existence result is stated and proved in Section (3} In
Sections [ and [f] we discuss some extensions. In Section [f] we prove maximal regu-
larity and uniqueness results for when p; = N for all [. Finally, in Section
we study compactness properties of anisotropic harmonic maps into spheres.

2. MATHEMATICAL PRELIMINARIES

In this section real-valued functions on Q are denoted by g = g(z). Let 1 <

P1,-..,PN < 00 be N real numbers. Denote by p the harmonic mean of these num-
. N .

bers, i.e., % = % Do é, and set Pmax = Max(p1, ..., PN)s Pmin = Min(py, ..., pN).

We always have ppin < D < Npmin- The Sobolev conjugate of p is denoted by p*,

ie,p" = NL?ﬁ'
2.1. Anisotropic Sobolev spaces. Anisotropic Sobolev spaces were introduced
and studied by Nikol’skil [34], Slobodeckii [39], Troisi [45], and later by Trudinger
[46] in the framework of Orlicz spaces.

Herein we need the anisotropic Sobolev space

Wy Pt () = {g e W () 579 €LM(Q),l=1,... N}
l
This is a Banach space under the norm
Hgle (10PN (q HgHLl(Q +ZH HLPL

We use standard notation for the vector- and matrix-valued versions of the space/
norm introduced above. For example, the R™-valued version of W’ (PreP) () g
denoted by Wy ®P¥) (Q: R™).

We need the anisotropic Sobolev embedding theorem.

Theorem 2.1 (Troisi [45]). Suppose g € Wol’(pl"”’pN)(Q), and let

q=7" ifp* < N,
q€[l,00), ifp*>N.

Then there exists a constant C, depending on N, p1,...,pn if D < N and also on
q and |Q| if p> N, such that

1/N
HgHLq(Q) CHH LPI,(Q)' (2.1)
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We can replace the geometric mean on the right-hand side of (2.1]) by an arith-
metic mean. Indeed, the inequality between geometric and arithmetic means implies

C X, g
HgHLq(Q) SN Z_ZI HaleHLm(Qy

and thus there is in particular, when p < N, a continuous embedding of the space
Wol’(pl"”’pN)(Q) into L1(Q) for all ¢ € [1,7"].

The exponent p*, which is suggested by the usual scaling argument, is critical
if the numbers pq,...,py are close enough to ensure p* > puax. It may happen
that p* < pmax if the anisotropy is too much spread out, in which case the true
critical exponent is pmax rather than p*. However, this latter case is excluded by
our assumptions, see below.

2.2. Weak Lebesgue spaces and a technical lemma. In this paper we will use
the weak Lebesgue (Marcinkiewicz) spaces M7(f2) (1 < ¢ < o), which belong to
the scale of Lorentz spaces. They contain the measurable functions g : 2 — R for
which the distribution function

A7) =[{z € Q: |g(x)] >~}

satisfies an estimate of the form

, 120,

Ag(7) < Cy79,  for some finite constant C.

The space M?() is a Banach space under the norm

1 t
* _ 1/q (7 * )
=supt s)ds |,
HgH/\/lq(Q) t>103 7 /0 g (s)
where ¢g* denotes the nonincreasing rearrangement of f:

g"(t) =inf{y >0 : Ag(y) < t}.

We will in what follows use the pseudo norm
HgHMQ(Q) =inf{C : A\s(y) < Cy7%, Vy > 0},
which is equivalent to the norm HgHjW(Q).
It is clear that LI(Q)) C M9(Q), and this inclusion is strict as the function
g(x) = |=|~N/9 belongs to M?(Q) but not LI(RQ).
A useful property of weak Lebesgue spaces is the following version of Holder’s
inequality: Let E C Q, g € M9(Q), r < ¢, then

1/r 1_1
ol ey < ) 1B ol gy
It is then immediate that M?(2) C M"(Q) if r < ¢. Similarly to the anisotropic
Sobolev spaces, we use standard notation for the vector/matrix-valued versions of
the weak Lebesgue spaces.

We now prove an “anisotropic version” of a weak Lebesgue space estimate that
goes back to Talenti [43] and Benilan et al. [5] for isotropic elliptic equations, and
Dolzmann, Hungerbiihler, and Miiller [I8] [17] for isotropic elliptic systems.
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Lemma 2.2. Let g be a nonnegative function in W,
and that there exists a constant ¢ such that
N

Z/ | |’” de <c(y+1), Yy>0. (2.2)
{g<v} O

L PPN Q) Suppose p < N,

Then there exists a constant C, depending on c, such that

loll x@-n ~<C.
M N ()

Proof. For any v > 0, the standard scalar truncation function 7, on [0,00) (at

height ) is defined as
r, ifr <~,
Ty(r) == { .

v, ifr > .

Then, by (2.2)), for v > 1

6T( Py / 2l
= de < C l=1,...,N
Q‘ 8xl ’ <}’a } r}/’ I ) 9

so that the anisotropic Sobolev mequahty gives

- pllN *
[Tl ar< i / P )7

< C'z[HV”TN} = 027%-

Hence, for v > 1,

NFP-1)

Q

For ~ < 1, we have trivially that \g(vy) < [Q < Q™ “¥=". This shows that

gEM™ 5(9). O

2.3. Truncation function. For any v > 0, define the spherial (radially symmet-
ric) truncation function T, : R™ — R™ by

roo b <y,
T. = 2.3
+(r) {I:’V’ if |r] > 7. (2.3)

This function will be used repeatedly to derive a priori estimates for our approxi-
mate solutions. Observe that

DT, (r) = {

1, if |r| <,
%(I— TE?;“), if |r] > .

In particular, (1.6 implies for all £, € R™ the crucial property
O'l(l',g)DTy(T)fZUl($,£)§X|T|<7, l:177N (24)

We refer to Landes [28] for a discussion of T, and other test functions for elliptic
systems, which indeed is a delicate issue.
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3. EXISTENCE OF A SOLUTION
3.1. Statement of main theorem.

Definition 3.1. A distributional solution of (1.1)) is a vector-valued function w :
Q — R™ satisfying

0
ue Wy (UR™), oz, 371;1) € L'(%R™), 1=1,...,N, (3.1)

and for all p € C°(Q;R™),

N
ou, Oy B
/QZUl(x,a—zl)-a—xldx—/Qcpdu.

=1

Theorem 3.1. Suppose (1.2)-(T.6) hold. Let ju = (p1,...,im)" be a Radon mea-
sure on ) of finite mass. Then there exists at least one distributional solution
u=(ut,...,un)" of (LI). Moreover,

we M (QR™), %“ € MPUP(Q:R™), 1=1,...,N, (3.2)
l

where the exponents q and q* are defined in (1.8)).

This theorem will be an immediate consequence of the results proved in the
subsections that follow.

Remark 1. The fact that p > 2 — % (which is a consequence of the lower bound

in ) yields p > ]\2,711 > 1 (since N > 2). This in turn implies % < %
and also ¢* > 1. Moreover, the lower bound in is equivalent to p;q/p > 1
for all {. The upper bound in is equivalent to p;q/p > p; — 1 for all [, which
is needed for proving strong convergence of the nonlinear vector fields o; (ac, %)7
Il=1,...,N. The upper bound is also equivalent to having ¢* > p;q/p for all [. '

We do not know if the upper condition in is optimal for having existence
of a solution to , but note that it is equivalent to having

_ p
> max N =0 max — PRI . 3.3
P'> Pmax + 0 P max(pi, ..., pN) (3:3)

Roughly speaking, this condition requires that the anisotropy (p1,...,pn) iS not
too much spread out. The case D* < Pmax (i-e., when the anisotropy is highly
spread out) seems difficult to handle since the anisotropic Sobolev inequality does
not imply f € LPm=s when f € Wy ®*?¥) On the other hand, one may wonder
if it is possible to prove existence under the less restrictive condition 7* > pmax
(but we do not know how to do it). In the scalar case [4, 30, 29, 3], conditions
similar to have also been imposed in order to have existence of a solution.
We recall that there are well known examples of minimizers of anisotropic integral
functionals that are unbounded when the anisotropy is too spread out [23], see also
[2, 12 4T, [42] for regularity results for minimizers of anisotropic integral functionals
that hold under the assumption that the anisotropy is not too spread out.

3.2. Approximate solutions. To prove existence of a solution to (l.1) we in-
troduce approximating problems for which existence is easy to prove. To this
end, let (f:o)oce<: C CP(;R™) be a sequence defined by f. = p * w., where

we(r) = Zrwo(%) > 0 and wp is a nonnegative function in CZ°(B(0,1)) with
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Jwodx = 1. Tt is always understood that ¢ takes values in a sequence in (0, 00)
tending to zero. Clearly,

£l <Cle) and / fel de < Jul, o

* .
fe = p in the sense of measures as € — 0.

For u,v € W()l’(pl""’pN)(Q;Rm), we denote by A the operator

8u v
A d
u — ’U — o ; (o] axl 8xl ZL’)

Clearly, A is well-defined and monotone. We recall that monotone means
(A(u) — A(v),u—v) >0

for all u,v € Wol’(p1 """ pN)(Q;Rm). Here (-,-) denotes the duality pairing between
Wy @ PY (QR™) and T3, WLPH(Q;R™) (p) = —2). It is not difficult to
deduce from the coercivity condition in that A is coercive. The growth
condition of our operator A implies that A is hemicontinuous, i.e., the mapping
A — (A(u+ Mv),w) is continuous on the real axis for u, v, w € W1 1 pN)(Q R™).
On the other hand, by (1.2] .,

N pwl 1/;0
|<Au,v>|§c§(/ (’833;|p1 1+1) l /!(%llpl B

which implies the boundedness of A. Then, using a standard theorem for monotone
operators (see, e.g., [31, Theorem 2.1/Chapter 2]), it follows that A is bijective,
and hence there exists a sequence of functions

(us)0<651 - Wol’(plw’pN)(Q;Rm)v

each of them satisfying the weak formulation

/ S oo, 22y 28 4, o= [ fopdn, VoeWp @R, (35)
Q

Q15 a$ axl

Now the proof of Theorem [3.1] consists of two main steps. Fll"bt we prove g-uniform
a priori estlmates in weak Lebesgue spaces for u. and 8 . Second, we pass to the

limit in as ¢ — 0.

3.3. A priori estimates.

Lemma 3.2. There exists a constant ¢, not depending on €, such that

Z/ 8% ’pl de <c(y+1), ¥vy>0. (3.6)

{Juel <~} 32”1

Proof. Inserting ¢ = T, (u.) into (3.5)) gives

3u
/ Z oin\x ( e dl‘ = / fe- T e
Q
Using ([2.4) and the coercivity condition in ([1.2]), we obtain ([3.6)). |
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Lemma 3.3. There exists a constant C, not depending on €, such that

<C (3.7)

HU’EHMQ QRm) =

and

Ou,
|| HMPZ‘I/P(Q]RW) C l=1,...,N. (3.8)

where the exponents q and q* are defined in .
Proof. Let a = N(p 1) . By Lemmaand |3I ue|| < |(,m ue|,
8‘“6‘ pL
‘ dr < c(y+1).
Z/ {RES! &fl

Applying Lemma to |ue| gives H el HMG(Q) < C, which also proves (3.7)). By
(3.6) and (3.7), we have for any o,y > 1

‘%@’(Q)S’{Z‘GQ: el <]
]
+|{-T€QZ ’|ue|>"y}|
1 Oue \p,
< — d M
o oom {|ue <~} a.’ﬂl| T+ ‘ s|(7)
<C(apl 4>,‘)/7a)'

Optimizing with respect to ~ gives v = %aaﬂln which in turn yields the bound

Al u. | (@) < Ca ™%+, With the choice a = q*, see (|1.8),
zy
(P—1)
>\|3u5 (o) < Ca ¥, ax1.
o,
_ P N@E-D) .
For a < 1, A () < 19| <|Qa” ® "= . This proves ({3.8). O

dug
dx;

3.4. Strong L' convergence of nonlinear vector fields. In view of Lemmal[3.3]
e is uniformly bounded in L® (£2; R™) for some sg < ¢* with sg > p;q/p for all I,

and §= is uniformly bounded in L% (Q; R™) for some s; > 1 with pi—1 < s; < piq/p,
l=1,...,N. From this we get that . is uniformly bounded in the isotropic Sobolev
space

W&’S‘“‘“(Q; R™),  Smin = min(sy,...,Sn).
Consequently, we can assume without loss of generality that as e — 0
ue — u  a.e. in Q and in L7 (Q;R™),
ue — u in Wyt (Q;R™),
‘ ou,
Oxy

Ul(x,g—xj) —~ B, in L (4R™), 1=1,...,N,

—h L(Q l=1,...,N
8$l| l in () ) s 4V

* .
fe = p in the sense of measures on Q.
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Of course, the convergences provided by are not strong enough if we want
to pass to the limit ¢ — 0 in the nonlinear system , and the proof of Theorem
will be completed by Lemma below. To prove this lemma we follow closely
the argument used in [I8] for the isotropic p-harmonic system (see also [200]),
which is based on using a regularized test function and a localization procedure to
handle the problem that u does not in general belong to the anisotropic Sobolev

space Wol’(pl’”"pN).
Lemma 3.4. Forl=1,...,N, as e — 0 we have
oi(z, (31;?) — o(z, %) a.e. in Q and in L*(Q;R™). (3.10)

Proof. The main part of the proof consists in showing that
hi(x)=0 forae. xz€, [=1,...,N, (3.11)

where h; is defined in (3.9). Suppose for the moment the validity of (3.11]), and fix
any one of the directions [ = 1,..., N. Then, by Vitali’s theorem,

Oue ou 1
— — in L' (Q; R™),
83:; 63;7 ( )
and, after extracting a subsequence if necessary, 2% — 9% ge. in Q. From this we

BIL 81;
also have o (:c, %) — 0y (x, %‘l) a.e. in Q. As gy (IE, %) is uniformly bounded in

Lst (; R™), Vitali’s theorem gives

Ou,
9ar)

oy (a:, — 0} (x, g—;l) in L' (Q;R™),
for any 1 <t; < sj, which proves .

We now set out to prove (3.11)). Choose a nonnegative function a € C*([0, 00) N
L*>(]0, 00)) such that a(t) = ¢ for ¢t € [0, d] for some § > 0, &' > 0, and o/ ()t < a(t)
for all ¢ > 0 (see [I7] for an explicit example of such a function). Then define the
function ¢ : R™ — R™ by

wmzﬁpwm

and note that ¢(r) = r when |r| < J. We also need two scalar functions 7, ¢ of the
following type:

neCFR™), 0<n<1, supp(n) C[0,9),

seCz®), 0<o<1l, [odi—1.

In what follows, let us fix any one of the directions [ = 1,..., N. Denoting by v
a comparison function in C*(Q;R™) (to be chosen later), we proceed by using the
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triangle and Holder inequalities:

Ou,
St -
ue
/Z|8Zl ——’n — ) ¢dx+/2|8xl 2, (ue —v)pdx
N

p—1

2 L5 - —v>¢dw>ﬂ</ﬂn<ua—v>¢dx>

/Z‘a—xlfa—xl e —V)opdx.

Equipped with this and (3.9)), using in particular that u. — w a.e. and the fact that
1, ¥, Dy are continuous and bounded functions, we deduce

IN

IN

(3.12)
S;Llpz(/ﬂn(u—v ¢dx /Z’a—xl—%Mu—v)qﬁdm
where
_ s du. v p B
Ly = Li(n, ¢,¢) = hgljgp/ﬂ ! 9z, 0 n(ue —v)pdz.
We must analyze L;, and start with the case p; > 2. By (L.3),
du.  0v p,
/ |3xl %| n(ue —v)¢dx
8u5 ov Ou, ov
/Ql1 a) ~ o 5) (G — g )1~ 0)0ds
N
] ey o0y D)
a /Q £ <01 (#: 5g) — 3xl>) e CEa
N
[ e Gy 2= ga (3.13)
[¢) =1 8@ 8.1‘;
N
Oue\  OY(ue —v)
— ZTEy . 1— _
JL ool G - P e~ e

(% ﬁue dv
/QZ;O'I oz (9%‘1 axl>77(ue —v)pdx

=: E1 + Es + Ej3,
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In the case p; < 2, we employ (|1.3) instead as follows:

Ou, o
/ | ox; 3$l ‘ —v)pdz
OQue @|2 %
: (/Q ) o azl 2p,77(u5—v)q5d;v>
(’aTL +‘37,|) .
Ou, 2
) </Q(|8l‘l| |8xl|> rbdx)
2-p,
_ " D, .
St ) (/Q (128 | 22)) = sy
Thanks to (L)),
= aus a¢
El*/ﬂfs'ﬁ) U¢df£l};0’z ) (Usfy)aixldx.
Since

r® r a(|r]) TRT
(I_ HE )’
there holds
oy(z,&) - Dy(r)§ >0, VEreR™.
This follows from (|1.6)), since

o1(z,€) - DY(r)€ = Owal(x,g) ) (I— [(1 O/(| |)|T| r®rD€7

a‘r| H

where the term inside the square brackets can be written as a ® a for some a € R™
with ‘a| <1 (recall that o/ (t)t < «(t)). Hence

v
By < / 201 D (e =) 5 (1 = (e =)o do. (3.15)
Since u. — u a.e. and 7, ¥, Dy are continuous and bounded functions, we deduce
from (3.13) that
N 26
L; <s dp — . —v)=—d
< sl [ o /ﬂzﬂl Vlu—0) 5" do

/QZ@ Dy u—v)%(l—n(u—v))¢dx (3.16)

=1
81) 8u ov
/Q ; o al'l 85&[ axl) (u B U)¢dx

At this stage we specify the functions v, 1, ¥, ¢. Fix any point x = a € §2 that
is simultaneously a Lebesgue point of g—;, hy;, B, I =1,..., N, and the measure p.
Choose v as the first order Taylor polynomial of v around z = a:

v(z) = u(a) + Du(a)(xz — a),
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and replace ¢, 7,1 in the above calculations by the following functions:
() =i(), 7€ CXBON). laoy =1
ou() = o), GeczBO.1). [i-1.

and ¥,(r) = ,01/)(%). Denote by L;(p) the corresponding L;, that is, L;(p) :=
Li(np, #p,1p). We deduce limsup,_,, Li(p) = 0, since as p — 0,

1 U —v
— —|dz — 0,
|B(a,p)| B(a p) ‘ P ‘ T

/ @| dxr — 0,
B(a, p)l 1 8$l 8xl

\B(al,p)|/ S |ha) — ila)] d —

aﬂ)l 1

where the second and third terms in (3.16) tend to zero as we have

oo} uU—v _
o2, O(T)’ 1—n,(u—v) =0 p

U*’U).

wp(u — V)
The first term tends to zero since

limsup p(B(a, p))/p" < oo,
p—0

and thus sup [¢,| [, ¢, du < Cpp(B(a, p))/p"™. In the case p; < 2, we also use that

the term (- -- )%Tpl in (3.14) stays finite in the above localization procedure (since
N > 2). Since

1
|B(ap)|/ Z‘hl — ()| dz —0 asp—0,

aP)l 1

it follows, via (3.12]), that h(a) = 0. This completes the proof of (3.11)), and hence
the lemma. g

4. AN EXTENSION

In this section we show that the results obtained for (1.1)) can be extended to
more general anisotropic elliptic systems of the form

— + T, U in €,
Z 9, ! gla,u) = i, (4.1)
uw=0, in 09,
where the vector fields o1, ...,0n are as before. We assume that the nonlinearity

g(z,r) : Q@ x R™ — R™ is measurable in z € Q for all » € R™, continuous in r for
a.e. z € (1, and satisfies the following conditions:

g(z,r)-(r—1")>0, Vrr' eR™ with |[r'| <|r|, (4.2)
sup{|g(x,r)‘ : |r| <rt}e€ LY(Q;R™), Vr € R™ and V7 € R. (4.3)
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Condition (4.2)), often called the angle condition, is also assumed in the recent
work [6]. A prototype example of m is provided by the equation

1o} _
_Zaxl |3$z . ’ u)+|u|9 Yu =,

for some 6 > 1. We look for distributional solutions to (4.1)) in the following sense:

Definition 4.1. A distributional solution of (4.1)) is a function u : Q — R™ such
that (3.1) and g(z,u) € L*(£;R™) hold, and Vo € C°(Q;R™)

0
/ZW u = e +/ (I,U)wdﬂc=/@du-
Q l axl Q

Our main results are collected in the following theorem.

Theorem 4.1. Let jt = (ji1,...,ptm) " be a vector-valued Radon measure on Q0 of
finite mass. Then, under the assumptions stated above and in Section (4.1) has
at least one distributional solution u. Moreover, u has regularity as stated in (3.2).

Proof. Let f. be as in Section Then, by classical arguments, there exists a
sequence of approximate solutions (u¢)o<e<1 satisfying the weak formulation

8u€ dp B
/QZJZ 8ml 8xld +/g(;v,us)wpd:r—/ﬂf5 pdr, (4.4)

for all ¢ € W(]l’(pl""’pN)(Q;Rm). Substituting ¢ = T (us) in (4.4), we get

ue\  OT,(ue) B i
/Q &El) 92, dx 4—/Q (x,ug)-TW(uE)dx_/QfaTn{( J)dz. (4.5)

=1
By (£.2), f{lu <) g(z,ue) - Ty(uz) de > 0, and thus we deduce

c1 Z/ ﬁus p' dx +'y/ |g(x,u5)| dxr < C. (4.6)
{luc|>~}

flul<m) o

We obtain from and Lemma E the weak Lebesgue space estimates

ou,

<0, H aileMmq/i(Q;Rm)

||u€||Mq*(Q;Rm) <C, 1l=1,...,N,

where the exponents ¢ and ¢* are defined in (|1.8)), and C is a constant independent
of €. Consequently, we can assume without loss of generality that the convergence
in (3.9) hold for our sequence (ug)o<e<i-

Taking v =1 in (4.6) and using (4.3]), we deduce
[ Jatau) iz < . (4.7)
Q

where C' is a constant independent of €. We also have g(z,u.) — g(x,u) a.e. in Q.
In view of Vitali’s theorem, to show that g(z,u.) converges strongly in L*() it
remains to prove that g(x, u.) is equi-integrable. To this end, let B be a measurable
set in Q. As usual, we split the integral into two parts

/wm%nmzj' wm%MM+/ g, ue)| do.
B Bm{‘“alé')’} Bﬂ{|u5‘>’y}



16 M. BENDAHMANE, K. H. KARLSEN EJDE-2006/46

Let us call the first and second integrals on the right-hand side for I; and Is,
respectively. In view of (4.3)), ‘ lilm I; = 0. Let 0 < M < =, and observe that
B|—0

T (ue)| < [T (ue)| L jua<nny + [Ty (ue) | Lgua sy <M +1 (00,
Using this decomposition in (4.5)) yields

’y/ |g(z,u5)|dx§M/ |f8|d1:+7/ | f=| da.
{luel>~} Q {lue|>M}

From this inequality we obtain

1
1.’00( / ’ d ) - M’
Jim 0216121 oo l9(x, uc)| d o(=)

and, by sending M — oo, we conclude the equi-integrability of g(z, u.).
The proof of Lemma remains more or less unchanged, except that the term
Ey rewrites in our problem (4.1]) as

E, = / fev(ue —v)pda 7/9 (z,ue)(ue — v)d de

4.
/ZO’ aus _U)%dl‘ ( 8)
Ql 1 ! axl 3:51 ’
and estimate (3.16]) rewrites as
L < swpul( [ odu+ [ Jotalodr)
/ Zﬁl (u—v) (9(;5 d:c
o (4.9)
/ Zﬁl Dy u—v)a— (1 —n(u—))ddz
v ou v
. u—v)pdr.
/ﬂl 1 3%1) (5$l al'l) ( )¢
Letting * = a be a Lebesgue point simultaneously of u, g(x,u), h, u, Du, and
8= (f1,...0n), we can proceed as in the proof of Lemma O

5. A DIFFERENT STRUCTURE CONDITION

Zhou [47] proved that the results of Dolzmann, Hungerbiihler, and Miiller [I8]
17, 19] continue to hold under the so-called (isotropic) sign condition. Moreover,
he gave an example of an isotropic elliptic system that satisfies the sign condition
but not the the angle condition.

In this section we return to problem under assumptions —, but we
want to replace the anisotropic angle condition by the following anisotropic
sign condition:

oin(z,8)& >0, Y(z,8) € QxRY, (5.1)

fori=1,...,m,l=1,...,N. Here 0;; and & are the ith components of vectors
o; and &, respectively. When m = 2, (|1.6) implies (5.1). To see this, recall that
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(I — a ® a) projects orthogonally onto the space orthogonal to a, and then choose

= (LO)Ta a= (0, l)T in (1.6).
It is easy to give an example of an elliptic system which satisfies (1.2)), (1.3]), and
(5.1), but does not satisfy (|1.6)). For example, take m =2, N = 2, and

Ul x £ |£|pl 2 0151,62) ) l= 1727 é-: (51752)T7

where 0 < a < 0.2. It is clear that assumptions (1.2, (L.3), and the anisotropic
sign condition (5.1]) hold.
Let us verify that the anisotropic angle condition (1.6)) does not hold. To this

end, take a = (a'/2, (1 — a)1/2)T and £ = (1,1) 7. Then |a| = 1 and
.
I-a®a)= (17a7041/2(1fa)l/Q,afal/z(lfa)l/Q)
so that
or(2,€) - [(I —a®a)¢]
= 2m;2 {a (1 Ca—al? (1- a)1/2) +a—all? (1- a)l/ﬂ

= [za—al/Q(l—a)l/Q} <0, 1=1,2

which implies that (1.6)) does not hold.
The purpose of this section is to prove the following theorem.

Theorem 5.1. Theorem[3.1] continues to hold when the anisotropic angle condition
(1.6) is replaced by the anisotropic sign condition (5.1)).

Proof. Compared to the proof of Theorem the main new idea is to use, instead
of (2.3), the following cubic truncation function

-
O,(r) = (max(—'y, min(y,71)), . . ., max(—y, min(~y, TN>)) ,

where r = (r1,...,7y)" € RV, Substituting ¢ = ©,(u.) in ([3-5) yields

i 3u5 ﬁus,i
;/ ZU”( 836;) 0, dx < C. (5.2)

{Jue.il<v} 5

Using assumptions 1) we deduce from (5.2)) that

/ 8U5|Pld
{\us|<v}l - ‘99%

N

ou, ou,
<L oz, =) - m—dx+ *IQI (5.3)
€1 S fmax(fue | e, N\><w} ; Bxl Oy
du,  Ou
< — / > oii(w 5o) St da +—|Q|<C
Z {lue,i 1<y} =1 a axl

Making similar changes due to the new truncation function in the rest of the
proof of Theorem we conclude eventually that Theorem [5.1] holds. O
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6. MAXIMAL REGULARITY AND A UNIQUENESS RESULT

We collect our results in Theorem (existence/regularity of solutions) and
Theorem (uniqueness of solutions) below.

Before stating the theorems, let us introduce some notation. First of all, we
say that a set £ C RY is of type A if there exists a constant K such that for all
z € F and for all 0 < p < diam(E) there holds |Q(z, p)NE| > Kp~, where Q(z, p)
denotes the cube {y e RN : |z —y| < 5, 1=1,...,N}.

In what follows we regard all relevant functions as defined in RY by setting
them to zero outside 2. A function g belongs to the space BMO(RY) of functions
of bounded mean oscillation if g € LV (RY) and

1 N 1/N
Sup sup — ‘g — (g)y7p| dx) < 00,

g - (
| |BMO(RN) yeRN p>0 P JQ(y,p)

where (g),,, denotes the mean value of g on the cube Q(y, p). The space BMO(RY)
is a Banach space under the norm

HgHBMO(RN) = HgHLN(RN) + ’g’BMO(RN)'

Theorem 6.1. Let Q@ C RN be a bounded open set such that Q¢ = RN \ Q is a

domain of type A. Suppose (1.2))-(1.6)) hold and py = N for alll =1,...,N. Let
= (1, ., fm)" be a Radon measure on Q0 of finite mass. Then problem (1.1))

has a solution u € Wol’(sl"”’sN)(Q;Rm) N BMO(Q;R™) for any set of exponents
1<s1,...,88y < N, and the following a priori estimate holds:

HUHBMO(Q;R"L) <G (H'“HM T (QRm) + C2>~ (6.1)

Moreover, Du belongs to the weak Lebesgue space MN(Q;R’”XN) and

1Du] vy < Cs ([l s +C) - (6.2)

The constants C;, i = 1,2,3,4, depend only on ¢y, ca, ¢}, ¢y, N, |Q|, and the
constant K in the definition of property A.

Theorem 6.2. Suppose (1.2)), (1.3)), and (1.6) hold andp; = N foralll=1,...,N.

Let 1 = (p1,...,pm)’ be a Radon measure on Q of finite mass. Let u,v be
two solutions of (1.1) such that u, v € Wol’l(Q;Rm), u—uv € Wol’l(Q;Rm), and
Du, Dv € MN(Q;R™N). Then u=v a.e. in .

Let us now embark on the proofs of Theorems [6.1] and

Proof of Theorem The following lemma contains so-called Caccioppoli es-
timates, which are at the heart of the matter of the regularity theory developed in
[19].

Lemma 6.3. Let u € W&’N(Q;Rm) be a solution of (L.1) with p = N for all
l=1,....,N, u=f, and f € L*(;R™). Fiz two positive numbers p, R such that
0 < p < R. Then there exist constants C1, Cy such that for all cubes Q(y, R) C £,
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for all B € R™, and for all v > 0

N
0

/ > gl e
{lu—BI<v}INQ(y,.p) 1—; Iy

(6.3)
Cl / N N
< u— B dr+ Csy 'y/ flde+ R ),
(B=p)" Jow.r\Qwn) = ( Qw.R) / )
and for all cubes Q(y, R) C RN and for all v >0
/ ‘@|Ndx
{lul<a}NQ(y,p) 1=1 (917[ (64)

Cl / N / N
< — u| dx+ Cyl~y flde+ R™ ).
(R—p)N Q(y,R)\Q(y,p)‘ | 2< Q(y,R)| | )

Proof. Following [19], let x € C°(Q(y, R)) be a cut-off function satisfying
x(z)=1ifz € Qy,p), 0 < x <1, and

Ix
—|<C/(R—p), l=1,...,N,
5| < C/(R~p)
for some finite constant C. Let a, : R — R be any smooth function with the
following properties:
ay(s)=sif s €[0,7], 0 <, < N7y, «

OK'YT(S))N/(N—l) a-(s) <1 on(0.00), (6.5)

0 < ¢( < (s) <

S

where ¢ > 0 is a constant. An example of such a function can be found in [I7].
Now we define the cut-off function ¢, : R™ — R™ by

A calculation reveals that

D (r) = ol (|r) =y m(;‘rp( )

N
O‘W(M)

:o/(|r|)]+ [ }7"| |7«

Hence, by (1.6) and (6.5]), there holds
o1(2,€) - Dby (r)€ > ay(x, €) - €al (|r
and, by ,

), V&reR™ 1=1,...,N,
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Using XV, (u — () as a test function in the weak formulation of (L.1]) yields

o, 2y . X (6.7)
_ N-1 B .
= /QNX Py (u z:: 3xl 8331 dx

+ [ XVt 5 de
Using @ ., n, and Holder’s inequality, we deduce from ([6.7)

/ NZ|3’LLN, —5|
<(ch(/ |u—ﬁ| (Clz‘auz\r1 )N,

X u— 3| dx +C 7/ fldz +RY).
(/Q(%R)\Q(y,p) } | ) ( Q(y,R) ‘ ’ )
An application of Young’s inequality yields

[ o 3| 2
QX v =1 8x
Cy / N / N
< — u— B dr+ Cyly flde+ R ),
(R—p)¥ Qy:R\Q(y,p) | | 2< Q(y,p) | | )

for some constants C1,Ca. Now (6.3)) follows from the definition of «,. Using
N ¥y (u) as a test function in the weak formulation of ([I.1)) and proceeding as in

the proof of (6.3), we deduce easily ((6.4]). O
We quote the following key lemma from [I9].

N—-1

ldl‘)N

Lemma 6.4 (Dolzmann, Hungerbiihler, and Miiller [19]). Suppose u belongs to
W&’N(Q;Rm) and there exists f € L'(Q;R™) such that the Caccioppoli estimates
(6.3), (6.4) hold. Then u € BMO(S;R™), Du € MN(Q;R™ M) and

1/(N=1)
|u|BMO(Q;Rm) + ||DUHMN(Q;]RW><N < C(HfHLl(Q rm) T 1),

where C' > 0 is a constant depending only on N, Q|, and the constant K in the

definition of property A.

Concluding the proof of Theorem It is possible to construct a sequence
of approximate solutions u. € WOI’N(Q; R™) satisfying (3.5)), with f. € L*(Q;R™)N
L>(Q; R™) satisfying . In view of Lemmas and the proof of Theorem
is obtained by routine arguments.

Proof of Theorem The main obstacle that one encounters when attempting
to prove uniqueness is that if u,v are two solutions of , then w = u — v is
not in L*(Q;R™) and therefore cannot be used as a test function in the weak
formulation. To handle this problem, we implement the technique developed in
Dolzmann, Hungerbiihler, and Miiller [19], which in turn was motivated by earlier
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work by Acerbi and Fusco [I]. The idea is to approximate the function w by
a Lipschitz function wy that coincides with w on a large set. Moreover, precise
estimates of the measure of the set where these two functions do not coincide can
be provided if w has “maximal regularity”.

We start by recalling the key approximation lemma.

Lemma 6.5 (Dolzmann, Hungerbiihler, and Miiller [19], see also [1]). Let Q c RY
be a bounded open set such that Q¢ is a domain of type A and fir 1 < p < co. Let
w € Wol’l(Q;Rm) be such that Dw € MP(Q;R™*N). Then there exists for each
A > 0 a function wy € WH°(;R™) such that HwAHWLw(Q;Rm) < C1A and

| {z € Q:w(z) # wa(z)} | < 02/\_pHDwHMP(Q;Rme)'

The constants C1 and Co depend only on }Q| and N. If w € WHP(Q;R™), then
[{z € Q:w(x) #wr(z)}| = o(A7P).
Let Ay := {z € Q : w(z) # wx(z)}. To prove Theorc observe that

1,1 .
w:=u—v € Wy (;R™) and introduce according to Lemma he function w.
Since u and v are solutions, we have

N

0 ou ov\\ ) ey, Tm
l_zlazl(al(x, a—xl) —Ul(a:,a—xl)) =0 inD'(Q;R™). (6.9)
Using wy, as a test function in yields
N
ou v owy B

Since %12 = gTZ - g—; a.e. on Q\ Ay, we deduce from and (| ., with
pp=Nforalll=1,... N

)

8u ov N
012/ 77% dz

\Ax 81‘1
o0v \N—-1
<C’)\Z/ yaxl g +1) do

/N
AZ|A (e oy + e ety ) + CAN 1]

C,

| /\

IN

(6.11)

where the last bound is a consequence of Lemmal6.5] Consequently, sending A — oo,
we have Dw = D(u —v) € LY (Q;R™*YN). We can therefore use the last part of
Lemma when sending A — oo in . The result is that Dw = 0, which
concludes the proof Theorem

7. ANISOTROPIC HARMONIC MAPS INTO SPHERES

Let © be a bounded smooth open connected subset of RY (N > 2) and 1 <
P1,-.-,pN < o0o. In this section we need to use the anisotropic Sobolev space
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g
== eLP(Q),l=1,...,N
8x € ()7l ) ) }7

Let u satisfy Ifu] = mingea I [w], where the anisotropic energy functional I and
the set of admissible functions A are defined in and (L.12), respectively.
Pick any ¢ € Wy @0 PN (Q; R™) 0 L®(Q;R™). Since |u| = 1 a.e. in Q, w(r) =
(u+7¢)/|u+T7¢| € A for small enough 7’s. Hence J(7) = I[w(7)] has a minimum
at 7 =0 and J'(0) = 0. A calculation of J'(0) then shows that u solves the Euler-
Lagrange system in the weak sense, which motivates the next definition.

Definition 7.1. A vector-valued function
U= (u1,. .., Up) € WhPtPy)(Q.gm=1)

is called a (pi, ..., pn)-harmonic map from € into S™~! provided

au pr— 28'LL au p’
/Q Z (9 Oy oy ﬁml /Q Z 15— o, z, (7.1)

=1 =1

for all ¢ € WO’(pl"“’pN)(Q;]Rm) N L>(Q;R™). We also use the term “anisotropic
harmonic” for such a map.

Since we have not been able to find the proof of the following anisotropic Sobolev-
Poincaré inequality in the literature, we have chosen to include a proof of it by
the usual “contradiction method”, relying on the following anisotropic Sobolev
inequality [45] 2]: Let @ be a cube with faces parallel to the coordinate planes.
Suppose g € WhP1PN)(Q) and p < N. Then

1/N
Il (Q><0H(H oy +lolling) (7.2)

and the inequality between geometric and arithmetic means implies that the right-
hand side can be bounded by % Zl]il (H ng, HLP! @ T HgHLPZ (Q)). Hence, the space
WP (Q) is continuously embedded into LP™ (Q).

Lemma 7.1. Let Q(xg,p) = {z € RV : |xl - x(),l‘ < £, 1=1,...,N}, where
zo € RN, p > 0. Suppose g € WhHP1PN)(Q(x0,p)). Suppose the anisotropy

(p1,...,pN) is such that (1.14) holds. Then for each 1 <p < p*

i _ P 1/p / o\ /P
(pN/Q(IO7p)|g (9)z0.p] dx) <C’pZ( Q(M){(%l” . (1.3)

for some constant C = C(N,p1,...,pn,p). Here (g)z,,, denotes the average value
of g over the cube Q(xo, p).

Proof. We divide the proof into two steps.
Step 1 (xg =0, p=1). We argue by contradiction. Suppose the assertion is not
true. Then for each n = 1,2, ..., there would exist a function g, € W (P1Px) ()



EJDE-2006/46 ANISOTROPIC NONLINEAR ELLIPTIC SYSTEMS 23

such that

99n 1
Z H HLPL y < EHgn - (g")OJHLP(Q(O,l))’ (7.4)

where, by the anlsotroplc Sobolev inequality (7.2)), the right-hand side is bounded
by a constant (independent of n) times 1/n. Define

W — 9n — (gn)o _
lgm = (gn)OalHer(Q(o,n)

Then (hy)o,1 = 0 and ||h”HLP(Q(O ) = 1. By (7.4]), we have, passing if necessary
to a subsequence, that h, — h a.e. in Q(0,1) and also in LP(Q(0,1)), where h is
some limit function. It follows that

(h)O,l =0, HhHLp (0,1)) =1 (75)

On the other hand, it follows from (7.4) that g—z =0foralli=1,...,N, and hence
h is constant, which contradicts .

Step 2 (the general case). Let g : Q(x0,p) — R, and scale this function to the
unit cube by setting h(z) = g(zo + px) for x € Q(0,1). By Step 1,

(4(071)|h|pdx) <cZ(/@(O ; 8851 pidx)ﬁ.

Changing variables in this inequality yields (|7 . O

Before we continue, we need to introduce some additional notations and func-
tion spaces. A function g € L'(RY) belongs to the Hardy space H!(RY) if the
grand maximal function g* = supp>0 |g * w,| belongs to L'(RY), where w,(z) =
p~Nwi(z/p), w1 € C*(B(0,1)), [wi = 1. The definition does not depend on the
choice of wi. The Hardy space is a Banach space under the norm HgHH1 ®N) =
HgHLl(RN) + Hg*HLl(RN). If g € HYRY), then necessarily J g = 0. The dual
space of HY(RY) is the space BMO(RY) of functions of bounded mean oscil-
lations. Here a function h € LL _(RY) belongs to BMO(RY) if |h|BMO(RN) =

sup, , p—N fQ(zm) |h(y) — (h)a,p| dy is finite. The space VMO(RY) of functions of

vanishing mean oscillations, which is defined as the closure of Co(RY) in BMO(RY),
is the predual of H!(RY). We shall need the local Hardy space Hi (). Let K be
any compact subset of 2 and set ex = dist(K,RY \ Q). Then g € HL _(Q) if for
any compact subset K C ) there holds supg. ., ’g *wp’ € LY(K). We refer to
Stein [40] for more information about the spaces just introduced.

Coifman, Lions, Meyer, and Semmes [I4] proved that if two vector fields B and
E in conjugate Lebesgue spaces LP(RY;RY) and L (RN; RY) satisfy curl B = 0
and div E = 0 in the sense of distributions, then their scalar product B - E, which
a priori only belongs to L'(R™) by Hélder’s inequality, belongs to the Hardy space
H(RY), which is a strict subspace of L'(RY). Thus the nonlinear quantity B - E
possesses a compensated integrability property. We shall require an anisotropic
version of (a special case) of this result. The proof follows closely that in [I4], with
some minor modifications to account for the anisotropy of the involved vector fields.

Theorem 7.2. Let 1 < p; < o0 and 1/p;+1/p; =1, 1 =1,...,N. Suppose
B = D for some function w € Wl’(pl’“"pN)(]RN) and E = (El,...,EN)T, E €
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P (RN N LY(RYN), divE = 0. Suppose the anisotropy (pi,...,pn) is such that
(1.14) holds. Then B - E belongs to H'(RN) and

N
1B Bl e, <c(Z||8xlHLP,(RN))(Z||Ez\er;(RN)),
=1

where the universal constant C' depends on N, p1,...,pn. If the domain of definition
RY for B and E are replaced by 2, then the theorem remains true with H'(RY)
replaced by Hi ().

Remark 2. Theorem [7.2] shows that the product B- E has a compensated integra-
bility property as long as the anisotropy (pi,-..,pn) is not too much spread out,
which is reflected in the condition p* > pmax.

Proof. 1t is clear that D7 - E € L'(RY) and that D7 - E = Zf\il a%l(ﬂEl) in the
sense of distributions. For any € RY and any p > 0, we need to estimate the
convolution product (D7 - E) % w,(x):

(D7 - E) xw)(z)| = | E)(y)wp(z —y) dy|

0
o / . ;<sz><y>a—yle<x )y
N
= | /R DILOR (7)o L) gy~ 2) ]
N+1 /Q(w,p Z’W (M)ap| | Ei(y)] dy.

Next we choose (g1, ...,qy) such that ¢, < p; for alll=1,...,N and ¢" > pmax >
Qmax- We can do this since p* > pmax. To be specific, choose ¢ = 0p;, [ =1,..., N,

for some 0 € (%, 1) to be specified later. One can check that
N6
0p = ———————q" =: e(0)7".
NO — ( 9)7*(] 6( )q

Since 0 < ¢° < p* and 0 > J’+N, there holds 1 < e(f) < #9_9)? < oo.
Moreover, e(6) | 1 as we let 8 7 1. Using D* > pmax t0 write p* = pmax + £ for some
K > 0, we obtain

0 0 0
T = —=D" = Ppmax + A(0), A0) :=(—= —
T = P =P T A0), AWB) (6(9) 0"
Clearly, by choosing € close enough to 1, we can ensure A(f) > 0. Hence, for
such a choice of 8, we have §° > pmax > qmax. Having chosen the ¢;’s, we choose

- l)pmax +

(s1,.- sN) such that p; < s; < @* for all [. Indeed, we can take S% = q—ll — 0;, with
Jl ( 7(71 - qi*)

We now continue using Holder’s inequality to obtain

’(DT( . E) *wp ()|

CZ ( /Q ’W(y) - (ﬂ)x’p|3l>1/8l (piN -/Q(w,p) ‘Ez(y)ﬁ)l/%.

(@,p)
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Since s; < " and 7 € W1 (a1 ’QN)(Q(:E,p)), we can use the anisotropic Sobolev-
Poincaré inequality (see Lemma to obtain

|(D7 - E) % w,(z)|

NN 1 a j 1/q; s’ 1/52
SOEE(PN/QW) 0y; |q) <PN /@(m,p)'El(y)| Z) '

We need the Hardy-Littlewood maximal function

1

Mg)() = sup / l9(w)| dy,
p>0 pN Q(z,p)

which is bounded on LP(RY), that is,

|| M1g] < C(p)

HLP(]RN) HgHLP(RN)7

for 1 < p < co. Using the maximal function we find that
1/q; / 1/s)
sup’ (D - )*wp <CZZ< |‘1J )) (M[}Ellsz}(x)) l.
p>0 —1 =1
Integrating over x € R, using Holder’s inequality, and finally using the bounded-

ness of the maximal function (recall that p; > ¢; and p; > s7), we get

/ sup | (D7 - E) x w,(z)| dx
R

N p>0

ey Z(/ (il @)"" ) ([ (] ) ar)
N

< (g o ) ()

which concludes the proof of the theorem. O

We have come to the main result of this section, namely a compactness theorem
for (p1,...,pn)-harmonic maps. This result can be viewed as an anisotropic version
of a result of Toro and Wang [44] for p-harmonic maps, and our proof proceeds along
the lines of [44].

Theorem 7.3. Suppose (u:)o<e<1 C WhHEL-PN) (Q; S™1) s a sequence of
(p1,-..,pN)-harmonic maps such that

Ue = u in WHPLPN) (Q ST g5 6 — 0.
Then u is a (p1,...,pN)-harmonic map from € into S™~1.

Proof. Each u, is a weak solution of
N
0 OUe \p;—2 8u5) . Oue p,
;%(‘axl | 81‘[ _fe’ ' Z‘ | Ue
Clearly, as u, is uniformly bounded in Wl’(pl"“’pN)(Q;Rm) and |u5| =1 a.e. in €,

we have that f. is uniformly bounded in L!(Q). Thus the above system fits into
the theory developed previously in this paper.
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As in [25] 44], the main point of the proof is exploit that the term f. has a
particular structure due to the constraint |u5| =1 a.e. in £, which implies that it
in fact belongs to the Hardy space HL () and not just L'(2). Indeed, observe
that, for any i =1,..., N,

=35 L 25 s D D)
e — Ue K Ue i 83?1 Ue K Ue & 8561 Ue i

b1 =1 6$l (9561
m

= E B k Eszka
k=1

where the vector fields B = (B )Y, and E.,; = (E.ix)Y, are defined by
(Be)i = a%lus,k, I=1,...,N, and

ou 2 0 o
axj |pl (UEJ(:TEZUEJC - Ue,k%Ug,i), l=1,...,N.

(Es,i,k)l = |

Clearly, curl B, j, = 0. Let us show that E_ ; ; is divergence free:
AR
div E i = Z %(Es,i,k)l

O |p—2 0 0 (,0uc p—2 O '
; } Jr; | 895; %Us,k + Z 87561 <| dx; %u67k>u572

=1
e e d d N9 0ue 2 O
‘Z‘axl 5o~ 2 o Uy | )
iv:} uku'—iv:%vglu Ue =0
€ £,1 €,1Ue,
=1 =1 895

According to Theorem E. ;- Be is then bounded in HIIOC(Q).
Adapting the methods and results in Subsection we can without loss of
generality assume in the following that as ¢ — 0,

usﬁua.e.inQandauE %aemﬂ
83:1 8xl (7 6)

|8u€ |p172 Ou, | ou \p—2 Ou . LPE(Q;R”’),

dr; o ox; 81‘1

for{=1,...,N. Therefore,
m N
3 pi—2 6 6 .
fei— fi= ;; a— ‘ ’ T (ula—xluk — uka—xlul) a.e. in Q,

and f; € L'(Q), i = 1,...,N. Of course, the main difficulty is to improve this
a.e. convergence to the convergence
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For each ¢« = 1,..., N, by Theorem fe.i is bounded in H{ (), and for any
compact K C ) we have the bound

m

N
0
IFeillrose < €22 (g mesllinien)

k=1
ou 2 6 0
(Z\!\axl " g = k) ) <O

where the last constant is independent of € since ggj is bounded in LP!(;R™),
I=1,...,N.
Let n € C(Q), [,ndz # 0, and introduce

A€7i:/77fs7idx//ndx€R, i1=1,...,N,
Q Q

Fa,i:n(fa,i_Ag,i>7 t1=1,...,N.

Note that fQ F. ;dx = 0. Now we extend all relevant functions defined on €2 to RN
by setting them to zero off ).

According to Semmes [37, Proposition 1.92], F. ; is bounded in H*(RY) and if
K = supp (n) then

||Fe,i

(7.7)

||H1(RN) < C(l + ||F€,i||L1(RN) + ||f6,iHH1(K))7 i= 17 ce 7N7

where the right-hand side is bounded by a constant independent of &, thanks to
(7.7). Observe that by (1.13) and the last part of (7.6) we have

N | 9u-|Pti=2_9 )
A= Jo 2o oz Dy Uei gy 1A
£, — d
Jondax
N Pi—2 9 k)
. Jo 21:1 Dar Dy Wi 5y 11 AT o
= A,
Jondzx

for i = 1,...,N. Hence F.; — F, := n(f; — A;) a.e. in RY and, as mentioned
before, F. ; is bounded in H!(R”). Thanks to a theorem of Jones and Journé [26],
this implies that F.; = F; in H'(RY), that is,

/ F.;Vdr — FUdz, YU cVMORY).
RN RN
Now we have all the necessary tools at our disposal for concluding the proof of

the theorem. Let ¢ € Wol"(p1 """ pN)(Q;Rm) N L*(Q;R™) and choose n € C°(Q)
such that n =1 on K = supp (¢). Then

/XN](M ’pl_mug 9
Ql:l al‘l 6xl 8zl
N
:/Zfe,idh‘dfﬂ
Q=
N N
= [ S rades [ S udoidn
RN 53 RN 51
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Sending £ — 0 yields

/Q 895; }m 2(;9;2 695; / ZFz¢zd$+/ ZnAngz dx
/Zmdx—/zyaxl\“ b

Hence u is a (p1, ..., pn)-harmonic map. O
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