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INTRODUCTION 

 Overview 

Two aquatic snail species from Asia were introduced into freshwaters of the USA 

sometime in the early 20th Century.  The snails are enough trouble in themselves, as they 

are aggressive competitors and can alter the composition and dynamics of aquatic 

ecosystems.  However, these snails also brought several parasites with them, two of 

which are able to infect and damage local native fishes in many families, and some of 

those fish are listed species of conservation concern. 

 A snail problem: two invasive snails of the family Thiaridae 

1.1.1.1 Original introductions into USA 

Melanoides tuberculata (Müller, 1774) is thought to have been introduced to the USA 

through the aquarium trade sometime prior to 1950 (Murray 1971), and Tarebia 

granifera (Lamarck, 1822) was introduced perhaps as early as 1935 (Nollen and Murray 

1978).  These snails were first reported from Texas in 1964 from the spring-fed San 

Antonio River (Murray 1964).  Both species were later reported from the spring-fed 

Comal River (Murray and Woopschall 1965).  Established populations of these snails 

have since been reported from spring-fed waters in over 15 counties in Texas (Daniel et 

al. 2018, Karatayev et al. 2009, Tolley-Jordan and Owen 2008). 

1.1.1.2 Melanoides tuberculata 

Melanoides tuberculata has been reported to serve as the first intermediate host for 

more trematode parasites than any other snail in the world, and the list includes several 

trematodes that cause serious human disease (Pinto and de Melo 2011).  At least four 

species of invasive trematodes have been introduced into Texas waters by M. tuberculata, 
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including Centrocestus formosanus, Haplorchis pumilio, Philophthalmus gralli, and an 

unidentified species of Renicola sp. 

1.1.1.3 Tarebia granifera 

Tarebia granifera also serves as host for many economically and medically important 

trematodes in its native range in Asia and is known to serve as first intermediate host for 

P. gralli and H. pumilio in Texas waters. 

 Invasive parasites propagated by invasive snails 

1.1.2.1 The two heterophyids 

The metacercariae of Centrocestus formosanus and Haplorchis pumilio exhibit broad 

host latitude across many Nearctic and Neotropical fish families and are problematic 

human parasites in parts of Asia where fish are often consumed without adequate cooking 

heat. 

1.1.2.2 Centrocestus formosanus background 

The infective cercarial larvae of Centrocestus formosanus escape Melanoides 

tuberculata via the excurrent siphon, and swim about randomly in the water column, 

largely at the mercy of water currents.  When inspired with the respiratory current of a 

susceptible fish, they attach to the respiratory membrane of the gills.  Metacercariae of 

Centrocestus formosanus have been found parasitizing the gills of many fishes, including 

the endangered fountain darter (Etheostoma fonticola) (Mitchell et al. 2000, Mitchell et 

al. 2005) and the federally threatened Devils River Minnow (Dionda diaboli) (Figure 1).  

This trematode is now known to be widely distributed in most populations of M. 

tuberculata in Texas (McDermott et al. 2014). 
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1.1.2.3 Haplorchis pumilio background 

Haplorchis pumilio has become widely established around the world because of 

multiple introductions of its snail hosts, and because of its flexible host requirements at 

the second-intermediate and definitive levels.  While the cercariae of the species have 

long been known to be present in the water column of the Comal River, nothing about its 

distribution in fishes of North America north of Mexico had been reported until our lab 

discovered it in numerous local fishes, including the endangered fountain darter, the 

threatened Devils River minnow, and several fishes popular as game and food fish 

(Huston et al. 2014). 

 Eggs of invasive parasites brought in by migratory piscivorous birds 

The definitive host of Centrocestus formosanus in Texas was reported by Kuhlman 

(2007) to be the Green Heron (Butorides virescens).  The definitive host of Haplorchis 

pumilio in Venezuela was reported by Díaz et al. (2008) to be the Striated Heron 

(Butorides striatus).  The Striated Heron is native to South America and Panama, but the 

Green Heron is very closely related, and is probably serving as definitive host for both 

species in Texas. 
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Figure 1. Gill filaments of Dionda diaboli: (A) normal architecture (fish raised from 

eggs at San Marcos Aquatic Resources Center refugium), (B) basal region of 

filaments of fish wild-caught from Devils River and infected with 

metacercariae of Centrocestus formosanus, (C) tips of filaments infected with 

C. formosanus (wild-caught from Devils River; photos by DGH). 

The Green Heron is migratory, and spends the winter in Mexico and Central America, 

but returns to Texas in March laden with adult worms (Kuhlman 2007).  This bird was 

probably responsible for bringing both parasites to Texas once they were introduced into 

Mexico in 1979 (Amaya-Huerta and Almeyda-Artigas 1994).  So, wherever M. 

tuberculata has been introduced into North America, if the habitat is a suitably attractive 

feeding site for green Herons and within the range of the Green Heron, it’s only a matter 

of time before both heterophyid parasites are introduced. 
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 Pathology and Epizootiology of Centrocestus formosanus 

 In wild fisheries 

After C. formosanus cercariae penetrate the respiratory epithelium of a susceptible 

fish, they burrow into the gill filaments, eventually making their way to the supporting 

cartilage where they can cause various levels of damage, the severity of which varies 

widely with the host species.  The fountain darter is particularly susceptible to gill 

damage since it reacts much more strongly to the invasion than many other fish hosts that 

have been examined.  According to Mitchell et al. (2000), who found up to 1,524 cysts in 

the gills of fountain darters wild-caught from the Comal River: 

Examination of wet-mounted gills of fountain darters with flared opercular 

flaps revealed swollen and deformed branchial tissues.  A clear layer of 

tissue often was noted surrounding the cyst and appeared to be a host 

reaction….  Infected gill filaments were shortened, thickened, and often 

distorted.  Epithelial hyperplasia and fusion of the filaments also were 

noted.  Affected lamellae often had several areas that were engorged with 

red blood cells and massive cartilage lesions and apparent proliferation 

resulting in displacement of the epithelial tissue….  The trematodes were 

encysted in chondrocysts and affixed to the side of gill filament cartilage.  

The proliferated cartilage caused affected filaments to expand to several 

times the normal diameter, and this resulted in the complete disruption of 

the normal gill morphology.  The filaments were thick, distorted, and 

apparently fused.  Few typical lamellae were present, and epithelial 

hyperplasia was extensive…. 

Mitchell et al. (2000) indicated that many heavily infected darters had died before he 

could examine them and speculated that darter deaths were probably occurring 

undetected in the Comal River as a result of direct and indirect factors associated with 

this pathology. 

 In fish culture 

Gill damage from high intensities of C. formosanus metacercariae has been shown to 

cause mass mortalities in high-density fish culture (Blazer and Gratzek 1985, Mohan et 

al. 1999, Ortega et al. 2009), apparently due to respiratory impairment.  Blazer and 
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Gratzek (1985) studied several species of tropical fishes reared in Florida ponds that had 

been infected with what is now thought to be C. formosanus.  They observed the 

following in these natural infected fish: 

… in heavily infected fish, opercula were flared and gills visible. In some 

cases, haemorrhage from the gills was apparent.  Clotted blood was visible 

between gill filaments and protruding from the opercula.  An increased 

ventilation rate as determined by opercular movement was observed. 

…The amount of cartilage proliferation varied from 2 to 3 cells thick to 

areas in which hypertrophy and hyperplasia led to actual fusion of 2 

primary lamellae…. Remnants of the original cartilage, consisting of 

stacked, flattened chondrocytes usually remained within the hyperplastic 

tissue.  However, the normal structure of the gill filament and secondary 

lamellae were destroyed. In some cases, the capillaries were flattened 

along the border of the proliferating cartilage.  Occasionally, the 

respiratory epithelium was metaplastic, with areas of squamous 

epithelium…. 

 Pathological Effects of Haplorchis pumilio 

Our lab has experimentally demonstrated that the encysted metacercarial larvae of 

Haplorchis pumilio also have a lethal effect on various species of fish, including the 

endangered fountain darter, Etheostoma fonticola, and the blacktail shiner, Cyprinella 

venusta, (Huston 2014, Figure 2). 
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Figure 2. Blacktail shiner exposed for 30 minutes to water from a snail aquarium with 

Haplorchis pumilio cercariae. (A) Day 2 post-exposure; note serum-filled 

blisters on sides of caudal peduncle.  (B) Day 3 post-exposure; blisters have 

ruptured and fish has died, probably from electrolyte loss. 

Haplorchis pumilio penetrates the skin wherever contact is made, causing flashing 

and erratic swimming by the host being infected.  The cercariae then migrate from the 

point of penetration to the fin bases or other skeletal cartilage, randomly intercepting 

other organs in the journey (larval migrans) (Sommerville 1982).  Larval migrans would 

cause subsequent inflammation, micro hemorrhaging in the viscera, and in many cases, 

mortality in the affected host.  The cercariae eventually settle at the bases of the fins 

between the fin rays.  These fin rays are known to actively articulate relative to one 

another in healthy fish (Bainbridge 1962), and the presence of these metacercariae and 

inflammation are thought to impair the articulation of the fins during fin flaps, which 

would reduce swimming efficiency.  

 Observed Inconsistencies – The Centrocestus formosanus Paradox 

There are several frustratingly paradoxical inconsistencies in the limited information 

we have available to us regarding the epizootiology of Centrocestus formosanus and 

Haplorchis pumilio in Texas waters. 
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 Low density of susceptible fishes in waters with high cercarial density 

Although anecdotal, we have observed that in some habitats where either of these 

parasites occur in abundance, and which appear to be ideal habitats for many centrarchids 

and cyprinids, there are surprisingly few individual fish of either family.  This was first 

noted by workers in our lab in 2009 in the waters associated with the confluence of the 

Comal and Guadalupe Rivers.  These waters receive almost no fishing pressure from 

anglers.  This negative association could be explained by assuming that the susceptible 

fish in waters with high densities of heterophyid cercariae are simply killed by the 

cercariae – but no fish kills have been reported from these same areas.  

 Centrocestus formosanus intensity estimates in wild-caught shiners much 

lower than expected 

In a study of Centrocestus formosanus parasitism levels in Cyprinella venusta from 

the confluence of the Comal and Guadalupe Rivers, intensity of infection in the wild 

fishery was estimated through necropsy of wild-caught individuals (Fleming et al. 2011).  

A concurrent study assessed the acquisition rate of metacercariae in caged shiners in the 

same water at approximately the same time (Fleming et al. 2011).  The estimates of 

parasite intensity in the fishery based on necropsy of wild-caught individuals 

dramatically underestimated (by a factor of 10X to 50X) the parasitism levels that were 

expected from the rate at which the caged shiners had acquired the parasite (mean=4.2 

cysts/d, max=14 cysts/d; Fleming et al. 2011). 

Figure 3 shows the cyst-count results based on about 50 blacktail shiners wild-caught 

from near the confluence of the Comal and Guadalupe Rivers (data derived from Fleming 

et al. 2011).  The ages of the fish were determined by back-calculating from their lengths 

(age and growth data from Casten 2006).  If the older of these wild-caught fish had been 
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living in the same reach for two years, the necropsy data would suggest that they would 

have only acquired about 200 cysts, or an average of about one cyst every 4 d.  However, 

when uninfected shiners were placed in cages at various places near the confluence for 3-

5 days on several occasions (Fleming et al. 2011), the caged fish acquired parasites at a 

rate many times greater than one cyst every 4 d (Figure 4).  The actual rates of acquisition 

in the caged shiners suggests that wild-caught fish living in the water for 2 y should have 

acquired an average of about 3,000 cysts, and possibly as many as 10,220 cysts, instead 

of just 200!   

 Centrocestus formosanus prevalence estimates in wild-caught shiners much 

lower than expected 

Not only the intensity, but also the prevalence of Centrocestus formosanus in 

Cyprinella venusta was inconsistent between these two concurrent studies in the same 

water (Figure 4).  While prevalence of C. formosanus in wild-caught shiners hovered 

around 60% for fish up to 3+ y old, almost all of the uninfected shiners held in cages at 

about the same time became infected within 3-5 d of exposure (to the same water from 

which the wild-caught shiners had been captured) with prevalence reaching 98% in less 

than 6 d!  So, if 98% of caged shiners become infected within 5 d of exposure to river 

water, how could 20-40% of 1-4-year-old fish of the same species wild caught from the 

same water have avoided infection? 
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Figure 3. Apparent rate of acquisition of Centrocestus formosanus cysts derived from 

wild-caught shiners near confluence of Comal and Guadalupe Rivers.  Data 

from Fleming et al. (2011). 

 
Figure 4. Discrepancy between apparent prevalence and intensity of infection based on 

wild-caught shiners (dashed lines) vs. realized prevalence and intensity based 

on experimental fish placed in cages for 3-5 days (solid lines).  Data from 

Fleming et al. (2011). 
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The discrepancy between these estimates suggests that all fish wild-caught from the 

habitat (some of which were 3+ years old) were recent immigrants, and that these fish 

could not have survived in those waters all their lives.  Consequently, we have developed 

a hypothesis that might explain (1) the unexpectedly low intensity and prevalence of C. 

formosanus in wild-caught susceptible fishes, (2) the lack of fish kills reported where the 

density of the infective stages of C. formosanus is high, and (3) unexpectedly low 

densities of susceptible fishes in otherwise suitable habitats: either the infected fish are 

more likely to succumb to predation by various piscivores at a much higher rate than 

uninfected fish, or the susceptible fish that encounter high densities of C. formosanus 

cercariae emigrate preferentially to other reaches of a stream where cercarial densities are 

not so high.  Thus, C. formosanus is probably causing much more damage to susceptible 

wild fisheries (which includes Centrarchidae, Cyprinidae, Percidae, and Ictaluridae) than 

previously thought, and probably also causing previously unrecognized alteration of fish 

community structure.  However, even if intensity and prevalence estimates from caged-

fish studies are more representative of the rate of metacercarial acquisition by fish, these 

statistics still do not provide a quantitative model that researchers can employ to explore 

the actual impact of the parasites upon a wild fishery. 

 Fish kills in culture but not in wild 

Despite the reports of severe pathologies and of mass deaths of fish in culture, we 

have found no reports of fish kills attributed to C. formosanus or H. pumilio 

metacercariae in any of the many wild fisheries where they occur naturally, or where they 

have been introduced into naïve ecosystems, even in waters we have studied where the 

cercariae of these heterophyids are overwhelmingly the most abundant cercaria in the 

water column. 
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 M. tuberculata distribution no longer restricted to thermally stable waters. 

For over 50 years, the cold sensitivity of this tropical snail restricted its distribution in 

Central Texas to thermally stable spring runs, where winter thermal minima never 

approach the reported lethal thermal minimum of 17 °C that has been reported for M. 

tuberculata by Mitchell and Brandt 2005 (Mitchell and Brandt 2005).  Just to make sure 

that the snail had not spread from the Comal River into the connecting waters of the 

Guadalupe River, Fleming et al. (2011) executed several thorough searches 2000-2001 

for M. tuberculata in the connecting waters of the Guadalupe River near its confluence 

with the Comal River, which was heavily infested with the snail.  Only dead shells, 

presumably washed out of the Comal River by high-flow events, were found in the 

Guadalupe River at that time, confirming that the snail was restricted to the thermally 

stable spring run of the Comal River.  However, in 2009, our lab discovered M. 

tuberculata thriving in the ambient waters of the Guadalupe River up to several river-km 

upstream and downstream from its confluence with the Comal River, and since then we 

have discovered it thriving in the San Marcos River some 50 river-km downstream from 

the headsprings.  So, what happened between 2001 and 2009 that has allowed M. 

tuberculata to suddenly begin thriving in ambient, surface-fed streams where winter 

thermal minima remain for weeks at a time well below the reported lethal thermal 

minimum of M. tuberculata? 

 Summary of Problem 

Melanoides tuberculata and Tarebia granifera are both aggressive snail species of the 

family Thiaridae that have successfully colonized many warm waters (>17 °C) around 

the world.  Centrocestus formosanus and Haplorchis pumilio are invasive parasites 

transmitted by one or both snails.  The parasites use many families of teleost fishes as 2nd 
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intermediate hosts, and a variety of piscivorous birds (and mammals) as definitive hosts.  

Any habitat in North America successfully invaded by the snails will likely be visited by 

a migratory piscivore that will introduce the parasite to the water via defecation, which 

will lead to infection of the snails.  Then, it is estimated that more than 50% of the 

species of fish in that habitat will likely become infected by one or both of these parasites 

in ways that are likely to reduce the ability of the infected fish to; (1) escape predation by 

local piscivores, (2) pursue and capture food, (3) maintain station in flood events through 

oral grasping, (4) maintain its position in the dominance hierarchy of the school, (5) 

move between pools separated by long riffles, etc. 

However, while the pathology of these parasites is well documented from intensive 

fish culture and laboratory settings (Blazer and Gratzek 1985, Mitchell et al. 2002), the 

ability to predict levels of measurable harm to wild fish based on cercariometry is 

nonexistent.  Fish infected with either of the two heterophyids would presumably find it 

more difficult to perform daily activities associated with fitness than uninfected fish.  So, 

before conservation workers can justify implementation of potentially costly and long-

term mitigation efforts, it is imperative that they can specify how various densities of 

cercariae in the water column can affect fish in wild situations.  Prior to this study, it has 

been difficult for managers responsible for wild fisheries to establish reasonable action 

thresholds based on cercarial densities because relevant information is largely unavailable 

for this and most fish parasite systems.  We have tested fish under conditions 

representative of real-life demands and have linked those test results directly to 

cercariometry readings.  We also provide relevant data regarding the effects of various 

levels of parasitism on the ability of fish to perform work in the form of swimming while 
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water speed is gradually increased.  Any reduction in the ability of an infected fish to 

perform work in the form of swimming against increasing flow can be inferred to 

represent reduced fitness regarding its ability to perform the daily activities listed above. 

 Goals 

We set out to determine how various levels and rates of parasitism with two invasive 

parasites affect the swimming ability of a native forage fish and a federally listed 

minnow.  Our research provides experimental data from which estimates of cercarial 

density in the water column in affected waterways can be used to predict the levels of 

damage that are being caused by infection of native fishes and may also help to explain 

some of the paradoxical discrepancies mentioned earlier. 

 Effects of Parasitism 

1.6.1.1 Swimming Endurance 

Goal 1: To be able to quantitatively predict the negative effects that C. formosanus 

and H. pumilio cercariae might be having on the swimming endurance of two cyprinids, 

one of which is a wide-spread and important forage fish, and the other of which is a 

threatened species that has an overlapping range with one or both of these parasites. 

We hypothesized that: 

• As experimental fish acquired more parasites, their swimming abilities would 

be negatively affected, especially after being parasitized by Haplorchis 

pumilio. 

• As experimental fish acquired a given number of parasites at faster rates, they 

would be more dramatically affected. 
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1.6.1.2 Lethal Level 

Goal 2: To determine the lethal intensity of infection (in which the host dies out-

right) for both parasites in both fish species, and to determine how this lethal level is 

affected by rate of parasite acquisition. 

We hypothesized that: 

• Some fish would die out-right from the parasitism due to larval migrans. 

• Deaths would occur at high initial exposure from sudden shock of infection. 

 Maximum Swimming Speed 

The maximum swimming speed of C. venusta has already been estimated in a swim 

tunnel by Leavy and Bonner (2009), but the device used was very different.  The 

swimming speed of D. diaboli has not yet been estimated experimentally. 

Goal 3: To determine the maximum swimming speed of Cyprinella venusta and 

Dionda diaboli in our Swimming Endurance Apparatus using an adaptation of the speed-

ramping protocol established by Leavy and Bonner (2009) and compare these estimates 

to the estimated maximum swimming speeds based of the formula provided by Sambilay 

(1990).  

We hypothesized that: 

• The estimated maximum swimming speed we obtain for C. venusta may be 

different from that published by Leavy and Bonner (2009), since our SEA has 

been demonstrated to have laminar flow in the viewing tunnel, and since their 

fish were tested in the field under varying conditions immediately after 

capture while our fish will be tested after habituation. 
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• D. diaboli will have a lower maximum swimming speed than C. venusta in 

the SEA, and the maximum swimming in the SEA will be consistent with that 

predicted by Sambilay (1990). 

METHODS 

 General Aquarium Set up 

 Aquarium components 

1.7.1.1 Aquarium dimensions 

All aquaria used in experimentation were standard 10-gallon (approximately 40 L) 

aquaria measuring 10 in (W) X 20 in (L) X 12 in (H). 

1.7.1.2 Shelving for aquaria 

Aquaria were arrayed on two side-by-side banks of metal shelving (Gladiator® Rack 

Shelving Unit model # GARS774XEG), with four shelves each (Figure 5).  The lower 

three shelves each held five fish aquaria, while the top shelf was reserved for aquaria 

housing the infected snails. 
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Figure 5. Gladiator Shelving unit with aquaria. 

1.7.1.3 Modification of aquaria 

Each aquarium on the lower 3 shelves (fish aquaria) was divided into four quadrants 

separated by partitions (Figure 6).  Each quadrant held a single fish, and the partitions 

prevented any cryptic mechanisms of social interactions, such as competition for food or 

hierarchical position in the aquarium, from affecting the experiment. 

The partitions were fashioned from plastic fluorescent-light diffuser grating with 

square openings about 17 mm wide.  In order to reduce likelihood of stress from social 

interactions between fish in neighboring quadrants, a plastic mesh with hole size of 

approximately 3 mm was glued to one side of the partitions using non-toxic glue 

(Gorilla® PVC cement).  The mesh also prevented small fish from squeezing through the 

plastic grating.  The partitions were supported in the aquaria using strips of plastic U-
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channel (Gladiator® GearWall® Panel Trim) fixed to aquarium walls with silicone 

calking.  Even though all components were marketed as non-toxic, after installing the U-

channel and partitions, aquariums were filled, soaked, and emptied several times.  This 

ensured that any soluable chemicals potentially harmful to fish would be removed from 

any of the installed components.  The partitions were removable, which facilitated 

replacement of broken parts as well as cleaning.  The height of the partitions and U-

channel was about 4 cm short of the top of the aquarium for convenience of installing and 

removing the partitions, and also allowed conservation of materials due to the original 

dimensions of the gratings.  

Each aquarium had an air stone connected to a supply line that fit snugly into the U-

channel alongside the partitioning. To reduce likelihood of fish jumping out of the 

aquaria or into another quadrant, every aquarium was fitted with a lid made of thin, black, 

plastic mesh with openings of about 17 mm.  We soon discovered that most of the fish 

would position themselves at an angle such that one eye was looking at the bottom of the 

aquarium, often with the tail elevated relative to the head.  We assumed that this odd 

behavior was a reaction to their reflection in the aquarium bottom, since they could not 

see other fish nearby to orient towards.  Initially, black aquarium rocks were used in each 

aquarium to block reflection.  Although effective at stopping the behavior, the rocks 

made the aquaria extremely difficult and time consuming to clean.  So, the rocks were 

discarded and the outside surface of the bottom pane of glass in all aquaria was painted 

with white latex paint using a standard paint roller.  This completely stopped the 

disorientation of the fish. 
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Figure 6. Experimental fish aquarium with partitions and U-channel installed. 

 Acquisition and Processing Fish and Snails 

 Fish sources 

Each experiment required 60 fish of the species being tested.  Fish were collected and 

maintained during experimentation under permits TE40343C-0 (USFWS; Exp 2022-08-

31), SPR-0913-124 (TPWD; exp 2019-09-06), and IACUC20176146600 (exp 2020-09-

11). 

1.8.1.1 Dionda diaboli 

Experimental D. diaboli were acquired from the San Marcos Aquatic Resource 

Center (SMARC).  SMARC maintains captive bred D. diaboli as part of the management 

strategy for the species.  Fish are maintained on the SMARC property in an enclosed, 
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snail-free raceway, which ensured they had no preexisting infections with the parasites 

under study.  SMARC provided us with their surplus production of D. diaboli for our 

experiments.  Fish were transported from the SMARC facility to the Freeman lab at 

Texas State University (TSU) using 5-gallon, food grade buckets equipped with a 

portable aerator.  The journey is approximately 12-16 minutes.  Upon reaching the 

Freeman lab at TSU, fish were immediately distributed to experimental fish aquaria with 

small hand nets.  

1.8.1.2 Cyprinella venusta 

Experimental C. venusta were collected from the Blanco River (29°53'40.78"N, 

97°54'1.28"W) with a seine.  This site on the Blanco River is approximately 7 km 

upstream from the confluence with the San Marcos River, and M. tuberculata has never 

been reported from any portion of the Blanco River.  Because this area of the river is not 

influenced by any significant spring source, it is subject to ambient temperature change 

and far less likely to support M. tuberculata.  Without the presence of the first 

intermediate host of either trematode being tested, it was very unlikely that fish in this 

area were already infected.  

Fish were collected in groups of 70-95 individuals per sampling event.  C. venusta 

with a standard length of less than 40 mm were returned to the river.  Collected C. 

venusta were transferred from the seine to a 5-gallon, food grade bucket equipped with a 

portable aerator and transported by car to the Freeman lab at TSU.  The journey is 

approximately 10-18 minutes.  Upon reaching the Freeman lab at TSU, fish were 

immediately distributed to experimental fish aquaria with small hand nets. 
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 Snail source 

1.8.2.1 Snail collection sites 

M. tuberculata were collected from Landa Lake in New Braunfels, TX.  In order to 

locate a consistent source of infected snails, samples of snails were collected with dip 

nets from multiple sites around the lake shown in Figure 7. A population of M. 

tuberculata on the west bank of Pecan Island (29° 42’54.17”N, 98°8’3.43”W) was found 

to have the highest prevalence of both H. pumilio and C. formosanus.  

 
Figure 7. Map of Landa Lake showing snail sampling sites. 

1.8.2.2 Sampling protocol 

Snails were obtained from shallow water near the shore by means of standing on the 

shore, wading, and from kayaks, and transferred to uncovered buckets containing lake 
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water. Because previous workers in our lab have observed that exposure to low 

temperature can shock M. tuberculata and result in permanent reduction in cercarial 

production, buckets were left partially submerged in shallow lake water while sampling 

during colder months.  This helped to maintain the temperature of the water in the 

collecting bucket for the duration of the sampling event. 

1.8.2.2.1 Frequency and duration of sampling 

Sampling events lasted for approximately 1-3 hours and were conducted over an 18-

month period including winter months (November 2016-April 2018.  Frequency of 

sampling varied and was determined by number of cercariae needed for scheduled 

experiments, current density of cercariae in snail aquaria, and infection prevalence of 

snails being collected (Section 1.9).  

1.8.2.2.2 Transportation issues 

Snails were transported by car in a 5-gallon, food grade bucket equipped with a 

portable aerator.  Prior to transportation, fresh water from the lake was added to the 

buckets, and buckets were covered with bait-bucket lids. The ride from Landa Lake to the 

Freeman lab at TSU was approximately 25-30-minute.  Buckets were transported in the 

temperature-controlled cab of the transporting vehicle during all seasons. 

 Snail sorting 

To separate shedding from non-shedding snails, we constructed three test-tube arrays, 

each with 20 rows of 5 holes suitable for holding a 1” (25 mm X 200 mm) test tube.  

Each array was constructed from 2X10 dimensional lumber, which was cut to 32 in, 

sanded, drilled with a 1-inch Forstner bit, and soaked with several coats of polyurethane.  

Screen door handles were added to the ends for aiding in handling. 
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Each test tube to be placed in the board was filled with artesian well water and 

received a single test snail that had been rinsed of debris.  After the snails were placed 

into test tubes, they were incubated for approximately six hours before inspection.  

During inspection, the end of a test tube was placed on a fiber optic light source that was 

directed axially through the test tube, brightly illuminating any suspended debris or small 

organisms.  Cercariae were detected with the unaided eye as a cloud of identical objects 

that were obviously animated.  Initially, cercariae were identified to species with the use 

of a compound microscope by comparing physical features to descriptions (metrics and 

swimming behavior), photos, and drawings from others’ published work.  It soon became 

easy to differentiate between H. pumilio and C. formosanus cercariae by grossly visible 

behavior.  While genomic analysis is required to know in absolute terms the identities of 

the cercariae, subsequent inspection of the metacercariae recovered from experimentally 

infected fish further confirm the identities of the parasites as C. formosanus and H. 

pumilio.  Snails not found to be shedding were checked again the next day, and then 

discarded if not positive. 

Snails shedding cercariae of H. pumilio and C. formosanus were placed into 2 sets 

of 3 aquaria with respect to species.  This provided 3 aquaria of snails shedding each 

parasite species from which to obtain cercarial treatment water for experiments.  Because 

cercarial production per snail can fluctuate dramatically over time, a three-aquaria design 

was used to maximize the chance of obtaining a consistent supply of cercariae.  This also 

provided at least 100 L of treatment water which could be utilized if the cercarial count 

was low (say, less than 1cercaria/mL) on any given treatment event.  After some 

experimentation, we determined that a snail density of 60-95 per aquarium provided 
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sufficient cercarial production to carry out the daily treatment schedule.  If cercarial 

production rate began to decrease consistently, all snails in the three snail aquaria were 

examined in the test tube array again. Snails found to still be shedding cercaria were 

distributed back into aquaria, while all others were replaced with shedding snails freshly 

acquired from Landa Lake.  

 Cercariometry 

 Cercariometer design 

To filter and count cercaria (cercariometry), we designed a cercariometer modeled 

after Bolick (2007), later refined by Johnson et al. (2012), and recommended over other 

methods by Cantu et al. (2013).  Our cercariometric design and protocol technique were 

further modified after consulting with Jube Guajardo at Bio-West, a consulting agency 

that has been using cercariometry to determine cercarial densities in local rivers. 

The cercariometer consists of a 4-tier filter series of increasingly fine stainless-steel 

filter screens pressed between the mating ends of 1.5” PVC barrel unions.  Each barrel 

union with its respective screen is referred to as a filter tier, and the tiers are connected 

with a short section of 1.5” PVC pipe.  The filter tiers are arranged in order of descending 

mesh size (215μm, 89μm, 43μm, and 28μm), and are removable for independent 

inspection and cleaning.  An example of a single tier is depicted in Figure 8.  
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Figure 8. A.) Barrel union and screen separate. B.) Axial view of assembled filter tier. 

 Cercariometry protocol 

Before each daily treatment event, a cercariometry reading was taken to determine the 

volume of cercarial water that would be required to treat each fish aquarium with its 

respective number of cercariae per day.  This ensured that each aquarium consistently 

received its designated number of cercaria per day, regardless of cercarial density in the 

snail aquaria.  Using a 1500 mL beaker, 18 L of cercarial water was accumulated into a 

5-gal bucket by drawing 6 L of water from each of the three snail aquaria housing the 

cercarial species being tested.  Before drawing the 6 L of water from an aquarium, the 

aquarium water was stirred thoroughly but gently to ensure uniform distribution of 

cercariae within the aquarium.  Exceptional care was taken when depositing the samples 

taken from snail aquaria into the collecting bucket to avoid creating unnecessary 

A 
 

B 
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turbulence, decreasing the chance of potential damage to the cercariae.  Once the water 

from all three snail aquaria had been combined into the bucket, the water was gently 

stirred and a 200 mL cercariometric sample was drawn by dipping a beaker into the 

bucket. 

The 200 mL sample was fixed by adding 22 mL of 100% formalin (bringing the 

formalin concentration to approximately 10%). The sample was allowed to fix for 10 

minutes before filtration.  Note: 10 minutes after the introduction of 10% formalin was 

found to be the minimum amount of fixation required for successful filtration.  Shorter 

fixation times or lower formalin concentrations resulted in cercariae losing their tails, 

which decreased the confidence of identification and reduced count accuracy.  After 

fixation, the sample was poured through a filter tier containing the 28μm filter screen.  

Coarser pre-filters were deemed unnecessary when filtering samples from the snail 

aquaria, as they did not contain substantial amounts of debris more typical of samples 

retrieved from rivers or lakes.  Water samples collected in the field generally involve 

much more volume and are usually expected to contain more debris and fewer cercariae.  

When filtering field samples, pre-filters are used to reduce the amount of debris on the 

target filter (28-μm). 

After filtration, the 28-μm filter screen was then removed from the barrel union with 

fine point tweezers and transferred to a petri dish where it was stained with 1% rose 

Bengal.  The 1% rose Bengal was applied drop-wise with a 1-mL pipet until the entire 

filter surface was covered with stain.  The filter was then allowed to soak in the stain for 

a minimum 5 min.  Note: shorter staining intervals resulted in specimens that were 

partially stained or unstained. 
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After 5 min, the excess rose Bengal was rinsed from the screen with 10% formalin 

using a 1-mL pipet.  The resulting collection of fluid (residual) was transferred to a 

separate petri dish and examined under a dissecting microscope at 35X magnification to 

count the number of cercariae that had been rinsed off the screen.  The rinsed filter screen 

was then examined as above, and the two counts added together to determine the number 

of cercariae in the 200 mL sampled.  To aid the counting of cercariae, petri dishes were 

set on a transparent 1 mm X 1 mm grid, and all cells in the grid were examined for 

cercariae.  The grid facilitated a more systematic procedure for counting.  

The combined cercarial count of the filter screen and residual rinse fluid was divided 

by the volume of water filtered to determine the number of cercaria per mL, which will 

be henceforth referred to as “cercarial density” [Ex: (200 cercaria counted) ÷ (200mL 

filtered) = cercarial density of 1.0/mL].  Using the cercarial density, the volume of 

cercarial water to be administered to fish aquaria was adjusted such that each fish 

aquarium consistently received its assigned number of cercariae per day. 

A benefit of using stainless steel filter screens is that they are reusable.  After 

completing daily cercariometry, filters were rinsed with deionized water and placed in a 

20% solution of potassium hydroxide (w/v) for cleaning.  Filters were allowed to soak in 

20% KOH for approximately 48 hours before being used again to dissolve any organic 

material from a previous filtration event.  This ensured that no contamination from 

previous filtration events would affect daily counts.  Before being used, filters were taken 

from the 20% KOH and place in acetic acid, then rinsed with deionized water. 
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 Procedures for all Experiments Testing Effects of Haplorchis pumilio and 

Centrocestus formosanus 

 Generalized treatment schedule for all experiments 

Unless otherwise stated, experiments testing parasite effects on swimming endurance 

began with a 3-day habituation phase to allow fish to habituate to the aquarium, feeding 

on flake food, and the presence of people.  During the habituation phase, 80% of the 

water in the fish aquaria was exchanged daily with artesian well water to prevent the 

accumulation of harmful metabolic products and to keep aquaria clean.  The habituation 

phase was followed by a 14-d treatment phase in which a daily treatment of cercarial 

water was given to the experimental aquaria.  The treatment phase was followed by a 3-d 

incubation phase, during which the fish were fed and 80% of water in each aquarium was 

exchanged.  The incubation phase was followed by the swimming endurance assessment 

in the SEA.  After being assessed for swimming endurance, fish were euthanized in MS-

222 and fixed in 10% formalin for later examination. 

 Haplorchis pumilio 

1.10.2.1 Cyprinella venusta 

1.10.2.1.1 Lethality experiment 

While exposure to H. pumilio has been demonstrated to cause mortality in various 

fish species (including C. venusta), the minimum exposure level sufficient to do so had 

yet to be quantified and lacked cercariometric estimates of the water to which the fish 

were exposed.  In order to establish a reasonable treatment range, we conducted a 

preliminary experiment to determine, not only the exposure of cercariae that would kill 

the fish outright, but also the maximum exposure a fish could endure and survive for the 

duration of an experimental trial.  Because there is limited data on the effects of H. 

pumilio, a treatment range was established based on caged fish recovered by Fleming et 
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al. (2011)from the confluence of the Comal and Guadalupe Rivers, where the highest 

acquisition rate by an individual fish was 13 metacercariae per day.  Although Fleming 

was measuring the incidence of C. formosanus, the data he collected provided a realistic 

basis for establishing a treatment range for H. pumilio. 

 Lo and Lee (1996) have demonstrated that H. pumilio has an estimated infection 

success of 45% in ideal conditions; therefore, for a fish to acquire 13 metacercaria per 

day, it would need to encounter approximately 29 cercariae.  To replicate Fleming et al. 

(2011) caged fish study, we simply multiplied 29 cercariae by four fish that would inhabit 

a single aquarium, resulting in a treatment per fish aquarium of 116 cercariae per day.  

The proposed rate was not noted to cause mortality in the caged fish study by Fleming, 

therefore, we set the minimum treatment to 250 cercariae per day to ensure an observable 

effect.  The maximum treatment was set to 600 cercariae per day.  We then used an Excel 

spread sheet to evenly distribute 10 treatments between 250 and 600 cercariae per day 

resulting in 12 treatments rates.  The spreadsheet also randomly assigned the treatments 

to the aquaria in a single bank. The leftmost column in the bank was reserved for control 

aquaria.  

The treatments were administered daily for one week.  The highest treatment level 

was expected to cause mortality in a matter of days, however fish showed few to no 

symptoms even at the highest treatment level.  Because of this, we doubled the number of 

cercariae per treatment in all treatment aquaria.  We continued to increase the treatment 

every seven days until mortality occurred, which extended the duration of the experiment 

to four weeks.  The final treatment for the highest exposure was 7,200 cercaria/d per 

aquarium.  
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At the end of the 4-week testing period, swimming endurance of surviving fish was 

assessed using the SEA.  This swimming endurance testing of the surviving fish from the 

lethality experiment was not intended to be used in the assessment of the effects of the 

parasite, but rather, to work out the logistics of processing fish through the SEA, as well 

as streamlining the SEA testing protocol to elicit a consistent response from tested fish. 

1.10.2.1.2 Experiment 1: Testing effects of acquisition rate of the cercariae of 

Haplorchis pumilio 

After reviewing the results of the lethality experiment, we were able to calculate the 

total number of cercariae that had been administered to each aquarium over the course of 

the experiment (cumulative exposure); however, the cumulative exposure causing 

mortalities occurred over a 4-week period instead of a 2-week period as originally 

designed.  To achieve the same cumulative exposure over a 2-week period, exposure rate 

per day would have had to have been doubled.   

We predicted mortalities likely would have occurred sooner at this higher rate due to 

an increased number of successful cercarial penetration and subsequent larval migrans in 

a shorter period of time.  This would result in fish dying sooner, not receiving the 

expected total number of cercariae.  To test the hypothesis that mortalities can occur at 

lower cumulative exposure if applied over a shorter time interval, we chose six 

cumulative exposures from the lethality experiment that caused noticeable symptoms but 

few mortalities.  These six cumulative exposures were tested in six aquaria over a 5-day 

treatment (high rate of exposure) and six aquaria over 14-day treatment (lower rate of 

exposure).  The daily treatment range for the 5-day experiment was 9,000-24,000 

cercariae per day and the treatment range or the 14-day experiment was 3,500-8,500 

cercariae per day.  The treatments were randomly assigned to aquaria.  Testing the same 
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cumulative exposure using different time intervals would elucidate any effects associated 

with a high rate of acquisition.  The surviving fish were tested in the SEA to assess the 

parasite’s effects on endurance. 

1.10.2.1.3 Experiment 2: Effects of Haplorchis pumilio on swimming endurance 

As a result of high mortality rates observed in experiment 1, and the seemingly 

random pattern of mortality likely caused by larval migrans, few fish survived to testing 

in the SEA. We decided that further testing of H. pumilio should be done at lower rates of 

exposure with replication to increase the number fish that would survive the treatment 

phase. After reviewing the results of experiment 1, we decided that the tested treatment 

range should be approximately half of the original treatment proposed for experiment 1. 

This determination was based on the condition of the fish that survived to the end of 

experiment 1.  

The range of treatment for experiment 2 was 1,000 - 4,000 cercariae per day which 

was divided among two sets of six aquaria in the right bank.  This provided replication 

for six levels of treatment.  The treatment range was randomly assigned to aquaria.  

Endurance of fish was assessed with the SEA at the end of the treatment phase. 

1.10.2.2 Dionda diaboli 

Due to the limited number of D. diaboli available for experimentation, a single 

experiment was conducted to determine the exposure of H. pumilio that would cause 

mortality as well as the effects of the parasite on swimming endurance. To accomplish 

this, a wide treatment range was established based on the data collected in testing C. 

venusta. Because D. diaboli is a spring associated fish with a small distribution, it was 

expected to be more sensitive to treatment than C. venusta, which is found in a wide 
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variety of habitats and is often able to tolerate pollution and poor water quality. The 

treatment maximum for D. diaboli was decreased to approximately half the maximum 

treatment administered to C. venusta.  This made the treatment range for D. diaboli 

1,500-13,000 cercariae per day. The treatments were randomly assigned to aquaria 12 

aquaria in a single bank. 

Although one bank of aquaria was intended to test 60 fish, limitations in availability 

of mature D. diaboli reduced the number of tested fish to 40, and so the number of fish 

per aquarium was reduced from four to three.  This allowed us to test the proposed range 

of treatment at higher resolution than would result from reducing the number of treatment 

aquaria from 12 to 8 in order to accommodate the limited fish availability.  As a result, all 

aquarium treatments were reduced by 25% to maintain the assigned number of cercariae 

per fish per day.  In addition, there were only two control aquaria, which housed two fish 

each. 

Another problem that arose with Dionda diaboli was that the fish seemed intent on 

squeezing around the partitions, apparently in an attempt to join their cohorts, sometimes 

injuring themselves or becoming stuck.  Consequently, partitions were permanently 

removed in this part of the study.  The fish were monitored closely to ensure they were 

not attacking or injuring one another, and no aggressive behavior was observed. 

During the 3-d habituation phase, all fish in all aquaria were almost always scattered 

around the aquaria and resting quietly very near the bottom.  After treatment was 

initiated, the three fish in each treatment aquarium were almost always seen resting 

together near the bottom, radially arranged in a corner with the heads of all three fish 

almost touching.  This behavior seemed most pronounced in the aquaria with the highest 
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treatment levels.  The fish in the control aquaria were never observed engaging in this 

support-group behavior.  However, we cannot be sure they never did this, because the 

aquaria with the highest treatment levels were usually checked first at the beginning of 

daily rounds, and the activities of the worker may have aroused the other fish from their 

group before they were observed.  While this was indeed a curious behavior, it seemed 

benign, and was not considered to be a threat to the experiment. 

Fish endurance was assessed using the SEA at the end of the treatment phase. 

 Determining experimental range of cercarial exposure for Centrocestus 

formosanus 

We arbitrarily chose to test fish at metacercarial intensities equivalent to the total 

number of metacercariae a resident fish in the Comal River would have acquired in 1 y, 

given the highest recorded natural acquisition rate.  However, the time allocated for 

cercarial exposure in our experiments was compressed to 14 d.  Therefore, we had to 

devise a cercarial treatment rate that would result in the experimental accumulation (in 14 

d) of a year’s worth of metacercariae.  We first considered Fleming et al. (2011) caged 

fish study, which showed that shiners in the Comal River could acquire as many as 14 

metacercariae per day.  We calculated that after one year, such a fish would have 

acquired roughly 5,000 metacercariae. 

Based on studies by (Lo and Lee 1996) the rate at which C. formosanus cercariae 

successfully infect a fish and develop into detectable metacercariae (infection success) is 

45%.  Given this success rate, a hypothetical shiner in the Comal River that had acquired 

5,000 metacercariae in 1 y would have encountered approximately 13,000 cercariae.  

However, in our initial investigations, we measured infection successes as low as 14%, 

meaning that a fish with 5,000 metacercariae would have had to encounter 40,000 
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cercariae over 1 y.  Therefore, we established our highest level of cercarial exposure (one 

aquarium with four fish) at 4,500 cercariae per day, with the goal of causing these fish to 

accumulate in 14 d of treatment the maximum number of metacercariae that a resident 

shiner in the Comal River might acquire in 1 y.  To establish a gradient of lesser 

exposures that would likely result in a gradient of detectable effects in the other treatment 

aquaria, we set the lowest treatment level to 500 cercariae per day. 

The range of 500-4,500 was divided among 12 aquaria within a bank (rounded to 

the nearest 100 cercariae) and randomly assigned to aquaria.  Swimming endurance of 

surviving fish was assessed with the SEA at the end of the treatment phase.  Regrettably, 

testing the effects of C. formosanus on D. diaboli was not possible due to lack of 

available stock at SMARC. 

 Assigning treatments 

The following is an account of the method by which treatments for each experiment 

were assigned to fish aquaria.  After establishing the treatment range for an experiment, 

an Excel spreadsheet was used to randomly assign the desired treatment range to the fish 

aquaria within a bank.  This was done to avoid a progression of increasing or decreasing 

treatment assignments by column or row, and randomized any extraneous effects on fish 

due to location of aquaria in the bank such as; proximity to lights or higher traffic areas, 

or seeing human faces (top shelf) vs. feet and legs (bottom shelf), etc.  

Three control aquaria were assigned to the left most column of each bank to decrease 

the chance of accidental exposure of control fish to cercaria-laden water during the 

treatments, such as by accidental splashing and spills, which might have occurred if 

control aquaria had been under treatment aquaria. 
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 General Treatment Schedule Details 

Daily treatments followed the same procedure for all previously described 

experiments.  During the treatment phase, daily cercariometry was performed to adjust 

the volume of cercarial water required to ensure each treatment aquarium received its 

assigned number of cercaria each day. After estimating the cercarial density in the snail 

aquaria, the treatment volume for all fish aquaria was adjusted with an Excel spreadsheet 

(rounded to the nearest 100 mL) and a treatment sheet was printed (Figure 9). The excel 

spread sheet also randomized the order in which the aquaria received treatments to 

randomize effects due to any bias introduced by the technique of the attendant. 

 
Figure 9. Treatment sheet showing the volume of cercarial water (assuming 1 

cercaria/mL) required for each treatment aquarium, in treatment order 

randomized for each day. 

Before treatment began, plastic top screens were removed from all aquaria and all fish 

were inspected in the aquaria to assess condition and to remove any fish that had died.  

Fish in the rear quadrants of aquaria were inspected with a mirror.  Fish that had died 

Venusta Trial Water Exchange Schedule: RightBank
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were removed with a dip net and place in 250 mL plastic bottles of 10% formalin.  After 

all fish were inspected, the aquaria were drained with a syphon until about 5 cm of water 

remained in the aquaria using the randomized order of treatment established for that day.  

This established room for adding the treatment water.  During the draining procedure, 

feces and uneaten food were also removed from each quadrant of the aquarium.  The 

syphon hose used was 1” reinforced plastic tubing fitted with a ball value which could be 

closed to maintain the syphon when switching between aquaria.  The suction end of the 

syphon hose was covered by plastic mesh to prevent fish from being pulled into the 

syphon tube. 

After all aquaria had been drained, each aquarium received its assigned treatment of 

cercarial water in the randomized order established by the treatment sheet for that date. 

Treatments were drawn from the 18 L of water previously set aside from the snail aquaria 

and administered to fish aquaria with a 1,500 mL beaker.  Treatment water was 

distributed evenly among the quadrants of an aquarium to ensure that each of the four 

fish in the aquarium received approximately the same amount of cercarial water.  After 

all treatments had been administered, the fish remained at low water levels for 30 

minutes, which was the amount of time required for all viable cercaria in the Lo and Lee 

1996 (Lo and Lee 1996) study to penetrate their experimental fish.  The aquaria were 

then topped off (leaving treatment water in the aquaria) in the order of treatment using a 

hose that supplied untreated water from the Edwards Aquifer.  Fish were then fed with 

standard flake food (TetraMin® Tropical Flakes).  When fish in an aquarium were fed, 

fish in the adjacent aquaria in that row attempted to get the floating food in the other 

aquarium, resulting in collisions with the glass and potential injury.  Therefore, food was 
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administered to aquaria in row-by-row order to minimize the time between when a fish 

saw food in adjacent aquaria and when it had food available.  Fish were observed during 

and after each treatment and any behavioral changes in response to contact with cercariae 

were recorded. 

Aquaria top screens were then replaced and the snail aquaria were topped off with 

artesian water after each treatment was concluded. 

 Effects of Aquarium Habituation on Swimming Behavior 

A potential threat to the validity of any conclusions that might be drawn by 

comparing the swimming endurance of parasitized fish to the swimming endurance of 

their unparasitized cohorts might be the possibility that the swimming endurance of the 

controls themselves might have been altered in some way by their habituation to the 

aquaria.  Such effects would confound attempts to exclusively assign reduced swimming 

endurance to parasitism alone.  In order assess the magnitude of this threat, we compared 

the swimming ability of C. venusta freshly caught from the river (unhabituated) with the 

control fish pooled from all experiments testing the swimming endurance of parasitism 

on C. venusta.  All of these controls had been in aquaria for at least 3 w. Endurance 

assessments were conducted in the SEA. 

 Swimming Endurance Apparatus Operation, Calibration, and Consistency 

 Design and operation 

The components on the apparatus have been assigned alpha-codes that we will use as 

reference points in the associated figures.  Water flow through the swim tunnel is 

provided by a fixed-speed sump pump (Utilitech®, 1/3 hp, #0079356) (D), submersed in 

a 100-gallon plastic reservoir tank (B) mounted on the backside of the apparatus (Figure 

10).  When the pump (D) is powered on, water is pumped at full volume out of the 
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reservoir (B) and through the mounting board to the front side of the apparatus (at E).  

The water from the pump (D) enters the front side (Figure 11) at (J), and immediately 

enters a tee fitting, which splits the flow.  The relative flow rates of the two pathways 

exiting this tee are dependent upon the combination of settings of two adjustable ball 

cocks, the “Flow Valve” (K) and the “Diverter Valve” (I), both of which have been 

equipped with pointers and radial dials marked with 11 calibration settings from 0 (fully 

closed) to 10 (wide open).  Combinations of valve settings are selected (based on prior 

calibration trials) to adjust velocity during swimming endurance tests.  The Flow Valve 

(K) restricts the amount of the incoming water that will pass through the experimental 

pathway of the apparatus, while the Diverter Valve (I) shunts the excess volume of the 

constant-speed pump (D) back through the mounting board (at H) and returns it to the 

reservoir (F) & (B).  Various combinations of adjustments of these two valves permit the 

operator to control the flow velocity of the water passing through the viewing tube (P) in 

which the swimming endurance of experimental fish will be tested. 

  
Figure 10. Swimming Endurance Apparatus (SEA); rear view. 
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Figure 11. Swimming Endurance Apparatus (SEA); front view. 

The water exiting the Flow Valve is under considerable pressure (depending on valve 

settings) and this initially caused unacceptable turbulence in the viewing tube and 

prevented the establishment of laminar flow for the testing of experimental fish.  

Therefore, a diffuser/linearizer subassembly (L and M) was developed through several 

trial iterations and installed between the Flow Valve (K) and the Viewing Tube (P).  This 

dramatically reduced turbulence and linearized the flow through the viewing tube and 

achieved near laminar flow (Figure 12).  A fixed screen (O) was installed at the upstream 

end of the viewing tube in order to prevent fish from moving out of the viewing tube and 

into the linearizer (L).   

The Diffuser Subassembly (Figure 12, L) consists of two floor drains of different 

sizes (NDS #75 polyolefin Atrium gate floor drains, Figure 13) arranged in series, with 

the smaller drain upstream and with its base inserted inside the base of the larger drain.  

These serve to break up large-scale currents into small-scale turbulence. 
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The Linearizer Subassembly (Figure 13, M) contains numerous 5” long, ½ in 

diameter plastic tubes designed and marketed for use as guttering ferrules (Amerimax 

Home Products #21060 Home 21060 Plastic Gutter Ferrule, UPC: 0 49821 21060 1).  

These tubes are very thin-walled, which helps minimize backpressure, and the length to 

diameter ratio of 12:1 breaks up any remaining large torsional currents.  Each of the tubes 

also has six straight internal fins, which were designed for reinforcement, but also serve 

to linearize any remaining small torsional currents from the diffuser and provide 

reasonably laminar flow with no rotational component into the viewing tube. 

 Calibration of water velocity in the viewing tube 

The velocity of water through the viewing tube is determined by setting the Flow and 

Diverter valves to various combinations of settings, powering on the pump, and then 

injecting Calibration Balls (5-mm multicolored pom-poms, Tree House Studio®, 

http://shop.hobbylobby.com/products/5mm-bright-pastel-multi-pom-poms-105171/) into 

the tunnel (N; Figure 11).  Near neutral buoyancy is achieved for these pom-poms by 

soaking them in soapy water and then rinsing before use.  Behind the viewing tube, there 

is a ruler calibrated in cm.  As the pom-poms move through the viewing tube at a 

particular valve-setting combination, they are filmed with a high-speed video camera 

(Casio® EX-FH25) that can shoot sequences of video up to 1000 fps. 

By viewing the resulting video frame-by-frame, we are able to record the frame 

number when a pom-pom passed across the 0 cm mark and the frame number when the 

same pom-pom passed across the 50 cm mark on the ruler behind the viewing tube. The 

difference in frame number from 0 cm to 50 cm divided by the frames per second the 

video was recorded in gives the total seconds required to travel 50 cm. When the distance 

the pom-pom traveled was divided by the time seconds, the product was the velocity the 

http://shop.hobbylobby.com/products/5mm-bright-pastel-multi-pom-poms-105171/
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water was traveling in cm/s.  An Excel spreadsheet was developed to analyze the videos 

and determine the mean flow velocity (in cm/s) of all the pom-poms recorded in a 

calibration session, given (1) the camera speed in fps, (2) the starting frame number when 

a pom-pom’s position crossed the 0-cm mark, (3) the ending frame number when the 

pom-pom crossed the 50 cm mark, and (4) the coefficient of variation for the pom-poms 

in a calibration session.  By filming these calibration trials across all possible Flow and 

Diverter valve combinations, the range of water-velocity capabilities of the tunnel was 

determined. 

All valve combinations yielding coefficients of variation >10% were judged to be 

unusable because the high variance of pom-pom velocities indicated that there was excess 

turbulence in the viewing tube, which would make it impossible to know what water 

velocity the experimental fish were actually experiencing.  Some of the lower velocities 

utilized early in the ramping protocol had higher CVs, but these velocities were only used 

to gradually acclimate the fish to swimming and did not demand consequential effort 

from the fish. 

 
Figure 12. Swimming Endurance Apparatus (SEA); valve-calibration diagram. 
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Figure 13. Swimming Endurance Apparatus (SEA); floor drains and gutter ferrules used 

in diffuser/linearizer subassembly. 

 Swimming endurance tests 

The assessment of swimming endurance of individual fish consists of challenging the 

fish to swim continuously in the viewing tube at a systematically increased water velocity 

until the fish can no longer avoid being pinned against the downstream exclusion screen 

by the current (exhaustion).  When assessing the swimming endurance of a fish, it was 

first retrieved from the aquarium and placed in a bucket containing artesian water with a 

hand net and then transferred from the bucket to the SEA.  

The SEA is equipped with a movable downstream screen attached to a rod (V; Figure 

11), allowing us to introduce a fish through the Access Port (R), and then force the fish 

into the viewing tube (Figure 15).   

After fish entered the viewing tube, the test began by introducing a low-velocity flow 

(10 cm/s) for 3 min.  This allowed the fish to acclimate to the SEA and orient to the 

current.  After the 3 min acclimation, the speed was increased every minute on the minute 

by approximately 8 cm/s until the fish could no longer maintain itself in the current and 

became pinned against the downstream exclusion screen. 
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Figure 14. Swimming Endurance Apparatus (SEA); testing subassembly in fish-

introduction mode. 

 
Figure 15. Swimming Endurance Apparatus (SEA); testing subassembly in test mode 

After a fish became pinned, the flow was allowed to continue for 10 s, as some 

fish recovered shortly after being pinned the first time and continued swimming.  After 

the fish had been unable to free itself from the screen for 10 s, the flow was stopped, and 

fish were transferred from the SEA into a bucket by pulling the movable screen (V) back 

and opening the release valve (T; Figure 16).  Each swimming endurance test was filmed 

by a high-speed camera (120 fps) for later analysis.  
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Exhausted fish were transferred from the bucket to a beaker containing MS-222 

(250 mg/L) where they were euthanized (cessation opercular movement for at least 5 m).  

Then the standard and total lengths were measured, and the fish were preserved in 10% 

formalin to be necropsied at a later date. 

 
Figure 16. Swimming Endurance Apparatus (SEA); testing subassembly in spent-fish 

release mode 

 Necropsy  

To count the number of metacercariae accumulated by fish over the course of 

experimentation, fish were dissected and inspected under a dissecting microscope.  

Techniques varied by parasite species.  Before being dissected, fish were remeasured to 

confirm label accuracy, and to detect any errors in the cataloging process. 

 Haplorchis pumilio 

H. pumilio can be found in the body anywhere cartilage exists; however, only the 

caudal fin was inspected, as this location contains 23% of H. pumilio metacercariae 

present in the body on average (Lo and Lee 1996).  So, total infections were estimated by 

multiplying the number of metacerariae found in the caudal fin by 4.  Inspection of the 

caudal fin can take between 30 and 60 m, depending on infection intensity.  
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To inspect the caudal fin, all muscle was fileted with a scalpel from both sides of the 

body posterior to the anal fin and placed in a petri dish.  The tissue was teased apart with 

foreceps under 25X magnification and recovered metacercariae were counted.  Then the 

entire caudal fin was severed from the body approximately two vertebrae anterior to the 

termination of the vertebral column and placed in a petri dish.  The fin was teased apart 

using foreceps under 25X magnification and number of recovered metacercariae was 

recorded.  No stain was required to distinguish H. pumilio metacercariae from host tissue. 

Metacercariae appeared dark brown while host tissue was transparent or white with black 

melanophores, that were readily distinguishable from cysts after some practice.  After 

dissection and counting were complete, all cysts and fish remains were placed in a vial 

containing 10% formalin and sealed. 

 Centrocestus formosanus 

C. formosanus encysts in the gills of fish and is found to be equally distributed in the 

left and right gill arches (Lo and Lee 1996).  Conveniently, this allowed us to estimate 

total infection by inspecting the left four gill arches of each fish and multiplying the 

metacercarial count obtained by two. 

To remove the gills, the operculum was cut away along with most of the lower jaw.  

Gill arches were removed one by one from the fish and placed in a petri dish using 

forceps.  Metacercarial cysts of C. formosanus, unlike H. pumilio, are nearly transparent 

and difficult to distinguish from host tissue, therefore, the gills were placed into 1% 

Bismarck brown where they were allowed to stain for 5-8 min.  Several other stains were 

evaluated for this purpose, but Bismarck brown was superior.  Loose stain was then 

rinsed away by placing the gill arches in 1% acidulated alcohol for 1 m.  The arches were 

then laid side by side on a microscope slide for study.  The gill arches were flattened with 
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moderate pressure by placing another microscope slide on top of the gills arches and 

pressing it down gently with gloved fingers.  Flattening the gill arches forced all the 

filaments into one plane where they could be examined easily.  After all metacercariae 

were counted, all cysts and fish remains were placed in vials containing 10% formalin 

and sealed. 

 Analysis 

 Effects of parasitism on swimming endurance 

To assess the effects of Haplorchis pumilio and Centrocestus formosanus on the 

swimming endurance of Cyprinella venusta, we performed a simple linear regression of 

total time spent swimming in the SEA plotted against the infection intensity (total 

number of metacercariae).  Although intuitive, this model fails to account for the 

variation in swimming ability of fish purely due to fish length. Sambilay (1990) 

demonstrated that there are two main factors dictating the maximum potential speed of a 

fish: the aspect ratio of its caudal fin (varies between species) and its standard length 

(varies between individuals of a species).  This means, given the same caudal-fin aspect 

ratio, larger fish are able to achieve a higher maximum speed than smaller fish.   

This phenomenon is driven by the physics of a body moving through a viscous fluid.  

The resistance encountered by a fish as it moves through water is dictated by many 

factors including viscosity and velocity of the water, the shape of the fish, the smoothness 

of its body, the surface area of its body, and especially its length.  All the forces acting to 

resist the movement of a fish (or any object) through water can be reduced to a single 

number known as the total drag which is measured in Newtons ((kg m)/s2).  The total 

drag encountered by a fish moving through the water at a given velocity increases 

approximately linearly with increasing length of fish (larger fish must overcome more 
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drag than smaller fish).  However, since the volume of a fish increases with the cube of 

its length, and volume equates roughly to muscle mass, smaller fish have less muscle per 

unit drag and therefore must expend more energy than larger fish to maintain station at 

the same water velocity.  Additionally, as water velocity increases linearly, drag relative 

to any length increases with a quadratic power function.  This means that the amount of 

effort that a fish must exert in order to overcome drag (maintain station) does not increase 

linearly with increasing velocity.  Therefore, fish that swim to a higher speed before 

exhaustion expend exponentially more energy than fish that become exhausted at lower 

speeds.   

The amount of effort that a fish must exert in order to maintain station in a given 

water velocity can be estimated by calculating the drag in Newtons that a fish must 

overcome at that velocity, relative to the length of the fish.  The calculated drag can then 

be multiplied by the total distance the fish traveled at each velocity (V*T).  The product 

of drag X distance gives the amount of work the fish performed before exhaustion during 

its endurance assessment.  Once all fish in an experiment have been tested and 

necropsied, a model of the effects of the test parasite on the swimming performance of 

the fish can be represented by regressing work performed against metacercarial intensity.  

This would allow us to determine if increasing parasite load decreased the amount of 

work the fish could perform, which may give us insight on how the parasite may affect 

the daily life of the fish. 

Additionally, we wanted to determine if the maximum speed is affected by parasite 

load, which may help us understand how the parasite affects ability of fish to avoid 

predators or swim upstream through riffles. Sambilay (1990) studied the maximum 
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swimming speed of 126 fish species in a custom swim test apparatus and developed a 

mathematical expression that accurately represented the observed sustained maximum 

speeds (Equation 1, hereinafter referred to as “expected Sambilay maximum speed”).  

This expression is a purely descriptive model, and does not require any assessments of 

forces exerted or work performed.  The only variables in the expression are the standard 

length of a given fish and the aspect ratio of the caudal fin for that species.  In order to 

account for differences in swimming ability of fish due to length, we used this expression 

to calculate the expected Sambilay maximum swimming speed of each experimental fish, 

and compared that to the observed maximum speed that fish actually attained in the SEA.  

We then performed a simple linear regression of the difference between observed and 

expected swimming speed as a function of intensity of infection per unit length in mm 

(corrected intensity), since severity of effects of a given number of metacercariae 

diminishes with increasing length of fish. 

Equation 1.  Equation for determining the maximum sustained swimming speed of a fish 

(Sambilay 1990) 

	
log

10
km h( ) = -0.828	+	0.6196log

10
SL( )	+	0.3478log10 AR( )	 

Where: SL = Standard Length of fish in cm, 

AR = Aspect Ratio of caudal fin (height2/total surface area; both sides) 

The observed maximum swimming speed was adjusted based on the time spent 

swimming at the observed maximum speed.  The SEA testing protocol tests fish at a 

habituation speed for 180 secs followed by an increase in speed every 60 secs until the 

fish can no longer maintain station.  This creates a stepwise increase in velocity as 

opposed to a smooth linear progression of increasing speed.  When considering only the 

maximum speed the fish reached, there would be no difference between a fish that swam 

for 10 s and a fish that swam for 40 s at the same speed even though the fish that swam 
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for 40 secs likely expended much more energy and probably would have attained a higher 

maximum speed.  To account for the time a fish spent in the final speed, we calculated 

the percentage of time the fish completed for that step in the protocol.  We then 

multiplied that percentage by the difference between the cm/s of the final speed class the 

fish reached and the cm/s of the next speed class and added that to the water velocity at 

which the fish became exhausted.  An example of this is shown in Figure 17.  

 
 

 [(
Time (sec) in final speed 

Time (sec) required for completion
) ∗ (𝑁𝑒𝑥𝑡 𝑆𝑝𝑒𝑒𝑑 − 𝐹𝑖𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑)] +  𝐹𝑖𝑛𝑎𝑙 𝑆𝑝𝑒𝑒𝑑 =  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 

 

[(
14

60
) ∗ (34 − 27)] + 27 =  28.63 

 

Figure 17. Maximum speed reached was 27 cm/s, however, after accounting for the 14 

seconds spent in the stage, the final speed is 28.63 cm/s. 

 Effects of aquarium habituation on swimming behavior 

After recording maximum swimming speed of unhabituated and habituated fish, 

each fish was compared to its respective expected Sambilay maximum speed.  Observed 

and expected swim times were compared using a simple linear regression of maximum 

speed as a function of total length.  This allowed us to compare the habituated and 

unhabituated groups to determine if habituation to aquaria affected swimming endurance. 

Comparing the slopes of expected swimming speed and observed swimming speed of 

habituated fish also helped us to determine if the equation used to calculate the expected 

Sambilay maximim speed was reliable. 

Aquarium Fish ID 10 cm/s 18 cm/s 27 cm/s 34 cm/s 46 cm/s 54 cm/s 60 cm/s Total Time Top Speed Corrected TS
C3, R1 RF 180 60 14 0 0 0 0 254 27 28.63



 

50 
 

RESULTS 

 Prevalence of Parasites in Melanoides tuberculata 

The mean combined prevalence of all three trematodes across all sampling sites was 

30% (n=2606), and the highest prevalence recorded among the sampling sites was from 

the Pecan Island West Bank site, with a combined prevalence of 41% (n=1385).  Spring 

Channel was the only site studied that had no collected snails parasitized (n=35).  The 

number snails collected from each site is shown in Figure 18.  The prevalence of each 

species of parasite recovered is shown in Table 1 broken down by collecting site.  H. 

pumilio had the highest prevalence across all sampling sites except for the Bird Island 

and Foot Bridge sites, where Philophthalmus gralli was the only parasite present with a 

prevalence of 1-2% (n=163). 

These prevalence data include only the collected snails that were incubated 

individually in test tubes and examined for shed cercariae up to three times over periods 

of 6-24 h.  The non-shedding snails were discarded without checking for cryptic (non-

shedding) infections.  Based on our experience in previous studies (Huston 2014), the 

actual prevalence is potentially much higher than recorded above. 
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Figure 18. Number of infected and uninfected snails collected by collection site 
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Table 1 Prevalence of infection by species and collection site. 

Site P. gralli C. form H. pumilio Uninfected Total Prevalence 

Spring Island  0% 2% 5% 93% 106 7% 

South Slough 2% 11% 26% 61% 467 39% 

Foot bridge 1% 0% 0% 99% 98 1% 

Spring Channel 0% 0% 0% 100% 35 0% 

Bird Island 2% 0% 0% 98% 65 2% 

Pecan Island WB 2% 15% 24% 59% 1385 41% 

Wading pool 1% 0% 2% 96% 85 4% 

Paddle boat 1% 3% 6% 90% 198 10% 

North Reach 0% 1% 4% 95% 167 5% 

Grand Total 2% 10% 18% 70% 2606 30% 

 Effects of Cercarial Exposure Rate on Fish Mortality 

 Mortalities of Cyprinella venusta associated with Haplorchis 

pumilio infection 

Cercarial exposure and fish mortality rates were pooled for analysis by considering all 

C. venusta that had been used in all experiments testing the effects of H. pumilio on this 

host.  Mortalities occurred earlier for fish that were exposed to higher densities of 

cercariae, and fish that were exposed to lower densities of cercariae survived longer 

(Figure 19, p << 0.0005, r2=0.68).  The highest experimental exposure rate of H. pumilio 

cercariae in a single aquarium was 6,000/fish, and all four fish died within 5-24 h of the 

first treatment. 

Even though some fish could withstand high numbers of cercariae given a low 

exposure rate, there were other effects caused by the accumulation of metacercariae from 

exposure that would likely cause mortality if damage from initial infection did not.  For 

instance, fish that experienced high cumulative exposures at lower rates would generally 

have a latent response to food or ignore food altogether, exhibit brooding behavior, or 

have reduced response time to the presence of people.  In some cases, the jaws of a few 
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fish became stuck open due to infection. While mortality may not occur due to infection 

itself, fish with locked jaws would die from the secondary issue of starvation.  

Accumulation of metacercariae was also observed to cause significant fin deterioration.  

This is possibly due to the loss of circulation to the fins caused by the swelling of the fin 

insertion.  Many fish show an inflammatory response to metacercarial encystment, which 

can cause large blisters or nodules to develop at the caudal fin.  

Mortalities among treatment fish were excluded from analysis if they died without 

any obvious association with pathology (such as poor aquarium water quality, injury, 

etc.).  Some mortalities also occurred among control fish in the tests of H. pumilio on C. 

venusta; five control fish died due to injury, and all four control fish in one aquarium died 

within hours of each other due to what we concluded was a fungal outbreak that was 

contained to one aquarium. 

 Mortalities of Cyprinella venusta associated with 

Centrocestus formosanus infection 

While some mortalities were recorded during the test of the effects of Centrocestus 

formosanus on Cyprinella venusta, none of the dead fish exhibited any pathology 

consistent with Centrocestus formosanus infections, confounding our ability to 

confidently assign cause of death to infection.  We therefore concluded that no mortalities 

occurred as a direct result of infections with C. formosanus.  

 Mortalities of Dionda diaboli associated with Haplorchis pumilio 

infection 

As with Cyprinella venusta, Dionda diaboli mortalities occurred earlier for fish that 

were exposed to higher densities of cercariae, and fish that were exposed to lower 

densities of cercariae survived longer (Figure 19, p < .0002, R2=0.83).  The highest 
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exposure rate tested was 10,100 cercariae in a single treatment, which caused mortality of 

all three fish inhabiting that aquaria within 24 h.  The lethal exposure necessary to kill all 

experimental D. diaboli in an aquarium within 24 h of treatment (10,100) was less than 

half the rate that killed all C. venusta in an aquarium (24,000).  As with C. venusta, any 

mortalities among D. diaboli that coincided with poor water quality readings or apparent 

pre-existing conditions were not considered during analysis.  No control fish died over 

the course of the experiment testing the effects of H. pumilio infections on D. diaboli. 

 
Figure 19. Days till mortality of Cyprinella venusta and Dionda diaboli as a function of 

the treatment rate (number of cercariae/d).  Open circles represent C. venusta 

that are included in the regression but may have died as a result of chance 

migration through a vital organ by a single larva instead of simultaneous 

damage incurred by numerous larvae migrating through nonvital organs. 
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 Effects of Cercarial Exposure on Swimming Ability 

 Haplorchis pumilio 

1.18.1.1 Cyprinella venusta 

1.18.1.1.1 Effects on maximum swimming speed 

Since the severity of effects of a given number of metacercariae diminishes with 

increasing fish length, the max swimming speed of fish was regressed against caudal 

metacercarial intensity per mm total length (corrected metacercarial intensity).  The 

maximum swimming speed of C. venusta was negatively correlated with the corrected 

metacercarial intensity (Figure 20, p<<0.001, r2=0.74).  Deviation from expected 

maximum speed grew as corrected metacercarial intensity increased (Figure 21Error! 

Reference source not found., p<<0.001, r2=0.76).    Thus, when corrected metacercarial 

intensity of a fish increases by 1.0, the observed maximum swimming speed can be 

expected to decrease by 0.72 cm/s from the expected maximum swimming speed based 

on that fish’s total length. 

1.18.1.1.2 Effects on total work performed 

Work performed prior to exhaustion was also negatively correlated with corrected 

metacercarial intensity (Figure 22, p<<0.0001, r2=0.57), with exponential decay. 

1.18.1.2 Dionda Diaboli 

1.18.1.2.1 Effects on maximum swimming speed 

The maximum swimming speed of D. diaboli was negatively correlated with the 

corrected metacercarial intensity (Figure 20, p<<0.001, r2=0.86).  Deviation from 

expected maximum swimming speed became larger as corrected metacercarial intensity 

increased. Thus, when corrected metacercarial intensity of a fish increases by 1.0, the 

observed maximum swimming speed can be expected to decrease by 1.06 cm/s from the 
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expected maximum swimming speed based on that fish’s total length (Figure 21, 

p<<0.001, r2=0.76). 

1.18.1.2.2 Effects on total work performed 

Work performed prior to exhaustion was also negatively correlated with corrected 

metacercarial intensity (Figure 22, p<<0.001, r2=0.71), with exponential decay. 

 
Figure 20. Swimming speed of individual Cyprinella venusta and Dionda diaboli as a 

function of corrected metacercarial intensity. 
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Figure 21 The deviation of individual Cyprinella venusta and Dionda diaboli from 

expect maximum swimming velocity as a function of the corrected 

metacercarial intensity of that fish. Deviation is express as observed 

maximum speed minus expected maximum speed. Open triangles represent 

control fish. 
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Figure 22. The log of work done by individual Cyprinella venusta and Dionda diaboli as 

a function of corrected metacercarial intensity of the fish. Open triangles 

represent control fish. 

 Centrocestus formosanus 
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(p=0.412, r2=0.01).  The work performed by fish prior to exhaustion was not correlated 

with number of corrected metacercarial intensity (p=0.514, r2=0.018). 

 Successful Establishment of Metacercariae in Host 

 Haplorchis pumilio 

When C. venusta was exposed to cercariae of H. pumilio (all experiments combined), 
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for a single fish was 62%, while the lowest infection success recorded for a single fish 

was 14%.  There was no apparent correlation between cercarial exposure density and 

infection success (p=0.88, r2=0.028), however there was a positive correlation between 

total length of experimental fish and infection success (Figure 23, p=0.0015, r2=0.24) 

 
Figure 23. Infection success from an individual fish as a function of total length. 

 Centrocestus formosanus 

Mean infection success of Centrocestus formosanus in Cyprinella venusta was 16% ± 

6.5%.  The maximum infection success was 33% while the minimum was 6%.  There was 

a detectable but insignificant negative correlation between infection success and 

treatment level (p=0.086, r2=0.08).  A slight correlation was detected between infection 

success and total length (Figure 24, p=0.048, r2=0.12). 
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Figure 24. Infection success on an individual fish as a function of total length. 

 Effects of Habituation to Aquaria on Swimming Behavior 

No positive correlation was detected between maximum swimming speed and 

standard length of fish that had not been habituated to aquaria (Figure 25; p=0.99, 

r2=0.002).  Habituated fish, on the other hand, showed a positive correlation between 

maximum speed and standard length (Figure 25; p=0.001, r2=0.48).  
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Figure 25. Maximum swimming speed attained by an individual fish plotted as a function 

of its standard length. 

 Determining the validity of the expected maximum speed formula 

The validity of the formula used to calculate expected maximum speed was 

determined by comparing the slopes of two regression lines based on the observed and 

expected maximum swimming speeds of habituated control fish from all experiments.  

The first regression was performed by regressing the observed maximum speed of the 

fish against their standard length.  The second was performed by regressing the expected 

maximum swimming speed against their standard lengths.  The slopes of the two 

regressions were not significantly different [Figure 26, p (ta(2),32≥-|1.294|)=0.204], 

indicating that Equation 1 was performing as expected. 
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Figure 26. Slope of the regressions of observed and expected Sambilay maximum 

swimming speed are underlined. 
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coefficient of variation of pom-poms that passed through the viewing tube (Table 2). Low 
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Table 2. Consistency is displayed in terms of the coefficient of variation and standard 

deviation associated with each water velocity. The number of pom-poms 

recorded during calibration is n. 

Ramp n cm/s Std Dv C V 

Habituation 7 10 1.04 10.7% 

1 11 18 1.45 8.2% 

2 10 27 2.94 11.0% 

3 10 34 2.58 7.6% 

4 14 46 3.02 6.5% 

5 11 54 2.22 4.1% 

6 11 60 3.91 6.5% 

7 11 68 3.27 4.8% 

DISCUSSION 

 Prevalence of Heterophyid Parasites in Melanoides tuberculata 

 Sampling-site factors associated with prevalence 

When compared to historical data, prevalence of H. pumilio appears to have increased 

substantially over the past 17 yrs.  Other workers have reported H. pumilio prevalences 

no higher than 1%-1.6% in Landa Lake (Bio-West 2014, Tolley-Jordan and Owen 2008).  

However, our data for H. pumilio, pooled across all sample sites (n=2606), revealed a 

prevalence of 18%.  It is important to note that, while no previous study has reported 

prevalences as high as what we have observed, most of our snails came from Pecan 

Island, where we consistently found the highest prevalence, and where the previous 

workers did not sample. 

The high prevalence of exotic heterophyids in snails we collected from Pecan Island 

West Bank (PIWB) relative to other sites that we sampled was likely due to the high 

number of piscivorous birds that frequented the area.  Although the Green Heron 

(Butorides virescens) is thought to be the main definitive host for C. formosanus, and 

probably also hosts H. pumilio, only a single Green Heron was seen over the course of 

numerous visits to PIWB.  The Double-crested Cormorant (Phalacrocorax auritus), 
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however, was seen roosting by the dozen at the PIWB collection site during every 

sampling event.  While it would appear that the Double-crested Cormorants were serving 

as the definitive host, previous studies assessing the prevalence of C. formosanus in 

Double-crested Cormorants at Landa Lake did not detect any infections.  The paradox of 

seeing numerous cormorants at PIWB on every visit and seeing only a single Green 

Heron suggests that the Double-crested Cormorant should be reassessed to determine if 

they in fact can serve as a definitive host for C. formosanus. 

 Incomplete detection of cercariae 

Accurate determination of C. formosanus and H. pumilio prevalence in M. 

tuberculata in our experiments was complicated by the fact that infected snails had to be 

kept alive in order to provide a source of cercariae to conduct experiments on fish.  In 

other studies whose objective was to solely determine prevalence of infection in M. 

tuberculata, snails were simply crushed and examined for the presence of sporocysts or 

generations of rediae in the digestive gland.  This is a relatively quick and efficient 

method allowing the detection of infection even when the snail has recently been infected 

and is still incubating or is experiencing a senescence in the rate of shedding of cercariae. 

The incubation period between becoming infected and shedding cercariae for all three 

trematodes commonly infecting M. tuberculata in Texas varies between 83-89 d (Pinto et 

al. 2018, Díaz et al. 2002).  In order to detect infections using presence or absence of 

cercariae in our test tube array, collected snails would have had to have become infected 

three months prior to being sampled.  Otherwise, infections in snails that were still 

incubating would not be detected.  Snails that were examined over a 24 h period and 

found not to be shedding any cercariae were discarded, some of which were likely 

harboring rediae with immature cercariae.  Dissection of every discarded snail was not 
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attempted because this was beyond the scope of the study.  Thus, our reports of 

prevalence are likely lower than actual prevalence in the wild population around Landa 

Lake. 

 Effects of Cercarial Exposure Rate on Fish Mortality Rate 

 General relationships  

Fish mortality resulting from infection with H. pumilio is likely caused by four main 

mechanisms; (1) physiological shock and trauma incurred when a fish is exposed to a 

large number of cercariae in a short time, (2) accumulated histopathological damage 

when a fish is exposed to cercariae at a lower rate per day, resulting in the surviving fish 

encountering perhaps a much larger total number of cercariae, (3) chance migration of a 

cercaria (perhaps independently of exposure rate) that just happens to intercept a vital 

organ causing catastrophic damage, and (4) excessive electrolyte loss through wounds 

created when cercariae aggregate in sufficient numbers to cause flaring of scales or open 

sores at the fin insertions. 

The number of days that infected C. venusta survived while being treated with 

cercariae of H. pumilio decreased at an exponential rate as cercarial exposure rate 

increased (Figure).  Mortality in fish was observed after a single exposure of 6,000 

cercariae in one day, but fish exposed to three times as many total cercariae (18,750) 

survived for as long as 15 d when the exposure rate was reduced to 1,850/d.  This would 

indicate that mortality due to high exposure rate is not caused by the total amount of 

damage done by cercariae, but rather, is caused by physiological shock to all systems of 

the body in a very short period of time. Conversely, mortality in fish receiving a lower 

daily cercarial exposure rate that survive much longer is possibly caused by the 

accumulated damage to tissues resulting from numerous cercarial migrations over time.  



 

66 
 

While the rate of cercarial exposure is likely the main factor driving the relationships 

in Figure 19, some of the fish in aquaria receiving low rates of exposures (1,200 

cercariae/d) died much earlier than their cohorts.  Such fish usually showed grossly 

obvious signs of catastrophic damage to vital organs as revealed by bright red, green, and 

yellow stains showing through the abdomen, but lacked other symptoms of infection.  

The probable cause of death in these instances was larval migration by cercariae that 

caused catastrophic damage to, and ultimate failure of, a vital organ.  Sommerville (1982) 

has shown that migrating cercariae of H. pumilio were found in every organ of the body 

in experimentally infected fry of three species tilapia.  These observations suggest that an 

element of chance is associated with the path taken by a cercaria migrating through host 

tissue.  It follows that fish exposed to higher numbers of cercariae are more likely to 

experience at least one of these catastrophic organ failures. The chance occurrence of 

migration causing significant damage to a vital organ is likely the result of cercariae that 

have gotten lost in their journey to a suitable place to encyst and began migrating through 

tissue aimlessly. 

Roughly a quarter of cercariae that successfully develop into metacercariae in fish are 

distributed in the caudal fin (Lo and Lee 1996).  When metacercariae accumulate in large 

numbers, the caudal peduncle can swell into a large blister that can rupture (Figure 2), 

causing loss of blood and electrolytes.  Mortality due to blood and electrolyte loss was 

presumed to have occurred in fish with sudden development of an open sore near the 

caudal fin and subsequent death. 
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 Differences in mortality rates between Cyprinella venusta and Dionda 

diaboli 

The slope of the regression of mortality on exposure rate for Dionda diaboli was 

much steeper than the slope for Cyprinella venusta, and the exposure rate sufficient to 

kill all D. diaboli in an aquarium after one treatment was less than half the exposure rate 

killing all C. venusta in an aquarium after one treatment (Figure 19).  Also, D. diaboli 

died sooner than C. venusta at similar exposure rates on average, meaning that a given 

exposure rate is more likely to cause mortality in D. diaboli than in C. venusta.  This 

result was consistent with our expectation that D. diaboli would be much more sensitive 

than C. venusta to the effects of infection by H. pumilio. 

 Interpretations and other observations 

Mortality caused by high cercarial exposure is probably not a biologically significant 

problem for fish in local river systems.  The continuous flow of water from upstream will 

sweep emergent cercariae downstream, preventing density of cercariae from 

accumulating in one spot.  Therefore, it is unlikely that fish inhabiting local rivers will 

encounter cercariae of H. pumilio at sufficient densities to cause sudden mass mortality.  

It is worth noting, however, that as flow rate from springs decrease, the density of 

cercariae will increase, which would also increase the risk of parasite induced mortality.  

While there has not been any assessment of acquisition rates of H. pumilio in wild fish, 

caged fish have been shown to acquire as many as 14 metacercariae of Centrocestus 

formosanus per day in the Comal River (Fleming et al. 2011).  Because the prevalence of 

H. pumilio is higher than the prevalence of C. formosanus in the snail host at Landa Lake, 

we estimate the rate of acquisition to be similar for H. pumilio.  Based on our lowest 

observed infection success rate for H. pumilio cercariae, the caged fish would have had to 

have encountered at least 100 cercariae/d to acquire 14 metacercariae.  This estimate is 
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approximately 10% of the cercarial exposure that caused mortality in experimentally 

infected fish over the course of 30 d.  Even considering the highest estimates of cercarial 

rates in the river, fish mortalities due to infection is more likely to occur from secondary 

causes resulting from decreased fitness associated with metacercarial accumulation over 

longer periods of time, than mortality due to high cercarial exposure. 

Should wild fish actually encounter water with cercarial densities similar to those that 

were lethal in our experimental studies, the observed behaviors of experimentally 

exposed fish in our study and those of other workers (Sommerville 1982) suggest that 

immigrating fish would quickly seek other waters with lower cercarial densities. fish 

experimentally exposed to H. pumilio cercariae displayed signs of agitation including 

flashing and spastic swimming. In addition, some fish in high exposures even attempted 

to jump from the aquaria, leaving the water several times after initial treatment. It has 

also been observed that seemingly pristine habitat in rivers where the parasite is known to 

exist are void of fish.  This would indicate that fish selectively avoid areas where 

cercarial density is high in spite of suitable habitat.  Avoidance of areas with high 

cercarial density is expected for highly mobile fish in rivers such as C. venusta, however, 

fish that are confined in a reservoir or fish that have low mobility within the river due to 

habitat requirements (such as D. diaboli) or territorial behavior, may be more affected by 

high cercarial densities.  The low mobility of D. diaboli, combined with its apparent 

sensitivity to effects of H. pumilio infection, would put the already threatened species at 

even greater risk given its limited range and strong association with calm, spring 

influenced water and thick vegetation. 
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 Effects of Haplorchis pumilio and Centrocestus formosanus on the Swimming 

Ability of Cyprinella venusta 

 Effects of Haplorchis pumilio 

1.24.1.1 Observed effects on Cyprinella venusta 

Cyprinella venusta that encounter non-lethal exposures of cercariae of H. pumilio will 

experience decreased fitness in terms of swimming ability due to infection.  Measures 

expressing such decreases in swimming ability include reduced maximum swimming 

speed and reduced total work the fish is able to perform in terms of maintaining station 

before becoming exhausted.  Infected C. venusta experienced a consistent decrease in 

maximum swimming speed as infection intensity increased.  An increase of one 

metacercariae per each mm of total length of the fish reduced maximum swimming speed 

by 1.2-1.6% (depending on fish length).  Given a fish with a total length of 62 mm (the 

mean total length of the experimental fish), and a total accumulation of 442 metacercariae 

(7.1 metacercariae/mm), its maximum swimming speed would be reduced from an 

expected 51 cm/s to 45.9 cm/s.  This amounts to a 10% decrease in maximum swimming 

speed relative to an uninfected control of the same length.  Considering the mean 

recorded rate at which fish acquire metacercariae in the Comal River (Fleming et al. 

2011), some resident fish would acquire a metacercarial load sufficient to reduce its 

maximum swimming speed by 10% in about 1 y.  A 10% decrease in the maximum 

swimming speed would likely be biologically relevant when evading predators and 

navigating riffles in order to find new food sources and breeding areas. Considering that 

C. venusta commonly reach 3 yrs of age, C. venusta surviving this length of time would 

experience a 30% decrease in maximum swimming speed given the same rate of 

metacercarial acquisition. A resident fish acquiring the highest measured rate of 

metacercarial acquisition (14 metacercariae per day) would accumulate about 5,000 
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metacercariae in a single year which would surely cause death long before it reached 1 

year of age. It is also important to note that because swimming ability decreases with 

metacercariae per mm total length of the fish, as total length decreases, fewer total 

metacercariae cause a decrease in swimming ability. As stated before, 7.1 metacercariae 

per mm causes an approximate 10% decrease in maximum speed of C. venusta, meaning 

the number of metacercariae that would cause this change in a 40 mm fish (284 

metacercariae) is much less than would be required in a 70 mm fish (479 metacercariae).  

Consequently, the 40 mm fish would experience this decrease in fitness much sooner 

(21d) than the 70 mm fish (35d), given an acquisition rate of 14 metacercariae per day.  

This suggests that smaller fish are at potentially higher risk than larger fish and may 

experience a decrease in fitness sooner than larger fish at the same acquisition rate.  This 

could mean that younger, smaller fish are at higher risk than older larger fish, which may 

alter the demographics of fish populations where the parasite exists. 

Fish also showed a decrease in the amount of total work they could perform before 

becoming exhausted as corrected metacercarial intensity increased.  Total work 

performed is equivalent to the amount of force a fish can exert over a given distance.  For 

fish, this translates to the amount of time a fish can maintain station at a given water 

velocity, which is obviously an important aspect of fitness.  Unlike the linear decrease 

observed in maximum swimming speed due to infection, the total work a fish can 

perform before becoming exhausted declines with an exponential decay as metacercarial 

intensity increases (Figure 20).  This means that if a fish accumulates metacercariae at a 

constant rate, the time required for the fish to become exhausted (given a fixed water 

velocity) decays exponentially.  As mentioned before, an infection of 7.1 
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metacercariae/mm causes a 10% decrease in maximum swimming speed but causes a 

23% decrease in the amount of work the shiner is able to perform before becoming 

exhausted. A shiner with a 23% reduction in ability to maintain station in flowing water 

will surely be outcompeted when contesting for optimal feeding positions and spawning 

sites, both activities of which generally occur in flowing water.   

1.24.1.2 Observed effects on Dionda diaboli 

Much like Cyprinella venusta, D. diaboli exhibited reduced maximum swimming 

speed and reduced total work performed when infected with H. pumilio (Figures 21 and 

22).  However, the effects of H. pumilio infection are more dramatic in D. diaboli than in 

C. venusta. 

Maximum swimming speed of D. diaboli can be expected to decrease by 2.1 to 2.8% 

for each unit increase in corrected metacercarial intensity (depending on fish length), 

which is much greater than the decrease observed in C. venusta (1.2 to 1.6%).  So, given 

the number of metacercariae that causes a 10% decrease in max swimming speed of C. 

venusta, D. diaboli would experience a 17% decrease.  A decrease in swimming ability of 

this magnitude would, undoubtedly, be biologically relevant, as it would surely 

compromise the ability of D. diaboli to escape predators or compete with uninfected fish.  

As with C. venusta, shorter D. diaboli will experience negative effects sooner than longer 

fish at the same metacercarial acquisition rate. 

The total amount of work that an individual D. diaboli was able to perform was also 

negatively impacted by increasing metacercarial intensity (Figure 22).  The amount of 

work an individual was able to perform decayed exponential as corrected metacercarial 

intensity increased.  As stated before, because this relationship is not linear, the number 
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of metacercariae sufficient to cause only a 10% decrease in maximum swimming speed 

for an individual D. diaboli would result in about a 23% decrease in the amount of work 

that fish is able to perform.  A decrease in swimming ability of this magnitude is certainly 

biologically relevant, as infected fish will be out-competed when contesting for optimal 

feeding areas and breeding grounds. 

1.24.1.3 Ecological ramifications of Haplorchis pumilio 

Another way of looking at these effects is to consider populations of C. venusta and 

D. diaboli coexisting in a community of small fishes and currently existing in a cercaria-

free ecosystem.  If H. pumilio is introduced into such a naïve system, D. diaboli will 

experience fitness consequences earlier than C. venusta, and the other species will 

probably also be affected differentially.  Also, the next generation of young for each 

susceptible species will be affected much more dramatically than their parents, leading to 

an increase in mean age of the population.  Perhaps more importantly, species not 

susceptible to Haplorchis pumilio will benefit from the invasion, due to decreased 

competition.  Thus, the demographics, composition, distribution, etc., of the community 

will all change post introduction.  Indeed, because of the more intense effects of infection 

on smaller fish, recruitment of offspring into the reproducing population of some species 

may be suppressed sufficiently as to bring about local extirpation. 

 Mechanisms causing decreased swimming ability 

The decrease in swimming ability observed in C. venusta  and D. diaboli as a result of 

H. pumilio infection is probably caused by two main factors; (1) overall damage in the 

muscle tissue from larval migration (Sommerville 1982) and (2) metacercariae 

encystment between the fin rays in all fins, stifling the ability for fish to articulate their 

fin rays for efficient swimming.  To swim efficiently, fish articulate the rays of the caudal 
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fin to form a cup, which they use to create thrust as the fish beats its tail (Bainbridge 

1963).  The concavity of the caudal fin cup inverts on every tail beat and is led by the 

rays on the dorsal and ventral margin of the caudal fin, indicating that the formation of 

the cup is an active process.  Formation of the cup requires muscles to work in moving 

fin rays against resistance.  An increase in metacercarial cysts between the articulation 

points of the rays likely hinders this process, resulting in reduced swimming efficiency.  

In addition to reduced articulation of the fin itself, damage to muscle tissue from 

hemorrhaging caused by cercarial migration may reduce the amount of thrust fish are 

able to generate per tail beat. 

 It is important to note that all experiments testing swimming ability of C. venusta 

and D. diaboli infected with H. pumilio were conducted over a relatively short time (3 

weeks) at densities much higher than the rates observed in local rivers.  While it is not 

inconceivable that fish in local rivers could acquire enough metacercariae to experience 

the decrease in total fitness observed in experimentally infected fish, the acquisition of a 

considerable number of metacercariae over the course 1yr as opposed to 3 w may 

produce different effects on fitness.  

 

 Centrocestus formosanus 

Counter to prediction, the range of metacercarial load tested in C. venusta was not 

associated with a negative impact on swimming ability. Inspection of the gills during 

necropsy revealed that metacercariae caused minor damage and minimal swelling to gill 

filaments of C. venusta.  This is inconsistent with specimens of different species that have 

been experimentally infected in the past.  Unlike Cyprinella venusta, fountain darters 

(Etheostoma fonticola) infected with C. formosanus exhibited a copious amount of 
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swelling in the gills in response to infection, as well as severe damage to the gill tissue 

that often results in death (Mitchell et al. 2000).  This indicates that pathological effects 

of C. formosanus infection is heavily dependent upon the host species’ immune response 

to infection. While C. formosanus may have some effect on the fitness of small cyprinids, 

our data suggest that H. pumilio should be of far greater concern to fish conservation 

workers.  

 Success of Metacercarial Establishment by Haplorchis pumilio and 

Centrocestus formosanus 

There are many variables in rivers and lakes that potentially affect the rate at which 

cercariae successfully infect a host, which are not testable using aquaria.  As such, it is 

important to note that any data retrieved from experiments using aquaria to determine the 

infection success of parasites describe an ideal scenario for cercariae given that the host 

cannot escape, there is no water current for cercariae with which to contend, and the 

cercariae are with the host at all times in a relatively confined space.  Conversely, 

cercariae in a river or lake exist in a much larger volume of water where the chance of 

encountering a suitable host is arguably lower; furthermore, if a suitable host is 

encountered, cercariae must also successfully penetrate the host, migrate through the host 

tissue, and successfully develop into a metacercaria.  Additionally, cercariae are largely 

subject to the velocity of the water, only able to travel at approximately 0.5-2.5 mm/s (Lo 

and Lee 1996) and can be damaged by turbulence or riffles which lowers the viability of 

cercariae.  Consequently, predicting the infection success rate of cercariae of either 

trematode species under study is arduous.   

Regardless of the accuracy of the infection success rate reported from experimentally 

infected fish, it appears from the results in section 1.19 that density of cercariae does not 
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affect infection success rate in either species of trematode.  Lack of density dependence 

represented in our data may be a result of the extreme high densities of cercariae tested, 

resulting in a saturation effect.  We expect that as cercarial densities decrease to levels 

found in the wild, infection success will decrease.  While no density dependency was 

observed, infection success rate was positively correlated with total length of fish in both 

species of trematode.  While the positive correlations could be spurious, the increased 

success rate of cercariae on larger fish could be explained by larger fish having larger 

respiratory currents compared to smaller fish.  Larger respiratory currents increase the 

chance cercariae contact unscaled skin and membranes of the fish, making it easier for 

cercariae to successfully penetrate the fish.  Additionally, larger fish push more water 

with every fin movement than compared to small fish, even when maintaining orientation 

within an aquarium.  This creates a larger continuous current of water close to the body 

near the fin insertions, possibly increasing the number of cercariae the fish encounters. 

 Effects of Aquarium Habituation on Swimming Behavior 

 Effects of habituation to aquaria on swimming ability of fish 

Behavior in the SEA was markedly different between habituated and unhabituated 

fish.  It was originally hypothesized that unhabituated fish may perform better in the SEA 

than habituated fish, considering that habituated fish are in aquaria for up to 3 weeks 

without any swimming exercise from exposure to flowing water.  Inconsistent with 

prediction, habituated fish attained higher swimming speeds on average and responded 

more consistently to the SEA speed-ramping protocol.  Unhabituated fish behaved 

erratically when first put into the SEA, but also frequently tried to move laterally to 

escape the current. Upon encountering the wall of the glass tube, unhabituated fish began 

darting unpredictably.  Fish also displayed a fright response when the SEA operator made 
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adjustments to the speed, resulting in similar erratic darting behavior. This made it 

difficult to obtain consistent, reliable data with unhabituated fish.  As a result, recorded 

maximum swimming speed was not correlated with the standard length of unhabituated 

fish, which was inconsistent with our expectations.  Conversely, maximum swimming 

speed of habituated fish was positively correlated with standard length, as expected. The 

consistent, predictable behavior of habituated fish was likely affected by the fact that 

habituated fish were accustomed to living in the confines of a glass container and had 

become acclimated to the presence of people. 

 Validity of Sambilay’s speed equation 

Sambilay (1990) equation for predicting the maximum swimming speed was 

determined by fitting a regression across observed maximum swimming speed of over 

126 species of fish using the aspect ratio of the caudal fin and standard length of the fish 

tested.  Given the high degree of variation among fish in terms of morphology and natural 

history, a test was conducted to ensure the proposed equation accurately and reliably 

predicted the expected Sambilay maximum swimming speed of Cyprinella venusta. To 

determine if the equation was an acceptable way of calculating the expected Sambilay 

swimming speed of C. venusta, the slope from the regression of observed maximum 

speed on standard length was compared to the slope of the regression formed by expected 

Sambilay maximum swimming speed on Standard Length (Figure 26). As reported in 

section 1.20.1, a t-test determined that the slopes from the two regressions were not 

different, indicating not only that Sambilay’s equation was a reliable estimation of 

expected maximum swimming speed of C. venusta, but also gave us confidence that the 

SEA produced consistent, repeatable results. 
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 Swimming Endurance Apparatus Calibration and Consistency 

Previous attempts to estimate the maximum swimming speed of fish used devices the 

measurement of total volume sent through the speed assessment apparatus to estimate the 

velocity of the water in the apparatus and did little to ensure that each fish tested 

experience lamellar flow that is free of eddies and turbulence. Without the assurance of 

lamellar flow, each fish that enters the swimming assessment apparatus could potentially 

experience a current velocity that is not accurately reflected in the measurement of the 

volume output of said apparatus.  Other measurements of maximum speed employed the 

use of a current meter to estimate the velocity of water fish are experiencing. However, 

without the assurance of lamellar flow, there is no way of knowing the current velocity 

measured is uniform throughout the testing apparatus. 

To ensure lamellar flow within the viewing tube of the SEA, meticulous steps were 

taken in the design (section 1.13.1) and calibration of velocity (section 1.13.2) to ensure 

the uniformity of flow. Low coefficients of variation at each speed generated indicates 

the SEA operates with a high degree of consistency and repeatability (Table 2). This is 

likely the lowest coefficient of variation ever retrieved from a device designed to test the 

swimming ability of fish, giving us confidence in the results it has produced.  

The variance present in calibration is partially due to the inevitable adherence of 

water to the surface of the pipe through which the water is flowing. The attraction of 

water to the inside surface of the pipe creates a layer of water next to the pipe surface 

which moves slower than the water in the center of the pipe. This phenomenon is referred 

to as the boundary layer and creates a parabolic velocity profile in the water flowing 

through the pipe. This simply means that as you move from the center of the pipe to near 
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the wall of the pipe, the velocity of water will approach 0 cm/s. The decrease in velocity 

close to the wall of the pipe is partially accounted for since the velocities measured for 

each flow and diverter setting during calibration are produced from the mean of pom-

poms that were filmed moving through the SEA, many of which encountered the 

boundary layer for more than half the journey through the viewing tube. The effect of the 

boundary layer was not a significant concern, as the majority of fish swam in the 

boundary layer, experiencing the same decrease in velocity of water at every tested 

speed.  The only potential consequence of the boundary layer is that the estimated 

maximum swimming speed of fish is slightly higher that what fish actually experienced 

during testing; meaning that the actual speed the fish achieved is slightly lower than the 

observed speed.  This is potentially explained in (Figure 26) when comparing expected 

Sambilay maximum and actual maximum swimming speeds of habituated fish. While the 

slopes of the two regressions were not different from each other, the intercepts were 

marginally different [p (ta(2),32≥|1.992|)=0.055], indicating that the observed maximum 

speeds are slightly overestimated. We would attribute this consistent overestimation of 

maximum speed to the uniform decrease in velocity of water caused by the boundary 

layer. However, because the intercepts were not significantly different, and the effect was 

consistent across all fish tested, no correction was made to observed maximum 

swimming speed. 

Further improvements to design can still be made to increase the utility of the SEA.  

A variable speed pump would allow us to increase the velocity of water in a continuous 

fashion over time as opposed to the step-wise increase in velocity used in this 

experiment.  Smooth, linear increase of velocity would allow us to more accurately assess 
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the actual maximum swimming speed of fish given that the testing protocol would not be 

limited by low resolution of water velocities that are able to be reliably generated. A 

variable speed pump would also reduce the amount of materials required to build the 

SEA and also simplify the operation protocol. 

 

 Recommendations for Future Research  

 Re-assessment of the Double-crested Cormorant as a definitive host for 

Centrocestus formosanus and Haplorchis pumilio 

To investigate the hypothesis that Double-crested Cormorants serve as a definitive 

host for C. formosanus and H. pumilio, Double-crested Cormorants could be shot and 

dissected to determine the prevalence, if any, of the two trematodes.  This may be 

difficult and time consuming due to the relative difficulty of obtaining the appropriate 

permits to euthanize non-game, water dwelling birds. Alternatively, fresh fecal samples 

could be obtained from Double-crested Cormorant roosts around Landa Lake and 

examined for the presence of eggs of either C. formosanus or H. pumilio.  This method 

presents its own set of challenges as there is no way to ensure that fecal samples obtained 

from roosts did indeed come from Double-crested Cormorants unless the birds were 

physically restrained, and fecal samples were taken directly from the bird. 

 

 Estimating infection success in the wild 

To better understand infection success rates or trematode cercaria present in Landa 

Lake and surrounding rivers, current our lab is currently conducting research into the 

relationship between cercarial levels measured in the river and metacercarial intensity 

acquired by concurrent caged-fish studies. The caged fish will be retrieved, euthanized 

and dissected to estimate acquisition rates, which can be used to infer the relative success 
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rates of cercariae present in the wild.  These data will allow us to relate river 

cercariometry readings to actual fitness consequences. 

 Exploring the effects of long-term, low exposure rate of Haplorchis pumilio 

on Cyprinella venusta 

To explore the effects of low cercarial exposure rate of H. pumilio on C. venusta over 

longer periods, we intend to conduct a similar experiment using cercarial exposure rates 

more consistent with cercariometric estimates of local rivers and lakes where the 

trematodes exist. Current research is being conducted to estimate the cercarial density in 

local rivers and lakes which will be paired with caged fish studies from the same areas. 

Testing effects of H. pumilio on C. venusta over longer periods of time will also be useful 

in assessing the ability of C. venusta to abort metacercariae embedded in fin insertions 
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